文档库 最新最全的文档下载
当前位置:文档库 › AFM及其应用研究进展

AFM及其应用研究进展

AFM及其应用研究进展
AFM及其应用研究进展

? 39

?

ELECTRONICS WORLD ?探索与观察

AFM及其应用研究进展

长春理工大学 国家纳米操纵与制造国际联合研究中心 程利群 曲英敏 杨焕洲 孙佰顺

导语:AFM 因具有很高的空间分辨率和力学灵敏度,并可在空气、真空和溶液中检测生物细胞的表面形貌和力学特性,近年来已取得了迅速发展并获得广泛应用。本文主要介绍AFM 的基本结构、工作原理以及在生命科学中应用和系统改进的一些研究进展。

1.引言

原子力显微镜(Atomic Force Microscope ——AFM )于1986年由格尔德·宾尼(G .Binning )等人在扫描隧道显微镜的基础上发明的①。AFM 通过检测探针针尖与样品表面之间极微弱的原子和分子间的相互作用力来检测样品的表面形貌和结构,具有很高的空间分辨率(纳米级)②。AFM 不仅能够提供样品表面的三维高空间分辨图像,还能够测量探针针尖与样品原子间的极微弱的力(pN 级),给出样品的力谱曲线。AFM 样品不需要导电,测量环境要求低,不需要高真空,可以在常温、低温、高温、大气、溶液中使用,因此,成为生命科学研究细胞的一种有力的工具。近年来,随着AFM 技术的不断发展与进步以及AFM 与光学显微镜、激光共聚焦显微镜等其它技术相结合的联合使用,使得AFM 的功能进一步扩展,AFM 已在生命科学、化学、物理学、材料科学等领域获得广泛应用。

2.AFM的基本结构和原理

AFM 主要由力检测、位置检测和信息控制处理三个部分组成③,其基本结构如图1

所示。

图1 AFM的基本结构

力检测部分主要由探针架、微米尺度的微悬臂和曲率半径为

纳米量级的探针组成,力检测部分是AFM 的关键组成部分。

位置检测部分由步进电机、压电陶瓷、激光器和光电探测器构成,其作用是控制样品表面与探针针尖之间保持一定距离。当探针针尖与样品之间产生相互作用时,会使与针尖连接的对微弱力极敏感的微悬臂产生移动,此时,激光照射在微悬臂的背面,其反射光的位置也会因为微悬臂的移动而发生改变,这就产生了一定的偏移量,光电探测器将此偏移量记录下来并转换成电信号。

信息控制处理部分的作用,电信号通过控制器进行信号处理,控制器驱动电机进行位置调节,处理后的结果反馈给系统,驱动压电陶瓷扫描器移动,以保持样品与探针针尖一定的作用力,通过一定的成像算法即可得到样品表面形貌以及力学特性。

原子力显微镜在工作时,微悬臂的一端固定,另一端安装一个探针,探针针尖的曲率半径非常小(在纳米量级),当探针针尖与样品表面轻轻接触时,针尖尖端的原子与样品表面的原子间存在极微弱的力(机械接触力、范德华力、毛吸力、化学键、静电力等等),扫描时控制针尖与样品之间的作用力保持恒定,则微悬臂就会在垂直于样品表面的方向做上下起伏运动,利用光学检测法检测微悬臂对应于扫描各点的位置变化,则可获得样品表面的形貌和力学性能信息。由于是通过测量针尖尖端的原子与样品表面原子间的作用来进行测量的,所以原子力显微镜测定样品形貌的空间分辨率达到纳米(nm )级,而力学性能的测量精度可达到皮牛顿(pN )量级。

常用的原子力显微镜工作模式主要包括接触模式、非接触模式和轻敲模式等。接触模式工作时,探针的针尖始终与样品保持接触,针

尖与样品间的作用力为库仑排斥力,其大小一般为10-8~10-11N 。这种模式可以获得稳定的高分辨率图像,但针尖在样品表面上的移动以及针尖与样品间的黏附力,会对针尖造成损坏,也会使样品产生形变,进而产生虚像。非接触模式工作时,控制探针针尖与样品表面的距离保持在约5-20nm 进行扫描,检测到的是探针针尖与样品表面的吸引力和静电力等,这种模式针尖不易被损坏,样品表面不易被破坏,但是由于针尖与样品之间的距离比较大,分辨率没有接触模式的高,实际上,由于针尖会被样品表面的黏附力所捕获,所以使得非接触模式的操作变得非常困难。在轻敲模式工作中,针尖与样品短时间接触,针尖和样品表面免遭破坏,轻敲模式探针针尖在接触样品表面时有较大的振幅(大于20nm ),足以克服针尖与样品之间的黏附力,其作用力介于接触模式和非接触模式之间,分辨率和接触模式基本相近。目前,细胞研究中的操作模式大都采用轻敲模式。

不同接触模式的力—距离曲线如图2所示。接触模式中针尖与样品距离短,工作在斥力区,非接触模式工作中针尖与样品距离较

大,工作在吸引力区。轻敲模式中探针样品间隙接触,并以一定振幅振动,探针针尖与样品的距离在一定范围内变化,针尖和样品的

转座子在转基因动物中的应用

转座子(transposon)又称跳跃因子,其实质是基因组上不必借助于同源序列就可移动的DNA片段,它们可以直接从基因组内的一个位点移到另一个位点。自1951年美国Mc-Clintock在玉米中首先发现了DNA转座子(DNAtransposon)以来,转座子已成为各种生物的基因分析的有效工具之一。不仅利用转座子诱变已找到原核生物的单性生殖基因[3];而且在真核生物中,P-转座子的发现和运用极大地促进了果蝇遗传学的发展。近来,一些其他的转座子元件,如hermes,hobo,mariner,minos和piggyBac已成功在Ceratitis、Aedesaegypti、Anastrephasuspense、Drosophilavirilis、家蚕(Bombyxmori)以及包括鱼类、禽类在内的多种生物转基因中获得应用,2005年7月复旦大学的丁昇在《cell》杂志上发表关于运用pig-gyBac转座子作载体成功制作转基因脊椎动物—— —小鼠,更加显示了转座子作为转基因载体的优势与潜力。 1转座子的类型和基本结构 1.1DNA转座子DNA转座子是以DNA-DNA方式转座的转座子,可通过DNA复制或直接切出两种方式获得可移动片段,重新插入基因组DNA中,导致基因的突变或重排。但一般不改变基因组的大小。根据转座的自主性,DNA转座子又分为自主转座子(autonomouselement)和非自主转座子(nonautonomouselement),前者本身能够编码转座酶而进行转座,后者则要在自主转座子存在时才能够实现转座。玉米的Ac/Ds体系就是典型的一例。活化子Ac(Activator)属于自主转座子,解离子Ds(Dissociation)属于非自主转座子,只有在Ac存在时,Ds才能转座。 1.2反转录转座子反转录转座子不同于转座子,是以DNA-RNA-DNA的途径来实现转座的,在整合酶的作用下新生成的以DNA状态存在的反转录转座子整合到宿主基因组中。这样,反转录转座子在宿主基因组中的拷贝数得到不断积累,从而使基因组增大。由于反转录转座子带有增强子、启动子等调控元件,所以会影响宿主基因的表达,在生物进化过程中反转录转座子起着不可忽视的作用[4]。 根据是否具有编码反转录酶的能力,反转录转座子可以分为两个家族:自主性反转录转座子和非自主性反转录转座子O按照序列结构中有无长末端重复序列(longterminalre-peatsequence,LTR)又可分为有LTR反转录转座子和无LTR反转录转座子。自主性反转录转座子包括内源性反转录病毒(endogenousretroviruses,ERV)、LTR反转录转座子及长散在元件(longinterspersednuclearelements,LINEs)O非自主性反转录转座子包括短散在元件(shortinterspersednuclearelements,SINEs)及修饰性反转录假基因(processedretropseu-dogene)。 2转座子的转座机制 转座子都具有编码与转座作用有关的酶—— —转座酶的基因,而末端大多数都是反向重复序列。转座酶既识别转座子的两末端,也能与靶位点序列结合。转座作用的机制是转座子插到新的位点上产生交错切口,所形成的突出单链末端与转座子两端的反向重复序列相连,然后由DNA聚合酶填补缺口,DNA连接酶封闭切口,交错末端的产生与填补说明了靶DNA在插入位点存在正向重复,两条链上切口之间的交错取决于正向重复的长度,因此,每个转座子所特有的靶重复序列,反映了切割靶DNA的酶的几何形状。 3主要运用于动物的几种转座子 3.1P-转座子P-转座子最初于果蝇中发现,并研究了其结构与功能,建立了P-转座子和转座酶辅助系统。该转座子能只在果蝇中作用。但该系统为以后的转基因动物提供了理论和实验基础。P-转座子长度为2.9kb,具有31bp的末端反向重复序列(IRT)。中间有编码转座酶的可转录单位,以此产生转座子的精确切出和准确插入另一染色体位点(切出—粘贴反应)。P—转座子的功能还受其他核因子的影响,这些因子可能是不同昆虫中转座子发挥功能与否的条件。3.2Minos转座子Minos转座子是从海德尔果蝇D.hydei中分离得到的,并首先应用与果蝇以外的昆虫转基因。Minos转座子长度位1.4bp,具有较长的100bp的末端反向重复序列(IRT)。可转录单位为1个内含子。以地中海果蝇白眼基因为报告基因的研究表明,Minos转座子的转座效率在GO带1~3%,并能在双翅目核鳞翅目昆虫细胞及按蚊Ancphelesstephensii和大果蝇D。Virilis昆虫个体中实现转座。3.3Mosl(mariner)转座子Mosl(mariner)转座子是从马里塔尼亚果蝇D。Mauritiana中发现的。长度28bp的末端反向重复序列(IRT)和特意性的TA目标结合位点。Minos转座子是至尽为止研究最深入的转座子之一。 3.4hobo转座子因为P转座子只能在果蝇中实现转座,因此寻找其他转座子系统十分必要。Hobo转座子就是其中 转座子在转基因动物中的应用 刘冬 (山西农业大学研究生学院,太谷030801) 摘要:转座子是发现新基因和基因功能分析的有效工具之一,作为插入突变原和分子标签已被广泛用于基因的分离和克隆,一些转座子已作为转化载体用于制备转基因动植物。转座子对多种生物尤其是对脊椎动物的成功转化让人们看到了他们作为转基因载体的巨大潜能。 关键词:转座子;转基因动物;昆虫;鱼类;哺乳动物 专论与综述 畜牧兽医科技信息2007.07 18

趋化因子及其受体的研究进展

趋化因子及其受体的研究进展 摘要:趋化因子( chemokine)是一类一级结构相似小分子细胞因子,能够趋化细胞定向移动的,而且在免疫细胞和器官的发育、免疫应答过程、炎症反应、病原体感染、创伤修复及肿瘤形成和转移等方面发挥广泛的生理和病理作用。本文综述了对趋化因子及其受体的结构、分类和生物学功能的研究进展。 关键词: 细胞因子;趋化因子;趋化因子受体;趋化作用 Abstract:chemokine is similar to the primary structure of a class of small molecule cytokine, chemokine cell directional movement, but also in the development of immune cells and organs, immune response, inflammatory response, pathogen infection, wound healing andplay a wide range of physiological and pathological roles of tumor formation and metastasis. This paper reviews the progress on the study of the structure, classification and biological function of chemokines and their receptors. Keywords: cell factor; chemokines; chemokine receptor; chemotactic effect 免疫细胞的定向迁移是集体免疫应答发生和完成的必须条件。趋化因子是一类控制细胞定向迁移的细胞因子。其功能行使由趋化因子受体介导。趋化因子与其受体的相互作用控制着各种免疫细胞在循环系统和组织器官间定向迁移,使之到达感染、创伤和异常增殖部位,执行清除感染源、促进创伤愈合和消灭异常增殖细胞,维持组织细胞的平衡的功能。因此,趋化因子系统在免疫系统功能行使的各个环节中处于关键地位,并由此在病原体的清除、炎症反应、病原体感染、细胞及器官的发育、创伤的修复、肿瘤的形成及其转移、移植免疫排斥等方面都起着重要的作用。以趋化因子及其受体为控制靶点,通过激活或拮抗趋化因子受体的信号传导来调控趋化因子系统的功能,可

转座子的研究进展

转座子及其相关技术的研究 摘要:转座子是一类在细菌的染色体,质粒或噬菌体之间自行移动的遗传成分,是基因组中一段特异的具有转位特性的独立的DNA序列,转录组的活动对生物体基因组的转录以及演变存在着严重影响,本文就转座子的基因机理及特征、转座子沉默、转座子的标签技术以及其在植物中的运用进行阐述。 转座子是存在于DNA上可自主复制和移位的基本单位。MclCintockl’嗜次在玉米中的发现改变了人们对基因组序列稳定性的认识,打破了遗传物质在染色体上呈线性固定排列的传统理论。目前认为,多数生物体有自发突变且有重要表型效应出现的原因源于转座子的可动性,并且可以导致宿主基因组发生从点突变到染色体重排的一系列变化,转座子在进化上为建立宿主基因特性起着重要作用。 1.转座子特征与分类 基因转座时发生的插入作用中受体分子都有一段3-12bp的靶序列DNA会自我复制,使插入的转座子位于两个重复的靶序列之间。转座子可以分为两大类:以DNA-DNA方式转座的转座子和反转录转座子。第一类转座子可以通过DNA复制或直接切除两种方式获得可移片段,重新插入基因组DNA中。第二类转座子又称为返座元,在结构和复制上与反转录病毒类似,它通过转录合成mRNA,再逆转录合成新的元件整合到基因组中完成转座。 2转座子相关技术 2.1转座子分离方法 有4种方法用来分离转座子:(l)转座子诱捕法,此法适用于分离具有相当高的整合和切割频率的转座子。(2)Southern杂交法,此种方法需要有适当的探针,用于检测已知的转座子。(3)重复DNA序列鉴定法,适用于高拷贝数的无论是否有活性的转座子。(4)PcR扩增法,对己知序列的转座子可以设计引物直接PCR扩增。

国内外物联网产业发展现状趋势全面综述 2

国内外物联网产业发展现状趋势 关键词: 物联网RFID 【提要】2009年8月和12月,温家宝总理分别在无锡和北京发表重要讲话,重点强调要大力发展传感网技术,努力突破物联网核心技术,建立“感知中国”中心。2010年《政府工作报告》中,温总理再次指出:将“加快物联网的研发应用”明确纳入重点产业振兴计划。这代表着中国传感网、物联网的“感知中国”已成为国家的信息产业发展战略。 2009年8月和12月,温家宝总理分别在无锡和北京发表重要讲话,重点强调要大力发展传感网技术,努力突破物联网核心技术,建立"感知中国"中心。2010年《政府工作报告》中,温总理再次指出:将"加快物联网的研发应用"明确纳入重点产业振兴计划。这代表着中国传感网、物联网的“感知中国”已成为国家的信息产业发展战略。 物联网概述 1.物联网的定义与概念提出 所谓"物联网",是指通过射频识别、红外感应器、全球定位系统和激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。 通俗地解释,物联网就是"物物相连的互联网"。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通讯。 物联网的概念是美国Auto-ID实验室在1999年首次提出的,2005年国际电信联盟在信息社会世界峰会上发布《ITU互联网报告2005:物联网》,正式提出"物联网概念",激情豪迈地指出"物联网时代即将到来"。 2.物联网的本质和关键技术 物联网的本质概括起来主要体现在三个方面:一是互联网特征,即对需要联网的物一定要能够实现互联互通的互联网络;二是识别与通信特征,即纳入物联网的"物"一定要具备自动识别与物物通信(MachinetoMachine,M2M)的功能;三是智能化特征,即网络系统应具有自动化、自我反馈与智能控制的特点。 物联网产业链可以细分为感知、处理和信息传送三个环节,每个环节的关键技术分别为传感技术、智能信息处理技术和网络传输技术。传感技术通过多种传感器、RFID、二维码、GPS定位、地理信息识别系统和多媒体信息等多媒体采集技术,实现对外部世界的感知和

RNA干涉的研究进展及应用前景

RNA干涉的研究进展及应用前景 摘要:RNA干涉是广泛存在于生物体中的一种转录后基因沉默( post-transcriptional gene silencing ,PTGS ),它是由双链RNA(double-stranded RNA,dsRNA)介导的同源mRNA高效特异性降解,从而导致基因表达沉默。从RNAi现象发现以来,进行了许多的研究,对其的基本作用机制有了初步的了解。作为一种阻断基因表达的新手段,RNAi 技术日趋成熟完善,开辟了一条基因治疗的新途径。RNAi技术在很多人类疾病的基因治疗上都有应用,如肿瘤、癌症、病毒性感染疾病等方面。 关键字:RNA干涉;基因沉默;机制;应用 RNA干涉(RNA interference, RNAi),是真核生物中普遍存在的一种自然现象,在生物体内双链RNA(double-stranded RNA,dsRNA)诱发同源mRNA高效特异性降解,从而导致基因表达沉默。dsRNA可以抑制不同类型细胞的靶向基因表达, 用特异性的抗体几乎检测不到靶向基因所表达的蛋白质。因此,RNA技术又被形象的称为基因敲除(knockout) 或基因沉默(gene silencing),RNAi是一种典型的转录后基因调控方法,又称转录后基因沉默( post-transcriptional gene silencing ,PTGS )[1]。它广泛存在于生物界,是生物体抵御病毒或其他外来核酸人侵而保持自身遗传稳定的保护性机制[2]。 1. RNAi的发现历史 九十年代初期,科学家在向牵牛花转导色素合成基因时,观察到“共抑制”(cosuppression)现象。Jorgensen 等将产紫色素基因导入矮牵牛属植物中, 希望花的紫色更深, 却发现转基因后部分花的颜色不但没有加深, 反而变成白色, 这表明外源和内源产紫色素基因的表达都受到抑制, 他们将这一现象称为共抑制(cosuppression)[3]。所谓共抑制是指内源基因在转基因或病毒感染的诱导下发生的基因沉默现象,大部分是转录后水平的基因沉默(PTGS)[4]。1994年,意大利的Cogoni[5]将类胡萝卜素合成所需基因转入到粗糙红色链胞酶中,结果导至30%的转化细胞中的霉菌自身基因失活,他们叫这种基因失活现象为压制(Quelling)。1995年,Guo[6]等发现注射正义RNA和反义RNA均能有效并特异性地抑制秀丽新小杆线虫par-1基因的表达,该结果不能使用反义RNA技术的理论做出合理解释。直到1998年,Fire[7]等证实Guo等发现的正义RNA抑制同源基因表达的现象是由于体外转录制备的RNA中污染了微量dsRNA而引发,并将这一现象命名为RNAi。在后来的研究中,不断发现由dsRNA介导的RNAi现象出现在多种真核生物中,如真菌、果蝇、拟南芥、锥虫、水螅、涡虫、斑马鱼等。 2.RNAi的作用机制 根据现有研究显示,可能的作用机制可分为三个阶段:起始阶段、效应阶段和循环放大阶段。效应阶段即当病毒基因、人工转入基因及转座子等外源性基因随机整合到真核宿主细胞基因组内,并利用宿主细胞进行转录时,常常产生一些与这些基因的mRNA同源的dsRNA。

水稻基因组学的的研究进展

基因组学课程论文 所在学院生命科学技术学院 专业14级生物技术(植物方向) 姓名金祥栋 学号2014193012

水稻基因组学的研究进展 摘要:随着模式植物——拟南芥和水稻基因组测序的完成,近年来关于植物基因组学的研究越来越多。水稻是世界上重要的粮食作物之一,养活着全世界近一半的人口。同时南于水稻基冈组较小、易于转化及与其他禾本科植物基因组的同线性和共线性等特点,一直被作为禾本科植物基因组研究的模式作物。水稻基因组测序的完成及种质资源的基因组重测序,为水稻功能基因组研究奠定了基础。现综述我国水稻基因组测序和功能基因组研究历史,重点介绍了近年来在水稻基因组序列分析中获得的几项最新的研究结果。 关键词:水稻;基因组测序;功能基因组;研究历史;基因组学;研究进展 The recent progress in rice genomics research Abstract: With the completion of genome sequencing ofthe model plant-- Arabidopsis and rice,more and more researches on plant genomics emerge in recent years. Rice i s one of the most important crops in the world, raised nearly half of the world popul ation. At the same time in south rice Keegan group is smaller, with linear and linear features such as easy transformation and other gramineous plant genome, has been use d as a model crop for plant genome research of Gramineae. Genome sequencing and germplasm resources the rice genome sequencing completed laid the foundation for ric e functional genomics research. This article reviews the history and function of our ge nome sequencing of rice genome research, introduces several latest research results in recent years in the analysis of rice genome sequences. 前言 基因组是1924年提出用于描述生物的全部基因和染色体组成的概念,是研究生物基因结构与功能的学科,是在遗传学的基础上发展起来的一门现代生物技术前沿科学,也是现代分子生物学和遗传工程技术所必要学科,是当今生物学研究领域最热门、最有生命力、发展最快的前沿科学之一。基因组学的主要任务是研究探索生物基因结构与功能,生物遗传和物理图谱构建,建立和发展生物信息技术,为生物遗传改良及遗传病的防治提供相关技术依据。 进入21 世纪,随着全球化、市场化农业产业发展和全球贸易一体化格局的逐步形成,我国种业正面临前所未有的严峻挑战,主要表现在:依靠传统育种技术难以大幅度提高粮食单产;土地资源短缺,农业环境污染日益突出;种质资源发掘、基因组育种技术亟需创新等。水稻不仅是重要的粮食作物,由于其基因组较小且与其他禾本科作物基因组存在共线性,以及具有成熟高效的遗传转化体系,已成为作物功能基因组研究的模式植物。因此,水稻基因组研究对发展现代农作物育种技术、提升种业国际竞争力和保障粮食有效供给具有重大战略意义。 基因组研究主要包括三个层次:①结构基因组学,以全序列测序为目标,构建高分辨率的以染色体重组交换为基础的遗传图谱和以DNA 的核苷酸序列为基础的物理图谱。②功能

物联网安全技术研究进展

物联网安全技术研究进展 学院:信息与通信工程学院班级:07604 姓名:朱洪学号:071841 班内序号:16 联系方式:zhuhong_1115@https://www.wendangku.net/doc/8a1472265.html, 摘要随着网络技术的迅速发展和广泛应用,物联网的概念进入人们的视野。物联网用途广泛,可遍及智能交通、环境保护、政府工作、公共安全、工业监测、老人护理、个人健康等多个领域。专家预计物联网将是继计算机、互联网与移动通信网之后的又一次信息产业浪潮。但是,在享受物联网带给人类便利的同时,物联网在信息安全方面也存在一定的局限性。我们必须未 雨绸缪,研究发展好物联网安全性问题。 关键词物联网安全性问题关键技术 一.物联网概念 物联网(The Internet of things)的定义是:通过射频识别(Radio Frequency Identification , 以下简称RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备,按约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。物联网就是“物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通讯。 二.物联网安全性问题 从物联网相关特点分析,存在如下问题: 1.传感器的本体安全问题 之所以物联网可以节约人力成本,是因为其大量使用传感器来标示物品设备,由人或机器远程操控它们来完成一些复杂、危险和机械的工作。在这种情况下,物联网中的这些物品设备多数是部署在无人监控的地点工作的,那么攻击者可以轻易接触到这些设备,针对这些设备或其上面的传感器本体进行破坏,或者通过破译传感器通信协议,对它们进行非法操控。如果国家一些重要机构依赖于物联网时,攻击者可通过对传感器本体的干扰,从而达到影响其标示设备的正常运行。例如,电力部门是国民经济发展的重要部门,在远距离输电过程中,有许多变电设备可通过物联网进行远程操控。在无人变电站附近,攻击者可非法使用红外装置来干扰这些设备上的传感器。如果攻击者更改设备的关键参数,后果不堪设想。传感器通常情况下,功能简单、携带能量少,这使得它们无法拥有复杂的安全保护能力,而物联网涉及的通信网络多种多样,它们的数据传输和消息也没有特定的标准,所以没法提供统一的安全保护体系。 2.核心网络的信息安全问题 物联网的核心网络应当具有相对完整的安全保护能力,但是由于物联网中节点数量庞大,而且以集群方式存在,因此会导致在数据传输时,由于大量机器的数据发送而造成网络拥塞。而且,现有通行网络是面向连接的工作方式,而物联网的广泛应用必须解决地址空间空缺和网络安全标准等问题,从目前的现状看物联网对其核心网络的要求,特别是在可信、可知、可管和可控等方面,远远高于目前的IP 网所提供的能力,因此认为物联网必定会为其核心网络采用数据分组技术。此外,现有的通信网络的安全架构均是从人的通信角度设计的,并不完全适用于机器间的通信,使用现有的互联网安全机制会割裂物联网机器间的逻辑关系。庞大且多样花的物联网核心网络必然需要一个强大而统一的安全管理平台,否则对物联网中

水稻转座子研究进展

植物学通报Chinese Bulletin of Botany 2007, 24 (5): 667?676, https://www.wendangku.net/doc/8a1472265.html, 收稿日期: 2006-11-08; 接受日期: 2007-04-09基金项目: 国家自然科学基金(No. 30471066) * 通讯作者。E-mail: gao -dongying@https://www.wendangku.net/doc/8a1472265.html, .专题介绍. 水稻转座子研究进展 高东迎*, 何冰, 孙立华 江苏省农业科学院粮食作物研究所, 南京 210014 摘要 转座子是植物基因组的重要组成部分, 对于研究植物基因组进化等具有重要意义。随着水稻全基因组测序计划的开展和完成, 水稻转座子研究取得了极大进展, 目前已经在水稻基因组中发现了几乎所有类型的转座子, 约占水稻基因组的35%。在正常情况下, 大多数水稻转座子不具有转座活性, 但是在特定的条件下(如组织培养或辐射等), 水稻基因组中沉默的转座子可以被激活, 从而可能导致插入突变并影响基因的表达。在水稻中已鉴定出6个有活性的转座子, 其中Tos17已被应用到水稻功能基因组研究中。转座子序列的新的分子标记转座子展示(transposon display, TD)现已被开发, 并在水稻遗传作图和遗传分化研究中得到应用。 关键词 基因表达, 水稻, 转座子, 转座子展示 高东迎, 何冰, 孙立华 (2007). 水稻转座子研究进展. 植物学通报 24, 667?676. 转座子(transposable elements 或 transposons)是指基因组中那些能够移动或复制自己并整合到新位点的DNA 片段(Curcio and Derbyshire, 2003), 其对于研究植物基因组的组成、进化和基因的表达调控等都具有重要意义(Feschotte et al., 2002)。水稻是世界重要粮食作物, 禾本科植物分子生物学研究的模式植物。近年来, 水稻转座子研究受到越来越多学者的重视, 并已取得较大进展。本文将对水稻转座子研究所取得的一些新进展进行归纳。 1 水稻基因组中转座子的种类 传统观念认为, 水稻基因组中不存在转座子, 但随着水稻分子生物学的发展, 特别是水稻全基因组测序的开展和完成, 科学家们意外发现, 在水稻基因组中不仅有转座子,而且几乎包括所有类型转座子(Mao et al., 2000;Turcotte et al., 2001; Jiang et al., 2004b; International Rice Genome Sequencing Project, 2005)。转座子约占水稻基因组组成的35%, 其中第1类转座子(Class I, 也称反转录转座子)和第2类转座子(Class II, 也称DNA 转座子)分别占19.4%和14.0%, 但从数目上讲,第2类转座子要远多于第1类转座子, 这是因为第2类转座子包括了大量微小转座子 (表1)(International Rice Ge-nome Sequencing Project, 2005)。现对水稻的主要类型转座子介绍如下。 1.1 MITEs 微小反向重复转座子(miniature inverted repeat trans-posable element, MITEs)是水稻基因组中数量最多的一类转座子, 大约有90 000个(Jiang et al.,2004b)。MITEs 为非自主DNA 类转座子, 但是其序列小(一般为100-500 bp)且拷贝高, 具有插入位点偏爱性, 使得其与一般非自主DNA 类转座子又有明显不同。由于MITEs 不编码转座酶(transposase), 其分类主要依据非编码区的相似性, 如MITEs 的末端反向重复(terminal inverted repeats, TIRs)及其插入到基因组后所形成的2-3 bp 的同向重复序列(target site duplications, TSDs)。根据这个标准, 大多数水稻MITE 被分为Tourist (3 bp 的TSD,

水稻基因组进化的研究进展

水稻基因组进化的研究进展 水稻是世界上重要的粮食作物之一,养活着全世界近一半的人口。同时南于水稻基冈组较小、易于转化及与其他禾本科植物基因组的同线性和共线性等特点,一直被作为禾本科植物基因组研究的模式作物。水稻是第一个被全基因组测序的作物,目前栽培稻2个亚种全基因组测序工作已经完成:粳稻品种日本晴(Nipponbare)通过全基因组鸟枪法和逐步克隆法被测序,籼稻品种扬稻6号(9311)通过全基因组鸟枪法被测序。除核基因组外,水稻叶绿体和线粒体基因组也于1989年和2002年分别被测序。水稻2个亚种的全基因组测序完成,一方面开启了植物比较基因组学的大门,另一方面为人们在基冈组水平上鉴定出所有水稻基因并分析其功能奠定了基础,同时也使得人们对植物进化的认识,尤其是对禾本科植物进化的了解,逐步从系统分类和分子标记水平进入到了基因组序列水平。许多研究者通过对水稻基因组序列的分析,利用生物信息学工具,对水稻在基因组水平上的进化进行了大量研究。 1 水稻及其他禾本科植物基因组的古多倍体化过程 水稻是典型的二倍体植物,其核基因组中共有12条染色体。在水稻基因组被完整测序之前,人们就已经采用分子标记、DNA重复元件等方法探究水稻基因组的古多倍体化(polyploidization)过程,并发现了一些重复的染色体片段。随着水稻基因组测序计划的完成,越来越多的证据表明水稻基因组曾发生过全基因组复制(whole genome duplication),即古多倍体化过程。 Golf等利用鸟枪法完成了粳稻品种日本晴全基因组的测序工作,并利用同义替换率分布方法(Ks- based age distribution)提出水稻基因组可能发生过一次全基因组复制过程。此后多家研究机构和一些研究者对水稻基因组中的重复片段进行了研究,虽然得出的结论不尽相同,但均发现水稻基因组中存在大量的重复片段。根据所采用方法和参数的不同,这些重复片段占整个水稻基因组的15%~62%。Yu 等在水稻基因组中发现了18对大的重复片段,大约占整个基因组的65.7%。其中17对重复片段形成的时间很相近,发生在禾本科物种分化之前;最近的一次片段复制事件发生在水稻11和12号染色体之间,在禾本科物种分化之后。 水稻基因组被测序之后,许多科研机构对基因组数据进行了详尽的注释。其中应用比较广泛的是美国基因组研究院(the institute for genome research,TIGR)和日本农业生物科学研究所(national in- stitute of agrobiological sciences,NIAS)的水稻基因组注释信息。TIGR根据其注释的结果和基因相似性矩阵(gene homology matrix,GHM)方法,检测到大量染色体间的重复片段,这些重复片段几乎覆盖了整个水稻基因组。TIGR水稻基因组注释数据库从第4版开始便增加了对片段重复的注释,该分析是利用DAGChainer程序进行的,重复片段采用100 kb和500 kb 2种参数模型进行了染色体片段的基因共线性分析(图1),这是全基因组复制的有力证据。根据复制片段上同源基因的分子进化分析,估计全基因组复制发生在大约7 000万年前,在禾本科物种分化之前。此外,Zhang等利用TIGR更新的数据进行分析,采用同义替换率分布方法检测到另一次更古老的(单、双子叶植物分化前)基因组复制事件,说明水稻基因组至少经历了2次全基因组复制过程。 全基因组复制或多倍体化是植物尤其是禾本科作物物种形成和进化过程中非常重要的事件,大部分开花植物在进化过程中均经历了多倍体化过程。基因组加倍后,再经历所谓的二倍体化过程(diploidization),进化成当代的二倍体物种,并造成大量重复片段中基因的重排和丢失。Salse等研究发现基因组复制事件对禾本科植物的物种形成和演变具有重要作用。他们认为禾本科植物的祖先物种是一个基因组内包含5条染色体的物种,在进化过程中,首先在距今5 000~7 000万年前经基因组复制产生了10条染色体;此后,在基因组内发生了2次染色体置换和融合而形成了12条中间态染色体。以这12条中间态染色体为基础,逐渐分化出水稻、小麦、玉米和高粱的基因组,其中水稻基因组保留了原有的12条中间态染色体,而小麦、玉米和高粱均又发生了染色体丢失和融合才形成了现有的基因组。水稻全基因组复制片段是至今为止在动、植物基因组中发现的最为清晰、完整的基因组复制的遗迹。水稻之所以保存这么完整,一方面是水稻基因组保持了12条中间态染色体的基本形态,另一方面可能与水稻基因组相对较稳定有关。 2水稻籼粳2个亚种的分化 水稻是世界上最重要的粮食作物之一,在其11 500多年的栽培历史中,因适应不同的农业生态环境而产生了丰富的遗传多样性和明显的遗传分化。长期以来,基于形态性状、同工酶以及对一些化合物不同反应的研究,把亚洲栽培稻(Oryza sativa L.)分为籼稻(indica)和粳稻(japonica)2个亚种。其中籼亚种耐湿耐热,主要适应于热带和亚热带等低纬度地区,而粳亚种则耐寒耐弱光,适应于高纬度和高海拔地区种植。这2个亚种间不仅产生了生殖隔离的基因库,还在形态特征、农艺性状和生理生化反应等方面存在明显的差异。近期群体

浅谈物联网的发展历史、现状及发展趋势

龙源期刊网 https://www.wendangku.net/doc/8a1472265.html, 浅谈物联网的发展历史、现状及发展趋势 作者:王成莉 来源:《商情》2013年第05期 【摘要】近年来,物联网技术受到了人们的广泛关注。本文主要概述了物联网的内涵, 分析了物联网应用发展的历史和现状,并对物联网的发展前景和趋势等方面进行了探讨。 【关键词】物联网现状发展趋势一、物联网的内涵 物联网是继计算机、互联网与移动通信网之后的又一次信息产业浪潮,是新一代信息技术的重要组成部分,其英文名称是“Internet of Things”(IOT),又稱为“Web of Things”。物联网是互联网的应用扩展,顾名思义就是“物品与物品相连的互联网”,它包含两层意思,第一是物联网仍旧是一种互联网,是以互联网为基础进行的延伸和扩展,第二是物联网的用户端是物品与物品之间进行信息交换和通信。 根据国际电信联盟(ITU)的描述,在物联网时代,通过各种各样的日常用品嵌上一种短距离的移动收发器,人类在信息与通信世界里将获得一个新的沟通维度,从任何时间任何地点的人与人之间的沟通连接扩展到人与物和物与物之间的沟通连接。 二、物联网的发展历史 物联网的实践最早可以追溯到1990年施乐公司的网络可乐贩售机,但确切来说,物联网的理念最早出现于比尔盖茨1995年《未来之路》一书。1999年美国Auto-ID中心的Ashton教授在研究RFID时首先提出“物联网”的概念,这也是在2003年掀起第一轮华夏物联网热潮的基础,同年召开的移动计算和网络国陸提出了“传感网是下一个世纪人类面临的又一个发展机遇”。2005年11月,在突尼斯举行的信息社会世界峰会(WSIS)上,国际电信联盟(ITU) 发布了《ITU互联网报告2005:物联网》,正式提出了“物联网”的概念,此时,物联网的定义和范围已经发生了变化,覆盖范围有了较大的拓展,不再只是指基于RFID技术的物联网。报告中指出,无所不在的“物联网”通信时代即将来临,世界上所有的物体从轮胎到牙刷、从房屋到纸巾都可以通过因特网主动进行交换,射频识别技术、传感器技术、纳米技术、职能嵌入技术将得到更加广泛的应用。然而,报告对物联网缺乏一个清晰的定义。2008年后,为了促进 科技发展,寻找经济新的增长点,各国政府开始重视下一代的技术规划,将目光放在了物联网上。 三、物联网的发展现状 就目前来说,物联网的开发和应用仍处于起步阶段。发达国家和地区抓住机遇,出台政策进行战略布局,希望在新一轮信息产业重新洗牌中占领先机。日韩基于物联网的“U社会”战略、欧洲“物联网行动计划”及美国“智能电网”、“智慧地球”等计划相继实施;澳大利亚、新加

物联网技术的现状与发展

物联网技术的现状与发展 物联网1202 王XX 103061222X

这是个科技日益发展的时代,计算机的发明、互联网的产生,这些都对我们的生活产生了无比巨大的影响。而在此之后出现的技术革新——物联网,不仅取决于一些重要领域的动态技术创新,更代表着未来计算机与通信的发展方向。它势必会给我们的生活带来更加深远的影响。 一、物联网技术的起源 物联网——“The Internet of Things(IOT)”,顾名思义就是“实现物物相连的互联网络”。物联网概念最早出现于比尔盖茨1995年《未来之路》一书,在《未来之路》中,比尔盖茨已经提及物联网概念,只是当时受限于无线网络、硬件及传感设备的发展,并未引起世人的重视。1998年,美国麻省理工学院(MIT)创造性地提出了当时被称作EPC系统的“物联网” 的构想。1999年,美国Auto-ID首先提出“物联网”的概念,主要是建立在物品编码、RFID技术和互联网的基础上。过去在中国,物联网被称之为传感网。中科院早在1999年就启动了传感网的研究,并已取得了一些科研成果,建立了一些适用的传感网。同年,在美国召开的移动计算和网络国际会议提出了,“传感网是下一个世纪人类面临的又一个发展机遇”。 2003年,美国《技术评论》提出传感网络技术将是未来改变人们生活的十大技术之首。2005年11月17日,在突尼斯举行的信息社会世界峰会(WSIS)上,国际电信联盟(ITU)发布了《ITU互联网报告2005:物联网》,

正式提出了“物联网”的概念。 2009年8月7日,温家宝总理在传感网工程技术研发中心视察中指出:在国家重大科技专项中,加快推进传感网发展,尽快建立中国的传感信息中心,或者叫“感知中国”。物联网在我国才迅速升温,并受到业界和国家相关部门的高度重视。当然,2009年通信展最热门的概念无疑是“物联网”,中国移动董事长王建宙在一次演讲中谈到了“物联网”及其应用,表明了实力强劲的电信运营商有涉入该领域的计划,“物联网”概念再次掀起新一番高潮,甚至与之相关的几家上市公司股票都涨停了。同时,王建宙表示:“物联网将会是继互联网以后的又一经济驱动器。” 二、物联网技术的发展现状 目前,我国物联网发展与全球同处于起步阶段,初步具备了一定的技术、产业和应用基础,呈现出良好的发展态势。 产业发展初具基础。无线射频识别(RFID)产业市场规模超过100亿元,其中低频和高频RFID相对成熟。全国有1600多家企事业单位从事传感器的研制、生产和应用,年产量达24亿只,市场规模超过900亿元,其中, 微机电系统(MEMS)传感器市场规模超过150亿元;通信设备制造业具有较强的国际竞争力。建成全球最大、技术先进的公共通信网和互联网。机器到机器(M2M)终端数量接近1000万,形成全球最大的M2M市场之一。据不完全统计,我国2010年物联网市场规模接近2000亿元。

干细胞研究进展与应用综述

干细胞研究进展与应用综述 摘要: 本综述通过举例,简要阐述了近年来干细胞研究进展以及干细胞的应用情况。 关键词:胚胎干细胞;成体干细胞;应用 前言: 干细胞是人体及其各种组织细胞的最初来源,具有高度自我复制、高度增殖和多向分化的潜能。干细胞研究正在向现代生命科学和医学的各个领域交叉渗透,干细胞技术也从一种实验室概念逐渐转变成能够看得见的现实。干细胞研究己成为生命科学中的热点。同时,干细胞的研究对人类的疾病的治疗等也有着其绝对的重要意义。 1干细胞的分类及其研究进展 干细胞(stem cell)是机体内存在的一类特殊细胞,具有自我更新及多向分化潜能。能根据来源的不同,干细胞可分为胚胎干(embryonic stem cell,ES)细胞、诱导性多潜能干(induced pluripotent stem cells,iPS)细胞及成体干(adult stem cell)细胞。不同种类的干细胞具有各自的优势和不足。胚胎干细胞是由胚胎内细胞团或原始生殖细胞经体外培养而筛选出的细胞,具有发育全能性,理论上可以诱导分化为机体中200多种细胞。成体干细胞是存在于已经分化组织中的未分化细胞,能够自我更新并特化形成该类型组织的多能细胞。 1.1ES 细胞胚胎干细胞是指当受精卵分裂发育成囊胚时内细胞团的细胞,发育等级较高,可以分化为人体的所有体细胞,是全能干细胞。ES 细胞是目前研究最广泛、最成熟的干细胞体系。自2009 年起,全球共批准了3项人ES(hES)细胞的临床试验,标志着hES 细胞向临床应用迈出了重要的一步。然而,hES 细胞临床应用面临的一个瓶颈问题是免疫排斥反应。体细胞核移植(SCNT)技术能够制备携带患者基因型的hES 细胞,可解决免疫排斥的难题。2013 年,美国Mitalipov 研究团队将人类皮肤成纤维细胞核移植到供体去核卵细胞中,成功建立了SCNT 的hES 细胞[1],标志着治疗性克隆又向前迈出关键性的一步。然而,hES 细胞建系必须摧毁人类早期胚胎,故存在剧烈的伦理学争议。此外,hES 细胞来源的分化细胞移植到体内存在发展为肿瘤的潜在风险。 1.2iPS 细胞2006 年Yamanaka 实验室利用Oct3/4、Sox2、Klf4、c-Myc 4 种因子将鼠成纤维细胞重编程为诱导多功能干细胞,标志着一种新型类胚胎干细胞的问世。PsCs 诱导的本质是使终末分化的细胞重新获得多能干细胞相似的调控网络和表观遗传学特征,迄今,已建立了大鼠[2, 3]、人[4, 5]、猪[6, 7]、猴[8]、兔[9]和绵羊[10]的iPSs细胞系,并证实具有ES细胞的发育全能性。采用体细胞重编程技术可从患者自体细胞获得的iPS 细胞,这不但可解决免疫排斥的难题,而且避免了hES 细胞和SCNT 研究存在的伦理学争论。近年来,采取非整合的病毒载体、mRNA 转染、小分子化合物化学诱导等方法均可将体细胞重编程为iPS 细胞[2,3]。这些技术的改进既可避免肿瘤形成和DNA与宿主整合的相关风险,又可降低iPS 细胞的制备成本,使得大规模制备自体干细胞成为可能。Yamanaka 带

2013-138水稻功能基因组研究进展与发展展望

中国农业科技导报,2013,15(2):1-7 Journal of Agricultural Science and Technology 一收稿日期:2013-02-28;接受日期:2013-03-29 一基金项目:国家863计划项目(2012AA10A303;2012AA10A304)资助三 一作者简介:肖景华,副教授,博士,主要从事水稻功能基因组学研究三E-mail:xiaojh@https://www.wendangku.net/doc/8a1472265.html, 水稻功能基因组研究进展与发展展望 肖景华,一吴昌银,一张启发 (作物遗传改良国家重点实验室,国家植物基因研究中心(武汉),华中农业大学,武汉430070)摘一要:水稻是重要的粮食作物也是功能基因组研究的模式植物三近年来水稻功能基因组研究发展迅速,技术和资源平台不断完善和拓展,大批重要功能基因被分离鉴定三高通量基因组新技术开始被应用于水稻育种三回顾了水稻功能基因组研究的发展历程,在对国内外研究现状总结基础上,围绕 稻2020 研究计划对未来水稻发展方向进行了展望三关键词:水稻;功能基因组; 稻2020 doi :10.3969/j.issn.1008-0864.2013.02.01 中图分类号:S511一一一文献标识码:A一一一文章编号:1008-0864(2013)02-0001-07 The Progress and Perspective of Rice Functional Genomics Research XIAO Jing-hua,WU Chang-yin,ZHANG Qi-fa (National Key Laboratory of Crop Genetic Improvement,National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University,Wuhan 430070,China) Abstract :Rice is a staple food crop and model system for genomic research among cereal plants.There has been rapid advances in rice funciotnal genomic research in the last decade including development of technological and resource platforms and the isolation of functional genes.High-throughput genomic technologies have been used in rice breeding.This review gave a glimpse on the progress made in rice functional genomics research,and the perspective of rice development direction in the future around a goal referred to as Rice 2020 :a call for an international coordinated effort in rice functional genomics. Key words :rice;functional genomics; Rice 2020 一一水稻是世界和我国三大主要粮食作物之一,全球超过半数以上的人口以稻米为主粮三水稻在我国和全球粮食安全以及可持续发展中具有极其重要的地位和作用三水稻在农作物中基因组最小,并与玉米二大麦及小麦等其他禾本科粮食作物存在广泛的共线性,已成为禾谷类作物基因组研究的模式植物三此外,水稻中有高效成熟的遗传转化体系,拥有丰富的种质资源,研究历史悠久三自1998年启动国际水稻基因组测序计划以来,水稻基因组和功能基因组研究取得了巨大的进展三伴随着新一代高通量二高精度测序技术的发展,水稻功能基因组学的研究正不断深入,并开始推动作物遗传育种理念和育种技术手段的革新三 1一植物功能基因组发展现状与趋势 水稻和拟南芥分别是单子叶和双子叶基因组研究的模式植物三拟南芥全基因组测序于2000年底完成(The Arabidopsis Genome Initiative 2000),2001年国际上启动了拟南芥功能基因组研究计划(Arabidopsis 2010),目标是揭示全部基因的功能,全面阐明拟南芥的生物学基础三拟南芥全基因组测序的完成和功能基因组计划的实施,极大的推动了植物功能基因组学的发展,为重要农作物基因组研究提供了研究方法和研究策略三

相关文档
相关文档 最新文档