文档库 最新最全的文档下载
当前位置:文档库 › (完整word版)纯电动汽车整车动力性试验

(完整word版)纯电动汽车整车动力性试验

(完整word版)纯电动汽车整车动力性试验
(完整word版)纯电动汽车整车动力性试验

(完整版)纯电动汽车动力性计算公式

XXEV 动力性计算 1 初定部分参数如下 2 最高行驶车速的计算 最高车速的计算式如下: mph h km i i r n V g 5.43/70295 .61487 .02400377.0.377.00 max ==??? =?= (2-1) 式中: n —电机转速(rpm ); r —车轮滚动半径(m ); g i —变速器速比;取五档,等于1; 0i —差速器速比。 所以,能达到的理论最高车速为70km/h 。 3 最大爬坡度的计算 满载时,最大爬坡度可由下式计算得到,即 00max 2.8)015.0487 .08.9180009 .0295.612400arcsin( ).....arcsin( =-?????=-=f r g m i i T d g tq ηα

所以满载时最大爬坡度为tan( m ax α)*100%=14.4%>14%,满足规定要求。 4 电机功率的选型 纯电动汽车的功率全部由电机来提供,所以电机功率的选择须满足汽车的最高车速、最大爬坡度等动力性能的要求。 4.1 以最高设计车速确定电机额定功率 当汽车以最高车速m ax V 匀速行驶时,电机所需提供的功率(kw )计算式为: max 2 max ).15.21....(36001 V V A C f g m P d n +=η (2-1) 式中: η—整车动力传动系统效率η(包括主减速器和驱动电机及控制器的工作效率),取0.86; m —汽车满载质量,取18000kg ; g —重力加速度,取9.8m/s 2; f —滚动阻力系数,取0.016; d C —空气阻力系数,取0.6; A —电动汽车的迎风面积,取2.550×3.200=8.16m 2(原车宽*车身高); m ax V —最高车速,取70km/h 。 把以上相应的数据代入式(2-1)后,可求得该车以最高车速行驶时,电机所需提供的功率(kw ),即 kw 1005.8970)15.217016.86.0016.08.918000(86.036001).15 .21....(360012 max 2 max <kw V V A C f g m P D n =???+???=+?=η (3-2) 4.2满足以10km/h 的车速驶过14%坡度所需电机的峰值功率 将14%坡度转化为角度:018)14.0(tan ==-α。 车辆在14%坡度上以10km/h 的车速行驶时所需的电机峰值功率计算式为:

新能源汽车项目可行性分析报告详解

新能源电动车项目 可 行 性 分 析 报 告 项目名称:××新能源车项目 项目类别:×× 项目负责人:××× 联系电话:××××× 项目实施单位:××××××××××× 编制日期:2016年10月15日

新能源汽车项目可行性分析报告 第一部分电动汽车成为新能源汽车主要发展 方向 1、进入21世纪,能源问题已成为困扰全球各国经济发展的重大问题,石油这一工业发展黑色血液的逐渐枯竭要求人们不断寻找新的能源,并且逐步改变目前的用能方式及结构。 2、传统汽车在全球保有量的不断增加使人类面临能源短缺、气候变暖、空气和水质量下降等问题。针对这些问题,各国政府部门与跨国汽车企业从不同技术路线出发,加大新能源汽车技术开发力度。 3、从20世纪末发展起来的现代电动汽车在新能源汽车的多种技术中脱颖而出,具有低排放甚至零排放、热辐射低、噪音低且环境友好等特点,是节能、环保和可持续发展的新型交通工具,具有广阔的发展前景。先进的电动汽车包括纯电动(BEV)、混合动力(HEV)与燃料电池汽车(FCEV)等三类。 4、未来的汽车仍将是以电能驱动为主,这是国际汽车界对新能源汽车发展方向的既定共识。具有高效率、无排放,不依赖汽油的纯电动汽车是将来城市用车的主要发展方向,而目前在市场上销售的纯电动汽车,以微型车为主,随着近年来动力电池技术的巨大发展,纯电动汽车技术已进入了快速发展期。虽然混合动力不是未来汽车能源问题的终极解决方案,但作为传统汽车与未来纯电动汽车之间的过渡方案,混合动力汽车是目前较为实用的电动汽车技术。 第二部分新能源汽车立项的背景随着全球能源危机的出现,油价不断上涨,新能源汽车的发展成为近年来汽车工业发展的主要方向之一。政府的大力扶植与推动,产业竞争与合作为我国新能源汽车的发展奠定了一定基础,但是也面临着技术不过硬,配套设施以及相关法律法规不完善等不利因素。在能源与环保的压力下,新能源汽车无疑代表着汽车工业发展的主流方

比亚迪E6纯电动汽车动力系统的结构与检修

比亚迪E6纯电动汽车使用磷酸埋钻铁电池,200Ah的超大电池容量使车辆在综合工况下续驶里程超过300km,每100km的能耗在21度(1度=1 kWh)以内,每1 00km的加速时间为10s,最高车速可达160km/h以上。车辆充电比较方便,快充可以使用充电站的380V充电桩充电,慢充可需220V民用交流电源,慢充6~8小时可充满电池。 一、比亚迪E6纯电动汽车动力系统的结构 1.比亚迪E6纯电动汽车动力系统 比亚迪E6纯电动汽车动力系统结构及原理如图1所示,其主要由三大模块组成。

(1)电动车的控制模块可分为:电机控制器、DC-DC、动力配电箱、主控ECU、挡位控制器、加速踏板、电池管理单元。 (2)电动车的动力模块有:电动机总成、电池包体总成。

(3)电动车高压辅助模块有:车载慢充、漏电保护器、车载充电口、应急开关。 2.动力控制系统的工作原理 (1)充电过程 充电站的380V高压充电桩通过车辆上的充电口,或者220V市用电源通过车载充电器升压后输电给车上的配电箱,配电箱直接途径应急开关后对Hv电池组充电。在充电过程当中,电源管理器一直监控着HV电池组的温度和电压,如果发现HV电池组内部某单体温度或电压过高,就会切断配电箱给HV电池组的供电。 (2)放电过程 HV电池组在电源管理器和漏电保护器的监控下,通过应急开关输电给配电箱,配电箱根据车辆的实际用电情况分配电量。一部分电量流向电机控制器,另一部分电量流向DC-DC交换器。主控ECU根据驾驶员操作信息(接收加速踏板角度传感器和挡位控制器的信号)控制着电机控制器的工作,电机控制器主要控制流向电机的电量大小,以及控制电机正反转来驱动车辆前进或后退。另一部分从配电箱流向DC-DC交换器的电量,经过DC-DC交换器将高压直流电转化为低压直流电,为车辆电动液压助力转向系统提供42V的电源,同时还为整车用电设备提供12V的电源。 3.动力系统各部件的作用 (1)电机控制器:负责控制电机的前进、倒退、维持电动车的正常运转,关键零部件为IGBT。IGBT实际为大电容,目的是为了控制电流的工作,保证能够按照我们的意愿输出合适的电流参数。 (2)DC-DC:负责将330V高压直流转低压提供给车载低压用电设备,如

纯电动汽车动力性计算公式

纯电动汽车动力性计算公式

XXEV 动力性计算 1 初定部分参数如下 整车外廓(mm ) 11995×2550×3200(长×宽×高) 电机额定功率 100kw 满载重量 约18000kg 电机峰值功率 250kw 主减速器速比 6.295:1 电机额定电压 540V 最高车(km/h ) 60 电机最高转速 2400rpm 最大爬坡度 14% 电机最大转矩 2400Nm 2 最高行驶车速的计算 最高车速的计算式如下: mph h km i i r n V g 5.43/70295 .61487 .02400377.0.377.00 max ==??? =?= (2-1) 式中: n —电机转速(rpm ); r —车轮滚动半径(m ); g i —变速器速比;取五档,等于1; 0i —差速器速比。 所以,能达到的理论最高车速为70km/h 。 3 最大爬坡度的计算 满载时,最大爬坡度可由下式计算得到,即 00max 2.8)015.0487 .08.9180009 .0295.612400arcsin( ).....arcsin( =-?????=-=f r g m i i T d g tq ηα

kw 100w 5.8810)15.211016.86.08cos 016.08.9180008sin 8.918000(86.036001).15 .21..cos ...sin ..(36001 20 02 max <k V V A C f g m g m P slope slope D =???+???+???=++=ααη 从以上动力性校核分析可知,所选100kw/540V 交流感应电机的功率符合所设计的动力性参数要求。 5 动力蓄电池组的校核 5.1按功率需求来校核电池的个数 电池数量的选择需满足汽车行驶的功率要求,并且还需保证汽车在电池放电达到一定深度的情况下还能为汽车提供加速或爬坡的功率要求。 磷酸锂铁蓄电池的电压特性可表示为: bat bat bat bat I R U E .0+= (4-1) 式中: bat E —电池的电动势(V ); bat U —电池的工作电压(V ); 0bat R —电池的等效内阻(Ω); bat I —电池的工作电流(A )。 通常,bat E 、0bat R 均是电池工作电流bat I 以及电流电量状态值SOC (State Of Charge )的函数,进行电池计算时,要考虑电池工作最差的工作状态。假设SOC 为其设定的最小允许工作状态值(SOC low ),对应的电池电动势bat E 和电池等效内阻0bat R 来计算电池放电的最大功率,即可得到如下计算表达式: 铅酸电池放电功率: bat bat bat bat bat bat bd I I R E I U P )..(.0-== (4-2) 上式最大值,即铅酸蓄电池在SOC 设定为最小允许工作状态值时所能输出的最大功率为: 2 max 4bat bat bd R E P = (4-3)

电动汽车动力性能分析与计算

电动汽车与传统内燃机汽车之间的主要差别是采用了不同的动力源,它由蓄电池提供电能,经过驱动系统和电动机,驱动电动汽车行驶。电动汽车的能量供给和消耗,与蓄电池的性能密切相关,直接影响电动汽车的动力性和续驶里程,同时影响电动汽车行驶的成本效益。 电动汽车在行驶中,由蓄电池输出电能给电动机,用于克服电动汽车本身的机械装置的内阻力,以及由行驶条件决定的外阻力。电动汽车在运行过程中,行驶阻力不断变化,其主电路中传递的功率也在不断变化。对电动汽车行驶时的受力状况以及主电路中电流的变化进行分析,是研究电动汽车行驶性能和经济性能的基础。 1、电动汽车的动力性分析 1.1 电动汽车的驱动力 电动汽车的电动机输出轴输出转矩M,经过减速齿轮传动,传到驱动轴上的转矩Mt,使驱动轮与地面之间产生相互作用,车轮与地面作用一圆周力F0,同时,地面对驱动轮产生反作用力Ft.Ft 与F0大小相等方向相反,Ft方向与驱动轮前进方向一致,是推动汽车前进的外力,将其定义为电动汽车的驱动力。有: 电动汽车机械传动装置是指与电动机输出轴有运动学联系的减速齿轮传动箱或变速器、传动轴及主减速器等机械装置。机械传动链中的功率损失包括:齿轮啮合点处的摩擦损失、轴承中的摩擦

损失、旋转零件与密封装置之间的摩擦损失以及搅动润滑油的损失等。 1.2 电动汽车行驶方程式与功率平衡 电动汽车在上坡加速行驶时,作用于电动汽车的阻力与驱动力始终保持平衡,建立如下的汽车行驶方程式: 以电动汽车行驶速度va乘以(2)式两端,考虑机械损失,再经过单位换算之后可得: 或 由(4)、(5)两式可以看出,电动汽车在行驶时,电动机传递到驱动轮的输出功率与体现在驱动轮上的阻力功率始终保持平衡。将(4)变换可得: 式中PM为电动机的输出功率。 用曲线图表示上述功率关系,将电动机的输出功率、汽车经常遇到的阻力功率与对应车速的关系归置在x-y坐标图上得到电动汽车功率平衡图如图1所示。

纯电动汽车的结构和驱动系统性能比较资料

纯电动汽车的结构分析和驱动系统性能比较 摘要 纯电动汽车驱动形式有很多种,为了选择最合适的驱动系统,我们对不同驱动系统的结构特征进行了分析,在纯电动汽车上匹配不同的驱动系统后比较其动力性;以城市驾驶循环为例建立车辆能耗模型来比较其经济性。结果显示:单电机直接驱动系统虽然最简单,但其性能最差;装配两速变速器后,动力性显著改善,汽车行驶里程增加3.6%,但自动变速的功能难以解决;采用轮毂电机驱动系统可以改善汽车的动力性,但实际行驶效率不高;而双电机耦合驱动系统可以实现高效率行驶,其行驶里程比单电机直驱增加了7.79%,并且因为其具有结构简单,行驶效率高等特点,所以适用于现在的纯电动汽车。 绪论 作为核心部件,电力驱动系统的技术水平直接制约纯电动汽车的整体性能。如今,有多种驱动系统可以使用。根据车轮驱动扭矩的动力源,驱动系统的模式可分为整体式驱动和分布式驱动。整体式驱动系统的驱动扭矩由主减速器或次级减速器或差速器来调节,主要包括单电机直驱和主副电机耦合系统。在分布式驱动中,每个驱动轮都有一个单独的驱动系统,轮毂电机驱动系统是分布式驱动的主要形式。 整体式驱动的技术相对比较成熟,但驱动力通过差速器被大致平均分配到左、右半轴,单个驱动轮的转矩在大多数车辆中不能独立地调节。因此不安装其他的传感器和控制器,我们很难对汽车的运动和动力进行控制[1]。分布式驱动近几年飞速发展,由于大多数车轮和电动机之间的机械部件被替换,因此分布式驱动系统具有结构紧凑和传动效率高的优点[2]。 为了选取最适合纯电动汽车的驱动方式,本文对不同驱动系统的结构特征和动力性经济性比较进行了比较说明。本文结构如下:第二部分为驱动系统的结构特征分析,第三部分介绍驱动系统的参数和部件性能,第四部分比较不同驱动系统的动力性,第五部分比较不同驱动系统的经济性,第六部分得出结论。 结构分析 整体式驱动 整体式驱动系统被广泛应用于各类电动车辆,其主要结构如图1所示。其中M是电动机,R是固定速比减速器,T是变速器,D是主减速器,W是车轮。图1 a是单电机直驱系统,其扭矩由主减速器调节,通常称为直驱系统。图1 b和直驱系统十分相似,除了扭矩由变速器调节。因为驱动电机的速比调节范围比内燃机的更大,所以能以较少的齿轮数目的传动来满足在任何工况下的电动汽车需求。图1 c是另外一种整体式驱动形式,其采用两个驱动电机和主减速器,其中一个电机在大多数工况下作为汽车的动力来源,另外一个电机只有在需要附加功率时才会工作。

纯电动汽车动力性计算公式

纯电动汽车动力性计算公式 XXEV 动力性计算 2最咼行驶车速的计算 最高车速的计算式如下: n r V max 0.377 - i g i o 0.377 2400 °.487 1 6.295

70km/h 43.5mph (2-1) 式中: n—电机转速(rpm); r—车轮滚动半径(m ); i g —变速器速比;取五档,等于1;i。一差速器速比。所以,能达到的理论最高车速为70km/h。 3最大爬坡度的计算 满载时,最大爬坡度可由下式计算得到,即 max arcsin(%山」0. d f) arcsin(2400 1 6.2950.9 0.015)8.20 m.g.r 18000 9.8 0.487

所以满载时最大爬坡度为tan(a-)*100%=14. 4%>14%,满足规定要求. 4电机功率的选型 纯电动汽车的功率全部由电机来提供,所以电机功率的选择须满足汽车的最高车速、最大爬坡度等动力性能的要求。 4.1以最高设计车速确定电机额定功率 当汽车以最高车速匀速行驶时,电机所需提供的功率(kw)计算式为: 36咖盹八唱游心(2-1) 式中: n—整车动力传动系统效率〃(包括主减速器和驱动电机及控制器的工作效率),取0.86; m—汽车满载质量,取18000kg; g—重力加速度,取9.8m/s2; f—滚动阻力系数,取0.016; Cd—空气阻力系数,取0?6; A—电动汽车的迎风面积,取2?550x3?200=8?16m2(原车宽*车身高);最高车速,取70km/ho 把以上相应的数据代入式(2?1)后,可求得该车以最高车速行驶时,电机所需提供的功率(kw),即 二总制诃和E6+吆需型)x7。 =39.5kw<\ OOkw (3-2) 4.2满足以10km/h的车速驶过14%坡度所需电机的峰值功率 将14%坡度转化为角度:a = tan-,(0.14) = 8°o 车辆在14%坡度上以10km/h的车速行驶时所需的电机峰值功率计算式为:

纯电动汽车动力性计算公式(可编辑修改word版)

XXEV 动力性计算 1初定部分参数如下 整车外廓(mm)11995×2550× 3200(长×宽×高) 电机额定功率100kw 满载重量约 18000kg 电机峰值功率250kw 主减速器速比 6.295:1 电机额定电压540V 最高车(km/h)60 电机最高转速2400rpm 最大爬坡度14% 电机最大转矩2400Nm 2最高行驶车速的计算 最高车速的计算式如下: V max = 0.377 ? n.r i g i = 0.377 ?2400 ? 0.487 1? 6.295 = 70km / h = 43.5mph 1) 式中: n—电机转速(rpm); r—车轮滚动半径(m); i g —变速器速比;取五档,等于1; i 0 —差速器速比。 (2- 所以,能达到的理论最高车速为70km/h。 3最大爬坡度的计算 满载时,最大爬坡度可由下式计算得到,即 =arcsin(T tq.i g.i0.d-f)=arcsin(2400?1?6.295?0.9-0.015)=8.20 max m.g.r18000 ? 9.8? 0.487

所以满载时最大爬坡度为 t a n ( max )*100%=14.4%>14%,满足规定要求。 4 电机功率的选型 纯电动汽车的功率全部由电机来提供,所以电机功率的选择须满足汽车的最高车速、最大爬坡度等动力性能的要求。 4.1 以最高设计车速确定电机额定功率 当汽车以最高车速V max 匀速行驶时,电机所需提供的功率(kw )计算式为: 1 C .A .V 2 P n = (m .g . f 3600 + d max ).V 21.15 max (2-1) 式中: η—整车动力传动系统效率(包括主减速器和驱动电机及控制器的工作效 率),取 0.86; m —汽车满载质量,取 18000kg ; g —重力加速度,取 9.8m/s 2; f —滚动阻力系数,取 0.016; C d —空气阻力系数,取 0.6; A —电动汽车的迎风面积,取 2.550× 3.200=8.16m 2(原车宽*车身高); V max —最高车速,取 70km/h 。 把以上相应的数据代入式(2-1)后,可求得该车以最高车速行驶时,电机所需提供的功率(kw ),即 1 C .A .V 2 P n = (m .g . f + D max ).V max 3600 ? = 1 3600 ? 0.86 21.15 (18000 ? 9.8? 0.016 + 0.6 ?8.16 ? 702 21.15 ) ? 70 (3-2) = 89.5kw <100kw 4.2 满足以 10km/h 的车速驶过 14%坡度所需电机的峰值功率 将 14%坡度转化为角度: = tan -1(0.14) = 80 。 车辆在 14%坡度上以 10km/h 的车速行驶时所需的电机峰值功率计算式为:

电动汽车动力匹配计算规范(纯电动)

XH-JS-04-013 电动汽车动力匹配计算设计规范 编制:年月日 审核:年月日 批准:年月日 XXXX有限公司发布

目录 一、概述 (1) 二、输入参数 (1) 2.1 基本参数列表 (1) 2.2 参数取值说明 (1) 三、XXXX动力性能匹配计算基本方法 (2) 3.1 驱动力、行驶阻力及其平衡 (3) 3.2 动力因数 (6) 3.3 爬坡度曲线 (6) 3.4 加速度曲线及加速时间 (7) 3.5 驱动电机功率的确定 (7) 3.6 主驱动电机选型 (8) 3.7 主减速器比的选择 (8) 参考文献 (9)

一、概述 汽车作为一种运输工具,运输效率的高低在很大程度上取决于汽车的动力性。动力性是各种性能中最基本、最重要的性能之一。动力性的好坏,直接影到汽车在城市和城际公路上的使用情况。因此在新车开发阶段,必须进行动力性匹配计算,以判断设计方案是否满足设计目标和使用要求。 二、输入参数 2.1 基本参数列表 进行动力匹配计算需首先按确定整车和发动机基本参数,详细精确的基本参数是保证计算结果精度的基础。下表是XXXX动力匹配计算必须的基本参数,其中发动机参数将在后文专题描述。 表1动力匹配计算输入参数表。 2.2 参数取值说明 1)迎风面积 迎风面积定义为车辆行驶方向的投影面积,可以通过三维数模的测量得到,三维数据不健全则通过设计总布置图测得。XXXX车型迎风面积为A

一般取值5-8 m 2 。 2)动力传动系统机械效率 根据XXXX 车型动力传动系统的具体结构,传动系统的机械效率T η主要由主驱动电机传动效率、传动轴万向节传动效率、主减速器传动效率等部分串联组成。 采用有级机械变速器传动系的车型传动系统效率一般在82%到85%之间,计算中可根据实际齿轮副数量和万向节夹角与数量对总传动效率进行修正,通常取传动系统效率T η值为78-82%。 3)滚动阻力系数f 滚动阻力系数采用推荐的客车轮胎在良好路面上的滚动阻力系数经验公式进行匹配计算: f =??? ???????? ??+??? ??+4 410100100a a u f u f f c 其中:0f —0.0072~0.0120以上; 1f —0.00025~0.00280; 4f —0.00065~0.002以上; a u —汽车行驶速度,单位为km/h ; c —对于良好沥青路面,c =1.2。 三、 XXXX 动力性能匹配计算基本方法 汽车动力性能匹配计算的主要依据是汽车的驱动力和行驶阻力之间的平衡关系,汽车的驱动力-行驶阻力平衡方程为 j i w f t F F F F F +++= (1)

电动汽车动力匹配设计规范

XXXXXX Q/XXX X X X X X X X X X X有限公司企业标准 XXXXXXXXXXXXXXXXXXXX 电动汽车动力匹配设计规范 XXXX-XX -XX 发布 XXXX-XX -XX 实施 XXXXXXXX有限公司发布

Q/XXX XXXXXXX-201X 目次 前言 (Ⅱ) 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 技术要求 (3) 4.1 评价指标 (3) 4.2 计算方法 (4) 4.3 基础数据收集和输入 (10) 4.4 计算任务和匹配优化 (10) 4.5 计算结果输入及数据分析 (13)

Q/XXX XXXXXXX-201X 前言 我公司缺少关于动力匹配方面的设计规范,给整车动力性、经济性方面的计算造成障碍。自本规范下发之日起,本文件将指导后续工作中动力性、经济性的计算。 本标准按照GB/T 1.1—2009给出的规则起草。 本标准由XXXX提出。 本标准由XXXX负责起草。 本标准主要起草人:XXX 本标准于XXXX年XX月首次发布。

Q/XXX XXXXXXX-201X 电动汽车动力匹配设计规范 1范围 本规范规定了电动汽车动力匹配设计规范的术语和定义、技术要求、试验方法、检验规则、标志、包装、运输和贮存。 本规范适用于XXXX整车动力性能匹配与计算。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 12534-1990 汽车道路试验方法通则 GB/T 12544-2012 汽车最高车速试验方法 GB/T 12543-2009 汽车加速性能试验方法 GB/T 18386-2005 电动汽车能量消耗率和续驶里程试验方法 GB/T 19596-2004 电动汽车术语 3术语和定义 GB/T 19596中界定的术语和定义适用于本标准。下列术语和定义适用于本文件。 3.1 续驶里程 电动汽车在动力蓄电池完全充电状态下,以已定的行驶工况,能连续行程的最大距离,单位为km。 3.2 能量消耗率 电动汽车经过规定的试验循环后动力蓄电池重新冲带你至试验前的容量,从电网上得到的电能除以行驶里程所得的值,单位为Wh/km。 3.3 最高车速 电动汽车能够往返各持续行程3 km距离的最高平均车速。 3.3 30分钟最高车速 电动汽车能够持续行驶30 min以上的最高平均车速。 3.4 加速能力V1至V2 电动汽车从速度V1加速到速度V2所需的最短时间。 3.5 爬坡车速 电动汽车在给定坡度的坡道上能够持续行驶1 km以上的最高平均车速。 3.6

电动汽车动力匹配计算要求规范(纯电动)

电动汽车动力匹配计算设计规范 编制:年月日 审核:年月日 批准:年月日 2015-10-15发布2015-11-1实施 XXXX有限公司发布

目录 一、概述 (1) 二、输入参数 (1) 2.1 基本参数列表 (1) 2.2 参数取值说明 (1) 三、XXXX动力性能匹配计算基本方法 (2) 3.1 驱动力、行驶阻力及其平衡 (3) 3.2 动力因数 (6) 3.3 爬坡度曲线 (6) 3.4 加速度曲线及加速时间 (7) 3.5 驱动电机功率的确定 (7) 3.6 主驱动电机选型 (8) 3.7 主减速器比的选择 (8) 参考文献 (9)

一、概述 汽车作为一种运输工具,运输效率的高低在很大程度上取决于汽车的动力性。动力性是各种性能中最基本、最重要的性能之一。动力性的好坏,直接影到汽车在城市和城际公路上的使用情况。因此在新车开发阶段,必须进行动力性匹配计算,以判断设计方案是否满足设计目标和使用要求。 二、输入参数 2.1 基本参数列表 进行动力匹配计算需首先按确定整车和发动机基本参数,详细精确的基本参数是保证计算结果精度的基础。下表是XXXX动力匹配计算必须的基本参数,其中发动机参数将在后文专题描述。 表1动力匹配计算输入参数表。 2.2 参数取值说明 1)迎风面积 迎风面积定义为车辆行驶方向的投影面积,可以通过三维数模的测量得到,三维数据不健全则通过设计总布置图测得。XXXX车型迎风面积为A

一般取值5-8 m 2 。 2)动力传动系统机械效率 根据XXXX 车型动力传动系统的具体结构,传动系统的机械效率T η主要由主驱动电机传动效率、传动轴万向节传动效率、主减速器传动效率等部分串联组成。 采用有级机械变速器传动系的车型传动系统效率一般在82%到85%之间,计算中可根据实际齿轮副数量和万向节夹角与数量对总传动效率进行修正,通常取传动系统效率T η值为78-82%。 3)滚动阻力系数f 滚动阻力系数采用推荐的客车轮胎在良好路面上的滚动阻力系数经验公式进行匹配计算: f =??? ???????? ??+??? ??+4 410100100a a u f u f f c 其中:0f —0.0072~0.0120以上; 1f —0.00025~0.00280; 4f —0.00065~0.002以上; a u —汽车行驶速度,单位为km/h ; c —对于良好沥青路面,c =1.2。 三、 XXXX 动力性能匹配计算基本方法 汽车动力性能匹配计算的主要依据是汽车的驱动力和行驶阻力之间的平衡关系,汽车的驱动力-行驶阻力平衡方程为

纯电动汽车整车控制器(VCU)设计方案

纯电动汽车整车控制器 设计方案书

目录 1 整车控制器控制功能和原理 (1) 2 电动汽车动力总成分布式网络架构 (2) 3 整车控制器开发流程 (3) 3.1 整车及控制策略仿真 (3) 3.2 整车软硬件开发 (4) 3.2.1 整车控制器的硬件开发 (5) 3.2.2 整车控制器的软件开发 (8) 3.3 整车控制器的硬件在环测试 (9) 3.4 整车控制器标定 (11) 3.4.1 整车控制器的标定系统 (11) 3.4.2 电动汽车整车控制器的标定流程 (12)

1整车控制器控制功能和原理 电动汽车是由多个子系统构成的一个复杂系统,主要包括电池、电机、变速箱、制动等动力系统,以及其它附件如空调、助力转向、DCDC及充电机等。各子系统几乎都通过自己的控制单元来完成各自功能和目标。为了满足整车动力性、经济性、安全性和舒适性的目标,一方面必须具有智能化的人车交互接口,另一方面,各系统还必须彼此协作,优化匹配。因此,纯电动汽车必须需要一个整车控制器来管理纯电动汽车中的各个部件。 纯电动车辆以整车控制器为主节点、基于高速CAN总线的分布式动力系统控制网络,通过该网络,整车控制器可以对纯电动车辆动力链的各个环节进行管理、协调和监控,提高整车能量利用效率,确保车辆安全性和可靠性。整车控制器的功能如下: 1)车辆驾驶:采集司机的驾驶需求,管理车辆的动力。 2)网络管理:监控通信网络,信息调度,信息汇总,网关。 3)故障诊断处理:诊断传感器、执行器和系统其他部件的故障,并进行相应的 故障处理,按照标准格式存储故障码。 4)在线配置和维护:通过车载标准CAN端口,进行控制参数修改,匹配标定, 功能配置,监控,基于标准接口的调试能力等。 5)能量管理:通过对电动汽车车载耗能系统(如空调、电动泵等)的协调和管 理,以获得最佳的能量利用率。 6)功率分配:通过综合电池的SOC、温度、电压、电流和电机的温度等车辆信 息计算电机功率的分配,进行车辆的驱动和制动能量回馈控制。从而在系统的允许下能获得最佳的驾驶性能和续航里程。 7)附电控制:根据各附电系统的控制逻辑对真空助力泵、水泵、冷却风扇等进 行相应的控制。 8)坡道起步时驻坡控制。

纯电动汽车动力系统及驱动技术

纯电动汽车动力系统及驱动技术 一、电动汽车简介及现状 电动汽车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,电动汽车可分为三种:蓄电池式纯电动车、燃料电池电动汽车和混合动力电动汽车。电动汽车历史悠久,世界上的第一辆电动汽车于1834年诞生,比1886年问世的世界上第一辆内燃机汽车还要早半个世纪。 大力发展新能源汽车从而实现世界交通及能源结构的转型已经成为当代汽车行业实现可持续发展的重要趋势。和传统燃油汽车相比,电动汽车尽管目前技术不太成熟,但凭借其能源效率高、环境污染小、能源多样化的优点已经成为汽车行业发展的必然选择,其发展也得到世界各国政府的重视与支持。 国内电动汽车发展现状 我国的电动汽车研究大约开始于上个世纪60年代,自“八五”以来,通过大量人力、物力和财力在纯电动汽车研究上的投入,正式把电动汽车的研究列入攻关计划,并在在北京、杭州等城市开展了不同形式的小规模示范运行。 2001年我国正式启动了“十五”国家高新技术研究发展计划(863),电动汽车被列入其中并投资数亿,确立了以燃料电池汽车、混合动力汽车和纯电动汽车为“三纵”,以多能源动力总成、驱动电机和动力蓄电池共性关键技术为“三横”的“三纵三横”研发布局川,具体分工如下:承担电动大客车项目的有北方车辆厂和北京理工大学,承担纯电动轿车研发的是上海汽车、上海交通大学、天津汽车集团等。 自2009年以来,国家陆续出台《汽车产业调整振兴规划》、电动汽车“十城千辆”项目,这表明在低碳经济的政策背景下,国家对于纯电动汽车的扶持力度正在不断加大。 国外电动汽车发展现状 在电动汽车的发展进程中,各国和各地区都依据自己的国情和特点择了不同的技术路线,而处在技术领先位置的仍然是日本、美国和欧洲,他们在电动汽车的车速、续驶里程、加速性能、动力蓄电池、基础设施等方面都有较大的优势。纯电动汽车已经在欧洲各国中拥有大量的用户,特别是在当地政府部门。但是由于没有成功地解决电动汽车续驶里程问题,商业化进程缓慢。各大汽车厂商发展电动汽车的热情明显不如日本和美国,所以其注意力更多地转向了其它清洁能源车的开发。下表是国外几种电动汽车的技术指标。

纯电动汽车整车动力性试验

纯电动汽车整车动力性试验

纯电动汽车整车动力性试验 纯电动汽车在行驶中,由蓄电池输出电能给电动机,电动机输出功率,用于克服电动汽车本身的机械装置的内阻力,以及由行驶条件决定的外阻力消耗的功率。与燃油汽车一样,纯电动汽车的动力性也可以用最高车速、加速性能和最大爬坡度来进行描述,但是与燃油汽车不同的是,电动机存在不同的工作制,如1min工作制、 30min工作制等,即存在连续功率、小时功率和瞬时功率,因此在描述或评价电动汽车的动力性时要做说明。 电动汽车动力性能的试验标准按GB/T 18385-2001《电动汽车动力性能试验方法》进行。测试的内容包括:最高车速、加速性能、最大爬坡度等评价指标。测试设备有五轮仪,现在国际上普遍采用的是非接触式传感器;记录和分析设备有日本小野、德国DA-TRON、瑞士KISTLER等公司的产品。 1.道路条件 1)一般条件

如果由于试验路面布置特点的原因,车辆不可能在两个方向达到最高车速,允许只在一个方向进行测量,但应该满足以下条件: (1)试验跑道应满足要求; (2)测量区内任何两点的高度差不能超过 1m; (3)试验应尽快重复进行两次; (4)风速与试验道路平行方向的风速分量不能超过2m/s。 2.试验车辆准备 1)蓄电池充电 按照车辆制造厂规定的充电规程,使电动汽车蓄电池达到完全充电状态,或按下列规程为蓄电池充电。 (1)常规充电。 在环境温度为20~30℃下,使用车载充电器(如果已安装)为蓄电池充电,或采用车辆制造厂推荐的外部充电器(应记录充电器的型号、

规格)给蓄电池充电。不包括其他特殊类型的充电,例如蓄电池翻新或维修充电。车辆制造厂应该保证试验过程中车辆没有进行特殊充电操作。 (2)充电结束的标准。 12h的充电即为充电结束的标准;如果标准仪器发出明显的信号提示驾驶员蓄电没有充满,在这种情况下,最长充电时间为: 3×制造厂规定的蓄电池容量(kW·h)/电网供 电(kW) (3)完全充电蓄电池。 如果依据常规充电规程,达到充电结束标准,则认为蓄电池已充满。 2)里程表的设定 试验车辆上的里程表应设置为0,或记录里程表上的读数。 3)预热

纯电动汽车整车动力性试验

纯电动汽车整车动力性试验 纯电动汽车在行驶中,由蓄电池输出电能给电动机,电动机输出功率,用于克服电动汽车本身的机械装置的内阻力,以及由行驶条件决定的外阻力消耗的功率。与燃油汽车一样,纯电动汽车的动力性也可以用最高车速、加速性能和最大爬坡度来进行描述,但是与燃油汽车不同的是,电动机存在不同的工作制,如1min工作制、30min工作制等,即存在连续功率、小时功率和瞬时功率,因此在描述或评价电动汽车的动力性时要做说明。 电动汽车动力性能的试验标准按GB/T 18385-2001《电动汽车动力性能试验方法》进行。测试的内容包括:最高车速、加速性能、最大爬坡度等评价指标。测试设备有五轮仪,现在国际上普遍采用的是非接触式传感器;记录和分析设备有日本小野、德国DA-TRON、瑞士KISTLER等公司的产品。 1.道路条件 1)一般条件 试验应该在干燥的直线跑道或环形跑道上进行。路面应坚硬、平整、干净且要有良好的附着系数。 2)直线跑道 测量区的长度至少1000m。加速区应足够长,以便在进入测量区前200m内达到稳定的最高车速。测量区和加速区的后200m的纵向坡度均不超过0.5%。加速区的纵向坡度不超过4%。测量区的横向坡度不超过3%。为了减少试验误差,试验应在试验跑道的两个方向上进行,尽量使用相同的路径。 3)环形跑道 环形跑道的长度应至少1000m。环形跑道与完整的圆形不同,它由直线部分和近似环形的部分相接而成。弯道的曲率半径应不小于200m。测量区的纵向坡度不超过0.5%。为计算车速,行驶里程应为车辆被计时所驶过的里程。 如果由于试验路面布置特点的原因,车辆不可能在两个方向达到最高车速,允许只在一个方向进行测量,但应该满足以下条件: (1)试验跑道应满足要求; (2)测量区内任何两点的高度差不能超过1m; (3)试验应尽快重复进行两次; (4)风速与试验道路平行方向的风速分量不能超过2m/s。 2.试验车辆准备

KH-CDD21纯电动汽车动力驱动与控制一体化教学实训系统教学文稿

KH-CDD21纯电动汽车动力驱动与控制一体化教学实训系统 可选用:吉利帝豪EV300、比亚迪E5、北汽EV160、荣威eRX5 一、产品简介 选用原装纯电动轿车高压电控总成和永磁同步电机;原装配套变速箱和传动轴;高压动力线和低压控制线与动力电池和管理系统实训台对接,实训台保留原车功能;真实展示纯电动轿车电驱动传动系统核心零部件之间的连接控制关系、安装位置和运行工况,以及高压系统安全注意事项,并培养学员对纯电动轿车电驱动传动系统故障分析和处理能力。适用于各类型院校新能源纯电动汽车驱动传动系统课程教学和维修维护实训。 二、功能特点 1.各主要部件安装在实训平台上,保留原车电气连接方式,断电后可方便拆装,训练拆装线束与电器,掌握高压系统零部件拆装和安全保护要点。 2.动力高压配电箱上盖采用透明5mm有机玻璃改装,清晰观察了解控制原理和内部控制元件。 3.驱动传动系统实训台高压电源由动力电池和管理系统实训台提供,与动力电池和管理系统实训台连体工作,配套连接电缆线,保留原车连接方式。 4.教学板完整显示电驱动系统工作原理图,安装检测端子,可直接在面板上检测系统电路元件的电信号,如电阻、电压、电流、频率、波形信号等。 面板采用耐创击、耐污染、防火、防潮的高级铝塑板,表面经特殊工艺喷涂底漆处理;面板打印有永不褪色的彩色电路图等; 5.传动轴输出端安装原车制动器,模拟车辆负载系统,通过调整两端负载大小,真实展示电驱动传动系统不同工况下(启动、加速、匀速、减速、停车、爬坡等)电流和电压等数据变化规律。

6.设备由平台和教学板组成,平台水平放置,安装原车零部件;底部安装4个带自锁脚轮装置。 7.面板部分采用1.5mm冷板冲压成形结构,外形美观;底架部分采用钢结构焊接,表面采用喷涂工艺处理,带自锁脚轮装置,教学板底座上配有30cm左右的台面,方便放置资料、轻型检测仪器等。 8.配备智能化故障设置和考核系统,故障点主要设置在低压控制线路,保证高压系统安全及训练实车故障处理能力。 9.为了教学安全,台架配套安装绝缘地板(绝缘与耐压国标产品地胶)。 10.配套实训指导书,包含系统工作原理,实训科目,故障设置及清除等要点。 三、基本配置(每台)

特斯拉电动汽车动力电池管理系统解析

特斯拉电动汽车动力电池管理系统解析 1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统(Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。

纯电动汽车整车控制器(TAC)

纯电动汽车整车控制器(TAC) 项目介绍: 纯电动汽车整车控制器对新能源汽车的动力性、安全性、经济性、操纵稳定性和舒适性等都有重要影响,它是新能源汽车上的一种关键装置。在车辆行驶过程中,整车控制器通过开关输入端口、模拟量转换模块、CAN总线等硬件线路采集路况信息、驾驶员意图、车辆状态、设备运行状态等参数,依托高速运行的CPU和控制端口来执行预设的控制算法和管理策略,再将指令和信息等通过CAN总线、开关输出端口等对动力系统的执行部件进行实时的、可靠的、科学的控制,以实现车辆的动力性、可靠性和经济性。 其硬件结构框图如图一所示。 整车控制器实物图如图二所示。

性能指标: 1)工作环境温度: -30℃—+80℃ 2)相对湿度: 5%~93% 3)海拔高度:不大于3000m 4)工作电压: 18VDC—32VDC 5)防护等级: IP65 功能指标: 1)系统响应快,实时性高 2)采用双路CAN总线(商用车SAE J1939协议) 3)多路模拟量采样(采样精度10位);2路模拟量输出(精度12位) 4)多路低/高端开关输出 5)多路I/O输入 6)关键信息存储 7)脉冲输入捕捉 8)低功耗,休眠唤醒功能 该项目使用的INFINEON的物料清单: TC1782 TLE7368-3E

TLE6240GP BTS4880R IPG20N06S2L-65 xxx xxx 发表于 2012-5-23 11:27:45|只看该作者|| 整车控制器(VMS,vehicle management Syetem),即动力总成控制器。是整个汽车的核心控制部件,它采集加速踏板信号、制动踏板信号及其他部件信号,并做出相应判断后,控制下层的各部件控制器的动作,驱动汽车正常行驶。作为汽车的指挥管理中心,动力总成控制器主要功能包括:驱动力矩控制、制动能量的优化控制、整车的能量管理、CAN网络的维护和管理、故障的诊断和处理、车辆状态监视等,它起着控制车辆运行的作用。因此VMS的优劣直接影响着整车性能。 纯电动汽车整车控制器(Vehicle Controller)是纯电动汽车整车控制系统的核心部件,它对汽车的正常行驶,再生能量回收,网络管理,故障诊断与处理,车辆的状态与监视等功能起着关键的作用。 与各部件控制器的动态控制相比,整车控制器属于管理协调型控制。 整个车辆系统采用一体化集成控制与分布式处理的车辆控制系统的体系结构,各部件都有独立的控制器,整车控制器对整个系统进行能量管理及各部件的协调控制。为满足系统数据交换量大,实时性、可靠性要求高的特点,整个分布式控制系统之间采用CAN总线进行通讯。 整车控制器主要由控制器主芯片,Flash存储器和RAM存储器及相关电路组成,控制器主芯片的输出与Flash存储器和RAM存储器的输入相连。 整车控制器通过CAN总线接口连接到整车的CAN网络上与整车其余控制节点进行信息交换和控制。 控制器硬件包括微处理器、CAN通信模块、BDM调试模块、串口通信模块、电源及保护电路模块等。微处理器选用了Motorola公司专门为汽车电子开发的MCgS12,它具有运算速度快和部资源与接口丰富的特点,适合实现整车复杂的控制策略和算法。CAN通信模块符合CAN2.0B技术规,采用了光电隔离、电源隔离等多项抗干扰设计;BDM调试模块用于实时对控制程序进行调试、修改;串口通信模块用于对控制系统的诊断和标定; 电源模块进行了二级滤波的冗余设计,保证控制器在车载12V系统供电情况下正常工作,并具短路保护功能。 CAN,全称为“Controller Area Network”,即控制器局域网,是一种国际标准的,高性价的现场总线,在自动控制领域具有重要作用。CAN是一种多主方式的串行通讯总线,具有较高的实时性能,因此,广泛应用于汽车工业、航空工业、工业控制、安全防护等领域。决策层控制单元是车辆智能化的关键,其收集车辆运行过程中的信息,并根据智能算法的决策向物理器件层控制单元发送命令;动力源控制单元负责调节动力源系统部件以满足决策层控制单元的命令要求;驱动/制动控制单元则调节双向变量电机和能耗制动系统实现车辆的各种工况,如驱动控制、防抱制动等。 整车控制器功能需求: 整车控制器在汽车行驶过程中执行多项任务,具体功能包括:(1)接收、处理驾驶员的驾

相关文档
相关文档 最新文档