文档库 最新最全的文档下载
当前位置:文档库 › 12.2等可能条件下的概率(2)

12.2等可能条件下的概率(2)

12.2等可能条件下的概率(2)
12.2等可能条件下的概率(2)

件上衣,分别为红色、黄色、蓝色,

(正、正)你能只通过一次试验,列出所有可能的结果吗?

苏教版九年级上册数学[等可能条件下的概率--知识点整理及重点题型梳理]

苏教版九年级上册数学 重难点突破 知识点梳理及重点题型巩固练习 等可能条件下的概率--知识讲解 【学习目标】 1.知道试验的结果具有等可能性的含义; 2.会求等可能条件下的概率; 3.能够运用列表法和树状图法计算简单事件发生的概率. 【要点梳理】 要点一、等可能性 一般地,设一个试验的所有可能发生的结果有n个,它们都是随机事件,每次试验有且只有其中的一个结果出现.如果每个结果出现的机会均等,那么我们说这n个事件的发生是等可能的,也称这个试验的结果具有等可能性. 要点二、等可能条件下的概率 1.等可能条件下的概率 一般地,如果一个试验有n个等可能的结果,当其中的m个结果之一出现时,事件A 发生,那么事件A发生的概率P(A)=m n (其中m是指事件A发生可能出现的结果数,n 是指所有等可能出现的结果数). 当一个随机事件在一次试验中的所有可能出现的结果是有限个,且具有等可能性时,只需列出一次试验可能出现的所有结果,就可以求出某个事件发生的概率. 2.等可能条件下的概率的求法 一般地,等可能性条件下的概率计算方法和步骤是: (1)列出所有可能的结果,并判定每个结果发生的可能性都相等; (2)确定所有可能发生的结果的个数n和其中出现所求事件的结果个数m; (3)计算所求事件发生的可能性:P(所求事件)=m n . 要点三、用列举法计算概率 常用的列举法有两种:列表法和画树状图法. 1.列表法 当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法. 列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法. 要点诠释: (1)列表法适用于各种情况出现的总次数不是很大时,求概率的问题; (2)列表法适用于涉及两步试验的随机事件发生的概率. 2.树状图 当一次试验要涉及3个或更多个因素时,为了不重不漏地列出所有可能的结果,通常采用树形图,也称树形图、树图.

《概率论与数理统计》习题二答案

《概率论与数理统计》习题二答案 《概率论与数理统计》习题及答案 习题二 1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的 最大号码,写出随机变量X 的分布律. 【解】 3535 24 35 3,4,51 (3)0.1C 3(4)0.3C C (5)0.6 C X P X P X P X ====== ==== 故所求分布律为 2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求: (1) X 的分布律; (2) X的分布函数并作图; (3) 133 {},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】 3 1331512213 3151133 150,1,2. C 22 (0). C 35C C 12(1). C 35 C 1 (2).C 35 X P X P X P X ========== 故X 的分布律为

(2) 当x <0时,F (x )=P (X ≤x )=0 当0≤x <1时,F (x )=P (X ≤x )=P(X=0)= 2235 当1≤x <2时,F (x )=P (X≤x)=P (X=0)+P (X =1)=3435 当x ≥2时,F (x )=P (X≤x )=1 故X 的分布函数 0, 022 ,0135()34,12351,2x x F x x x

123等可能条件下的概率(二).

12.3等可能条件下的概率(二) 建湖县颜单中学陈国华 教学目标: 1、知识目标:了解等可能条件下的概率(二)两个特点,理解确定 这类几何概型概率的因素及概率的计算方法。 2、能力目标:让学生学会用转化的思想把等可能条件下的概率 (二)转化为等可能条件下的概率(一)并体会把无 限问题如何转化为有限问题解决,同时培养学生观 察分析归纳的能力。 3、情感目标:培养学生积极探索、合作交流、勇于创新的科学态度。 教学重点:等可能条件下的概率(二)两个特点,以及确定这类概率的因素和计算概率的方法 教学难点:等可能条件下的概率(二)为什么可以转化为等可能条件下的概率(一)的探索发现过程 教学方法:问题教学法、自主探索合作交流法 教学教具:有关转盘及多媒体课件 教学流程: 一、情境探究 情境1:出示一个带指针的转盘,任意转动这个转盘,如果在某个时刻观察指针的位置。

问题1:这时所有可能结果有多少个?为什么? 问题2:每次观察有几个结果?有无第二个结果? 问题3:每个结果出现的机会是均等的吗? 说明:根据学生的回答,适时揭示等可能条件下的概率(二)的两个特点:1、试验结果是无限个。2、每一个试验结果出现是可能性。 情境2:出示一个带指针的转盘,这个转盘被分成8个面积相等的扇形,并标上1、2、3……8,若每个扇形面积为单位1,转动转盘,转盘的指针的位置在不断的改变。 问题1:在转动的过程中当正好转了一周时指针指向每一个扇形区域机会均等吗?那么指针指向每一个扇形区域是等可能性吗? 问题2:怎样求指针指向每一个扇形区域的概率?它们的概率分别是多少? 问题3:在转动的过程中,当正好转了两周时呢?当正好转了n 周呢?当无限周呢? 说明:1、在问题1中让学生讨论得出求概率的方法:指针指向某个区域面积/整个转盘面积。让学生感知概率与指针经过的区域面

东北大学本科概率论作业2及答案

一、单选题(共 15 道试题,共 75 分。) V 1. 下面哪个条件不能得出两个随机变量X与Y的独立性? A. 联合分布函数等于边缘分布函数的乘积; B. 如果是离散随机变量,联合分布律等于边缘分布律的乘积; C. 如果是连续随机变量,联合密度函数等于边缘密度函数的乘积; D. 乘积的数学期望等于各自期望的乘积:E(XY)=E(X)E(Y)。 满分:5 分 2. 一袋子中装有6只黑球,4个白球,又放回地随机抽取3个,则三个球同色的概率是 A. 0.216 B. 0.064 C. 0.28 D. 0.16 满分:5 分 3. 设随机变量X的方差DX =σ2,则D(ax+b)= A. aσ2+b B. a2σ2+b C. aσ2 D. a2σ2 满分:5 分 4. 把4个球随机投入四个盒子中,设X表示空盒子的个数,则P(X=1)=( ) A. 6|64 B. 36|64 C. 21|64 D. 1|64 满分:5 分

5. 设随机变量X~N(2,4),且P{2

条件概率

条件概率 1.条件概率 条件 设A ,B 为两个事件,且P (A )>0 含义 在事件A 发生的条件下,事件B 发生的条件概率 记作 P (B |A ) 读作 A 发生的条件下 B 发生的概率 计算公式 ①事件个数法:P (B |A )= n (AB ) n (A ) ②定义法:P (B |A )= P (AB ) P (A ) 2.条件概率的性质 (1)P (B |A )∈[0,1]. (2)如果B 与C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). [注意] (1)前提条件:P (A )>0. (2)P (B ∪C |A )=P (B |A )+P (C |A ),必须B 与C 互斥,并且都是在同一个条件A 下. 判断正误(正确的打“√”,错误的打“×”) (1)若事件A ,B 互斥,则P (B |A )=1.( ) (2)P (B |A )与P (A |B )不同.( ) 答案:(1)× (2)√ 已知P (AB )=310,P (A )=3 5 ,则P (B |A )为( ) A.950 B.12 C.910 D.1 4 答案:B 由“0”“1”组成的三位数组中,若用事件A 表示“第二位数字为0”,用事件B 表示“第一位数字为0”,则P (A |B )等于( ) A.12 B.13 C.14 D.18 答案:A 一个盒子里有6只好晶体管,4只坏晶体管,任取两次,每次取1只,每次取出后不放回,则若已知第一次取出的是好的,则第二次取出的也是好的概率为________.

答案:59 探究点1 利用定义求条件概率 甲、乙两地都位于长江下游,根据多年的气象记录知道,甲、乙两地一年中雨天所占的比例分别为20%和18%,两地同时下雨的比例为12%,问: (1)乙地为雨天时甲地为雨天的概率是多少? (2)甲地为雨天时乙地为雨天的概念是多少? 【解】 设“甲地为雨天”为事件A ,“乙地为雨天”为事件B , 根据题意,得 P (A )=0.2,P (B )=0.18,P (AB )=0.12. (1)乙地为雨天时甲地为雨天的概率是 P (A |B )=P (AB )P (B ) =0.120.18=23 . (2)甲地为雨天时乙地为雨天的概率是 P (B |A )=P (AB )P (A )=0.120.2=3 5. 利用定义计算条件概率的步骤 (1)分别计算概率P (AB )和P (A ). (2)将它们相除得到条件概率P (B |A )= P (AB ) P (A ) ,这个公式适用于一般情形,其中AB 表示A , B 同时发生. 如图,EFGH 是以O 为圆心,1为半径的圆的内接正方形, 将一颗豆子随机地掷到圆内,用A 表示事件“豆子落在正方形EFGH 内”, B 表示事件“豆子落在扇形HOE (阴影部分)内”,则P (A )=________,P (B |A )=________. 解析:因为圆的半径为1,所以圆的面积S =πr 2 =π,正方形EFGH 的面积为? ?? ??2r 22 =2,所 以P (A )= 2π . P (B |A )表示事件“已知豆子落在正方形EFGH 中,则豆子落在扇形HOE (阴影部分)”的概率, 所以P (B |A )=14 .

条件概率公式

条件概率(conditional probability)就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。 联合概率表示两个事件共同发生的概率。A与B的联合概率表示为或者或者。 边缘概率是某个事件发生的概率。边缘概率是这样得到的:在联合概率中,把最终结果中不需要的那些事件合并成其事件的全概率而消失(对离散随机变量用求和得全概率,对连续随机变量用积分得全概率)。这称为边缘化(marginalization)。A的边缘概率表示为P(A),B的边缘概率表示为P(B)。 需要注意的是,在这些定义中A与B之间不一定有因果或者时间序列关系。A可能会先于B发生,也可能相反,也可能二者同时发生。A可能会导致B的发生,也可能相反,也可能二者之间根本就没有因果关系。 例如考虑一些可能是新的信息的概率条件性可以通过贝叶斯定理实现。 换句话说,如果A与B是相互独立的,那么A在B这个前提下的条件概率就是A自身的概率;同样,B在A的前提下的条件概率就是B自身的概率。 考虑概率空间Ω(S, σ(S)),其中σ(S)是集S上的σ代数,Ω上对应于随机变量X的概率测度(可以理解为概率分布)为PX;又A ∈σ(S),PX(A)≥0(这里可以理解为事件A,A不是零测集)。则?E∈σ(S),可以定义集函数PX|A如下: PX|A(E)=PX(A∩E)/PX(E)。 易知PX|A也是Ω上的概率测度,此测度称为X在A下的条件测度(条件概率分布)。

独立性:设A,B∈σ(S),称A,B在概率测度P下为相互独立的,若P(A∩E)=P(A)P(E)。 若想分辨某些个体是否有重大疾病,以便早期治疗,我们可能会对一大群人进行检验。虽然其益处明显可见,但同时,检验行为有一个地方引起争议,就是有检出假阳性的结果的可能:若有个未得疾病的人,却在初检时被误检为得病,他可能会感到苦恼烦闷,一直持续到更详细的检测显示他并未得病为止。而且就算在告知他其实是健康的人后,也可能因此对他的人生有负面影响。

高中数学选修2-3 2.2.1条件概率

条件概率 一、知识概述 条件概率的定义: 一般地,设A,B为两个事件,且P(A)>0,则称为在事件A发生的条件下,事件B发生的条件概率. 一般把P(B|A)读作A发生的条件下B的概率. 注意: (1)条件概率的取值在0和1之间,即0≤P(B|A)≤1. (2)如果B和C是互斥事件,则P(B∪C|A)= P(B|A)+P(C|A). (3)要注意P(B|A)与P(AB)的区别,这是分清条件概率与一般概率问题的关键. 注:概率P(B|A)与P(AB)的区别与联系: 联系:事件A,B都发生了. 区别:样本空间不同:在P(B|A)中,事件A成为样本空间;在P(AB)中,样本空间仍为W. 二、例题讲解: 例1、甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以和表示由甲罐取出

的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号). ①;②;③事件B与事件A1相互独立; ④是两两互斥的事件; ⑤P(B)的值不能确定,因为它与中哪一个发生有关. 解: 答案:②④ 例2、从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞.求2张都是假钞的概率. 解: 令A表示“2张中至少有1张假钞”,B表示“2张都是假钞”.. 则所求概率为P(B|A). ,. .

即所求概率为. 例3、甲乙两地都位于长江下游,根据一百多年的气象记录,知道甲乙两地一年中雨天所占的比例分别为20%和18%,两地同时下雨的比例为12%,问:(1)乙地为雨天时甲地也为雨天的概率是多少? (2)甲地为雨天时乙地也为雨天的概率是多少? (3)甲乙两市至少一市下雨的概率是多少? 解: 记A为“甲地为雨天”,B为“乙地为雨天”. (1). (2). (3). ∴在乙地下雨时甲地也下雨的概率为. 在甲地下雨时乙地也下雨的概率为. 甲、乙两地至少一地下雨的概率为26%.

2.2.1条件概率

“条件概率”教学设计 一、目标和目标解析 (1)通过对具体情境“抽奖问题”的分析,初步理解条件概率的含义(让学生明白,在加强条件下事件的概率发生怎样的变化, 通过与概率的对比和类比达到对新概念的理解) (2)在理解条件概率定义的基础上,将知识技能化,学会用两种方法求条件概率,并能利用条件概率的性质简化条件概率的运算。(明确求条件概率的两种方法,一种是利用条件概率计算公式,另一种是缩减样本空间法。并能选择恰当的方法解决不同概率模型下的条件概率 (3)通过实例激发学生学习的兴趣,在辨析条件概率时培养学生的思辨能力,让学生亲身经历条件概率概念的形成过程,体会由特殊到一般再由一般到特殊的思维方式。在参与的过程中让他们感受数学带来的无穷乐趣。注重学习过程中师生间、学生间的情感交流,充分利用各种手段激发学习的兴趣,共同体验成功的喜悦。 二、教学过程设计 (一)创设情境,引出课题 问题1:1.掷一均匀硬币2次,(1)第二次正面向上的概率是多少?(2)当至少有一次正面向上时,第二次正面向上的概率是多少? 2.设在一个罐子里放有白球和黑球,现依次取两球(没有放回),事件A是第一次从罐中取出黑球,事件B是第二次从罐中取出黑球,那么事件A对事件B有没有影响? (1)如果罐子里有2个不同白球和1个黑球,事件B发生的概率是多少? (2)如果罐子里有2个不同白球和1个黑球,在事件A发生的条件下,事件B发生的概率又是多少?若在事件A没有发生的情况下,事件B发生的概率又是多少? 3.三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问:(1)最后一名同学抽到中奖奖券的概率是否比前两名同学小. (2)如果已经知道第一名同学抽到了中奖奖券,那么最后一名同学抽到奖券的概率是多少? 根据上面三个例子,你能得出这些概率与我们所学过的概率一样吗?什么地方不一样? 请大家以小组的方式讨论一下。 预设答案:他们与我们所学的概率不一样,都在原有的基础上又附加了条件,使得概率发生变化。(此问学生应该能很容易得出) (二)通过设疑,引出概念

《等可能条件下的概率计算》教案

《等可能条件下的概率计算》教案 教学目标 1、在具体情境中进一步理解概率的意义,体会概率是描述不确定现象的数学模型. 2、进一步理解等可能事件的意义,会列出一些类型的随机实验的所有等可能结果(基本事件),会把事件分解成等可能的结果(基本事件). 3、能借助概率的计算判断事件发生可能性的大小. 4、会列出一些类型的随机试验的所有可能结果. 教学过程 情境:抛掷一只均匀的骰子一次. 问题: (1)点数朝上的试验结果是有限的吗?如果是有限的共有几种? (2)哪一个点数朝上的可能性较大? (3)点数大于4与点数不大于4这两个事件中,哪个事件发生的可能性大呢? 说明:(3)要求一个随机事件的概率,首先要弄清这个试验有多少等可能的结果.这是解决问题的关键. (1)(2)等可能事件的概率的有限性和等可能性.(让学生一一列举出来) 小结:等可能条件下的概率的计算方法: ()m P A n 其中m表示事件A发生可能出现的结果数,n表示一次试验所有等可能出现的结果数说明:我们所研究的事件大都是随机事件.所以其概率在0和1之间. 例1、不透明的袋子中装有3个白球和2个红球.这些球除颜色外都相同,拌匀后从中任意出1个球.问: (1)(学生讨论)会出现那些等可能的结果? (2)摸出白球的概率是多少? (3)摸出红球的概率是多少? 说明: (1)制定一个随机事件的可能的结果时,n的求法容易出错.有些同学认为摸出的球不是白球就是红球,所以摸出n种颜色的球是等可能的,这是不对的;引导学生弄清这个实验有多少等可能的结果. 例2、抛掷一枚均匀的硬币2次,记录2次的结果作为一次试验,重复这样的试验十次.并在小组内交流试验的结果. 问题1:你能只通过一次试验,列出所有可能的结果吗?

概率论习题2答案

习题2 2.1 (2)抛掷一颗匀称质骰子两次, 以X 表示前后两次出现点数之和,求X 的概率分布,并验证其满足(2.2.2)式。 2.1解:样本空间为{})6,6(),....,1,2(),16(),...,2,1(),1,1(=Ω,且每个样本点出现的概率均为 36 1 ,X 的所有可能的取值为2,3,4,5,6,7,8,9,10,11,12,且有 {}{}{}363 )2,2(),1,3(),3,1()4(,36 2)1,2(),2,1()3(,361)1,1()2(= ====== ==P X P P X P P X P 类似地,365)6(,364)5(====X P X P ,365)8(,366)7(====X P X P ,363)10(,364)9(====X P X P ,36 1 )12(,362)11(====X P X P X 的概率分布为 36 118112191365613659112118136112111098765432k p X 满足: 136 2/652636543212366)(12 2 =??+=+++++= =∑=k k X P 2.2设离散随机变量X 的概率分布为 {}k P X k ae -==, k=1,2,…,试确定常数.a 2.2解:由于111 1 1)(1--∞ =-∞=-==== ∑∑e e a ae k X P k k k ,故111 1 -=-=--e e e a 2.3 甲、乙两人投篮,命中率分别为0.7,和0.4,今甲、乙两人各投篮两次,求下列事件的概率: (1)两人投中的次数相同 ; (2)甲比乙投中的次数多。 2.3解:设Y X ,分别为甲、乙投中的次数,则有)4.0,2(~),7.0,2(~B Y B X ,因此有 2,1,0,)6.0()4.0()(,)3.0()7.0()(2222=====--k C k Y P C k X P k k k k k k (1) 两人投中次数相同的概率为 ∑======2 3142.0)()()(k k Y P k X P Y X P

条件概率

条件概率 1.从1, 2, 3,…, 15中,甲、乙两人各任取一数(不重复),已知甲取到的数是5的倍数,求甲数大于乙数的概率. 解.设事件A表示“甲取到的数比乙大”,设事件B表示“甲取到的数是5的倍数”. 则显然所要求的概率为P(A|B).根据公式而P(B)=3/15=1/5 , ∴P(A|B)=9/14. , 2. 掷三颗骰子,已知所得三个数都不一样,求含有1点的概率. 解.设事件A表示“掷出含有1的点数”,设事件B表示“掷出的三个点数都不一样”. 则显然所要求的概率为P(A|B).根据公式 ∴P(A|B)=1/2. , , 3.袋中有一个白球和一个黑球,一次次地从袋中摸球,如果取出白球,则除把白球放回外再加进一个白球,直至取出黑球为止,求取了N次都没有取到黑球的概率. 解.设事件A i表示“第i次取到白球”.(i=1,2,…,N)则根据题意P(A1)=1/2 , P(A2|A1)=2/3, 由乘法公式可知: P(A1A2)=P(A2|A1)P(A1)=1/3.而P(A3|A1A2)=3/4 , P(A1A2A3)=P(A3|A1A2)P(A1A2)=1/4 . 由数学归纳法可以知道P(A1A2…A N)=1/(N+1). 4. 甲袋中有5只白球, 7 只红球;乙袋中有4只白球, 2只红球.从两个袋子中任取一袋, 然后从所取到的袋子中任取一球,求取到的球是白球的概率. 解.设事件A表示“取到的是甲袋”, 则表示“取到的是乙袋”, 事件B表示“最后取到的是白球”. 根据题意: P(B|A)=5/12 , , P(A)=1/2. ∴ 5.有甲、乙两袋,甲袋中有3只白球,2只黑球;乙袋中有4只白球,4只黑球.现从甲袋中任取2个球放入乙袋,然后再从乙袋中任取一球,求此球为白球的概率 解.设事件A i表示“从甲袋取的2个球中有i个白球”,其中i=0,1,2 . 事件B表示“从乙袋中取到的是白球”. 显然A0, A1, A2构成一完备事件组,且根据题意 P(A0)=1/10 , P(A1)=3/5 , P(A2)=3/10 ; P(B|A0)=2/5 , P(B|A1)=1/2 , P(B|A2)=3/5 ; 由全概率公式 P(B)=P(B|A0)P(A0)+P(B|A1)P(A1)+P(B|A2)P(A2)=2/5×1/10+1/2×3/5+3/5×3/10=13/25. 6.袋中装有编号为1, 2,…, N的N个球,先从袋中任取一球,如该球不是1号球就放回袋中,是1号球就不放回,然后再摸一次,求取到2号球的概率. 解.设事件A表示“第一次取到的是1号球”,则表示“第一次取到的是非1号球”; 事件B表示“最后取到的是2号球”.

《等可能条件下的概率(一)》教案

《等可能条件下的概率(一)》教案 一、设计思路 本节课,我们从抛掷一枚均匀的骰子和摸球出发,在等可能条件下,让学生充分的探索和交流,一起感悟这个古典概型的两个基本特征,即试验结果的有限性和等可能性.能够在只通过一次试验中可能出现的结果的分析研究来求出随机事件的精确值.活动设计突出古典概型的基本特征(有限性、等可能性). 二、目标设计 1、在具体情境中进一步理解概率的意义,体会概率是描述不确定现象的数学模型. 2、进一步理解等可能事件的意义,会列出一些类型的随机实验的所有等可能结果(基本事件),会把事件分解成等可能的结果(基本事件). 3、能借助概率的计算判断事件发生可能性的大小. 三、活动设计 情境:抛掷一只均匀的骰子一次. 问题: (1)点数朝上的试验结果是有限的吗?如果是有限的共有几种? (2)哪一个点数朝上的可能性较大? (3)点数大于4与点数不大于4这两个事件中,哪个事件发生的可能性大呢? 说明:(3)要求一个随机事件的概率,首先要弄清这个试验有多少等可能的结果.这是解决问题的关键. (1)(2)等可能事件的概率的有限性和等可能性.(让学生一一列举出来) 小结:等可能条件下的概率的计算方法: ()m P A n 其中m表示事件A发生可能出现的结果数,n表示一次试验所有等可能出现的结果数说明:我们所研究的事件大都是随机事件.所以其概率在0和1之间. 例1、不透明的袋子中装有3个白球和2个红球.这些球除颜色外都相同,拌匀后从中任意出1个球.问: (1)(学生讨论)会出现那些等可能的结果? (2)摸出白球的概率是多少? (3)摸出红球的概率是多少? 说明: (1)制定一个随机事件的可能的结果时,n的求法容易出错.有些同学认为摸出的球不是白球就是红球,所以摸出n种颜色的球是等可能的,这是不对的;引导学生弄清这个实验有

概率统计练习题2答案

《概率论与数理统计》练习题2答案 考试时间:120分钟 题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分) 1、A 、B 任意二事件,则A B -=( )。 A 、B A - B 、AB C 、B A - D 、A B 答案:D 2、设袋中有6个球,其中有2个红球,4个白球,随机地等可能地作无放回抽样,连续抽两次,则使P A ()= 1 3 成立的事件A 是( )。 A 、 两次都取得红球 B 、 第二次取得红球 C 、 两次抽样中至少有一次抽到红球 D 、 第一次抽得白球,第二次抽得红球, 答案:B 3、函数()0 0sin 01 x F x x x x ππ

答案:D 5、设随机变量12,,,n ξξξ???相互独立,且i E ξ及i D ξ都存在(1,2, ,)i n =,又 12,,,,n c k k k ,为1n +个任意常数,则下面的等式中错误的是( )。 A 、11n n i i i i i i E k c k E c ξξ==??+=+ ???∑∑ B 、11n n i i i i i i E k k E ξξ==??= ???∏∏ C 、11n n i i i i i i D k c k D ξξ==??+= ???∑∑ D 、()11 1n n i i i i i D D ξξ==??-= ???∑∑ 答案:C 6、具有下面分布密度的随机变量中方差不存在的是( )。 A 、()150050x x x e x ?-≤?=?>? B 、( )2 6 2x x ?-= C 、()312 x x e ?-= D 、()() 42 1 1x x ?π= + 答案:D 7、设随机变量的数学期望和方差均是1m +(m 为自然数),那么 (){}041P m ξ<<+≥( )。 A 、 11m + B 、1m m + C 、0 D 、1m 答案:B 8、设1, , n X X 是来自总体2(, )N μσ的样本, 2211 11, (),1n n i n i i i X X S X X n n --==--∑∑则以下结论中错误的是( )。 A 、X 与2 n S 独立 B 、 ~(0, 1)X N μ σ - C 、 2 22 1 ~(1)n n S X n σ-- D ~(1)n t n - 答案:B 9、容量为n =1的样本1X 来自总体~(1,)X B p ,其中参数01p <<,则下述结论正

【数学】2.2.1《条件概率》教案(新人教A版选修2-3)

2.2.1条件概率 教学目标: 知识与技能:通过对具体情景的分析,了解条件概率的定义。 过程与方法:掌握一些简单的条件概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:条件概率定义的理解 教学难点:概率计算公式的应用 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学设想:引导学生形成“自主学习”与“合作学习”等良好的学习方式。 教学过程: 一、复习引入: 探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小. 若抽到中奖奖券用“Y ”表示,没有抽到用“Y”,表示,那么三名同学的抽奖结果共有三种可能:Y Y Y,Y Y Y和Y Y Y.用 B 表示事件“最后一名同学抽到中奖奖券”, 则B 仅包含一个基本事件Y Y Y.由古典概型计算公式可知,最后一名同学抽到中奖奖券的概 率为 1 () 3 P B=. 思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率 又是多少? 因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y Y Y和Y Y Y.而“最后一名同学抽到中奖奖券”包含的基本事件仍是Y Y Y.由古典概型计算公式 可知.最后一名同学抽到中奖奖券的概率为1 2 ,不妨记为P(B|A ) ,其中A表示事件“第 一名同学没有抽到中奖奖券”. 已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢? 在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件A 一定会发生,导致可能出现的基本事件必然在事件A 中,从而影响事件B 发生的概率,使得P ( B|A )≠P ( B ) . 思考:对于上面的事件A和事件B,P ( B|A)与它们的概率有什么关系呢? 用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={Y Y Y, Y Y Y,Y Y Y}.既然已知事件A必然发生,那么只需在A={Y Y Y, Y Y Y}的范围内考虑问题,

九上数等可能条件下的概率

等可能条件下的概率 一、知识点梳理 知识点1、概率的定义: 表示一个事件发生的可能性大小的数叫做该事件的概率.知识点2、概率的表示方法: 等可能条件下的概率的计算方法:()m P A n = 说明: 1、其中m表示事件A发生可能出现的结果数,n表示一次试验所有等可能出现的结果数. 2、由于我们所研究的事件大都是随机事件.所以其概率在0和1之间. 概率是0表示该事件不可能发生,而概率是1则表示该事件一定发生或必然发生. 3、例如在抛掷一枚骰子的试验中,朝上的点数出现的所有等可能的结果共有6种(1、2、3、 4、 5、6)如果我们关注的“点数不大于4”,那么这一事件发生的可能结果有4种(朝 上的点数分别为1、2、3、4)所以P(点数不大于4)=42 63 = 知识点3、等可能性: 设一个试验的所有可能发生的结果有n个,它们都是随机事件 ....,每次试验有且只有 ....其中 的一个 ..结果出现,而且每个结果出现的机会均等 ....,那么我们说这n个事件的发生是等可能的,也称这个试验的结果具有等可能性. 说明:无论是试验的所有可能产生结果是有限个,还是无限个,只有具备下列几个特征:①在试验中发生的事件都是随机事件②在每一次试验中有且只有一个结果出现③每个结果出现机会均等.这样的试验结果才具有等可能性. 知识点4、频率与概率 在试验中,某一事件发生的频率是指该事件出现的次数与试验的总次数的比值,而这一事件发生的概率是指该事件发生的可能性的大小. 说明: 1、一个事件发生的频率在概率的附近上下波动,试验的次数越多,事件发生的频率就越接近该事件发生的概率 2、频率是经过试验得到的结果,而概率是经过理论分析的预测值或理论值.两者是不同的.当试验的次数很多的时候,频率就趋近于概率. 知识点5、转盘与概率 从圆心开始将圆盘划分几个扇形区域,做成一个可以自由转动的安有指针的转盘,这样由于转盘转动的随机性,就可以根据指针所指向的扇形区域占整个圆面积的大小,来确定指针指向某一特定的区域的概率. 如图,指针固定在原点当转盘转动后,指针指向A、B、C、D四个区域是等可能的(因 为四个扇形的圆心角都是90度)所以指针指向每个区域的概率都是 4 1

哈工大概率论与数理统计课后习题答案二

习 题 二 1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率. 解 设i A =‘任取一件是i 等品’ 1,2,3i =, 所求概率为 13133() (|)() P A A P A A P A =, 因为 312 A A A =+ 所以 312()()()0.6 0.30.9 P A P A P A =+=+= 131()()0. 6P A A P A == 故 1362 (|)93 P A A = =. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率. 解 设A =‘所取两件中有一件是不合格品’ i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则 12A B B =+ 112 464 122 21010 ()()()C C C P A P B P B C C =+=+, 所求概率为 2 242112 464()1 (|)()5 P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率. 解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为 33 6113333 611511/()()2 (|)()()//3 C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率. 解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则 345A B B B =++, 所求概率为

等可能条件下的概率--知识讲解

等可能条件下的概率--知识讲解 【学习目标】 1.知道试验的结果具有等可能性的含义; 2.会求等可能条件下的概率; 3.能够运用列表法和树状图法计算简单事件发生的概率. 【要点梳理】 要点一、等可能性 一般地,设一个试验的所有可能发生的结果有n个,它们都是随机事件,每次试验有且只有其中的一个结果出现.如果每个结果出现的机会均等,那么我们说这n个事件的发生是等可能的,也称这个试验的结果具有等可能性. 要点二、等可能条件下的概率 1.等可能条件下的概率 一般地,如果一个试验有n个等可能的结果,当其中的m个结果之一出现时,事件A 发生,那么事件A发生的概率P(A)=m n (其中m是指事件A发生可能出现的结果数,n 是指所有等可能出现的结果数). 当一个随机事件在一次试验中的所有可能出现的结果是有限个,且具有等可能性时,只需列出一次试验可能出现的所有结果,就可以求出某个事件发生的概率. 2.等可能条件下的概率的求法 一般地,等可能性条件下的概率计算方法和步骤是: (1)列出所有可能的结果,并判定每个结果发生的可能性都相等; (2)确定所有可能发生的结果的个数n和其中出现所求事件的结果个数m; (3)计算所求事件发生的可能性:P(所求事件)=m n . 要点三、用列举法计算概率 常用的列举法有两种:列表法和画树状图法. 1.列表法 当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法. 列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法. 要点诠释: (1)列表法适用于各种情况出现的总次数不是很大时,求概率的问题; (2)列表法适用于涉及两步试验的随机事件发生的概率. 2.树状图 当一次试验要涉及3个或更多个因素时,为了不重不漏地列出所有可能的结果,通常采用树形图,也称树形图、树图. 树形图是用树状图形的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法. 要点诠释: (1)树状图法同样适用于各种情况出现的总次数不是很大时,求概率的问题; (2)在用树状图法求可能事件的概率时,应注意各种情况出现的可能性务必相同.

概率论答案第二册

华东理工大学 概率论与数理统计 作业簿(第二册) 学 院 ____________专 业 ____________班 级 ____________ 学 号 ____________姓 名 ____________任课教师____________ 第四次作业 一. 填空题: 1.设事件A,B 相互独立,且5.0)(,2.0)(==B P A P ,则)(B A B P ∪= 4/9 2. 设A 、B 、C 两两独立,且ABC=Φ, P(A)=P(B)=P(C)< 21, 16 9)(=∪∪C B A P 则P(C)= 0.25 3. 已知事件A,B 的概率()0.4,()0.6P A P B ==且()0.8P A B ∪=,则(|)P A B = 13,(|)P B A =1 2 。 4. 已知()0.3,()0.5P A P B ==,(|)0.4P A B =,则()P AB = 0.2,()P A B ∪= 0.6, (|)P B A = 2 3 。 二. 选择题: 1. 设袋中有a 只黑球,b 只白球,每次从中取出一球,取后不放回,从中取两次,则第二次取出黑球的概率为( A );若已知第一次取到的球为黑球,那么第二次取到的球仍为黑球的概率为( B ) A.)(b a a + B.11?+?b a a C. )1)(() 1(?++?b a b a a a D.2 2)(b a a + 2.已知()0.7,()0.6,()0.6,P A P B P B A ===则下列结论正确的为( B )。 A .A B 与互不相容; B .A B 与独立; C .A B ?; D .()0.4P B A =.

条件概率练习题

条件概率 一、选择题 1.下列式子成立的是( ) A .P (A | B )=P (B |A ) B .0

概率论与数理统计练习题参考答案(2)

杭州师范大学《概率论与数理统计 》练习题(2)参考答案 命题教师 杨益民 一、单选题(在每小题的四个备选答案中选出一个正确答案,并将正确答案的序号填入题后的括号内。每小题5分,共30分。) 一、填空(共30分,每空格5分) 1.两封信随机地投入到四个邮筒,则第一个邮筒内只有一封有信的概率是: ( B ) A.0.25 B.0.375 C.0.45 D.0.98 2.袋内装有两个5分、三个2分、五个1分的硬币,任意取出5个,求总数不超过1角的概率。 ( B ) A.0.25 B.0.5 C.0.45 D.0.6 3.有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。由甲袋任取一个球放入乙袋,再从乙袋中取出一个球,求取到黑球的概率。 ( A ) A.7 12 B.0.3 C.0.45 D.0.55 4.已知ξ~(){ (0)0x c e x a x λλλ?->>=,,其它 则常数c 的值是 ( A ) A.a e λ B.1 C.2 D. 12 5、已知某炼铁厂的铁水含碳量在正常生产情况下服从正态分布,其方差 220.108σ=。现在测定了9炉铁水,其平均碳含量为4.484。,若要求有95%的可靠性,则该厂铁水平均碳含量的置信区间是 ( A ) A.4.484 1.96 4.484 1.96μ<<+ B. 4.484 2.58 4.484 2.58μ<<+ C. 22 4.484 1.96 4.484 1.96μ- <<+

D. 22 4.484 2.58 4.484 2.58μ<<+ 6.某商店为了了解居民对某种商品的需要,调查了100家住户,得出每户每月平均需要量为10kg,方差为9。如果这个商店供应1000户,试就居民对该种商品的平均需求量进行区间估计(α=0.01),并依此考虑最少要准备多少这种商品才能以0.99的概率满足需要。( B ) A.(10 1.96,10 1.96)-+ B. (10 2.58,10 2.58) C. (10 1.96,10 1.96)-+ D. (10 2.58,10 2.58) 二、名词解析 (每小题5分,共10分。) 7.贝叶斯定理: 如果事件A 1,A 2,构成一个完备的事件组,并且都具有正概率, 则对任何一个事件B,有: ()()() ()() 1 m i m n i i i P A P B A P A B P A P B A == ∑ 8.随机变量序列{} n ξ依概率收敛于a 。 若存在常数a ,使对任何0,ε>有{}lim 1,n n P a ξε→∞ -<=则称随机变量序列{} n ξ依概率收敛于a 。 三、填空题(每空4分,共16分。)

相关文档