文档库 最新最全的文档下载
当前位置:文档库 › 蛋白质饲料的开发利用

蛋白质饲料的开发利用

蛋白质饲料的开发利用
蛋白质饲料的开发利用

蛋白质饲料的开发利用

罗学明,先晓伟,王生宝,顾发元,张金平,杜成安,王建华

甘肃农业大学动物科技学院甘肃兰州(730070)

摘要:现在蛋白质饲料资源短缺是我国畜牧业及饲料工业发展面临的主要问题之一,且直接或间接地作用着生态环境,本文综述了各种蛋白质饲料的特点、利用现状和部分蛋白质饲料的潜能,并分析了豆粕替代物、昆虫蛋白饲料和SCP等的优越性,并希望能推广到畜牧业生产和饲料工业中去,以缓解和开发我国的蛋白质饲料资源。

关键词:植物性蛋白质饲料动物性蛋白饲料非蛋白氮资源单细胞蛋白饲料

蛋白质饲料是指干物质中粗纤维含量在18%以下,粗蛋白质含量为20%及22%以上的饲料。与能量饲料相比,本类饲料蛋白质含量很高,且品质优良,在能量价值方面则差别不大,或略便高。当然在其他方面如维生素、矿物质等不同种类饲料各有差别。蛋白质饲料可分为植物性蛋白质饲料、动物性蛋白质饲料、非蛋白氮饲料和单细胞蛋白质饲料等。

1.植物性蛋白质饲料[1,2]

1.1豆粕籽实

豆类籽实曾经是我国主要的蛋白质饲料,主要是作为役畜和猪的饲料,现在通常以人类食用为主,只有过剩时才考虑用作饲料。全脂大豆经过加工,在禽、仔猪、奶牛和犊牛上使用效果非常显著,但用于饲料的部分少之有少。

1.2饼粕类饲料

饼粕类主要包括大豆饼粕、菜子饼粕和棉子饼粕等类别。

1.2.1大豆饼粕`

大豆饼粕是目前使用最广泛、用量最多的植物性蛋白质原料,世界各国普遍采用。其有以下优点:⑴风味好,色泽佳,具有很高的商品价值,成分变异少,质量较稳定,数量多,可大量经常地供应;⑵氨基酸组成平衡,消化率高,可改进饲养效果;⑶可大量取代昂贵的动物性蛋白质饲料;⑷合理加工的大豆饼粕不含抗营养因子,使用时无需考虑用量的限制;

⑸不易变质,故霉菌、细菌污染较少。正确加热的大豆饼粕是鸡最好的植物性蛋白质饲料,同时在猪和反刍动物上效果也非常显著。

1.2.2菜籽饼粕

由于菜籽饼粕中含有较多的有毒有害物质,有很大的限制性。但全世界已开始开展“双低”和“三低”油籽的培育以解决菜籽饼粕的局限性。

“双低”菜籽饼粕是以双低菜籽为原料,经软化、压坯、蒸炒、预榨、溶剂浸出、湿粕脱溶等工序加工而成,呈碎片或粗粒状,与普通菜籽饼粕相比,“双低”菜籽的硫葡萄糖甙含量和芥酸含量大幅度降低,饲用品质显著优于普通菜籽饼粕,营养价值与豆粕相当。适宜于作畜禽的蛋白质补充料,加上其产量大、成本低的特点,是极具潜力的蛋白质饲料资源,尤其在鸡、猪和鱼类中效果显著。[3]

1.2.3棉籽饼粕

1982年以来,我国的棉花产量一直居世界第一位,年产棉籽饼粕却在500万吨以上,

是饼粕类饲料中产量最多的一种。棉籽饼粕中含有对畜禽有毒的游离棉酚等物质,作为饲料受到限制,有的大量用作肥料,显然是对蛋白质资源的很大浪费。近年来,经进一步分析发现棉籽饼粕对鸡的饲用价值主要取决于游离棉酚和粗纤维的含量,并且其中的脂肪含量愈低愈安全。对于猪,棉籽饼粕是猪良好的色氨酸来源,但它的赖氨酸含量很低,一般乳猪和仔猪尽量少喂或不喂。另外,对反刍动物来讲,由于不存在中毒问题,所以可以优先考虑。

1.3其他饼粕——豆粕替代物

豆粕以其良好的营养特性被誉为植物性蛋白质饲料“之王”,它与动物性蛋白质饲料“之王”鱼粉和能量饲料“之王”玉米组合的日粮是最佳配方。因为三者可以相互取长补短,使日

粮中各种氨基酸基本达到平衡,无需另外添加。因此,豆粕在蛋白质饲料中的应用占有很大的比例,在很大程度上影响着畜禽饲料的成本,在饲料生产中减少或免除豆粕用量,采用豆粕替代物在饲料行业已较普遍。目前豆粕替代物主要有菜籽饼粕、棉籽饼粕、向日葵饼粕、花生饼粕、芝麻饼粕、玉米饼粕等等。但饲用时要注意以下问题:⑴调整适口性;⑵注意氨基酸的平衡与补充,特别是赖氨酸;⑶注意蛋白质和氨基酸消化率;⑷警惕蛋白质饲料中的有毒有害物质。替代品可以较好的解决豆粕资源紧缺与豆粕需求巨增的矛盾,以获得良好的经济效益,社会效益和生态效益。[4,5]

对于大豆和豆粕方面,我国十年前对大豆及豆粕的进口量还不大,但近年大豆进口大增,甚至超过了国内的产量,2003年更是达到2200万吨之多。导致上述结果的主要原因是我国养殖业及饲料业对蛋白饲料资源需求大增所致。为此,有人新研究出脱皮豆粕来提高效益。并且新型研究表明脱皮豆粕在肉鸡生产中综合效益优于未脱皮豆粕9.7%-19%,对生长肥育

猪提高了 4.5%-18.2%。可见,此种脱皮豆粕也很有推广潜能。[6]

2.动物性蛋白质饲料

动物性蛋白质饲料种类多种多样,最普遍的是鱼粉和肉骨粉。但二者都有很大的限制因素,开发有很大局限性。因此,人们将目光转向了昆虫类蛋白饲料。

2.1昆虫类蛋白饲料

目前,国内外学者发现,昆虫是最具有开发潜力的动物蛋白质饲料资源之一。昆虫的种类包括黄粉虫,蝇据,蚯蚓,蚂蚁等,昆虫是动物界中最大的类群,生物量超过其他所有动物(包括人类)生物量总和的10倍,属于可更新资源。我国昆虫资源极其丰富,开发饲用昆虫,可以化废为宝,减少对鱼粉的进口量,减轻环境污染问题,保持生态平衡。但要注意因地制宜,充分利用,有目的有步骤地开发研究生产。[7]

大多数种类的昆虫都可以作为蓄禽的饲料来源,而且有些昆虫繁殖快,数量大,蛋白质含量高,易于饲养。因此,开发昆虫饲料资源,对促进我国畜牧及饲料工业的可持续发展具有重要的意义。并且,经实验表明,不论在畜禽还是水产上,都有非常显著的效果。[8,9]

3.非蛋白氮饲料

非蛋白氮(NPN)饲料都是简单的纯化学物质,对于动物并无能量的营养效应。其作用之能够供给瘤胃微生物合成蛋白质所需的氮源,从而起到补充蛋白质营养的作用。使用非蛋白氮作为反刍动物蛋白质营养的补充来源,已在全世界范围内普遍采用,并取得了显著效果。在人口多,耕地少的我国,为节约常规的蛋白质饲料,开发应用非蛋白氮饲料更具现实意义。

NPN饲料多用于反刍动物,用其合成瘤胃微生物蛋白,除了马属动物,单胃动物几乎

不可能直接利用NPN。但也有研究表明,家禽日粮中添加适当NPN可部分代替蛋白质的功能,满足家禽生长和生产的需要,但要注意其他的添加量。日粮蛋白质和氨基酸平衡状况和

肠道微生物对NPN发挥相当严格,影响因素比较复杂。目前家禽生产中还难以推广,还需

开展深入研究。[10]

4.单细胞蛋白质饲料〈SCP〉

单细胞蛋白质是指单细胞或具有简单结构的多细胞生物的菌体蛋白的总称。它主要包括

酵母、细菌、微型藻类和少数原生物。其中酵母菌的蛋白含量是16%-20%;细菌的蛋白含

量是65%-85%脂肪含量四5%-16%、碳水化合物是13%-35%、维生素是15%-45%;真菌的蛋白含量是30%-60%、脂肪是7%、钙是13%;微型藻类的蛋白含量是50%-60%、脂肪是2%-3%、碳水化合物是18%-20%。由上述可见,SCP的营养物质丰富,富含动物生长和发

育所必须的各种营养物质,是当今世界积极研究的新蛋白质饲料资源,各个国家现以大幅度

研究和开发,前进广阔[11,12]。其中酵母蛋白饲料,蛋白质含量很高,含有8-12种氨基酸,必需氨基酸、脂肪和维生素含量有很高。在我国原料和技术现以比较完善,并且发现其耐高铜、耐酸性强,培养方便简单,作为饲料蛋白质,在我国饲料业中有很大的开发潜力[13,14]。

另外,从营养角度看,SCP产品能贮存,有较好的性能和香味,具有以下优越性;⑴生长速度快,蛋白质含量高;⑵原料来源丰富;⑶生产过程易控制;⑷营养功能较多。但在工

艺技术方面也存在菌种的筛选原则和原料及其配制等难题,需要进一步研究[15]。

5.其他新型蛋白质饲料

现在,新推出一种复合蛋白饲料,用它来替代豆粕,以缓解豆粕方面的压力。经试验发现,用复合蛋白饲料饲喂蛋鸡,完全可以满足蛋鸡的生产,且饲料成本大幅度降低,综合效

益有很大提高[16,17]。

还有,利用有机废水和人畜废物生产藻类单细胞蛋白。无论是污染还是对于蛋白质饲料

开发投资和耗能都可大大节省,对于环境保护和资源合理利用都有重要意义,能创造最大的

经济效益和社会效益[18]。

6.小结

面对我国蛋白质饲料的巨额缺口,要解决好养殖业的发展与资源紧缺这一突出矛盾,必

须采取:⑴开发利用好现有资源;⑵节约使用与进口并举的措施;⑶调整优化养殖业生产结

构[19,20]。只有这样,才能真正解决蛋白质饲料短缺的问题,但是进口只能作为一种补充

和调剂品种紧缺的应急手段,关键还是要技术创新,在国内做好饲料资源的开源与节流工作,有效的提高饲料的自给率。并且通过不断的改革和努力创新,最终实现新型节约型社会。

参考文献

[1]白元生主编,1999,饲料原料学[M],北京,中国农业出版社,76~9。

[2]周邵,丁保安,冶占顺,菜子饼替代豆粕饲喂产蛋鸡试验[J],青海畜牧兽医杂志,2004,34(4):7~8。

[3]唐春艳、齐德生,双低菜籽粕在饲料中的应用,中国饲料,[J],2005(9):11~14。

[4]张艳铭、甄二英,豆粕替代物在畜禽饲料中的应用,饲料博览,[J],2005(9):26~28。

[5]韩俊平,李德生,邢家鑫,脱酚棉籽蛋白替代豆粕试验[J],中国奶牛,2002(4):28。

[6]李爱科,我国主要饼粕类饲料资源开发及利用即使进展,动物营养研究进展[J],2004。

[7]周元军,昆虫蛋白饲料的开发利用,饲料研究,[J],2005:21~23。

[8]周元军,昆虫蛋白质饲料的开发应用,中国饲料,[J],2005(6):37~38。

[9]钟乐伦等,关于非蛋白蛋在家畜日粮中应用的问题,饲料博览,[J],2005(10):9~11。

或:钟乐伦,姚军虎,韩进城等,非蛋白蛋在家畜日粮中的应用,中国饲料,[J],2005(11):26~28。

[10]江绍安,夏晨,菌体蛋白粉在生长肥育猪日粮中的应用试验[J],广东饲料,2004,13(6):35~37。

[11]董衍明,马雁珍,单细胞蛋白饲料的开发于应用,饲料研究,[J],2005(9):25~27。

[12]梁耀相,利用工业废水、废渣开发饲用SCP的研究,宁波职业技术学院学报,2001(2):100~102。

[13]于容,董弈超。秦玉昌,酵母蛋白饲料培养条件的研究,中国饲料,[J],2005(18):20~21。

[14]郭维烈,郭庆华著,2005新型发酵蛋白饲料(第三版),[M],北京,科学技术文献出版社:2~8。

[15]张艳铭,甄二英,宋致娟,复合蛋白饲料替代豆粕饲喂蛋鸡的试验,饲料研究,[J],2006(1):1~7。

[16]王定旨,利用淀粉丝废水生产饲料酵母,西部粮油科技,2001,26(5):56~59。

[17]常巧铃,左千海,利用有机废水开发蛋白饲料资源的研究,饲料工业,[J],2005(17):45~47。

[18]李红光,固体发酵酒精废水液生产活性蛋白饲料,江西饲料,1999(3):24~27。

[19]张建红,周恩芳主编,2002,饲料资源与利用大全,[J],北京,中国农业出版社:92~97。

[20]王成章,王志祥,汪雪芳等,芝麻饼加香味素可替代豆粕育肥公鸡[J],中国饲料,1996(6):27~28。

The protein feed opens Vary

Luo Xueming,Xian Xiaowei,Wang Shengbao,Gu Fayuan,Zhang Jinping,Du

Chengan,Wang Jianhua

College of Animal Science and Technology, Gansu Agricultural University, Gansu Lanzhou ,

China (730070)

Abstract

Now the protein feed resources is short is one of main questions which our country animal husbandry and the feed industrial development faces, also directly or indirectly affected the ecological environment, this article was summarizing various breeding eggs white matter feed characteristic, the use present situation and the partial protein feed ON potential, and has analyzed the bean cake substitute, the insect protein feed and SCP and so on the superiority, and the hope could promote to in

the animal husbandry production and the feed industry, alleviates and develops our country the protein feed resources.

Keywords:Vegetative protein feed animal protein feed nonprotein nitrogen resources single cell protein feed

能量饲料和蛋白饲料

能量饲料和蛋白饲料 (一)能量饲料:能量饲料是指每千克饲料干物质中消化能大于等于10.45兆焦以上的饲料,其粗纤维小于18%,粗蛋白小于20%。能量饲料可分为禾本科籽实、糠麸类加工副产品。 1.禾本科籽实:禾本科籽实是牛的精饲料的主要组成部分。常用的有玉米、大麦、燕麦和高梁等。 (1)禾木科籽实的饲料的营养特点: ①淀粉含量高:禾本科籽实饲料干物质中无氮浸出物的含量很高,占70%~80%,而且其中主要成分是淀粉,只有燕麦例外(61%),其消化能达12.5兆焦/千克干物质。 ②粗纤维含量低:一般在6%以下,只有燕麦粗纤维含量较高(17%)。 ③粗蛋白含量中等:一般在10%左右,含氮物中85%~90%是真蛋白质,但其氨基酸组成不平衡,必需氨基酸含量低。 ④脂肪含量少:一般在2%~5%之间,大部分脂肪存在于胚芽中,占总量的5%。脂肪中的脂肪酸以不饱和脂肪酸为主,易酸败,使用时应特别注意。 ⑤矿物质含量不一:一般钙含量较低,小于0.1%;而磷较高,在0.31%~0.45%之间,但多以植酸磷的形式存在。钙磷比例不适宜。 ⑥适口性好,易消化。 另外,禾本科籽实中含有丰富的VB1和VE,而缺乏V天,除黄玉米外,均缺乏胡萝卜素。 (2)几种常见的禾本科籽实饲料: ①玉米:玉米是禾本科籽实中淀粉含量最高的饲料;70%的无氮浸出物,且几乎全是淀粉。粗纤维含量极少,故容易消化,其有机物质消化率达90%。玉米的蛋白质含量少,且主要为醇溶蛋白和谷蛋白,氨基酸平衡差,必需氨基酸含量低。饲喂玉米时,须与蛋白质饲料搭配,并补充矿物质、维生素饲料。 ②大麦:其蛋白质含量略高于玉米,品质也较玉米好,粗纤维含量高,但脂肪含量低,所以总能值比玉米低。由于大麦含较多纤维,质地疏松,喂乳牛能得到品质优良的牛乳和黄油。 ③高梁:其营养价值稍低于玉米,含无氮浸出物68%,其中主要是淀粉,蛋白质含量稍高于玉米,但品质比玉米还差,脂肪含量低于玉米。高梁含有单宁,适口性差,而且容易引起牛便秘。 2.糠麸类饲料:它们是磨粉业的加工副产品,包括米糠、麸皮、玉米皮等。一般无氮浸出物的含量比籽实少,为40%~62%,粗蛋白含量10%~15%,高于禾本科籽实而低于豆科籽实,粗纤维10%左右,比籽实稍高。 米糠中含较多的脂肪,达12.7%左右,因此易酸败,不易贮藏,如管理不好,夏季会变质而带有异味,适口性降低。但由于其脂肪含量较高,其用量不能超过30%,否则使乳牛生长过肥,影响奶牛正常的生长发育和泌乳机能。 麸皮的营养价值与出粉率呈负相关。麸皮粗纤维含量高,质地疏松,容积大,具有轻泻性,是奶牛产前及产后的好饲料,饲喂时最好用开水冲稀饮用。 玉米皮的营养价值低,不易消化,饲喂时应经过浸泡、发酵,以提高消化率。

饲料中脂肪的作用及分类

饲料中脂肪的作用及分类 一、能量在饲料中的作用 维持生存 生长发育 劳役 繁殖 产肉、蛋、奶、毛等 脂肪——最有效的能量来源 二、基本供能物质: 蛋白质、碳水化合物和脂肪含能比较 1kg蛋白质4.7Mcal 代谢能 1kg碳水化合物4.3Mcal 代谢能 1kg脂肪8.8Mcal 代谢能 脂肪含能是蛋白质或碳水化合物的2.25倍 三、脂肪的额外能量效应 饲粮添加一定水平的油脂替代等能值的碳水化合物和蛋白质,能提高饲粮代谢能,使消化过程中能量消耗减少,热增耗降低,使饲粮的净能增加,当植物油和动物脂肪同时添加时效果更加明显,这种效应称为脂肪的额外能量效应或脂肪的增效作用。 脂肪额外能量效应机制: 第一,饱和脂肪和不饱和脂肪间存在协同作用,不饱和脂肪酸键能高于饱和脂肪酸,促进饱和脂肪酸分解代谢。 第二,脂肪能适当延长食糜在消化道的时间,有助于其中的营养素更好地被消化吸收。另外,因脂肪的抗饥饿作用使鸡更安静,休息时间更长,用于活动的维持需要减少,用于生产的净能增加。 第三,脂肪酸可直接沉积在体脂内,减少由饲粮碳水化合物合成体脂的能量消耗。 四、脂肪的其他作用 除简单脂类参与体组织的构成外,大多数脂类,特别是磷脂和糖脂是细胞膜的重要组成成分。 促进碳水化合物和蛋白质在小肠的吸收。

是脂溶性维生素A、D、E、K的溶剂,促进维生素的吸收。 形成新组织和修补旧组织不可缺少的物质。类脂中的固醇、磷脂等广泛地存在于机体内的器官、组织细胞中。 合成维生素的原料,如维生素D2和D3。 提供必需脂肪酸。 构成脑组织的成分。 降低饲料加工过程中的粉尘,减少污染。 五、脂肪对饲料品质的不利影响 为颗粒饲料的制粒带来了困难,尤其是动物性油脂需先液化后再喷到饲料上,而且量一大很难制粒,加大了生产颗粒的劳动量和难度,还增加了生产成本。 引起鸡的消化不良和下痢。如消化吸收不良,则引起拉稀,不但不促进生长,反而停止生长,饲料转化率降低。 降低胴体品质,在饲料中加入脂肪后,如代谢转化不当,会造成大量的脂肪堆积。 油脂的酸败,油脂长期在空气或微生物的作用下,可使其变性,产生有害物质,酸败的油脂是有害的,过量食入会出现缺硒或维生素E类似的症状。 酸败的饲料营养价值下降,维生素遭到破坏,肠道微生物发生变化,引起采食量下降和拉稀。 六、常用的主要脂肪源 植物性油脂:不饱和脂肪酸的含量高,熔点低,磷酯多,容易形成乳化微粒,消化率高,但是价格高。 动物性油脂:饱和脂肪酸含量高,磷酯少,熔点高,不容易形成乳化微粒,消化率低,价格低。 混合性油脂:吸收率中等,能值低,品质不可控,价格中等。 [NextPage] 饲料中脂肪的消化与吸收 一、脂肪的消化吸收过程 ※乳糜微粒的形成是脂肪吸收利用的一个重要环节 乳化剂或表面活性剂对脂肪吸收之所以重要,是由于脂肪吸收的一个重要环节在于乳糜微粒的形成。脂肪必须在生理环境下有效地被转化成乳糜微粒才能被有效地吸收。如下图所示:

饲料中蛋白质的消化吸收

饲料中蛋白质的消化吸 动物饲料中蛋白质的含量常以粗蛋白的形式表述,然而,粗蛋白的分析值并不能代表饲料中有效的蛋白质含量。如果饲料中粗蛋白含量高,但其蛋白质的有效利用率较低,未被消化吸收的蛋白积累过多,可能会引发肠道健康问题。 影响饲料蛋白质消化吸收的因素有很多: 1、动物因素 动物的个体差异、年龄阶段、不同品种等,对饲料中蛋白质的消化能力都会有影响。 2、饲粮因素 饲料中蛋白质的种类、纤维水平、酶抑制因子也会影响动物的蛋白消化率。如羽毛粉的蛋白含量高达80%,但其中仅有25%的蛋白可消化,因为羽毛粉中含量较大的角蛋白不易被消化利用;纤维物质能加速蛋白质在消化道排空,阻碍其消化,所以高纤维日粮饲料中蛋白消化率较低;一些农副产品中含有蛋白酶抑制因子,如生大豆中含有胰蛋白酶抑制因子、生马铃薯中含有的糜蛋白酶抑制因子能抑制蛋白酶活性,降低蛋白质的消化率。 3、加工因素 饲料加工生产过程中,粉碎、热处理、发酵、降解等程序可能影响蛋白质的理化性质,降低可消化吸收的蛋白含量。如粉碎不完全,蛋白酶与饲料作用的表面积小,可利用的蛋白质不能被充分水解,影响其吸收。

动物摄入的蛋白质经过消化以后,以小肽和氨基酸形式在小肠吸收,未能被消化分解的蛋白质会进入大肠被有害微生物分解利用,引起肠道微生物紊乱诱发腹泻,而通过有害微生物的发酵作用产生的大量有害物质如胺类、NH3等会被机体吸收,再通过肝脏的处理转化排出,使得原本用来维持机体生长和健康的能量被这个生理过程消耗,降低了蛋白质的营养质量。另外,由于未消化蛋白质带来 的环境污染问题也日益突出,因此,如何提供动物适宜的营养,提高消化率,最大程度地降低未消化蛋白进入后肠道应是动物营养研究的新方向。 因此,笔者认为可以从以下两个方面解决饲料中蛋白质的消化吸收问题: 1、适当降低蛋白浓度,配比平衡 随着理想氨基酸模式的研究推广,动物饲料配方中粗蛋白的含量已不能完全彰显配方的营养价值,很多厂家推出的低蛋白日粮逐渐被用户认可并得到良好的反响。低蛋白日粮虽然从表面看粗蛋白含量有所下降,但其中的可消化蛋白含量、氨基酸配比较之以前更为合理,而蛋白质与其他营养物质的含量也应遵循不同动物的生长需要合理配比。研究认为,在中低蛋白日粮中合理配比氨基酸和能量等,可以提高蛋白质利用率,降低饲料成本,减少污染物排放。 2、提高消化道前段蛋白质的消化率 提高动物对蛋白质消化率的主要手段除了适量,最重要的是质优,而质优则意味着价高,因此养殖低成本与饲料配方高品质的矛盾长期存在。于是,非常规、低品质原料的优化处理被提上日程,即在动物对营养物质的消化吸收过程中增加体外预消化过程,降解抗营养因子、大分子物质、提高原料消化性的同时赋予功能性,一举多得。另外,体外消化的效率要远远高于动物体内消化,对于幼龄动物、应激期动物作用更为显著。目前,饲料中应用的酶解蛋白、小肽类、生物发酵类原料都属于预消化原料的范畴,为饲料工业的可持续发展提供了新思路。

饲料中粗蛋白的测定(精)

饲料中粗蛋白的测定 一、实验目的 通过饲料样品中粗蛋白的测定,掌握饲料粗蛋白质含量的测定方法。 二、适用范围 本方法适用于配合饲料、浓缩饲料和单一饲料。 三、实验原理 凯氏法测定试样中的含氮量,即在催化剂作用下,用浓硫酸破坏有机物,使含氮物转化成硫酸铵。加入强碱进行蒸馏使氨逸出,用硼酸吸收后,再用酸滴定,测出氮含量,将结果乘以换算系数6.25,计算出粗蛋白含量。 四、试剂 (1)硫酸:化学纯,含量为98%,无氮。 (2)混合催化剂:0.4g硫酸铜,5个结晶水;6g硫酸钾或硫酸钠,均为化学纯,磨碎混匀。 (3)氢氧化钠:化学纯,40%水溶液(m/V)。 (4)硼酸:化学纯,2%水溶液(m/V)。 (5)混合指标剂:甲基红0.1%乙醇溶液,溴甲酚绿0.5%乙醇溶液,两溶液等体积混合,在阴凉处保存期为3个月。 (6)盐酸标准溶液:基准无水碳酸钠法标定; ①0.1mol/L盐酸标准溶液:8.3mL盐酸注入1000ml蒸馏水中。 ②0.02mol/L盐酸标准溶液: 1.67mL盐酸注入1000ml蒸馏水中。 (7)蔗糖:分析纯。 (8)硫酸铵:分析纯,干燥。 (9)硼酸吸收液:1%硼酸水溶液1000mL,加入0.1%溴甲酚绿乙醇溶液10mL,0.1%甲基红乙醇溶液7mL,4%氢氧化钠水溶液0.5mL,混合,置阴凉处保存期为1个月(全自动程序用)。 五、仪器设备

(1)实验室用样品粉碎机或研钵。 (2)分样筛:孔径0.45mm(40目)。 (3)分析天平:感量0.0001g。 (4)消煮炉或电炉。 (5)滴定管:酸式,10、25mL。 (6)凯氏烧瓶:250mL。 (7)凯氏蒸馏装置:常量直接蒸馏式或半微量水蒸汽蒸馏式。 (8)锥形瓶:150、250mL。 (9)容量瓶:100mL。 (10)消煮管:250mL。 (11)定氮仪:以凯氏原理制造的各类型半自动、全自动蛋白质测定仪。六、分析步骤 试样的选取和制备: 选取具有代表性的试样用四分法缩减至200g,粉碎后全部通过40目筛,装于密封容器中,防止试样成分的变化。 (1)仲裁法 ①试样的消煮 称取试样0.5~1g(含氮量5~80mg)准确至0.0002g,放入凯氏烧瓶中,加入6.4g混合催化剂,与试样混合均匀,再加入12mL硫酸和2粒玻璃珠,将凯氏烧瓶置于电炉上加热,开始小火,待样品焦化,泡沫消失后,再加强火力(360~410℃)直至呈透明的蓝绿色,然后再继续加热,至少2h。 ②氨的蒸馏 A. 常量蒸馏法 将试样消煮液冷却,加入60~100ml蒸馏水,摇匀,冷却。 将蒸馏装置的冷凝管末端浸入装有25mL硼酸吸收液和2滴混合指示剂的锥形瓶内。然后小心地向凯氏烧瓶中加入50mL氢氧化钠溶液,轻轻摇动凯氏烧瓶,使溶液混匀后再加热蒸馏,直至流出液体体积为100mL。降下锥形瓶,使冷凝管末端离开液面,继续蒸馏1~2min,并用蒸馏水冲洗冷凝管末端,洗液均需流

蛋白质的营养作用及影响饲料中蛋白质营养价值的因素分析

蛋白质的营养作用及影响饲料中蛋白质营养价值的因 素分析 The Protein’s Nutritional Role and the Factors of Influence Protein’s Nutritional Value in Feed (薛东山,山东农业大学动物科技学院09级动科一班,泰安271000)摘要:蛋白质是生物的一个重要组成成分,从细菌到病毒这样简单的单细胞原核生物,到脊椎动物及高级哺乳动物如人类,所有生物的体内均存在蛋白质。本文综述了蛋白质的营养作用,并对影响饲料中蛋白质生物学价值的因素进行了分析。 关键字:蛋白质;营养作用;蛋白质营养价值;因素分析 引文 蛋白质参与生物体系的各种反应,有着广泛的营养作用,目前饲料中影响蛋白质营养价值的因素很多,所以研究蛋白质的营养作用有着广泛的应用前景。本文概述了蛋白质的营养作用与影响饲料中蛋白质生物学价值的因素分析,为下一步的研究提供思路。 1 蛋白质的营养作用 1.1蛋白质的简介 蛋白质主要组成元素是碳、氢、氧、氮,大多数还含有硫,少数含有磷、铁、铜和碘等元素。是氨基酸的聚合物,可分为纤维蛋白、球蛋白和结合蛋白,占细胞干重的50%以上, 比其他任何生物分子的量多得多,参与机体的许多反应,有着重要的生物学功能。 1.2蛋白质的营养作用 1.2.1蛋白质是构建机体组织细胞的重要原料。动物的肌肉、神经、结缔组织、腺体、精液、皮肤、毛发、角等都已蛋白质为主要成分,起着传导、运输、支持、保护、运动、连接功能。张海华等(1)研究表明各组水貂的体长、皮长和干皮重量随饲料蛋白质水平的降低而呈下降趋势,饲料蛋白质水平为284.7g/kg干物质,可消化蛋白质水平为244.5g/kg 干物质时,能够满足冬毛生长期水貂正常生长的需要。 1.2.2蛋白质是机体功能物质的的主要成分。如胰蛋白酶、DNA聚合酶和连接酶具有催化功能血红蛋白、肌红蛋白、血清白蛋白血浆铜蓝蛋白甲状腺素运载蛋白等具有运输功能,免疫球蛋白、凝血酶、蛇毒和毒素等具有免疫和防御功能,肌动蛋白、肌球蛋白等具有收缩功能。此外蛋白质对维持体内渗透压和水分代谢,也有重要作用。蛋白质还能与其他生物分子,如脂质、糖、血红素基团和金属离子共价或非共价结合为脂蛋白、糖蛋白、辅基等。蛋白质的部分酶解产物具有抗氧化功能,近些年国内外酶解的方法对鱼蛋白进行深加工的报道较多。酶解后鱼蛋白产物多事多肽、小肽和氨基酸组成的复杂体系,其与饲料蛋白具有相同的氨基酸组成,而功能能特性及生物活性与原料蛋白相比都得到了一定的改善。李雪[2]等的研究表明草鱼鱼肉蛋白酶解产物的抗氧化性受水解深度及蛋白酶种类影响,采用木瓜蛋白酶酶解水解度为10%的酶解产物抗氧化性较强,具有作为天然抗氧化剂的潜能。

猪蛋白质饲料

猪蛋白质饲料 饲料的绝对干物质中粗蛋白质含量在20%以上、粗纤维含量少于18%的饲料。 包括植物性和动物性蛋白质饲料两类; 养猪常用的蛋白质饲料有:豆类籽实(25-42%)、蚕蛹渣(55%左右)、豆科叶粉(含量20-25%)、羽毛粉(80-85%)、鱼粉和血粉等。 ①豆类籽实:如大豆、蚕豆、豌豆等。 共同特点: CP丰富(20-40%),无氮浸出物(主要指淀粉和糖类)含量比谷实类低。 蛋白质品质最佳,赖氨酸含量高(1.8-3.06%);但蛋氨酸偏少,难以满足育肥猪生长后期需要。含有抗胰蛋白酶、导致甲状腺肿大的物质以及皂素、血凝集素等不良物质,影响适口性、消化性和猪的某些生理过程。(如何处理?)喂饲前要经过110℃、至少有3分钟的加热处理。 ②油饼类饲料 定义:指油料籽实提取大部分油脂后的残余部分,包括大豆饼、棉籽饼、菜籽饼、花生饼、芝麻饼和亚麻仁饼等。 特点:CP (30-46%)和脂肪含量高,具有很高的营养价值。 大豆饼、花生饼的适口性好且无毒性。 亚麻仁饼含有亚麻苦苷,菜籽饼中含有芥子甙,棉籽饼中含有棉酚,因而均有一定毒性,喂用前须作脱毒处理或降低用量。 ③糟渣类:包括各种糟类和粉渣类等 酒糟干物质粗蛋白质22-31%,尤以大麦酒糟为高,最低的是啤酒糟。 刚出厂的酒糟含水率高达64-76%,占猪日粮的比重不宜过大,否则难以满足营养需要。 豆腐渣、粉渣干物质含粗蛋白质29%左右,但因水分多而不耐贮存。 酱糟因盐分多,喂用时须注意限制喂量,以防食盐中毒。 动物性蛋白质饲料 优点:鱼粉、血粉、骨肉粉之类,含能量和矿物质较高。猪必需的氨基酸的含量也较完全,粗蛋白质含量达55-84%,赖氨酸尤其丰富。 缺点:蛋氨酸略少,血粉还缺乏异亮氨酸。 使用:在育肥后期不宜多喂,以免影响屠体的品质。另外,考虑传染疾病等因素,在生产中要限制使用。

饲料中脂肪的应用

前言 随着养猪业的不断发展,生产规模的不断扩大,仔猪早期断奶技术已经成为养猪生产的重要环节。早期断奶可以提高母猪的生产性能及饲养母猪的经济效益,减少母猪向仔猪的疾病传播机率(切断仔猪的最初疾病感染源),从而有利于仔猪的成活及生长,提高栏舍的利用效率。但仔猪早期断奶时易受心理、环境及营养应激的影响,生产中最直接的表现就是仔猪食欲减退、采食量下降、生长缓慢甚至停滞等。由于仔猪的肠道发育不完善,消化酶分泌不足、活性低,对饲料养分的消化吸收差,最终导致仔猪早期断奶后能量摄入不足,所以营养学家一直推荐对仔猪使用高能量的平衡日粮。 1 仔猪利用脂肪的效果 近年来,许多学者从脂肪添加的类型、添加量以及仔猪不同断奶日龄、断奶后不同时间的日粮中添加脂肪的应用效果进行了研究,其中多数研究认为日粮中添加脂肪可以提高断奶2周后仔猪的生产性能,但2周内的效果不明显。表1 显示的是近几年来饲料中添加脂肪对仔猪增重效果的影响。 1.1 不同类型脂肪的添加效果 许多研究证明,猪对动物油的利用率不如植物油高,断奶后2周的仔猪对植物性脂肪的消化率,例如大豆油、玉米油、棕榈油、椰子油或是这些油脂的混合物,都可以获得较好的效果。Cera等(1988)发现,玉米油比猪油或牛油更易消化,但猪在断奶后1~4周对不同来源的脂肪消化能力差异不大。在各种脂肪中,猪对牛油的消化率比植物油低,对猪的生产性能的改善也差。研究表明,断奶仔猪对玉米油的消化率比牛油、猪油、或牛油和猪油的混合物高13%。前苏联的很多研究证明,猪对动物性的脂肪消化率为80%~90%,而对植物性脂肪的消化率则为90%。 根据不同脂肪对仔猪饲料报酬、增重和血液尿素氮的影响,应按下例顺序选择脂肪种类:稳定化猪脂>椰子油>豆油>玉米油>猪油>牛油。 1.2 仔猪断奶后时间和断奶日龄对脂肪利用效果的影响 早期断奶后2周内的仔猪对脂肪的消化率较差。随着日龄的增加,消化道发育趋于成熟、完善,对脂肪的利用率逐渐增加,同时动物脂肪和植物油脂的消化率差别也越来越小。Dove和Cera等证实,在早期断奶仔猪日粮中使用6%的玉米油,并没提高断奶后头2周的生产性能,却显著提高第3、4周及其以后的仔猪生长速度。Tokach等(1989)进行试验研究在高营养浓度日粮中添加脂肪的适宜水平,试验采用384头21日龄断奶仔猪,在第一阶段分别饲喂含0%、3%、6%、9%的油脂。结果表明,提高日粮中脂肪水平对断奶后0~2周龄仔猪平均日增重、日采食量和饲料效率无显著影响。 另外,断奶时的日龄也对仔猪利用脂肪的效果有影响。据石旭东报道,对于35d断奶的仔猪,28日龄开始补饲添加3%猪油的日粮至49日龄,平均日增重提高了8.39%。因此,仔猪断奶日龄越大,对脂肪利用的效果差异越小,这可能与仔猪不同断奶日龄消化道损伤的程度不同有关。 目前,脂肪在断奶仔猪日粮中应用能够得到多数学者认同的结论是,仔猪断奶后1~2周内对脂肪的利用效果较差,2周后利用率显著提高。对于断奶初添加油脂是否会诱导脂肪酶的发育,尚存有争议,如何尽快提高断奶后仔猪体内脂肪酶的活性,是影响脂肪利用效果的关键,值得进一步深入研究。

饲料中粗蛋白含量的测定

饲料粗蛋白测定的测定方法 Method for the determination of crude protein in feedstuffs 本标准参照采用ISO5983-1979《动物饲料-氮含量的测定和粗蛋白含量计算》。 1 主题内容与适用范围 本标准规定了饲料中粗蛋白含量的测定方法。 本标准适用于配合饲料、浓缩饲料和单一饲料。 2 引用标准 GB 601 化学试剂滴定分析(容量分析)用标准溶液的制备 3 原理 凯氏法测定试样中的含氮量,即在催化剂作用下,用硫酸破坏有机物,使含氮物转化成硫酸铵。加入强碱进行蒸馏使氨逸出,用硼酸吸收液吸收后,再用酸滴定。测出氮含量,将结果乘以换算系数6.25,计算出粗蛋白的含量。 4 试剂 4.1硫酸(GB625):化学纯,含量为98%,无氮。 4.2混合催化剂 0.4g 硫酸铜,5个结晶水(GB665),6g 硫酸钾(HG3-920)或硫酸钠(HG3-908),均为化学纯,磨碎混匀。 4.3 氢氧化钠(GB629):化学纯,40%水溶液(M/V)。 4.4硼酸(GB628),化学纯,2%水溶液(M/V)。 4.5混合指示剂溶液 甲基红(HG3-958)0.1%乙醇溶液,溴甲酚绿(HG3-1220)0.5%乙醇溶液,两溶液等体积混合,在阴凉处保存期为三个月。 4.6盐酸标准溶液,c(HCl)=0.1mol/L、0.02mol/L 配制如下: 移取8.3mL 盐酸(分析纯),于1000mL 容量瓶中,用水稀释至刻度,混匀。此溶液为c(HCl)=0.1mol/L。 移取1.67mL 盐酸(分析纯),于1000mL 容量瓶中,用水稀释至刻度,混匀。此溶液为c(HCl)=0.02mol/L。 4.7蔗糖,分析纯。 4.8硫酸铵,分析纯,干燥。 4.9硼酸吸收液 1%硼酸水溶液1000mL,加入0.1%溴甲酚绿乙醇溶液10mL,0.1% 甲基红乙醇溶液7mL,4%氢氧化钠水溶液0.5mL,混合,置阴凉处保存期为一个月(全自动程序用)。

1饲料脂肪水平对奥尼罗非鱼幼鱼生长和血浆生化指标的影响

第18卷第1期上海海洋大学学报Vol.18,No.1 2009年1月JOURNAL OF SHANGHA IOCE AN UN I V ERSI TY Jan.,2009 文章编号:1004-7271(2009)01-0035-07 饲料脂肪水平对奥尼罗非鱼幼鱼生长 和血浆生化指标的影响 甘 晖1,2,李坚明2,3,冯广朋2,4,龚竹林1,黄 凯5,李家乐2 (1.广西水产畜牧学校,广西南宁 530021; 2.上海海洋大学水产与生命学院,上海 201306; 3.广西水产技术推广总站,广西南宁 530022; 4.中国水产科学研究院东海水产研究所,上海 200090; 5.广西大学动物科学技术学院,广西南宁 530004) 摘 要:研究了奥尼罗非鱼幼鱼的生长及血浆生化指标与不同脂肪含量饲料间的关系。饲料脂肪水平为 0%、2%、4%、6%、8%5个梯度组。结果表明,5组不同脂肪水平的饲料对奥尼罗非鱼幼鱼的成活率无显著性影响。随着饲料脂肪水平升高,奥尼罗非鱼幼鱼的增重率、肥满度和摄食量先上升后下降,而饲料系数则先下降后上升;肝脏重量、肝体比、肝脏与肌肉脂肪含量等4个指标均呈现逐渐升高的趋势。饲料脂肪水平与奥尼罗非鱼幼鱼血浆中的胆固醇、甘油三脂、低密度脂蛋白、极低密度脂蛋白呈负相关,与高密度脂蛋白呈正相关。随着饲料中脂肪含量的增加,试验鱼血浆中谷丙转氨酶、谷草转氨酶、乳酸脱氢酶、淀粉酶、碱性磷酸酶等活性逐渐升高。本研究条件下饲料脂肪水平超过6%容易导致奥尼罗非鱼幼鱼形成脂肪肝,对其摄食、体形特征、生长指标、相关组织脂肪含量以及血清中酶的活性等都有明显影响。 关键词:罗非鱼;饲料;脂肪水平;生化指标;生长 中图分类号:S963.1 文献标识码:A Effects of di fferent li pi d levels on growth and hae matologi cal bi oche m istry i n juven ile til api a (O reoch ro m is n iloticus×O reoch rom is au reus) G AN Hui1,2,L I J ian2m in2,3,FENG Guang2peng2,4,G ONG Zhu2lin1,HUANG Kai5,L I J ia2le2 (1.Guangxi A quaculture and A ni m al Husbandry School,N anning 530021,China; 2.College of Fisheries and L ife,Shanghai O cean U niversity,Shanghai 201306,China; 3.Guangxi Fisheries Technology Extension Center,N anning 530022,China; 4.East China Sea Fisheries Research Institute,Chinese A cade m y of Fishery Sciences,Shanghai 200090,China; 5.College of A ni m al Science and Technology,Guangxi U niversity,N anning 530004,China) Abstract:Juvenile tilap ia were fed by five diets f or70days t o study the relati onshi p bet w een diet li p id levels and fatty liver disease.L i p id content levels included0%,2%,4%,6%,8%.The results showed that five different diets didn’t affect survival rate of juvenile tilap ia significantly.Fish fed with6%and8%li p id levels 收稿日期:2008203215 基金项目:广西壮族自治区科技攻关项目(0537008-2E) 作者简介:甘 晖(1976-),女,广西贵港人,硕士,讲师,主要从事水产养殖病害方面的研究。 通讯作者:黄 凯,E2mail:hkai110@https://www.wendangku.net/doc/8a12684599.html,

饲料--膨化料的优缺点

膨化料的优缺点 膨化加工是一项饲料加工新技术,饲料在挤压腔内膨化实际上是一个高温瞬时的过程:混和物处于高温 (110 -200 ℃ ) 、高压 (25-lOOkg / cm2) 、以及高剪切力、高水分 (10 % -20 %甚至 30 % ) 的环境中,通过连续混和、调质、升温增压、熟化、挤出模孔和骤然降压后形成一种膨松多孔的饲料。 1 膨化饲料的优点 1 .1 提高饲料的利用率膨化过程中的热、湿、压力和各种机械作用,使淀粉分子内 1 , 4 —糖苷键断裂而生成葡萄糖、麦芽糖、麦芽三糖及麦芽糊精等低分子量产物,膨化加工可使淀粉糊化度提高,纤维结构的细胞壁部分被破坏和软化,释放出部分被包围、结合的可消化物质,同时脂肪从颗粒内部渗透到表面,使饲料具有特殊的香味,提高了适口性,因而摄食率提高。另外,植物性蛋白饲料中的蛋白质,经过适度热处理可钝化某些蛋白酶抑制剂如抗胰蛋白酶、脲酶等,并使蛋白质中的氢键和其他次级键遭到破坏,引起多肽链原有空间构象发生改变,致使蛋白质变性,变性后的蛋白质分子成纤维状,肽链伸展疏松,分子表面积增加,流动阻滞,增加了与动物体内酶的接触,因而有利于水产动物的消化吸收,可提高营养成分消化利用率10 %-35 %。 1 . 2 降低对环境的污染膨化浮性鱼饲料在水中稳定性能好。以挤压膨化加工而成的饲料颗粒,是靠饲料内部的淀粉糊化和蛋白质组织化而使产品有一定的黏结或结合力,其稳定性一般达12h 以上,最长可达36h ,故可减少饲料营养成分在水中的溶解及沉淀损失。有数据表明,一般采用膨化浮性鱼饲料比粉状或颗粒饲料可节约 5 %-10 %,并能避免饲料在水中残留,减少水体污染。 1 .3 减少病害的发生饲料原料中常含有害微生物,如好气性生物、嗜中性细菌、大肠杆菌、霉菌、沙门氏菌等,动物性饲料原料中的含量相对较多。而膨化的高温、高湿、高压作用可将绝大部分有害微生物杀死。有资料显示,每克原料中大肠杆菌数达10 000 个,膨化后仅剩不到10 个,沙门氏菌在经85 ℃以上高温膨化后,基本能被杀死,这就有助于保持水质和减少水产养殖不利的环境因素,同时降低水产动物的死亡率。 1.4提高养殖密度 在人工养殖条件下,养殖密度的提高,就意味着养殖者所得到的回报率越高。当单位水体的养殖密度提高后,鱼类在养殖水体中的空间缩小了,对水质的要求也就要大大高于自然环境的水平。因为使用膨化配合饲料能降低饲料系数,使排入水体中的残饵和排泄物大大降低,便有可能使养殖密度大幅度提高。 1.5延长饲料贮藏期 挤压膨化加工通过降低细菌含量和氧化作用,从而使原料稳定性提高。挤压膨化产品干燥、冷却时,已将饲料水活性(AW)降低到0.6,甚至达到0.4,这相当于水分含量在8%~10%,更好地提高了饲料的贮存稳定性。 1 . 6 投饲管理方便水产膨化饲料能较长时间悬浮于水面 ( 水中 ) ,投饲时不需专设投饲台,只需定点投饲即可。鱼摄食时需浮十水面,能直接观察鱼

蛋白桑独特的产业比较优势

蛋白桑独特的产业比较优势 蛋白桑生物发酵料部分替代玉米、豆粕的可行性分析:玉米的淀粉含量高,粗纤维含量低且淀粉结构比较简单,易被单胃动物消化,故玉米的能量水平较高。但由于玉米赖氨酸含量低,玉米蛋白不是优质的蛋白来源。在传统畜禽全价配合饲料中,能量饲料可占到60%~85%。所以,玉米等能量饲料价格的高低,决定着配合饲料成本和畜禽养殖也的效益。 (1)种植蛋白桑的比较效益高。我国70-75%的玉米和50%的大豆用于饲料加工。通过生产粮食间接解决饲料问题,生产效率低,消耗大,远不如种植蛋白桑,直接解决饲料原料的效益高。蛋白桑生物发酵饲料生产育肥猪全价饲料,可替代50%的玉米,替代60%的豆粕、鱼粉。蛋白桑原料靠自营种植和推广农民种植,可在两、三年内形成万亩植物蛋白原料基地,项目公司以最低的成本、最稳定的渠道获得高质量的饲料原料,为大规模、工业化加工生物发酵饲料奠定基础。比普通饲料加工企业原料成本降低25%左右,且基本上不受玉米、豆粕等饲料原料价格影响,维持项目公司稳定获得较高的盈利水平。 (2)蛋白桑除了本身具有高蛋白的植物特性外,畜禽动物所必需的16种氨基酸含量达31%,蛋氨酸含量相当丰富,动物生长所必需的钙、铁、钾、镁、锌、硒等多种矿物质微量元素含量也非常高,而且种类十分齐全,综合营养成分超过豆类植物。

其生物发酵饲料具有绿色、生态、高效、无抗的明显优势,畜禽饲养过程中完全取代抗生素和其他无机添加剂。 (3)蛋白桑干粉在人工控制条件下进行生物发酵处理,通过微生物自身的代谢活动,将植物性、动物性和矿物性物质中的抗营养因子分解或转化,产生能被畜禽采食、消化、吸收的养分更高且无毒害作用的饲料原料。养殖猪、牛、羊、鸡、兔等,大幅度减少原精饲料、能量饲料的比例,降低了养殖成本;其独特的植物刺激异黄酮、抑菌素、杀菌素、生物碱等有效杀菌、抗病毒成分,完全替代了原全价饲料中的抗生素,减少了畜禽的病菌感染,净化了畜禽体内环境,增强了动物自身的抗病力和免疫力,大幅度提升了畜禽肉蛋奶等农产品的质量和品味。 (4)蛋白桑生物发酵饲料用于生猪饲养实践 于2008年开始在浙江进行生猪饲养各个阶段的饲喂试验。品种为三元杂交猪。从断奶仔猪到50公斤小猪阶段,饲喂日粮中发酵料添加比例为15%-40%(平均添加量30%),不添加任何抗生素和无机促生长剂。实验组与对照组小猪同时饲喂,实验组明显采食积极,食后半小时安睡,皮毛光亮,粪便量减少三分之一,臭味明显降低,消化率提高,未发生腹泻、发烧等病症,养殖成本降低15%。 育肥猪阶段从50公斤到110公斤出栏,饲喂日粮中发酵料添加比例为50%,不添加任何抗生素和无机促生长剂。实验组育肥猪采食积极,嗜睡,体格强壮、生猛,皮毛光亮,粪便量减少

饲料中粗蛋白质的测定

饲料中粗蛋白质的测定 一、目的 掌握饲料中粗蛋白质的测定方法,并测定饲料中粗蛋白质的含量。 二、原理 饲料中纯蛋白质和非蛋白氮总称粗蛋白质。凯氏法的基本原理是用浓H 2SO4在还原性催化剂(CuSO4、K 2SO4、Na 2SO4等)的催化作用下消化饲料样本,使其中的蛋白质和非蛋白氮都变为NH 4+,NH 4+立即被浓H 2SO4吸收成为(NH 4)2SO4,(NH 4)2SO4在浓碱作用下放出NH 3,通过蒸馏,氨气随水蒸汽沿冷凝管流入硼酸吸收液被硼酸吸收并与之结合成为四硼酸铵,然后以甲基红溴甲酚绿混合指示剂作指示剂,用标准HCL 溶液滴定,求出氮含量,根据不同饲料再乘以一定的换算系数(通常用6.25计算),即为粗蛋白质的含量。 上述原理的主要化学反应如下: 2.(NH 4)2SO4+2NaOH →2NH 3↑+2H 2O+Na 2SO4 3.H 3BO 3+NH 3→NH 4H 2BO 3 4.NH 4H 2BO 3+HCL →NH 4CL+H 3BO 3 三、仪器设备 1.实验室用样品粉碎机:40目网筛。 2.分析天平:感量0.0001。 3.电子天平: 感量0.001。 4. 六联电炉: 6×1000W 。 5.改良式半微量凯氏定氮仪(图1)。 6.酸式滴定管:25ml 。 7.凯氏烧瓶:100ml 。 8.烧杯:250ml 。 9.三角瓶:150ml 。 10.容量瓶:100ml 。

11.移液管:10ml。 12.量筒: 10ml 。 13.量筒:25ml。 四、试剂 1.浓H 2SO 4 :化学纯,含量为98%,无氮。 2.混合催化剂:CuSO 4:Na 2 SO 4 =1:10 化学纯。 3.甲基红—溴甲酚绿混合指示剂:0.1%甲基红酒精溶液与0.5%溴甲酚绿酒精溶液等体积混合,阴凉处保存期不超过三个月。此混合指示剂在碱性溶液中呈蓝色,中性溶液中呈灰色,强酸性溶液中呈红色。在硼酸吸收液中呈暗紫色,在吸收氨的硼酸溶液中呈兰色。 4.2%硼酸吸收液:溶2g化学纯硼酸于100ml蒸馏水中,加甲基红—溴甲酚绿混合批示剂0.4ml。 5.40%饱和NaOH溶液:溶40克氢氧化钠(化学纯)于100ml蒸馏水中。 6.0.05mol/l的HCL标准液:取分析纯浓HCL(比重1.19)4.2ml,加蒸馏水稀释至1000ml,用基准物质标定。将基准无水碳酸钠(分析纯)于270-300℃灼烧40分钟称重,至恒重,准确称取0.013-0.015克,溶于50ml 蒸馏水中,加2滴甲基红—溴甲酚绿混合指示剂,用欲配的0.05mol/lHCL滴定至暗紫红色,记录HCL用量 五、测定步骤 1.样本的消化: 精确称取饲料样本0.5-1g,以硫酸纸卷无损的移入消化管中,再加入5氺硫酸铜0.4克,无水硫酸钾或硫酸钠6克,加10ml浓硫酸后将凯氏烧瓶放于通风橱的电炉子上消化(为防止消化时液体溅失,可再加两粒玻璃珠)。 注意:先低温加热(100-200℃),注意防止泡沫浮起,待泡沫消失后,提高加热温度(约360-410℃) 至沸腾。消化时要经常转动凯氏烧瓶,如果有黑色炭粒不能全部消化,待烧瓶冷却后,补加少量浓硫酸后继续消化至溶液澄明无黑点并呈蓝绿色为止,移出电炉,放于凯氏消化架上冷却。 2.转移:将冷却的消化液加少许蒸馏水约20ml,摇匀后无损移入100ml容量瓶,再用蒸馏水反复冲洗烧瓶数次,直至消化液全部转入容量瓶中,冷却至室温后以蒸馏水定容至刻度。即为试样分解液。 3.空白实验:另取凯氏烧瓶一个,加入混合催化剂(同前),浓硫酸10ml,同样消化至澄清,冷却后按上述方法转移至容量瓶中,定容至刻度备用。

家禽低成本蛋白质饲料十种

家禽低成本蛋白质饲料十种 饲料是家禽生长发育的物质基础,但饲料中的主要成份—蛋白质比较紧缺,常用的鱼粉、大豆、豆饼等,成本较高。这里介绍几种取之容易,用之经济的蛋白质饲料。 1、菜籽饼:菜籽饼中,粗蛋白的含量为31.5%,可消化蛋白质25.6%,粗脂肪10.2%,粗纤维11.1%,无氮浸出物27.9%,钙0.82%,磷0.64%,还含有氨基酸和锰、锌、铜等微量元素。菜籽饼也有毒,可用1%硫酸亚铁拌和后加热去毒,去毒后按日粮的10%喂给。 2、花生壳粉:花生壳中含有大量的脂肪、淀粉、糖类、维生素、矿物质和纤维素等各种营养物质。将花生壳碾成粉状拌在精料或者青料中喂鸡,鸡吃了产蛋率可提高20—40%,肉鸡增重快,出肉率可提高20%左右。 3、向日葵盘:向日葵盘经冲洗后晾干,干燥粉碎后即可作畜禽饲料。它每公斤干重含消化能2.1兆卡,可消化粗蛋白78克,此外还含有一定数量的钙,磷和维生素,不仅是较好的能量饲料,也是含蛋白质较高的饲料。 4、棉花饼:棉花饼含粗蛋白41.6%,可消化蛋白质33.9%、粗纤维11%、粗脂肪4.3%、钙0.10%、磷1.2%。其粗蛋白的含量为大麦、玉米4倍,而且含有多种氨基酸和锰、锌、铜等微量元素。但棉花饼含有棉酚毒,要去毒后方可利用。去毒方法:粉碎后,加0.5%硫酸亚铁,再加1.5%石灰水拌和加热,饲喂量只能占日粮的8—12%。 5、蚕蛹:蚕蛹是高蛋白饲料,含粗蛋白68.3%、可消化蛋白质占56.5%、粗脂肪28.8%钙1.2%、磷0.73%,并含有硫胺素、核黄素、维生素E及多种氨基酸,尤其是蛋氨酸含量很高,可作为鸡的蛋氨酸调整添加饲料。 6、蚯蚓和蚯蚓粪:蚯蚓干体中含粗蛋白质66.5%、粗脂肪12.8%、碳水化合物8.2%。家庭养殖蚯蚓是解决动物性蛋白质饲料来源的重要途径。蚯蚓粪无臭、无味,亦是鸡的好饲料。 7、蝇蛆:干蛆粉含蛋白质59.39%、脂肪12.6%,同样含有各种必需的氨基酸。每只产蛋鸡每日只需15—20克鲜蛆,可满足动物蛋白质的需要。蝇蛆应先洗净,再用开水烫杀后饲喂。 8、血粉:将家畜的血液凝块后经高温蒸煮,压除汁液,干燥粉碎而成。血粉含粗蛋白质838%,含赖氨酸、精氨酸、蛋氨酸、胱氨酸等氨基酸多,含维生素B2、B12也很丰富,还含畜禽所必需的铁、铜等微量元素。但血粉缺乏维生素A和维生素D,含钙磷等也少,消化率较差,必须注意适量搭配。 9、羽毛粉:家禽屠宰后的羽毛含氮的化合物为83%、水份12%、脂肪1.5%、矿物质1.5%,是一种新型高级饲料,用高温高压蒸煮、干燥后研成粉末,即成良好的饲料。它不仅含丰富的蛋白质和十多种氨基酸,还有一种能促进家禽生长发育的“生长激素”。因此,是鸡、鸭等家禽的优质饲料。用羽毛粉拌料喂鸡、鸭,可使鸡鸭精瘦肉增加,而使脂肪肥肉减少,产蛋率提高20%左右,并可预防鸡的食羽癖。 10、松针粉:用松针粉喂禽效果很好。利用松叶制成的松针粉,是一种多效的饲料添加剂。它含有各种氨基酸、蛋白质、脂肪、微量元素、植物杀菌素和维生素等营养成份。据对比试验,在蛋鸡的配合粮中添加5%的松针粉,产蛋率可提高13.8%;在猪的日粮中添加25—45%的松针粉,生长量可增15—40%。制松针粉方法有两种:一是放在通风没有阳光直射的地方,阴干至含水量低于

40种常见饲料原料基础知识

40种常见饲料原料基础知识 1 玉米 玉米是能量饲料之王,在能量饲料中,玉米占主导地位,这是任何其他能量饲料所不 能比拟的。目前世界上玉米的主要用途是作饲料,占70%~75%,玉米作为饲料的营养价值特点如下: (1)可利用能值高:玉米是谷实类子实中可利用能量最高的,如代谢能(鸡)为13.56 焦 耳/千克,消化能(猪)为14.27 焦耳/千克,这是因为玉米粗纤维含量少,仅2%;无氮浸 出物高,为72%,且主要是淀粉,消化率高;脂肪含量高,为4%左右,是小麦等麦类子实 的2 倍,所以玉米可利用能是谷类子实 最高者。 (2)玉米蛋白质含量低(7%~9%),品质差,缺乏赖氨酸、色氨酸,例如玉米中赖氨酸 含量为024%,色氨酸含量为0.07%。原因是玉米蛋白质中多为玉米醇溶蛋白,其品质低于谷物蛋白。 (3)玉米含亚油酸较高:亚油酸是必需脂肪酸,它不能在动物体内合成,只能从饲料中 提供,是最重要的必需脂肪酸。鸡缺亚油酸时,生长慢,水肿,皮下出血,羽毛生长不齐、蓬乱,无光泽,产蛋率下降。 玉米亚油酸含量达到2%,是所有谷实饲料中含量最高,者。在鸡的日粮中,要求亚油 酸含量为1%,如玉米在日粮中的配比达到50%以上,则仅玉米即可满足鸡对亚油酸的需要 量。 (4)维生素:玉米中含有丰富的维生素E,平均为20 毫克/千克,而维生素D、K、B、B1:缺乏,水溶性维生素中Bl 较多。新鲜玉米含维生素丰富,但贮存时间长了,虫咬、过夏或发霉等均可降低玉米中的维生素含量。 (5)矿物质:玉米含钙极少,仅0.02%左右;含磷约0.25%,其中植酸磷占50%~60%;铁、铜、锰、锌、硒等微量元素也较少。 (6)色素:黄玉米含色素较多,主要是p.胡萝b 素、叶黄素和玉米黄素。叶黄素含量 达20 毫克/千克左右,和玉米黄素一起对鸡蛋黄及肉鸡的脚、皮肤和喙的着色发生重要影响,尤其是对蛋黄着色有明显的影响,其效果优于苜蓿粉和蚕粪类胡萝卜素。 影响玉米品质的因素主要有水分、贮藏时间、破碎粒和霉变情况。水分含量高,不易 贮存,易促使黄曲霉生长。霉变的玉米可降低适口性和鸡增重,甚至出现中毒症状。玉米含脂肪高,且多为不饱和脂肪酸。玉米粒较易贮存,粉碎后易氧化霉败变质,所以粉碎的玉米面应尽快食用。 2、米糠粕 米糠粕是米糠经浸出、脱脂处理后的产物,米糠是稻谷加工过程中的副产物,是糙米碾白过程中被碾下的皮层及米胚和碎米的混合物,新鲜米糠呈黄色,有米香味,营养价值丰富。其中含油 脂15%~20%,油中含油酸、亚油酸、磷脂等,还含有大量的蛋白质、维生素、矿物质等。3、大米粕

饲料粗蛋白质GBT6432-94

饲料粗蛋白质的测定方法(GB/T6432-94) 1 主题内容与适用范围 本标准规定了饲料中粗蛋白含量的测定方法。本标准适用于配合饲料、浓缩饲料和单一饲料。 2 引用范围 GB 601 化学试剂滴定分析(容量分析)用标准溶液的制备 3 原理 凯氏法测定试样中的含氮量,即在催化剂作用下,用硫酸破坏有机物,使含氮物转化成硫酸铵。假如强碱进行蒸馏使氨逸出,用硼酸吸收,再用酸滴定,测出氮含量,将结果乘以换算系数6.25,计算出粗蛋白含量。 4 试剂 4.1 硫酸(GB 625):化学纯,含量为98%,无氮。 4.2 混合催化剂:0.4g 硫酸铜,5个结晶水(GB 665),6g硫酸钾(HG 3-920)或硫酸钠(HG 3-908),均为化学纯,磨碎混匀。 4.3 氢氧化钠(GB 629):化学纯,40%水溶液(M/V)。 4.4 硼酸(GB 628):化学纯,2%水溶液(M/V)。 4.5 混合指示剂:甲基红(HG 3-958)0.1%乙醇溶液,溴甲酚绿(HG 3-1220)0.5乙醇溶液,两溶液等体积混合,在阴凉处保存期为三个月。 4.6 盐酸标准溶液:邻苯二甲酸氢钾法标定,按GB 601制备。 4.6.1 0.1mol/L盐酸(HCl)标准溶液:8.3mL盐酸(GB 622),分析纯,注入1000mL蒸馏水中。 4.6.2 0.02mol/L盐酸(HCl)标准溶液:1.67mL盐酸(GB 622),分析纯,注入1000mL 蒸馏水中。 4.7 蔗糖(HG 3-1001):分析纯。 4.8硫酸铵(GB1396):分析纯,干燥。

4.9 硼酸吸收液:1%硼酸水溶液1000mL,加入0.1%溴甲酚绿乙醇溶液10mL,0.1%甲基红乙醇溶液7mL,4%氢氧化钠水溶液0.5mL,混合,置于阴凉处保存期为一个月(全自动程序用)。 5 仪器设备 5.1 实验室用样品粉碎机或研钵。 5.2 分样筛:孔径0.45mm(40目)。 5.3 分析天平:感量0.0001g。 5.4 消煮炉或电炉。 5.5 滴定管:酸式,10、25mL。 5.6 凯氏烧瓶:250mL。 5.7 凯氏定氮装置:常量直接蒸馏式或半微量水蒸馏式。 5.8 锥形瓶:150、250mL。 5.9 容量瓶:100mL。 5.10 消煮管:250mL。 5.11 定氮仪:以凯氏原理制造的各类型半自动、全自动蛋白质测定仪。 6 试样的选取和制备。 选取具有代表性的样品用四分法缩减至200g,粉碎后全部通过40目筛,装于密封容器中,防止试样成分的变化。 7 分析步骤 7.1 仲裁法 7.1.1 试样的消煮 称取试样0.5~1g(含氮量5~80mg)准确至0.0002g,放入凯氏烧瓶(5.6)中,加入6.4g混合催化剂(5.4),与试样混合均匀,再加入12mL硫酸(4.1)和两粒玻璃珠,将凯氏烧瓶(5.6)置于电炉(5.4)上加热,开始小火,待样品焦化,泡沫消失后,再加强火力(360~410℃)直至呈透明的蓝绿色,然后再继续加热,至少2h。 7.1.2 氨的蒸馏(蒸馏步骤的检验见附录)

相关文档