文档库 最新最全的文档下载
当前位置:文档库 › 大学物理第四单元答案

大学物理第四单元答案

大学物理第四单元答案
大学物理第四单元答案

习题四

4-1 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动: (1)拍皮球时球的运动;

(2)如题4-1图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很 短).

题4-1图

解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统 是在 自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系统的运动微分方程能用

0d d 222=+ξωξ

t

描述时,其所作的运动就是谐振动.

(1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置; 第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线 性回复力.

(2)小球在题4-1图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中 ,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O ;而小球在运动中的回复力为θsin mg -,如题4-1图(b)所

示.题 中所述,S ?<<R ,故R

S

?=θ→0,所以回复力为θmg -.式中负号,表示回复力的方向始终与角位移的方向相反.即小球在O 点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O '为圆心的竖直平面内作圆周运动,由牛顿第二定律,

在凹槽切线方向上有

θθ

mg t

mR -=22d d

令R

g

=

2

ω,则有 0d d 222=+ωθ

t

4-2 劲度系数为1k 和2k 的两根弹簧,与质量为m 的小球按题4-2图所示的两种方式连 接,试证明它们的振动均为谐振动,并分别求出它们的振动周期.

题4-2图

解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有21F F F ==,设串联弹簧的等效倔强系数为串K 等效位移为x ,则有

1

11x k F x k F -=-=串

222x k F -=

又有 21x x x +=

2

211k F k F k F

x +==

串 所以串联弹簧的等效倔强系数为

2

12

1k k k k k +=

即小球与串联弹簧构成了一个等效倔强系数为)/(2121k k k k k +=的弹簧振子系统,故小球作谐振动.其振动周期为

2

121)(222k k k k m k m

T +===

ππ

ω

π

串 (2)图(b)中可等效为并联弹簧,同上理,应有21F F F ==,即21x x x ==,设并联弹簧的倔强系数为并k ,则有

2211x k x k x k +=并

故 21k k k +=并 同上理,其振动周期为

2

12k k m

T +='π

4-3 如题4-3图所示,物体的质量为m ,放在光滑斜面上,斜面与水平面的夹角为θ,弹簧的倔强系数为k ,滑轮的转动惯量为I ,半径为R .先把物体托住,使弹簧维持原长,然 后由静止释放,试证明物体作简谐振动,并求振动周期.

题4-3图

解:分别以物体m 和滑轮为对象,其受力如题4-3图(b)所示,以重物在斜面上静平衡时位置为坐标原点,沿斜面向下为x 轴正向,则当重物偏离原点的坐标为x 时,有

221d d sin t

x

m T m g =-θ ①

βI R T R T =-21 ②

βR t

x

=22d d )(02x x k T += ③

式中k mg x /sin 0θ=,为静平衡时弹簧之伸长量,联立以上三式,有

kxR t

x

R I mR -=+22d d )(

令 I

mR kR +=22

2

ω

则有

0d d 222=+x t

x

ω 故知该系统是作简谐振动,其振动周期为

)/2(222

2

2K R I m kR I mR T +=+==ππωπ

4-4 质量为kg 10103

-?的小球与轻弹簧组成的系统,

按)SI ()3

28cos(1.0π

π+=x 的规律

作谐振动,求:

(1)振动的周期、振幅和初位相及速度与加速度的最大值;

(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52

=t 与s 11=t 两个时刻的位相差;

解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:

3/2,s 4

1

2,8,m 1.00πφω

π

πω==

=

∴==T A 又 πω8.0==A v m 1s m -? 51.2=1

s m -?

2.632==A a m ω2s m -?

(2) N 63.0==m m a F

J 1016.32

122

-?==

m mv E J 1058.121

2-?===E E E k p

当p k E E =时,有p E E 2=, 即

)2

1(212122kA kx ?= ∴ m 20

2

22±=±

=A x (3) ππωφ32)15(8)(12=-=-=?t t

4-5 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数

表示.如果0=t 时质点的状态分别是:

(1)A x -=0;

(2)过平衡位置向正向运动; (3)过2

A

x =

处向负向运动; (4)过2

A x -

=处向正向运动.

试求出相应的初位相,并写出振动方程.

解:因为 ???-==00

0sin cos φωφA v A x

将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有

)2cos(

1ππ

π

φ+==t T A x )23

2cos(2

32πππφ+==t T A x

)32cos(3

ππ

φ+==

t T A x

)45

2cos(4

54πππφ+==

t T A x

4-6 一质量为kg 10103-?的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:

(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到cm 12=x 处所需的最短时间; (3)在cm 12=x 处物体的总能量.

解:由题已知 s 0.4,m 10242=?=-T A ∴ 1s rad 5.02-?==ππ

ωT

又,0=t 时,0,00=∴+=φA x 故振动方程为

m )5.0cos(10242t x π-?=

(1)将s 5.0=t 代入得

0.17m m )5.0cos(102425.0=?=-t x π

N

102.417.0)2

(10103

23

2--?-=???-=-=-=π

ωx

m ma F

方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ,

t t =时 3

,0,20πφ=<+

=t v A x 故且 ∴ s 3

2

2/3==?=ππωφt (3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为

J

101.7)24.0()2(10102121

214223222--?=???===

π

ωA m kA E 4-7 有一轻弹簧,下面悬挂质量为g 0.1的物体时,伸长为cm 9.4.用这个弹簧和一个质量为g 0.8的小球构成弹簧振子,将小球由平衡位置向下拉开cm 0.1后 ,给予向上的初速度

10s cm 0.5-?=v ,求振动周期和振动表达式.

解:由题知 1

2

311m N 2.010

9.48.9100.1---?=???==x g m k

而0=t 时,-12020s m 100.5m,100.1??=?-=--v x ( 设向上为正) 又 s 26.12,51082.03

===?==

-ωπωT m k 即 m

102)5100.5()100.1()(

2222

22

2

0---?=?+?=+=∴

ω

v x A

4

5,15100.1100.5tan 0

22000π

φωφ==???=-=--即x v ∴ m )4

5

5cos(1022π+?=

-t x

4-8 图为两个谐振动的t x -曲线,试分别写出其谐振动方程.

题4-8图

解:由题4-8图(a),∵0=t 时,s 2,cm 10,,2

3

,0,0000===∴>=T A v x 又πφ 即 1s rad 2-?==

ππωT

故 m )2

3

cos(1.0ππ+

=t x a 由题4-8图(b)∵0=t 时,3

5,0,2000π

φ=∴>=v A x

01=t 时,2

2,0,0111π

πφ+

=∴<=v x

又 ππωφ2

535

11=+?= ∴ πω6

5=

故 m t x b )3

56

5cos(1.0ππ+

= 4-9 一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子.现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动.

(1)此时的振动周期与空盘子作振动时的周期有何不同? (2)此时的振动振幅多大?

(3)取平衡位置为原点,位移以向下为正,并以弹簧开始振动时作为计时起点,求初位相并写出物体与盘子的振动方程. 解:(1)空盘的振动周期为k M π

2,落下重物后振动周期为k

m M +π2,即增大. (2)按(3)所设坐标原点及计时起点,0=t 时,则k

mg

x -=0.碰撞时,以M m ,为一系统动量守恒,即

0)(2v M m gh m +=

则有 M

m gh

m v +=20

于是

g

M m kh

k mg M m gh m k mg v x A )(21)

)

(2()()(2

222

2

++=

++=+=ω

(3)g

m M kh

x v )(2tan 000+=

-

=ωφ (第三象限),所以振动方程为 ??

?

???+++++

=g m M kh t M m k g

M m kh

k m g x )(2arctan cos )(21

4-10 有一单摆,摆长m 0.1=l ,摆球质量kg 10103

-?=m ,当摆球处在平衡位置时,若给小球一水平向右的冲量1

4s m kg 100.1--???=?t F ,取打击时刻为计时起点)0(=t ,求

振动的初位相和角振幅,并写出小球的振动方程. 解:由动量定理,有

0-=??mv t F

∴ 1-3

4

s m 01.0100.1100.1?=??=??=--m t F v

按题设计时起点,并设向右为x 轴正向,则知0=t 时,1

00s m 01.0,0-?==v x >0

∴ 2/30πφ= 又 1s rad 13.30

.18.9-?===

l g ω

∴ m 102.313

.301

.0)(

30

20

20-?==

=

+=ω

ω

v v x A 故其角振幅

rad 102.33-?==

Θl

A

小球的振动方程为

rad )2

313.3cos(102.33πθ+?=-t

4-11 有两个同方向、同频率的简谐振动,其合成振动的振幅为m 20.0,位相与第一振动的位相差为

6

π

,已知第一振动的振幅为m 173.0,求第二个振动的振幅以及第一、第二两振动的位相差.

题4-11图

解:由题意可做出旋转矢量图如下. 由图知

01

.02/32.0173.02)2.0()173.0(30cos 222122122=???-+=?

-+=A A A A A

∴ m 1.02=A 设角θ为O AA 1,则

θcos 2212

2212A A A A A -+=

即 0

1

.0173.02)02.0()1.0()173.0(2cos 2

222122

221=??-+=

-+=A A A A A θ 即2

π

θ=

,这说明,1A 与2A 间夹角为

2π,即二振动的位相差为2

π

. 4-12 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:

(1) ?????+=+=cm )373cos(5cm )33cos(521ππt x t x (2)??

???

+=+=cm

)343cos(5cm )33cos(521

π

πt x t x 解: (1)∵ ,23

3712ππ

πφφφ=-=

-=?

∴合振幅 cm 1021=+=A A A

(2)∵ ,3

34ππ

πφ=-=

? ∴合振幅 0=A

4-13 一质点同时参与两个在同一直线上的简谐振动,振动方程为

??

???

-=+=m

)65

2cos(3.0m )62cos(4.021

ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。 解:∵ πππ

φ=--=

?)6

5

(6 ∴ m 1.021=-=A A A 合

3365cos

3.06cos

4.065sin

3.06sin

4.0cos cos sin sin tan 22122211=+-?=

++=πππ

π

φφφφφA A A A ∴ 6

π

φ=

其振动方程为

m )6

2cos(1.0π

+

=t x

(作图法略) *

4-14 如题4-14图所示,两个相互垂直的谐振动的合振动图形为一椭圆,已知x 方向的振动方程为cm 2cos 6t x π=,求y 方向的振动方程.

题4-14图

解:因合振动是一正椭圆,故知两分振动的位相差为2

π或23π;又,轨道是按顺时针方向旋

转,故知两分振动位相差为

2

π

.所以y 方向的振动方程为 cm )2

2cos(12π

π+=t y

大学物理(第四版)课后习题及答案质点

大学物理(第四版)课 后习题及答案质点 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

题1.1:已知质点沿x 轴作直线运动,其运动方程为 3322)s m 2()s m 6(m 2t t x --?-?+= 。求(l )质点在运动开始后s 0.4内位移的大小; (2)质点在该时间内所通过的路程。 题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=?x x x (2)由 0)s m 6()s m 12(d d 232=?-?=--t t t x 得知质点的换向时刻为 s2=P t (t 0不合题意) 则:m 0.8021=-=?x x x m 40x 242-=-=?x x 所以,质点在4.0 s 时间间隔内的路程为 m 4821=?+?=x x s 题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。设0=t 时,0=x 。试根据已知的图t v -,画出t a -图以及t x -图。 题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为 2A B A B AB s m 20-?=--= t t v v a (匀加速直线运动) 0BC =a (匀速直线) 2C D C D CD s m 10-?-=--= t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图 在匀变速直线运动中,有

2002 1at t v x x + += 由此,可计算在0~2和4~6 s 时间间隔内各时刻的位置分别为 t /s 0 0.5 1 1.5 2 4 4.5 5 5.5 6 x /m 5.7- 10- 5.7- 0 40 48.7 55 58.7 60 用描数据点的作图方法,由表中数据可作0~2 s 和4~6 s 时间内的x -t 图。在2~4 s 时间内,质点是作v = 201s m -?的匀速直线运动,其x -t 图是斜率k = 20的一段直线。 题1.3:如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少? 题1.3解1:取如图所示的直角坐标系,船的运动方程为 ()()()j i r h t x t -+= 船的运动速度为 ()i i i r v t r r h h r t t t x t d d 1d d d d d d 2 /12 2 2 2 -??? ? ? ?-=-= ==' 而收绳的速率t r v d d - =,且因vt l r -=0,故 ()i v 2 /12 021-??? ? ? ?-- -='vt l h v 题1.3解2:取图所示的极坐标(r ,θ),则 θr r r d d d d d d d d d d e e e e r v t r t r t r t r t θ+=+== ' r d d e t r 是船的径向速度,θd d e t r θ是船的横向速度,而 t r d d 是收绳的速率。由于船速v '与径向速度之间夹角位θ ,所以

大学物理(第四版)课后习题与答案量子物理

第十七 章量子物理 题17.1:天狼星的温度大约是11000℃。试由维思位移定律计算其辐射峰值的波长。 题17.1解:由维思位移定律可得天狼星单色辐出度的峰值所对应的波长该波长 nm 257m 1057.27m =?== -T b λ 属紫外区域,所以天狼星呈紫色 题17.2:已知地球跟金星的大小差不多,金星的平均温度约为773 K ,地球的平均温度约为 293 K 。若把它们看作是理想黑体,这两个星体向空间辐射的能量之比为多少? 题17.2解:由斯特藩一玻耳兹曼定律4)(T T M σ=可知,这两个星体辐射能量之比为 4.484 =??? ? ??=地 金地 金T T M M 题17.3:太阳可看作是半径为7.0 ? 108 m 的球形黑体,试计算太阳的温度。设太阳射到地 球表面上的辐射能量为1.4 ? 103 W ?m -2 ,地球与太阳间的距离为1.5 ? 1011 m 。 题17.3解:以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的 某一位置上。太阳在单位时间对外辐射的总能量将均匀地通过该球面,因此有 2 244)(R E d T M ππ= (1) 4)(T T M σ= (2) 由式(1)、(2)可得 K 58004 122=? ?? ? ??=σR E d T 题17.4:钨的逸出功是4.52 eV ,钡的选出功是2.50 eV ,分别计算钨和钡的截止频率。哪 一种金属可以用作可见光围的光电管阴极材料? 题17.4解:钨的截止频率 Hz 1009.1151 01?== h W ν 钡的截止频率 Hz 1063.0152 02?== h W ν 对照可见光的频率围可知,钡的截止频率02ν正好处于该围,而钨的截止频率01ν大于可 见光的最大频率,因而钡可以用于可见光围的光电管材料。 题17.5:钾的截止频率为4.62 ? 1014 Hz ,今以波长为435.8 nm 的光照射,求钾放出的光电

大学物理学 答案

作业 1-1填空题 (1) 一质点,以1-?s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大 小是 ;经过的路程 是 。 [答案: 10m ; 5πm] (2) 一质点沿x 方向运动,其加速度随时间 的变化关系为a=3+2t (SI),如果初始时刻 质点的速度v 0为5m 2s -1,则当t 为3s 时, 质点的速度v= 。 [答案: 23m 2s -1 ] 1-2选择题 (1) 一质点作直线运动,某时刻的瞬时 速度s m v /2=,瞬时加速度2/2s m a -=,则 一秒钟后质点的速度 (A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。 [答案:D] (2) 一质点沿半径为R 的圆周作匀速率运 动,每t 秒转一圈,在2t 时间间隔中,其

平均速度大小和平均速率大小分别为 (A)t R t R ππ2,2 (B) t R π2,0 (C) 0,0 (D) 0,2t R π [答案:B] (3)一运动质点在某瞬时位于矢径) ,(y x r 的端点处,其速度大小为 (A)dt dr (B)dt r d (C)dt r d || (D) 22)()(dt dy dt dx + [答案:D] 1-4 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3;(2)x=-4t 3+3t 2+6;(3) x=-2t 2+8t+4;(4)x=2/t 2-4/t 。 给出这个匀变速直线运动在t=3s 时的 速度和加速度,并说明该时刻运动是加速 的还是减速的。(x 单位为m ,t 单位为s ) 解:匀变速直线运动即加速度为不等于

大学物理习题答案--第一章

第一章作业解 1-7液滴法是测定液体表面张力系数的一种简易方法。将质量为m 的待测液体吸入移液管,然后让液体缓缓从移液管下端滴出。可以证明 d n mg πγ= 其中,n 为移液管中液体全部滴尽时的总滴数,d 为液滴从管口落下时断口的直径。请证明这个关系。 证:当液滴即将滴下的一刻,其受到的重力与其颈部上方液体给予的张力平衡 F g m =' d r L F πγπγγ===2 n m m = ', d n m πγ= 得证:d n mg πγ= 1-8 在20 km 2的湖面上下了一场50 mm 的大雨,雨滴半径为1.0 mm 。设温度不变,雨水在此温度下的表面张力系数为7.3?10-2N ?m -1。求释放的能量。 解:由 S E ?=?γ 雨滴落在湖面上形成厚为50 mm 的水层,表面积就为湖面面积,比所有落下雨滴的表面积和小,则释放的表面能为: )4(2 S r n E -?=?πγ 其中,3 43 r Sh n π= 为落下的雨滴数,r 为雨滴半径 J r h S E 8 3 3 6 2 1018.2)110 0.110503( 102010 3.7)13( ?=-???????=-=?---γ 1-9假定树木的木质部导管为均匀的圆柱形导管,树液完全依靠毛细现象在导管内上升,接触角为45°,树液的表面张力系数1 2 10 0.5--??=m N γ。问要使树液到达树木的顶部,高 为20 m 的树木所需木质部导管的最大半径为多少? 解:由朱伦公式:gr h ρθ γcos 2= 则:cm gh r 5 3 2 10 6.320 8.91012 /210 0.52cos 2--?=??????= = ρθ γ 1-10图1-62是应用虹吸现象从水库引水的示意图。已知虹吸管粗细均匀,其最高点B 比水库水面高出m h 0.31=,管口C又比水库水面低m h 0.52=,求虹吸管内的流速及B点处的

大学物理(第四版)课后习题及答案 质点

题1.1:已知质点沿x 轴作直线运动,其运动方程为3322)s m 2()s m 6(m 2t t x --?-?+= 。求(l )质点在运动开始后s 0.4内位移的大小;(2)质点在该时间内所通过的路程。 题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=?x x x (2)由 0)s m 6()s m 12(d d 232=?-?=--t t t x 得知质点的换向时刻为 s2=P t (t = 0不合题意) 则:m 0.8021=-=?x x x m 40x 242-=-=?x x 所以,质点在4.0 s 时间间隔内的路程为 m 4821=?+?=x x s 题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。设0=t 时,0=x 。试根据已知的图t v -,画出t a -图以及t x -图。 题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为 2A B A B AB s m 20-?=--=t t v v a (匀加速直线运动) 0BC =a (匀速直线) 2C D C D CD s m 10-?-=--= t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图 在匀变速直线运动中,有 2002 1at t v x x + += 间内,质点是作v = 201s m -?的匀速直线运动,其x -t 图是斜率k = 20的一段直线。 题1.3:如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少?

赵近芳版《大学物理学上册》课后答案

1 习题解答 习题一 1-1 |r ?|与r ? 有无不同? t d d r 和 t d d r 有无不同? t d d v 和 t d d v 有无不同?其不同在哪里?试举例说明. 解:(1) r ?是位移的模,? r 是位矢的模的增量,即r ?1 2r r -=,1 2r r r -=?; (2) t d d r 是速度的模,即 t d d r = =v t s d d .t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则t ?r ?t r t d d d d d d r r r += 式中t r d d 就是速度径向上的分量, ∴ t r t d d d d 与 r 不同如题1-1图所示 . 题1-1图 (3) t d d v 表示加速度的模,即t v a d d = , t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢) ,所以 t v t v t v d d d d d d ττ += 式中dt dv 就是加速度的切向分量. (t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y = y (t ),在计算质点的速度和加速度时,有人先求出r =2 2y x +,然后根据v = t r d d ,及a = 2 2d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 2 2d d d d ?? ? ??+??? ??t y t x 及a = 2 22222d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 222222d d d d d d d d d d d d +==+==∴ 故它们的模即为

大学物理 第四版 课后习题及答案 磁场

习题题:如图所示,两根长直导线互相平行地放置,导线内电流大小相等,均为I = 10 A,方向相同,如图 所示,求图中M、N两点的磁感强度B的大小和方向(图中r0 = 0.020 m)。 题:已知地球北极地磁场磁感强度B的大小为105T。如设想此地磁场是由地球赤道上一圆电流所激发的(如图所示),此电流有多大流向如何 题:如图所示,载流导线在平面内分布,电流为I,它在点O的磁感强度为多少 题:如图所示,半径为R的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面,设线圈的总匝数为N,通过线圈的电流为I,求球心O处的磁感强度。 题:实验中常用所谓的亥姆霍兹线圈在局部区域内获得一近似均匀的磁场,其装置简图如图所示,一对完全相同、彼此平行的线圈,它们的半径均为R,通过的电流均为I,且两线圈中电流的流向相同,试证:当两线圈中心之间的距离d等于线圈的半径R 时,在两线圈中心连线的中点附近区域,磁场可看

成是均匀磁场。(提示:如以两线圈中心为坐标原点O ,两线圈中心连线为x 轴,则中点附近的磁场可看成是均匀磁场的条件为x B d d = 0;0d d 22=x B ) 题:如图所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量。 题:如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面,B 与半球面轴线的夹角为α,求 通过该半球面的磁通量。 题:已知10 mm 2 裸铜线允许通过50 A 电流而不会使导线过热。电流在导线横截面上均匀分布。求:(1) 导线内、外磁感强度的分布;(2)导线表面的磁感强度。 题:有一同轴电缆,其尺寸如图所示,两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。 试计算以下各处的磁感强度:(1)r R 3。画出B -r 图线。 题:如图所示。N 匝线圈均匀密绕在截面为长方形的中空骨架上。求通入电流I 后,环内外磁场的分布。 题:设有两无限大平行载流平面,它们的电流密度均为j ,电流流向相反,如图所示,求:(1)两载流平

大学物理学(第三版)课后习题参考答案

习题1 1.1选择题 (1) 一运动质点在某瞬时位于矢径),(y x r 的端点处,其速度大小为 (A)dt dr (B)dt r d (C)dt r d | | (D) 22)()(dt dy dt dx + [答案:D] (2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2 /2s m a -=,则 一秒钟后质点的速度 (A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。 [答案:D] (3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 (A) t R t R ππ2, 2 (B) t R π2,0 (C) 0,0 (D) 0,2t R π [答案:B] 1.2填空题 (1) 一质点,以1 -?s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。 [答案: 10m ; 5πm] (2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的 速度v 0为5m ·s -1 ,则当t 为3s 时,质点的速度v= 。 [答案: 23m ·s -1 ] (3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V 行走。如人相对于岸静止,则1V 、2V 和3V 的关系是 。 [答案: 0321=++V V V ]

1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定: (1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。 解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。 1.4 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2 -4/t 。 给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。(x 单位为m ,t 单位为s ) 解:匀变速直线运动即加速度为不等于零的常数时的运动。加速度又是位移对时间的两阶导数。于是可得(3)为匀变速直线运动。 其速度和加速度表达式分别为 2 2484 dx v t dt d x a dt = =+== t=3s 时的速度和加速度分别为v =20m/s ,a =4m/s 2 。因加速度为正所以是加速的。 1.5 在以下几种运动中,质点的切向加速度、法向加速度以及加速度哪些为零哪些不为零? (1) 匀速直线运动;(2) 匀速曲线运动;(3) 变速直线运动;(4) 变速曲线运动。 解:(1) 质点作匀速直线运动时,其切向加速度、法向加速度及加速度均为零; (2) 质点作匀速曲线运动时,其切向加速度为零,法向加速度和加速度均不为零; (3) 质点作变速直线运动时,其法向加速度为零,切向加速度和加速度均不为零; (4) 质点作变速曲线运动时,其切向加速度、法向加速度及加速度均不为零。 1.6 |r ?|与r ? 有无不同?t d d r 和d d r t 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即r ?12r r -=,12r r r -=?; (2) t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中 t r d d 就是速度在径向上的分量,

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案 习 题1 1-1. 已知质点位矢随时间变化的函数形式为 )ωt sin ωt (cos j i +=R r 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。 解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω= 消去t 可得轨道方程 222R y x =+ 2) j r v t Rcos sin ωωt ωR ωdt d +-== i R ωt ωR ωt ωR ωv =+-=2 122 ])cos ()sin [( 1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求: (1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。 解:1)由j i r )t 23(t 42++=可知 2t 4x = t 23y += 消去t 得轨道方程为:2)3y (x -= 2)j i r v 2t 8dt d +== j i j i v r 24)dt 2t 8(dt 1 1 +=+==??Δ 3) j v 2(0)= j i v 28(1)+= 1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单

位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。 解:1)j i r v 2t 2dt d +== i v a 2dt d == 2)21 22 12)1t (2] 4)t 2[(v +=+= 1 t t 2dt dv a 2 t +== n a == 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。 解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为 2012 1 at t v y += (1) 图 1-4 2022 1 gt t v h y -+= (2) 21y y = (3) 解之 t = 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,t v d d . 解:(1) t v x 0= 式(1) 2gt 2 1 h y -= 式(2) j i r )gt 2 1 -h (t v (t)20+= (2)联立式(1)、式(2)得 2 02 v 2gx h y -= (3) j i r gt -v t d d 0= 而 落地所用时间 g h 2t =

大学物理(第四版)课后习题及答案 磁场

习 题 题10.1:如图所示,两根长直导线互相平行地放置,导线内电流大小相等,均为I = 10 A ,方向 相同,如图所示,求图中M 、N 两点的磁感强度B 的大小和方向(图中r 0 = 0.020 m )。 题10.2:已知地球北极地磁场磁感强度B 的大小为6.0?10-5 T 。如设想此地磁场是由地球赤道上 一圆电流所激发的(如图所示),此电流有多大?流向如何? 题10.3:如图所示,载流导线在平面内分布,电流为I ,它在点O 的磁感强度为多少? 题10.4:如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈 覆盖住半个球面,设线圈的总匝数为N ,通过线圈的电流为I ,求球心O 处的磁感强度。 题10.5:实验中常用所谓的亥姆霍兹线圈在局 部区域内获得一近似均匀的磁场,其装置简图如图所示,一对完全相同、彼此平行的线圈,它们的半径均为R ,通过的电流均为I ,且两线圈中电流的流向相同,试证:当两线圈中心之间的距离d 等于线圈的半径R 时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场。(提示:如以两线圈中心为坐标原点O ,两线圈中心连线为x 轴,则中点附近的磁场可 看成是均匀磁场的条件为x B d d = 0;0d d 22=x B )

题10.6:如图所示,载流长直导线的电流为I,试求通过矩形面积的磁通量。 题10.7:如图所示,在磁感强度为B的均匀磁场中,有一半径为R的半球面,B与半球面轴线的夹角为 ,求通过该半球面的磁通量。 题10.8:已知10 mm2裸铜线允许通过50 A电流而不会使导线过热。电流在导线横截面上均匀分布。求:(1)导线内、外磁感强度的分布;(2)导线表面的磁感强度。 题10.9:有一同轴电缆,其尺寸如图所示,两导体中的电流均为I,但电流的流向相反,导体的磁性可不考虑。试计算以下各处的磁感强度:(1)rR3。画出B-r图线。 题10.10:如图所示。N匝线圈均匀密绕在截面为长方形的中空骨架上。求通入电流I后,环内外磁场的分布。 题10.11:设有两无限大平行载流平面,它们的电流密度均为j,电流流向相反,如图所示,求:(1)两载流平面之间的磁感强度;(2)两面之外空间的磁感强度。 题10.12:测定离子质量的质谱仪如图所示,离子源S产生质量为m,电荷为q的离子,离子的初速很小,可看作是静止的,经电势差U加速后离子进入磁感强度为B的均匀磁场,并沿一半

大学物理学上册习题解答

大学物理学习题答案 习题一答案 习题一 1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等? (3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5) r ?v 和r ?v 有区别吗?v ?v 和v ?v 有区别吗?0dv dt =v 和0d v dt =v 各代表什么运动? (6) 设质点的运动方程为:()x x t = ,()y y t =,在计算质点的速度和加速度时,有人先求出 r = dr v dt = 及 22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 及 a = 你认为两种方法哪一种正确?两者区别何在? (7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性 的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度 也一定为零.”这种说法正确吗? (9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。 解: (1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ?=-=-= 最初s 2内的平均速度为: 0(/)2 ave x v m s t ?= ==?

大学物理答案第10章

第十章 静电场中的导体与电介质 10-1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ). 10-2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地 题 10-2 图 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ). 10-3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= = (B )d εq V d εq E 02 0π4,π4== (C )0,0==V E (D )R εq V d εq E 020π4,π4= = 题 10-3 图

分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ). 10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (D ) 电介质中的电场强度一定等于没有介质时该点电场强度的εr倍 分析与解 电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有 ()∑??=?=?+i i S S ε χq 0 1 d d 1S E S E 即E =E 0/εr,因而正确答案为(A ). 10-6 不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.

大学物理上册答案详解

大学物理上册答案详解 习题解答 习题一 1-1 |r ?|与r ? 有无不同? t d d r 和t d d r 有无不同? t d d v 和t d d v 有无不同?其不同在哪里?试举例说明. 解:(1)r ?是位移的模,?r 是位矢的模的增量,即r ?12r r -=, 12r r r -=?; (2) t d d r 是速度的模,即t d d r ==v t s d d . t r d d 只是速度在径向上的分量. ∵有r r ?r =(式中r ?叫做单位矢),则 t ?r ?t r t d d d d d d r r r += 式中 t r d d 就是速度径向上的分量, ∴ t r t d d d d 与r 不同如题1-1图所示. 题1-1图 (3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以 t v t v t v d d d d d d ττ += 式中 dt dv 就是加速度的切向分量.

(t t r d ?d d ?d τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加 速度时,有人先求出r =2 2 y x +,然后根据v =t r d d ,及a =22d d t r 而求 得结果;又有人 v =2 2 d d d d ?? ? ??+??? ??t y t x 及a = 2 222 22d d d d ??? ? ??+???? ??t y t x 你认为两种方法哪一种正确?为什么?两者差别何在? 解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标 系中,有j y i x r +=, j t y i t x t r a j t y i t x t r v 22 2222d d d d d d d d d d d d +==+==∴ 故它们的模即为 2 222 22222 2 2 2d d d d d d d d ? ?? ? ??+???? ??=+=? ? ? ??+??? ??=+=t y t x a a a t y t x v v v y x y x 而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作 22d d d d t r a t r v == 其二,可能是将22d d d d t r t r 与误作速度与加速度的模。在1-1题中已说明 t r d d 不是速度的模,而只是速度在径向上的分量,同样,22d d t r 也不是加速

大学物理答案第17章

大学物理答案第17章

17-3 有一单缝,缝宽为0.1mm ,在缝后放一焦距为50cm 的汇聚透镜,用波长为546.1nm 的平行光垂直照射单缝,试求位于透镜焦平面处屏上中央明纹的宽度。 解:单缝衍射中央明条纹的宽度为 a f x λ 2=? 代入数据得 mm x 461.510 1.0101.54610 5023 9 2 =????=?--- 17-4 用波长为632.8nm 的激光垂直照射单缝时,其夫琅禾费衍射图样第一极小与单缝法线的夹角为50,试求该缝宽。 解:单缝衍射极小的条件 λθk a =sin 依题意有 m a μλ 26.70872 .0108.6325sin 9 =?==- 17-5 波长为20m 的海面波垂直进入宽50m 的港口。在港内海面上衍射波的中央波束的角宽是多少? 解:单缝衍射极小条件为 λθk a =sin

依题意有 011 5.234.0sin 5 2 sin 20sin 50===→=--θθ 中央波束的角宽为0 475 .2322=?=θ 17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。 解:单缝衍射明纹条件为 2 ) 12(sin λ θ+=k a 依题意有 2)122(2)132(2 1λλ+?=+? 代入数据得 nm 6.4287 60057521=?== λλ 17-7 用肉眼观察星体时,星光通过瞳孔的衍射在视网膜上形成一个亮斑。 (1)瞳孔最大直径为7.0mm ,入射光波长为550nm 。星体在视网膜上像的角宽度多大? (2)瞳孔到视网膜的距离为23mm 。视网膜上星体的像的直径多大? (3)视网膜中央小凹(直径0.25mm )中的柱状感光细胞每平方毫米约1.5×105个。星体的像照亮了几个这样的细胞?

大学物理第四版下册课后题答案

习题11 11-1.直角三角形ABC的A点上,有电荷C 10 8.19 1 - ? = q,B点上有电荷 C 10 8.49 2 - ? - = q,试求C点的电场强度(设0.04m BC=,0.03m AC=)。 解:1q在C点产生的场强: 1 12 4 AC q E i r πε = , 2 q在C点产生的场强: 2 22 4 BC q E j r πε = , ∴C点的电场强度:44 12 2.710 1.810 E E E i j =+=?+?; C点的合场强:224 12 3.2410V E E E m =+=?, 方向如图: 1.8 arctan33.73342' 2.7 α=== 。 11-2.用细的塑料棒弯成半径为cm 50的圆环,两端间空隙为cm 2,电 量为C 10 12 .39- ?的正电荷均匀分布在棒上,求圆心处电场强度的大小 和方向。 解:∵棒长为2 3.12 l r d m π =-=, ∴电荷线密度:91 1.010 q C m l λ-- ==?? 可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为 0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去m d02 .0 = 长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷 的塑料棒在O点产生的场强。 解法1:利用微元积分: 2 1 cos 4 O x Rd dE R λθ θ πε =? , ∴2 000 cos2sin2 444 O d E d R R R α α λλλ θθαα πεπεπε - ==?≈?= ?1 0.72V m- =?; 解法2:直接利用点电荷场强公式: 由于d r <<,该小段可看成点电荷:11 2.010 q d C λ- '==?, 则圆心处场强: 11 91 22 2.010 9.0100.72 4(0.5) O q E V m R πε - - '? ==??=? 。 方向由圆心指向缝隙处。 11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电 荷线密度为λ,四分之一圆弧AB的半径为R,试求圆 α j i 2cm O R x α α

大学物理17章答案.docx

第17章量子物理基础 17.1根据玻尔理论,计算氢原子在斤=5的轨道上的动量矩与其在第一激发态轨道上的动量矩之比. [解答]玻尔的轨道角动量量子化假设认为电子绕核动转的轨道角动量为 L =mvr =n — N2TC , 对于第一激发态,n = 2,所以 厶仏2 = 5/2? 17.2设有原子核外的3p态电子,试列出其可能性的四个量子数. [解答]对于3p态电子,主量子数为n = 3, 角量子数为/=1, 磁量子数为mi = - 1), I -1, 自旋量子数为m s = ±1/2. 3p态电子的四个可能的量子数(斤丿,叫叫)为 (3,1 丄1/2), (3,1,1,? 1/2), (3丄0,1/2), (3,1,0,-1/2),(3,1,?1,1/2), (3,1,-1,-1 ⑵. 17.3实验表明,黑体辐射实验曲线的峰值波长九和黑体温度的乘积为一常数,即入』=b = 2.897xl(y3m?K?实验测得太阳辐射波谱的峰 值波长九= 510nm,设太阳可近似看作黑体,试估算太阳表面的温度.

[解答]太阳表面的温度大约为 T_ b _ 2.897X10-3 ~ 510x10—9 =5680(K)? 17.4实验表明,黑体辐射曲线和水平坐标轴所围成的面积M (即单位时间内从黑体单位表面上辐射出去的电磁波总能量,称总辐射度) 与温度的4次方成正比,即必=〃,其中^=5.67xl0-8W m_2 K-4.试由此估算太阳单位表面积的辐射功率(太阳表面温度可参见上题). [解答]太阳单位表面积的辐射功率大约为 A/=5.67xl0-8x(5680)4 = 5.9xl07(W-m-2)? 17.5宇宙大爆炸遗留在宇宙空间的均匀背景辐射相当于3K黑体辐射.求: (1)此辐射的单色辐射强度在什么波长下有极大值? (2)地球表面接收此辐射的功率是多少? [解答](1)根据公式UT=b,可得辐射的极值波长为 九=b/T= 2.897X10_3/3 = 9.66x104(m). (2)地球的半径约为7? = 6.371x10%, 表面积为 5 = 47T T?2. 根据公式:黑体表面在单位时间,单位面积上辐射的能量为M = al4, 因此地球表面接收此辐射的功率是 P = MS= 5.67x 1 (T8x34x4 兀(6.371 x 106)2

《大学物理(上册)》课后习题答案

第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2-+++=m ⑵ 1=t s,2=t s 时,j i r 5.081-= m ;2114r i j =+m ∴ 213 4.5r r r i j ?=-=+m ⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+ ∴ 140122035m s 404 r r r i j i j t --?+= ===+??-v ⑷ 1d 3(3)m s d r i t j t -==++?v ,则:437i j =+v 1s m -? (5) 0t =s 时,033i j =+v ;4t =s 时,437i j =+v 24041 m s 44 j a j t --?= ===??v v v (6) 2d 1 m s d a j t -==?v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x =+,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x ===v v v v 得:2 d d (26)d a x x x ==+v v 两边积分 210 d (26)d x x x =+? ?v v v 得:2322 250x x =++v ∴ 1m s -=?v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2==== ωβθω ⑴ s 2=t 时,2 s m 362181-?=??==βτR a 2 222s m 1296)29(1-?=??==ωR a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a τ?== 即:βωR R =2 ,亦即t t 18)9(2 2=,解得:9 23= t 则角位移为:32 2323 2.67rad 9 t θ=+=+? = 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α=0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2=t 时,4.022.0=?== t αω 1s rad -? 则0.40.40.16R ω==?=v 1s m -? 064.0)4.0(4.022=?==ωR a n 2 s m -? 0.4 0.20.0a R τα==?=2s m -? 22222 s m 102.0)08.0()064.0(-?=+=+= τa a a n 与切向夹角arctan()0.06443n a a τ?==≈?

大学物理答案第17章

17-2一单缝用波长为λ1和λ2的光照明,若λ1的第一级衍射极小与λ2的第二级衍射极小重合。问 (1)这两种波长的关系如何? (2)所形成的衍射图样中是否还有其它极小重合? 解:(1)单缝衍射极小条件为 λθk a =sin 依题意有 212λλ= (2)依题意有 11sin λθk a = 22sin λθk a = 因为212λλ=,所以得所形成的衍射图样中还有其它极小重合的条件为 212k k = 17-3 有一单缝,缝宽为0.1mm ,在缝后放一焦距为50cm 的汇聚透镜,用波长为546.1nm 的平行光垂直照射单缝,试求位于透镜焦平面处屏上中央明纹的宽度。 解:单缝衍射中央明条纹的宽度为 a f x λ 2=? 代入数据得 mm x 461.510 1.0101.54610 5023 9 2 =????=?--- 17-4 用波长为632.8nm 的激光垂直照射单缝时,其夫琅禾费衍射图样第一极小与单缝法线的夹角为50,试求该缝宽。 解:单缝衍射极小的条件 λθk a =sin 依题意有 m a μλ 26.70872 .0108.6325sin 9 0=?==- 17-5 波长为20m 的海面波垂直进入宽50m 的港口。在港内海面上衍射波的中央波束的角 宽是多少? 解:单缝衍射极小条件为 λθk a =sin 依题意有 011 5.234.0sin 5 2 sin 20sin 50===→=--θθ 中央波束的角宽为0 475.2322=?=θ

17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。 解:单缝衍射明纹条件为 2 ) 12(sin λ θ+=k a 依题意有 2)122(2)132(2 1λλ+?=+? 代入数据得 nm 6.4287 60057521=?== λλ 17-7 用肉眼观察星体时,星光通过瞳孔的衍射在视网膜上形成一个亮斑。 (1)瞳孔最大直径为7.0mm ,入射光波长为550nm 。星体在视网膜上像的角宽度多大? (2)瞳孔到视网膜的距离为23mm 。视网膜上星体的像的直径多大? (3)视网膜中央小凹(直径0.25mm )中的柱状感光细胞每平方毫米约1.5×105个。星体的像照亮了几个这样的细胞? 解:(1)据爱里斑角宽公式,星体在视网膜上像的角宽度为 rad d 4 3 9109.110 0.71055044.244.22---?=??==λ θ (2)视网膜上星体的像的直径为 mm l d 34104.423109.1 2--?=??==θ (3)细胞数目应为3.2105.14 )104.4(52 3=????= -πn 个 17-8 在迎面驶来的汽车上,两盏前灯相距120cm 。试问汽车离人多远的地方,眼睛恰能分 辨这两盏前灯?设夜间人眼瞳孔直径为5.0mm ,入射光波长为550nm.。 解: 38.9101.22l L l L l D L m λδθλ ????==?设两灯距为,人车距为。人眼最小分辨角为, =1.22=D 17-9 据说间谍卫星上的照相机能清楚识别地面上汽车的牌照号码。(1)若被识别的牌照上的字划间的距离为5cm ,在160km 高空的卫星上的照相机的角分辨率应多大? (2)此照相机的孔径需多大?光的波长按500nm 计算。 解:装置的光路如图所示。 S 15cm S 2 160km D

相关文档
相关文档 最新文档