文档库 最新最全的文档下载
当前位置:文档库 › 页面置换算法模拟程序-附代码

页面置换算法模拟程序-附代码

页面置换算法模拟程序-附代码
页面置换算法模拟程序-附代码

目录

1.问题的提出 (2)

1.1关于页面置换算法模拟程序问题的产生 (2)

1.2任务分析 (2)

2.需求分析 (2)

3.方案设计 (3)

4.总体设计 (4)

4.1程序N-S图 (4)

4.2主要的函数 (4)

4.3主要流程图及代码 (5)

4.3.1 FIFO(先进先出) (5)

4.3.2 LRU(最近最久未使用) (6)

4.3.3 OPT(最佳置换算法) (9)

4.4实现结果 (11)

5.程序测试 (15)

5.1设计测试数据 (15)

5.2测试结果及分析 (16)

摘要

随着计算机的普及人们的物质生活得到了极大的满足,人们在精神生活方面同样也需要

提高,所以越来越多的人进行着各种各样的学习。操作系统是计算机教学中最重要的环节之一,也是计算机专业学生的一门重要的专业课程。操作系统质量的好坏,直接影响整个计算机系统的性能和用户对计算机的使用。一个精心设计的操作系统能极大地扩充计算机系统的功能,充分发挥系统中各种设备的使用效率,提高系统工作的可靠性。由于操作系统涉及计算机系统中各种软硬件资源的管理,内容比较繁琐,具有很强的实践性。要学好这门课程,必须把理论与实践紧密结合,才能取得较好的学习效果.

本课程设计是学生学习完《操作系统教程》课程后,进行的一次全面的综合训练,通过课程设计,让学生更好地掌握操作系统的原理及实现方法,加深对操作系统基础理论和重要算法的理解,加强学生的动手能力。

熟悉页面置换算法及其实现,引入计算机系统性能评价方法的概念。

关键词:编制页面置换算法模拟程序、打印页面、FIFO页面算法、LRU页面置换算法、OPT页面置换算法。

引言

1.问题的提出

1.1关于页面置换算法模拟程序问题的产生

在各种存储器管理方式中,有一个共同的特点,即它们都要求将一个作业全部装入内存方能运行,但是有两种情况:(1)有的作业很大,不能全部装入内存,致使作业无法运行;(2)有大量作业要求运行,但内存容量不足以容纳所有这些作业。而虚拟内存技术正式从逻辑上扩充内存容量,将会解决以上两个问题。

从内存中调出一页程序或数据送磁盘的对换区中,通常,把选择换出的页面的算法称为页面置换算法(Page-Replacement Algorithms)。进而页面置换算法模拟程序能客观的将其工作原理展现在我们面前。

1.2 任务分析

首先,定义宏变量,设置所占最大内存长度。编辑以时间为种子,初始化随即发生器。进行相关页面输入程序的编写以及页面的打印。尔后,寻找最近最近最久未使用的页面、记录当前内存块中页面离下次使用间隔长度等相关程序的代码编写。最后,进行)FIFO 、LRU、 OPT三种算法的编写。

2.需求分析

1.用随机数方法产生页面走向,页面走向长度为L。

2.根据页面走向,分别采用FIFO和LRU算法进行页面置换,统计缺页率;

为简化操作,在淘汰一页时,只将该页在页表中抹去,而不再判断它是否

被改写过,也不将它写回到辅存。

3.假定可用内存块和页表长度 (作业的页面数)分别为m和k,初始时,作

业页面都不在内存。

随机数产生程序:

int i,j;

j=time(NULL);//取时钟时间

srand(j);//以时钟时间x为种子,初始化随机数发生器

cout<<"输出随机数: ";

for(i=0;i

{

p[i].num=rand( )%10+1;//产生1到10之间的随即数放到数组p中

p[i].time=0;

cout<

}

上述随机数发生函数产生的随机数为0.0~1.0,稍另变化就可得到0~n 1之间的随机数。

程序开始时,应对变量Seed (实型)赋初值。

根据页面置换算法的理论操作及要求,首先要进行页面长度的确定,定义结构体用以储存数据,进行主界面代码及FIFO、LRU、OPT页面置换算法代码的编写。

3.方案设计

首先,定义宏变量,设置所占最大内存长度。编辑以时间为种子,初始化随即发生器。进行相关页面输入程序的编写以及页面的打印。

其次,寻找最近最近最久未使用的页面、记录当前内存块中页面离下次使用间隔长度等相关程序的代码编写。

最后,进行FIFO 、LRU、 OPT三种算法的编写。.

程序运行平台

VC++6.0

具体操作如下:在VC++6.0的环境下准备用时钟函数调用库函数(#include )、取时钟时间并存入t调用库函数(t=time(NULL))、用时间t初始化随机数发生器调用库函数(srand(t)返回一个1~10之间的随机数(x=rand( )%10+1)。编写三种算法。

4.总体设计

4.1 程序N-S图

4.2 主要的函数

Input(int m,Pro p[L])(打印页面走向状态);

void print(Pro *page1)(打印当前的页面);

int Search(int e,Pro *page1 )(寻找内存块中与e相同的块号);

int Max(Pro *page1)(寻找最近最长未使用的页面);

int Count(Pro *page1,int i,int t,Pro p[L])(记录当前内存块中页面离下次使用间隔长度);

int main()(主函数);

.随机数发生器

#include

#include //准备用时钟函数调用库函数

t=time(NULL);//取时钟时间并存入t调用库函数

srand(t);//用时间t初始化随机数发生器调用库函数

x=rand( )%10+1;//返回一个1~10之间的随机数

4.3 主要流程图及代码

4.3.1 FIFO(先进先出)

设计原理:需要进行页面置换,即把内存中装入最早的那个页面淘汰,换入当前的页面。

算法流程图

图4-1FIFO算法流程图

代码:if(c==1)//FIFO页面置换

{

n=0;

cout<<" ****************************************** "<

cout<

cout<<" FIFO算法页面置换情况如下: "<

cout<

cout<<" ******************************************

"<

while(i

{

if(Search(p[i].num,page)>=0)//当前页面在内存中

{ cout<

cout<<"不缺页"<

i++;//i加1

}

else //当前页不在内存中

{

if(t==M)t=0;

else

{

n++;//缺页次数加1

page[t].num=p[i].num; //把当前页面放入内

存中

cout<

print(page); //打印当前页面

t++; //下一个内存块

i++; //指向下一个页面

}

}

}

cout<<"缺页次数:"<

}

4.3.2 LRU(最近最久未使用)

设计原理:当需要淘汰某一页时,选择离当前时间最近的一段时间内

最久没有使用过的页先淘汰该算法的主要出发点是,如果某页被访问了,则它可

能马上还要被访问。或者反过来说如果某页很长时间未被访问,则它在最近一段

时间也不会被访问。

算法流程图:

图4-2 LRU算法流程图

代码:if(c==2)//LRU页面置换

{

n=0;

cout<<" ****************************************** "<

cout<

cout<<" LRU算法页面置换情况如下: "<

cout<

cout<<" ******************************************

"<

while(i

{

int a;

t=Search(p[i].num,page);

if(t>=0) //如果已在内存块中

{

page[t].time=0; //把与它相同的内存块的时间

置0

for(a=0;a

if(a!=t)page[a].time++; //其它的时间加1

cout<

cout<<"不缺页"<

}

else //如果不在内存块中

{

n++; //缺页次数加1

t=Max(page); //返回最近最久未使用的块号

赋值给t

page[t].num=p[i].num; //进行替换

page[t].time=0; //替换后时间置为0

cout<

print(page);

for(a=0;a

if(a!=t)page[a].time++; //其它的时间加1

}

i++;

}

cout<<"缺页次数:"<

}

4.3.3 OPT(最佳置换算法)

设计原理:需要进行页面置换,把内存中以后一段时间都不使用或是使用时间离现在最远的页面换出。

流程图:

图4-3 OPT 流程图

代码: if(c==3) //OPT页面置换

{

n=0;

cout<<" ****************************************** "<

cout<

cout<<" OPT算法置换情况如下:"<

cout<

cout<<" ****************************************** "<

while(i

{

if(Search(p[i].num,page)>=0) //如果已在内存块中

{

cout<

cout<<"不缺页"<

i++;

}

else //如果不在内存块中

{

int a=0;

for(t=0;t

if(page[t].num==0)a++; //记录空的内存块数

if(a!=0) //有空内存块

{

int q=M;

for(t=0;t

if(page[t].num==0&&q>t)q=t; //把空内存块中

块号最小的找出来

page[q].num=p[i].num;

n++;

cout<

print(page);

i++;

}

else

{

int temp=0,s;

for(t=0;t

if(temp

{

temp=Count(page,i,t,p);

s=t;

} //把找到的块号赋给s

page[s].num=p[i].num;

n++;

cout<

print(page);

i++;

}

}

}

cout<<"缺页次数:"<

}

4.4 实现结果

程序在运行的情况下,进入主界面输入菜单,如图3-3所示:

输入14:

图4-5 输入14后的输出图

输入25:

图5-6输入数据25后输出图输入数据18:

图5-7 输入数据18后的输出图输入数据:

图5-8输出图

选1,进入FIFO页面置换:

图5-9 FIFO的输出图选2,进入LRU页面置换:

图5-10 LRU的输出图输入3,进入OPT页面置换:

图5-11 OPT的输出图5.程序测试

5.1 设计测试数据

A 14 25 18 ;2 6 4 ;

B 1

C 2

D 3

5.2 测试结果及分析

1)测试A结果及分析

进入主菜单后输入14、25,显示输入不满足要求。输入18 显示相关信息; 输入2 、6不满足要求,输入4 显示出相关信息。

2)测试结果及分析

显示出FIFO页面置换算法的缺页信息及缺页率。

3)测试C结果及分析

显示出LRU页面置换算法的缺页信息及缺页率。

4)测试D结果及分析

显示出OPT页面置换算法的缺页信息及缺页率

结论

通过这次课程设计,不仅让我了解了页面置换算法,开始我一味的进行调试,急切的想侥幸调试出来,但由于没有进行深入的考虑,我调试了很久都没没有成功,我仔细的分析题目,分析材料,在原由的基础上我进行了改正,我最后还是调试成功了,还是经过了一翻努力,这次操作系统实习,不仅让我对操作系统这门课程有了更深入的研究、对很多重要的概念有了巩固和掌握。通过努力,三个页面置换算法程序都已经完成,此时此刻,我心里多了些成就感。

虽然自己所做的很少也不够完善,但毕竟也是努力的结果。主要有以下几点收获:

1.通过对上网和看书查阅相关资料,使自己对VC ++语言的基本框架有新的

了解,加深了对可视化程序的认识。

2.在使用VC++语言来实现功能时,不像以往用的其他语言,它比较简练,

更容易理解,实用性很强。

3.先进先出页面置换和LRU以及OPT算法各有特点,但是实践起来却很大,

使自己对页面置换算法有了新的认识。

一周半的课程设计就要结束了,不但对专业知识有了更深的理解,更使的自己认识到实践的重要性,理论、实践相结合才能达到很好的学习效果,特别是程序语言的学习。

致谢

本次课程设计能顺利完成,感谢学校的大力支持,感谢数学与计算机学院为我们提供实练的机会,感谢老师的细心教导。

此次的课程设计收获很多,虽然经过了一段漫长而又痛苦的过程,但是自己还是完成了,这是与自己的努力是分不开的,但是自己在调试过程当中遇到的一些问题,自己仍然不懂,是在同学、老师的帮助下完成的,在这里还要再次对他们的付出表示崇高的敬意。

参考文献

《面向对象程序设计与VisualC++6.0教程》陈天华编著

《C程序设计(第三版)》谭浩强编著

《C++入门经典》

《面向对象程序设计与C++实现》刘晋萍编著

《计算机操作系统教程》徐甲同等编著

《操作系统》罗宇等编著

《操作系统实验教程》张丽芬, 刘利雄, 王全玉编著《计算机操作系统》梁红兵、哲风屏、汤子瀛编著《操作系统教程》陈向群、杨芙清编著

代码:

#include

#include

#include

#include

#define L 20//页面走向长度最大为20

int M; //内存块

struct Pro//定义一个结构体

{

int num,time;

};

Input(int m,Pro p[L])//打印页面走向状态

{

cout<<"请输入实际页面走向长度L(15<=L<=20):";

do

{

cin>>m;

页面置换算法模拟程序-附代码

目录 1.问题的提出 (2) 1.1关于页面置换算法模拟程序问题的产生 (2) 1.2任务分析 (2) 2.需求分析 (2) 3.方案设计 (3) 4.总体设计 (4) 4.1程序N-S图 (4) 4.2主要的函数 (4) 4.3主要流程图及代码 (5) 4.3.1 FIFO(先进先出) (5) 4.3.2 LRU(最近最久未使用) (6) 4.3.3 OPT(最佳置换算法) (8) 4.4实现结果 (11) 5.程序测试 (14) 5.1设计测试数据 (14) 5.2测试结果及分析 (15) 摘要 随着计算机的普及人们的物质生活得到了极大的满足,人们在精神生活方面同样也需要

提高,所以越来越多的人进行着各种各样的学习。操作系统是计算机教学中最重要的环节之一,也是计算机专业学生的一门重要的专业课程。操作系统质量的好坏,直接影响整个计算机系统的性能和用户对计算机的使用。一个精心设计的操作系统能极大地扩充计算机系统的功能,充分发挥系统中各种设备的使用效率,提高系统工作的可靠性。由于操作系统涉及计算机系统中各种软硬件资源的管理,内容比较繁琐,具有很强的实践性。要学好这门课程,必须把理论与实践紧密结合,才能取得较好的学习效果. 本课程设计是学生学习完《操作系统教程》课程后,进行的一次全面的综合训练,通过课程设计,让学生更好地掌握操作系统的原理及实现方法,加深对操作系统基础理论和重要算法的理解,加强学生的动手能力。 熟悉页面置换算法及其实现,引入计算机系统性能评价方法的概念。 关键词:编制页面置换算法模拟程序、打印页面、FIFO页面算法、LRU页面置换算法、OPT页面置换算法。

操作系统课程设计-页面置换算法C语言

操作系统课程设计-页面置换算法C语言

5、根据方案使算法得以模拟实现。 6、锻炼知识的运用能力和实践能力。 三、设计要求 1、编写算法,实现页面置换算法FIFO、LRU; 2、针对内存地址引用串,运行页面置换算法进行页面置换; 3、算法所需的各种参数由输入产生(手工输入或者随机数产生); 4、输出内存驻留的页面集合,页错误次数以及页错误率; 四.相关知识: 1.虚拟存储器的引入: 局部性原理:程序在执行时在一较短时间内仅限于某个部分;相应的,它所访问的存储空间也局限于某个区域,它主要表现在以下两个方面:时间局限性和空间局限性。 2.虚拟存储器的定义: 虚拟存储器是只具有请求调入功能和置换功能,能从逻辑上对内存容量进行扩充的一种存储器系统。 3.虚拟存储器的实现方式: 分页请求系统,它是在分页系统的基础上,增加了请求调页功能、页面置换功能所形成的页面形式虚拟存储系统。

请求分段系统,它是在分段系统的基础上,增加了请求调段及分段置换功能后,所形成的段式虚拟存储系统。 4.页面分配: 平均分配算法,是将系统中所有可供分配的物理块,平均分配给各个进程。 按比例分配算法,根据进程的大小按比例分配物理块。 考虑优先的分配算法,把内存中可供分配的所有物理块分成两部分:一部分按比例地分配给各进程;另一部分则根据个进程的优先权,适当的增加其相应份额后,分配给各进程。 5.页面置换算法: 常用的页面置换算法有OPT、FIFO、LRU、Clock、LFU、PBA等。 五、设计说明 1、采用数组页面的页号 2、FIFO算法,选择在内存中驻留时间最久的页 面予以淘汰; 分配n个物理块给进程,运行时先把前n个不同页面一起装入内存,然后再从后面逐一比较,输出页面及页错误数和页错误率。3、LRU算法,根据页面调入内存后的使用情况 进行决策; 同样分配n个物理块给进程,前n个不同页面一起装入内存,后面步骤与前一算法类似。 选择置换算法,先输入所有页面号,为系统分

最佳置换算法

/*-------------最佳置换算法(OPtimal Replacement Algorithm,ORA)-------------*/ /*算法描述:所选择的淘汰页,是以后永不使用,或最长时间内不使用的页面*/ /*---------------------------------writen by Xu Zhuozhuo-----------------------------------*/ C++代码示例: #include #define MaxSize 20 #define Num_Block 3 using namespace std; int max(int a,int b,int c) //返回三者的最大值 { if(a>num_ref; //输入引用字符串的数目 }while(num_ref>MaxSize); cout <<"Please input the queue of reference chars:" <>ref_arr[i]; for(int j=0;j

虚拟存储器管理 页面置换算法模拟实验

淮海工学院计算机工程学院实验报告书 课程名:《操作系统原理A 》 题目:虚拟存储器管理 页面置换算法模拟实验 班级:软件*** 学号:20**1228** 姓名:****

一、实验目的与要求 1.目的: 请求页式虚存管理是常用的虚拟存储管理方案之一。通过请求页式虚存管理中对页面置换算法的模拟,有助于理解虚拟存储技术的特点,并加深对请求页式虚存管理的页面调度算法的理解。 2.要求: 本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。其中虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。 二、实验说明 1.设计中虚页和实页的表示 本设计利用C语言的结构体来描述虚页和实页的结构。 在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。pfn代表实页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页的实页号pfn。time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。 在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。pfn代表实页号,取值范围(0—n-1)由动态指派的实页数n所决定。next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。 2.关于缺页次数的统计 为计算命中率,需要统计在20次的虚页访问中命中的次数。为此,程序应设置一个计数器count,来统计虚页命中发生的次数。每当所访问的虚页的pfn项值不为-1,表示此虚页已被装入某实页内, 此虚页被命中,count加1。最终命中率=count/20*100%。 3.LRU算法中“最近最久未用”页面的确定 为了能找到“最近最久未用”的虚页面,程序中可引入一个时间计数器countime,每当要访问 一个虚页面时,countime的值加1,然后将所要访问的虚页的time项值设置为增值后的当前

页面置换算法课程设计

专业计算机科学与技术

目录 1.设计目的 (2) 2.课设要求 (2) 3.系统分析 (3) 4.系统设计 (3) 4.1问题分析 (3) 4.2程序整体框图 (5) 4.3 FIFO算法 (5) 4.4 LRU算法 (6) 4.5 OPT算法 (7) 5.功能与测试 (8) 5.1开始界面 (8) 5.2 FIFO算法 (9) 5.3 LRU算法 (10) 5.4 OPT算法 (10) 6.结论 (11) 7.附录 (12)

1.设计目的 1、存储管理的主要功能之一是合理地分配空间。请求页式管理是一种常用的虚拟存储管理技术。本次设计的目的是通过请求页式存储管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式管理的页面置换算法。 2、提高自己的程序设计能力、提高算法设计质量与程序设计素质; 2.课设要求 设计一个请求页式存储管理方案。并编写模拟程序实现之。要求包含: 1.过随机数产生一个指令序列,共320条指令。其地址按下述原则生成: ①50%的指令是顺序执行的; ②25%的指令是均匀分布在前地址部分; ③25%的指令是均匀分布在后地址部分; 具体的实施方法是: 在[0,319]的指令地址之间随机选区一起点M; 顺序执行一条指令,即执行地址为M+1的指令; 在前地址[0,M+1]中随机选取一条指令并执行,该指令的地址为M’; 顺序执行一条指令,其地址为M’+1; 在后地址[M’+2,319]中随机选取一条指令并执行; 重复A—E,直到执行320次指令。 2.指令序列变换成页地址流 设:(1)页面大小为1K; 用户内存容量为4页到32页; 用户虚存容量为32K。 在用户虚存中,按每K存放10条指令排列虚存地址,即320条指令在虚存中的存放方式为:

实验四页面置换算法代码

实验四页面置换算法模拟(2)一.题目要求: 设计一个虚拟存储区和内存工作区,编程序演示下述算法的具体实现过程,并计算访问命中率: 要求设计主界面以灵活选择某算法,且以下算法都要实现 1) 最佳置换算法(OPT):将以后永不使用的或许是在最长(未来)时间内不再 被访问的页面换出。 2) 先进先出算法(FIFO):淘汰最先进入内存的页面,即选择在内存中驻留 时间最久的页面予以淘汰。 3) 最近最久未使用算法(LRU):淘汰最近最久未被使用的页面。 4) 最不经常使用算法(LFU) 二.实验目的: 1、用C语言编写OPT、FIFO、LRU,LFU四种置换算法。 2、熟悉内存分页管理策略。 3、了解页面置换的算法。 4、掌握一般常用的调度算法。 5、根据方案使算法得以模拟实现。 6、锻炼知识的运用能力和实践能力。

三.相关知识: 1.虚拟存储器的引入: 局部性原理:程序在执行时在一较短时间内仅限于某个部分;相应的,它所访问的存储空间也局限于某个区域,它主要表现在以下两个方面:时间局限性和空间局限性。 2.虚拟存储器的定义: 虚拟存储器是只具有请求调入功能和置换功能,能从逻辑上对内存容量进行扩充的一种存储器系统。 3.虚拟存储器的实现方式: 分页请求系统,它是在分页系统的基础上,增加了请求调页功能、页面置换功能所形成的页面形式虚拟存储系统。 请求分段系统,它是在分段系统的基础上,增加了请求调段及分段置换功能后,所形成的段式虚拟存储系统。 4.页面分配: 平均分配算法,是将系统中所有可供分配的物理块,平均分配给各个进程。 按比例分配算法,根据进程的大小按比例分配物理块。 考虑优先的分配算法,把内存中可供分配的所有物理块分成两部分:一部分按比例地分配给各进程;另一部分则根据个进程的优先权,适当的增加其相应份额后,分配给各进程。 5.页面置换算法: 常用的页面置换算法有OPT、FIFO、LRU、Clock、LFU、PBA等。

(流程图)页面置换算法课程设计

操作系统课程设计报告题目:页面置换算法模拟程序 学院名称: 专业班级: 学生姓名: 指导教师: 成绩:

目录 一、设计目的 (3) 二、设计题目 (3) 2.1设计内容 (3) 2.2设计要求 (3) 三、设计过程 (4) 3.1 FIFO(先进先出) (4) 3.2 LRU(最近最久未使用) (5) 3.3 OPT(最佳置换算法) (6) 3.4 随机数发生器 (7) 四、完整代码 (7) 五、运行结果演示 (13) 六、设计心得 (16) 七、参考文献 (16)

操作系统是计算机教学中最重要的环节之一,也是计算机专业学生的一门重要的专业课程。操作系统质量的好坏,直接影响整个计算机系统的性能和用户对计算机的使用。一个精心设计的操作系统能极大地扩充计算机系统的功能,充分发挥系统中各种设备的使用效率,提高系统工作的可靠性。由于操作系统涉及计算机系统中各种软硬件资源的管理,内容比较繁琐,具有很强的实践性。要学好这门课程,必须把理论与实践紧密结合,才能取得较好的学习效果。 本课程设计是学生学习完《计算机操作系统》课程后,进行的一次全面的综合训练,通过课程设计,让学生更好地掌握操作系统的原理及实现方法,加深对操作系统基础理论和重要算法的理解,加强学生的动手能力。 熟悉页面置换算法及其实现,引入计算机系统性能评价方法的概念。 二、设计题目:页面置换算法模拟程序 2.1设计内容 编制页面置换算法的模拟程序。 2.2设计要求 1).用随机数方法产生页面走向,页面走向长度为L(15<=L<=20),L由控制台输入。 2).根据页面走向,分别采用Optinal、FIFO、LRU算法进行页面置换,统计缺页率。 3).假定可用内存块为m(3<=m<=5),m由控制台输入,初始时,作业页面都不在内存。 4).要求写出一份详细的设计报告。课程设计报告内容包括:设计目的、设计内容、设计原理、算法实现、流程图、源程序、运行示例及结果分析、心得体会、参考资料等。

页面置换算法代码实现(完整版)

实验原理: 在内存运行过程中,若其所要访问的页面不在内存而需要把他们调入内存,但内存已经没有空闲空间时,为了保证该进程能正常运行,系统必须从内存中调出一页程序或数据送磁盘的对换区中。但应将那个页面调出,需根据一定的算法来确定。通常,把选择换出页面的算法成为页面置换算法。置换算法的好坏,将直接影响到系统的性能。 一个好的页面置换算法,应具有较低的页面更换频率。从理论上讲,应将那些以后不再会访问的页面置换出,或者把那些在较长时间内不会在访问的页面调出。目前存在着许多种置换算法(如FIFO,OPT,LRU),他们都试图更接近理论上的目标。 实验目的: 1.熟悉FIFO,OPT和LRU算法 2.比较三种算法的性能优劣 实验内容: 写出FIFO,OPT和LRU算法的程序代码,并比较它们的算法性能。 实验步骤: 代码如下: #include #define M 4 //物理页数 #define N 20 //需要调入的页数 typedef struct page { int num; int time; }Page; //物理页项,包括调入的页号和时间 Page mm[M]; //4个物理页

int queue1[20],queue2[20],queue3[20]; //记录置换的页int K=0,S=0,T=0; //置换页数组的标识 int pos=0;//记录存在最长时间项 //初始化内存页表项及存储内存情况的空间 void INIT(){ int i; for(i=0;i max){ max=mm[i].time ; pos=i; } } return pos; } //检查最长时间不使用页面 int longesttime(int fold)

页面置换算法模拟实验报告

实验编号4 名称页面置换算法模拟 实验目的 通过请求页式存储管理中页面置换算法模拟设计,以便: 1、了解虚拟存储技术的特点 2、掌握请求页式存储管理中页面置换算法 实验容与步骤 设计一个虚拟存储区和存工作区,并使用FIFO和LRU算法计算访问命中率。 <程序设计> 先用srand()函数和rand()函数定义和产生指令序列,然后将指令序列变换成相应的页地址流,并针对不同的算法计算相应的命中率。 <程序1> #include //Windows版,随机函数需要,GetCurrentProcessId()需要 //#include //Linux版,随机函数srand和rand需要 #include //printf()需要 #define TRUE 1 #define FALSE 0 #define INVALID -1 #define NULL 0 #define total_instruction 320 //共320条指令 #define total_vp 32 //虚存页共32页 #define clear_period 50 //访问次数清零周期 typedef struct{//定义页表结构类型(页面映射表PMT) int pn, pfn, counter, time;//页号、页框号(块号)、一个周期访问该页面的次数、访问时间 }PMT; PMT pmt[32]; typedef struct pfc_struct{//页面控制结构

int pn, pfn; struct pfc_struct *next; }pfc_type; pfc_type pfc[32]; pfc_type *freepf_head,*busypf_head,*busypf_tail;//空闲页头指针,忙页头指针,忙页尾指针 int NoPageCount; //缺页次数 int a[total_instruction];//指令流数组 int page[total_instruction], offset[total_instruction];//每条指令的页和页偏移 void initialize( int ); void FIFO( int );//先进先出 void LRU( int );//最近最久未使用 void NRU( int );//最近最不经常使用 /**************************************************************************** main() *****************************************************************************/ void main(){ int i,s; //srand(10*getpid());//用进程号作为初始化随机数队列的种子//Linux版 srand(10*GetCurrentProcessId());//用进程号作为初始化随机数的种子//Windows版 s=rand()%320;//在[0,319]的指令地址之间随机选取一起点m for(i=0;i319){ printf("when i==%d,error,s==%d\n",i,s); exit(0); } a[i]=s;//任意选一指令访问点m。(将随机数作为指令地址m) a[i+1]=a[i]+1;//顺序执行下一条指令 a[i+2]=rand()%(s+2);//在[0,m+1]的前地址之间随机选取一地址,记为m' a[i+3]=a[i+2]+1;//顺序执行一条指令 s = a[i+2] + (int)rand()%(320-a[i+2]);//在[m',319]的指令地址之间随机选取一起点m if((a[i+2]>318)||(s>319)) printf("a[%d+2,a number which is:%d and

页面置换算法实验报告

一、实验目的 通过模拟实现请求页式存储管理的几种基本页面置换算法,了解虚拟存储技术的特点,掌握虚拟存储请求页式存储管理中几种基本页面置换算法的基本思想和实现过程,并比较它们的效率。 二、实验内容 基于一个虚拟存储区和内存工作区,设计下述算法并计算访问命中率。 1、最佳淘汰算法(OPT) 2、先进先出的算法(FIFO) 3、最近最久未使用算法(LRU) 4、简单时钟(钟表)算法(CLOCK) 命中率=1-页面失效次数/页地址流(序列)长度 三、实验原理 UNIX中,为了提高内存利用率,提供了内外存进程对换机制;内存空间的分配和回收均以页为单位进行;一个进程只需将其一部分(段或页)调入内存便可运行;还支持请求调页的存储管理方式。 当进程在运行中需要访问某部分程序和数据时,发现其所在页面不在内存,就立即提出请求(向CPU发出缺中断),由系统将其所需页面调入内存。这种页面调入方式叫请求调页。为实现请求调页,核心配置了四种数据结构:页表、页帧(框)号、访问位、修改位、有效位、保护位等。 当CPU接收到缺页中断信号,中断处理程序先保存现场,分析中断原因,转入缺页中断处理程序。该程序通过查找页表,得到该页所在外存的物理块号。如果此时内存未满,能容纳新页,则启动磁盘I/O将所缺之页调入内存,然后修改页表。如果内存已满,则须按某种置换算法从内存中选出一页准备换出,是否重新写盘由页表的修改位决定,然后将缺页调入,修改页表。利用修改后的页表,去形成所要访问数据的物理地址,再去访问内存数据。整个页面的调入过程对用户是透明的。 四、算法描述 本实验的程序设计基本上按照实验内容进行。即使用srand( )和rand( )函数定义和产生指令序列,然后将指令序列变换成相应的页地址流,并针对不同的算法计算出相应的命中率。 (1)通过随机数产生一个指令序列,共320条指令。指令的地址按下述原则生成:A:50%的指令是顺序执行的 B:25%的指令是均匀分布在前地址部分 C:25%的指令是均匀分布在后地址部分 具体的实施方法是: A:在[0,319]的指令地址之间随机选取一起点m B:顺序执行一条指令,即执行地址为m+1的指令 C:在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m’ D:顺序执行一条指令,其地址为m’+1

第7次 常用页面置换算法模拟实验

操作系统课程实验报告

断。当发生缺页中断时操作系统必须在内存选择一个页面将其移出内存,以便为即将调入的页面让出空间。而用来选择淘汰哪一页的规则叫做页面置换算法。最简单的页面置换算法是先入先出(FIFO)法。 2、算法流程图 3、步骤说明 (1)初始化 void init(){//初始化 int i; for (i = 0; i < page_frame_number; i++){ page_table[i].page_id = -1; page_table[i].load_time = -1; page_table[i].last_visit_time = -1; } } (2)选择算法,输入插入页面号。进入判断函数 int judge(){//判断页框是否满,或者页框里面是否已存在页面 int i;

for (i = 0; i < page_frame_number; i++){ if (page_table[i].page_id == -1 || page_table[i].page_id == page_id) return i; } return -2; } 之后根据返回数的不同决定了不同类型 返回-2则说明页框满且页框里面没有存在要插入的页面。 返回-1则说明页框未满 返回其它数则说明页框里存在相同的页面 (3)//当没有空页框,并且页面本身也没有存在,则执行一下代码 qsort(page_table, page_frame_number, sizeof(struct Page_table), cmp);//按照装入时间从小到大排序 page_table[0].page_id = page_id; page_table[0].load_time = counter; page_table[0].last_visit_time = counter; page_interrupt_number++; 将页框号为0的页面置换成最新插入的页面。 int cmp(const void *p, const void *q){//按照装入时间从小到大排序 int c = (*(struct Page_table*)p).load_time - (*(struct Page_table*)q).load_time; if (c > 0) return 1; else return -1; } 排序函数,将页面按装入时间从小到大排序 (4)//如果页面未满,则将页面替换在空页框里 if (page_table[j].page_id == -1){ page_table[j].page_id = page_id; page_table[j].load_time = counter; page_table[j].last_visit_time = counter; page_interrupt_number++; 则将页面替换在页框号最小的空页框里 (5)//如果页面本身存在页框中,则执行一下代码 page_table[j].last_visit_time = counter; 则更新页面的最近访问时间 (6)qsort(page_table, page_frame_number, sizeof(struct Page_table), cmp3);//按照装入时间从小到大排序 print(2); 打印出页表详细信息 printf("页表信息:\n页号页框号装入时间最近访问时间\n"); for (j = 0; j < page_frame_number; j++){ printf("%4d%8d%7d%7d\n", page_table[j].page_id, j, page_table[j].load_time,

页面置换算法作业

页面置换算法的演示 一.实验要求: 设计一个虚拟存储区和内存工作区,编程序演示下述算法的具体实现过程,并计算访问命中率: 要求设计主界面以灵活选择某算法,且以下算法都要实现 1) 最佳置换算法(OPT):将以后永不使用的或许是在最长(未来)时间内不再 被访问的页面换出。 2) 先进先出算法(FIFO):淘汰最先进入内存的页面,即选择在内存中驻留 时间最久的页面予以淘汰。 3) 最近最久未使用算法(LRU):淘汰最近最久未被使用的页面。 4) 最不经常使用算法(LFU) 二.实验目的: 1、用C语言编写OPT、FIFO、LRU,LFU四种置换算法。 2、熟悉内存分页管理策略。 3、了解页面置换的算法。 4、掌握一般常用的调度算法。 5、根据方案使算法得以模拟实现。 6、锻炼知识的运用能力和实践能力。 三.相关知识: 1.虚拟存储器的引入: 局部性原理:程序在执行时在一较短时间内仅限于某个部分;相应的,它所访问的存储空间也局限于某个区域,它主要表现在以下两个方面:时间局限性和空间局限性。 2.虚拟存储器的定义: 虚拟存储器是只具有请求调入功能和置换功能,能从逻辑上对内存容量进行扩充的一种存储器系统。 3.虚拟存储器的实现方式: 分页请求系统,它是在分页系统的基础上,增加了请求调页功能、页面置换功能所形成的页面形式虚拟存储系统。 请求分段系统,它是在分段系统的基础上,增加了请求调段及分段置换功能后,所形成的段式虚拟存储系统。 4.页面分配: 平均分配算法,是将系统中所有可供分配的物理块,平均分配给各个进程。 按比例分配算法,根据进程的大小按比例分配物理块。 考虑优先的分配算法,把内存中可供分配的所有物理块分成两部分:一部分按比例地分配给各进程;另一部分则根据个进程的优先权,适当的增加其相应份额后,分配给各进程。 5.页面置换算法: 常用的页面置换算法有OPT、FIFO、LRU、Clock、LFU、PBA等。

《操作系统》实验五页面置换算法模拟

实验五. 请求页式存储管理的模拟 [实验内容]: 熟悉虚拟存储管理的各种页面置换算法,并编写模拟程序实现请求页式存储管理的页面置换算法----最近最久未使用算法(LRU),要求在每次产生置换时显示页面分配状态和缺页率。 [实验要求]: 1、运行给出的实验程序,查看执行情况,进而分析算法的执行过程,在理解FIFO页面置换算法和最近最久未使 用算法(LRU)置换算法后,给出最佳置换算法的模拟程序实现,并集成到参考程序中。 2、执行2个页面置换模拟程序,分析缺页率的情况。最好页框数和访问序列长度可调节,在使用同一组访问序 列数据的情况下,改变页框数并执行2个页面置换模拟程序,查看缺页率的变化。 3、在每次产生置换时要求显示分配状态和缺页率。程序的地址访问序列通过随机数产生,要求具有足够的长度。 最好页框数和访问序列长度可调节。 实验的执行结果如下图所示(左下图为FIFO执行结果,右下图为LRU执行结果):

程序源代码: #include #include "windows.h" #include #include #include #include #include #include void initialize(); //初始化相关数据结构 void createps(); //随机生成访问序列 void displayinfo(); //显示当前状态及缺页情况 void fifo(); //先进先出算法 int findpage(); //查找页面是否在内存 void lru(); //最近最久未使用算法 int invalidcount = 0; // 缺页次数 int vpoint; //页面访问指针 int pageframe[10]; // 分配的页框 int pagehistory[10]; //记录页框中数据的访问历史 int rpoint; //页面替换指针 int inpflag; //缺页标志,0为不缺页,1为缺页 struct PageInfo //页面信息结构 { int serial[100]; // 模拟的最大访问页面数,实际控制在20以上 int flag; // 标志位,0表示无页面访问数据 int diseffect; // 缺页次数 int total_pf; // 分配的页框数 int total_pn; // 访问页面序列长度 } pf_info; //////////////////////////////////////////////////////////////////////// //初始化相关数据结构 void initialize() { int i,pf; inpflag=0; //缺页标志,0为不缺页,1为缺页 pf_info.diseffect =0; // 缺页次数 pf_info.flag =0; // 标志位,0表示无页面访问数据 printf("\n请输入要分配的页框数:"); // 自定义分配的页框数 scanf("%d",&pf); pf_info.total_pf =pf; for(i=0;i<100;i++) // 清空页面序列 { pf_info.serial[i]=-1; }

页面置换算法模拟设计

课程设计报告 课程名称操作系统 课题名称页面置换算法模拟设计 专业通信工程 班级 学号 姓名 指导教师 2014年6 月29 日

湖南工程学院 课程设计任务书 课程名称操作系统 课题页面置换算法模拟设计 专业班级 学生姓名 学号 指导老师 审批 任务书下达日期2014 年 6 月23 日 任务完成日期2014 年 6 月29 日

目录 1课题概述 (4) 1.1设计要求 (4) 1.2 理论分析 (4) 2系统分析 (6) 3程序实现 (8) 4程序测试 (13) 5心得体会 (15) 6附录 (16) 7 评分表 (30)

课题:页面置换算法模拟设计 1课题概述 1.1设计要求 计算并输出下述各种算法在不同内存容量下的命中率。 A. FIFO先进先出的算法 B. LRR最近最少使用算法 C. OPT最佳淘汰算法(先淘汰最不常用的页地址) D. LFR最少访问页面算法 E. NUR最近最不经常使用算法 设计技术参数: (1)命中率=1-页面失效次数/页地址流长度 (2)本实验中,页地址流长度为320,页面失效次数为每次访问相应指令时,该指令所对应的页不在内存的次数。 (3)随机数产生方法,采用系统提供函数SRAND()和RAND ()来产生 1.2 理论分析 在进程运行过程中,若其所要访问的页面不在内存所需把他们调入内存,但内存已无空闲时,为了保证进程能够正常运行,系统必须从内存中调入一页程序或数据送磁盘的对换区中。但应将那个页面调出,须根据一定的算法来确定。通常,把选择换出页面的算法称为页面置换算法。置换算法的好坏,将直接影响到系统的性能。 一个好的页面置换算法,应具有较低的页面更换频率。从理论上将讲,应将那些以后不再访问的页面换出,或把那些较长时间内不再访问的页面调出。目前存在着不同的算法,他们都试图更接近与理论上的目标。

操作系统页面置换算法模拟实验

淮海工学院计算机科学系实验报告书 课程名:《操作系统原理A 》 题目:虚拟存储器管理 页面置换算法模拟实验 班级: 学号: 姓名:

一、实验目的与要求 1.目的: 请求页式虚存管理是常用的虚拟存储管理方案之一。通过请求页式虚存管理中对页面置换算法的模拟,有助于理解虚拟存储技术的特点,并加深对请求页式虚存管理的页面调度算法的理解。 2.要求: 本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。其中虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。 二、实验说明 1.设计中虚页和实页的表示 本设计利用C语言的结构体来描述虚页和实页的结构。 在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。pfn代表实页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页的实页号pfn。time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。 在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。pfn代表实页号,取值范围(0—n-1)由动态指派的实页数n所决定。next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。 2.关于缺页次数的统计 为计算命中率,需要统计在20次的虚页访问中命中的次数。为此,程序应设置一个计数器count,来统计虚页命中发生的次数。每当所访问的虚页的pfn项值不为-1,表示此虚页已被装入某实页内, 此虚页被命中,count加1。最终命中率=count/20*100%。 3.LRU算法中“最近最久未用”页面的确定 为了能找到“最近最久未用”的虚页面,程序中可引入一个时间计数器countime,每当要访问 一个虚页面时,countime的值加1,然后将所要访问的虚页的time项值设置为增值后的当前

操作系统常用页面置换算法课程设计

摘要 在linux中,为了提高内存利用率,提供了内外存进程对换机制,内存空间的分配和回收均以页为单位进行,一个进程只需要将其一部分调入内存便可运行;当操作系统发生缺页中断时,必须在内存选择一个页面将其移出内存,以便为即将调入的页面让出空间。因而引入一种用来选择淘汰哪一页的算法——页面置换算法。页面置换算法是操作系统中虚拟存储管理的一个重要部分。页面置换算法在具有层次结构存储器的计算机中,为用户提供一个比主存储器容量大得多的可随机访问的地。常见的页面置换算法有先来先服务算法(FIFO),最近最久未使用算法(LRU)和最佳适应算法(OPT)。 关键字:操作系统;FIFO;LRU;OPT;Linux

目录 1 绪论?1 1.1设计任务 (1) 1.2设计思想?1 1.3设计特点?1 1.4基础知识 (2) 1.4.1 先进先出置换算法(FIFO)?2 1.4.2最近最久未使用算法(LRU) (3) 1.4.3最佳置换算法(OPT) (3) 2 各模块伪代码算法?4 2.1伪代码概念?4 2.2伪代码算法 (4) 2.2.1主函数伪代码算法.............................................. 错误!未定义书签。 2.2.2延迟时间函数伪代码算法?6 2.2.3 FIFO算法的伪代码?7 2.2.4LRU算法的伪代码 (7) 10 2.2.5 OPT算法的伪代码? 3 函数调用关系图................................................................................................... 12 3.1函数声明?12 3.1.1主要算法函数...................................................... 错误!未定义书签。

请求页式存储管理中常用页面置换算法模拟

信息工程学院实验报告 课程名称:操作系统Array实验项目名称:请求页式存储管理中常用页面置换算法模拟实验时间: 班级姓名:学号: 一、实验目的: 1.了解内存分页管理策略 2.掌握调页策略 3.掌握一般常用的调度算法 4.学会各种存储分配算法的实现方法。 5.了解页面大小和内存实际容量对命中率的影响。 二、实验环境: PC机、windows2000 操作系统、VC++6.0 三、实验要求: 本实验要求4学时完成。 1.采用页式分配存储方案,通过分别计算不同算法的命中率来比较算法的优劣,同时也考虑页面大 小及内存实际容量对命中率的影响; 2.实现OPT 算法 (最优置换算法)、LRU 算法 (Least Recently)、 FIFO 算法 (First IN First Out)的模拟; 3.会使用某种编程语言。 实验前应复习实验中所涉及的理论知识和算法,针对实验要求完成基本代码编写、实验中认真调试所编代码并进行必要的测试、记录并分析实验结果。实验后认真书写符合规范格式的实验报告,按时上交。 四、实验内容和步骤: 1.编写程序,实现请求页式存储管理中常用页面置换算法LRU算法的模拟。要求屏幕显示LRU算法 的性能分析表、缺页中断次数以及缺页率。 2.在上机环境中输入程序,调试,编译。 3.设计输入数据,写出程序的执行结果。 4.根据具体实验要求,填写好实验报告。 五、实验结果及分析: 实验结果截图如下:

利用一个特殊的栈来保存当前使用的各个页面的页面号。当进程访问某页面时,便将该页面的页面号从栈中移出,将它压入栈顶。因此,栈顶始终是最新被访问页面的编号,栈底是最近最久未被使用的页面号。当访问第5个数据“5”时发生了缺页,此时1是最近最久未被访问的页,应将它置换出去。同理可得,调入队列为:1 2 3 4 5 6 7 1 3 2 0 5,缺页次数为12次,缺页率为80%。 六、实验心得: 本次实验实现了对请求页式存储管理中常用页面置换算法LRU算法的模拟。通过实验,我对内存分页管理策略有了更多的了解。 最近最久未使用(LRU)置换算法的替换规则:是根据页面调入内存后的使用情况来进行决策的。该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间,当需淘汰一个页面的时候选择现有页面中其时间值最大的进行淘汰。 最佳置换算法的替换规则:其所选择的被淘汰页面,将是以后永不使用的或许是在最长(未来)时间内不再被访问的页面。 先进先出(FIFO)页面置换算法的替换规则:该算法总是淘汰最先进入内存的页面,即选择在内存中驻留时间最久的页面予以淘汰。该算法实现简单只需把一个进程已调入内存的页面,按先后次序链接成一个队列,并设置一个指针,称为替换指针,使它总是指向最老的页面。 三种替换算法的命中率由高到底排列OPT>LRU>FIFO。 本次的程序是在网上查找的相关代码然后自己进行修改,先自己仔细地研读了这段代码,在这过程中我对C++代码编写有了更深的了解。总之,本次实验使我明白要学会把课堂上的理论应用到实际操作中。我需要在今后熟练掌握课堂上的理论基础,只有坚实的基础,才能在实际操作中更得心应手。 附录: #include "iostream.h" #include const int DataMax=100; const int BlockNum = 10;

页面置换算法实验(内含完整代码)

实验二存储管理 一、实验目的 通过模拟实现请求页式存储管理的几种基本页面置换算法,了解虚拟存储技术的特点,掌握虚拟存储请求页式存储管理中几种基本页面置换算法的基本思想和实现过程,并比较它们的效率。 二、实验内容 基于一个虚拟存储区和内存工作区,设计下述算法并计算访问命中率。 1、最佳淘汰算法(OPT) 2、先进先出的算法(FIFO) 3、最近最久未使用算法(LRU) 4、简单时钟(钟表)算法(CLOCK) 命中率=1-页面失效次数/页地址流(序列)长度 三、实验原理简述 UNIX中,为了提高内存利用率,提供了内外存进程对换机制;内存空间的分配和回收均以页为单位进行;一个进程只需将其一部分(段或页)调入内存便可运行;还支持请求调页的存储管理方式。 当进程在运行中需要访问某部分程序和数据时,发现其所在页面不在内存,就立即提出请求(向CPU发出缺中断),由系统将其所需页面调入内存。这种页面调入方式叫请求调页。为实现请求调页,核心配置了四种数据结构:页表、页帧(框)号、访问位、修改位、有效位、保护位等。 当CPU接收到缺页中断信号,中断处理程序先保存现场,分析中断原因,转入缺页中断处理程序。该程序通过查找页表,得到该页所在外存的物理块号。如果此时内存未满,能容纳新页,则启动磁盘I/O将所缺之页调入内存,然后修改页表。如果内存已满,则须按某种置换算法从内存中选出一页准备换出,是否重新写盘由页表的修改位决定,然后将缺页调入,修改页表。利用修改后的页表,去形成所要访问数据的物理地址,再去访问内存数据。整个页面的调入过程对用户是透明的。 四、算法描述 本实验的程序设计基本上按照实验内容进行。即使用srand( )和rand( )函数定义和产生指令序列,然后将指令序列变换成相应的页地址流,并针对不同的算法计算出相应的命中率。 (1)通过随机数产生一个指令序列,共320条指令。指令的地址按下述原则生成:A:50%的指令是顺序执行的 B:25%的指令是均匀分布在前地址部分 C:25%的指令是均匀分布在后地址部分 具体的实施方法是: A:在[0,319]的指令地址之间随机选取一起点m B:顺序执行一条指令,即执行地址为m+1的指令

相关文档
相关文档 最新文档