文档库 最新最全的文档下载
当前位置:文档库 › TOFD与超声波相控阵检测技术特点比较

TOFD与超声波相控阵检测技术特点比较

TOFD与超声波相控阵检测技术特点比较
TOFD与超声波相控阵检测技术特点比较

TOFD与超声波相控阵检测技术特点比较TOFD方法具有超声成像技术,它通过采用一发一收探头布置,然后要求相应的探头入射点间距离,在平板对接焊缝、环焊缝方面具有很大的优势,下面是小编搜集的一篇探究TOFD与超声波相控阵检测技术特点的论文范文,欢迎阅读查看。目前我国无损检领域应用最广泛的是TOFD技术,业界人士已经普遍认可了TOFD技术,这项技术在我国的工业领域已经有了数不胜数的成功案例。21世纪初,我国引入了Isonic系列便携式超声波成像检测系统(以色列的IsonotronNDT公司出品),经由一系列的实际的对比以及验证加之不断改进和创新了的扫查器系统,TOFD技术被更多的应用到各工业现场检测中。TOFD方法具有超声成像技术,它通过采用一发一收探头布置,然后要求相应的探头入射点间距离,在平板对接焊缝、环焊缝及直径大于500mm的纵缝中厚板检测方面具有很大的优势,但是该技术也存在一些弊端,比如对于复杂几何形状的结构件、焊缝检测盲区等束手无策。到目前为止超声相控阵技术已经在我国发展了20年,在早期主要应用在医疗领域,利用该技术可以在实际的医学超声成像中对被检器官进行成像,有益于医学的不断发展和进步,但是由于很多客观因素的限制,比如系统的复杂性、固体中波动传播的复杂性及成本费用高等,使得该技术的应用面受限。在这种情况下,在超声相控阵成像领域应用压电复合材料、数据处理分析等高新技术是大势所趋,未来超声相控阵检测技术一定会得到更加广泛的应用。超声相控阵是采用多晶片控制声束聚焦技术,探头可以在同一位置实现很大声

束及角度范围内的电子扫查,适用于复杂几何形状结构件的检测。

下面对TOFD和相控阵的检测技术做简要对比。

1、TOFD的技术特点

1.1 TOFD的优点

TOFD技术不仅具有很强的缺陷检出能力,还具有很高的缺陷定量精度,除此之外还具有很高的时效性和安全性,可永久保存其检测数据。

①效率高:该技术只需要做线性扫查就可以对焊缝完成扫查,很大程度上扩大了单组探头检测对焊缝的覆盖范围大,远远超过了传统的检测方法。

②灵敏度高:由于该技术的衍射波信号具有很高的灵敏度,很大程度上保证了检出率。

③精度高:利用衍射时差计算方法,缺陷的高度可以得到精确的计算。

④影响小:该技术不会因焊缝结构或缺陷的方向性就左右最后的检测结果,其检测结果具有很高的稳定性,几乎不受其他因素的影响。

⑤漏检少:衍射波具有高灵敏度,通过图像记录完整检测数据,重复性好。

⑥数据全:检测结果的时效性很强,并且相关数据和资料会以存盘、打印出来等形式永久的保留下来,以便随时进行分析处理。

⑦更安全:采用该技术不会对相关人员造成人身伤害。

⑧更灵活:现场检测很方便,可以根据实际情况随意选择手动或自动方式。

⑨成本低:采用该技术不仅不需要其他耗材,还由于该技术不需要和工件直接接触,有效的减少了磨损,同时还能够耐高温接触面(可达200℃以上),评定缺陷时可在线应用相关的工程评定标准,修复缺陷时可最大限度的减少不必要的焊缝剖开。如此有效的减少了检测生产的时间间隔,也最大程度的避免了其他不利问题的出现,其成本远远低于传统的超声波探伤方法。

1.2 TOFD的局限性

①过高的灵敏度有时会夸大焊缝中的良性缺陷。

②焊缝两侧需要有放置探头的空间。

③存在检测盲区,即在工件的近表面(一般为2-10mm)。

④对相关工作人员的素质和能力要求很高。

⑤TOFD检测效率低:TOFD扫查有两种方式。一种是非平行扫查,另一种是平行扫查。平行扫查效率极低,但定量精度高,一般不采用此扫查方式,尽在实验室或对某一缺陷精确定量和定位时采用。非平行扫查速度快,但不能判定缺陷在焊缝的哪一侧,给定位增加难度,有时需要进行多次扫查来确定缺陷的位置,致使检测效率降低。检测中常采用非平行扫查方式。

⑥TOFD缺陷的评定:众所周知,TOFD技术不是基于幅度法进行检测的,检出率远高于其他检测方法(例如手动超声波检测、机械超声波检测及射线检测等)这是众所周知的事实。不论是大缺陷还是

小缺陷都能检出,这给缺陷评定增加难度,控制不好返修率相当高,甚至出现有的缺陷返修后看不见的现象。

2、超声波相控阵检测技术特点与优势

2.1 超声波相控阵与其他无损检测方法对比具有如下特点:

①采用电子方法控制声束聚焦和扫描,检测速度成倍提高。

a超声波束方向可自由变换。

b焦点可以调节甚至实现动态聚焦。

c探头固定不动便能实现超声波扇扫或者线扫。

d相控阵技术可进行电子扫描,比通常的光栅扫描快一个数量等级。

②具有良好的声束可达性,能对复杂集合形状的工件进行扫查。

a传统的检测方法应用单一,但超声波相控阵检测技术用一个相控阵探头,就能涵盖多种应用;b传统的检测方法对很多特定检测都束手无策,但超声波相控阵检测技术只需要一小巧的阵列探头,就可以轻松的解决各项检测任务。

③通常优化控制焦点尺寸、焦区深度和声束方向,可使检测分辨力、信噪比和灵敏度等性能得到提高。

④通常不需要辅助扫查装置,探头不与工件直接接触,数据以电子文件格式存储,操作灵活简便且成本低。

⑤仿真成像技术:解决几何复杂构建检测难题;现场实时生成几何形状图像;轻松指出缺陷真实特征位置;成像由各声束A扫数据产生;实际检测结合工艺轨迹追踪;可用于所有形式的焊缝检测,同步显示A、

B、S、

C、

D、P、3D扫描数据。

2.2 传统的扫描成像方式需要移动探头才可以实现

检测,而采用相控阵超声成像只需使用阵列换能器(探头)就可以实现对被检测试样一定声场范围内进行计算机控制的聚焦扫查。另外在B型、C型等扫描成像方式中的声束时有单探头发出的,由于其各项参数都是固定的,如果不移动探头位置,在整个视野范围内很难获得清晰一致的成像;而相控阵超声成像由于其各项参数是灵活多变的,即使是在不移动探头位置的前提下,也可以获得均匀一致、高分辨率的清晰图像。

虽然超声全息可以得到目标的立体像,但是由于其灵敏度和分辨率不高,并且所需设备复杂昂贵,现阶段还没有得到广泛的应用。而相控阵超声成像的检测灵敏度和分辨率大大高于超声全息,而且通过对各个方向扫描声束的探测结果进行计算重建,也可以得到被检物体的三维成像。如采用二维阵列探头,则可获得实时三维成像。

由于超声显微镜的成像所用的换能器频率高,所以其分辨率高,但弊端是只适用于探查物体表面和近表面微观结构;而相控阵超声由于不用很高的频率,其分辨率相对较低,但可以对较厚的大工件进行内部成像检测。

3、结论

综上所述:超声波相控阵检测技术以其灵活的声束偏转和聚焦性能越来越引起人们的重视。在不远的将来,超声波相控阵检测技术必将会以其无可比拟的优越性替代其他成像检测技术,使得无损检测技

术越来越方便的应用于工业领域。

参考文献:

[1]迟大钊,刚铁,高双胜。超声TOFD法检测信号相位识别技术[J].焊接学报,2011(09).

[2]陈业汉,范良,孙小兵,张晓斌.TOFD检测中变形波信号和非相关信号的识别[J].无损检测,2011(01).

[3]刘富君,丁守宝,胡东明,郭小联,孔帅.国内TOFD检测技术的应用进展(英文)[J].无损检测,2009(10).

[4]陈亮,张定国.全自动相控阵超声波检测与常规无损检测技术在海底管线检测中的比较[J].无损检测,2008(03).

[5]薛振奎,白世武,詹华,夏欣.国内长输管道对接环焊缝相控阵全自动超声检测装置的研制[J].焊管,2006(04).

[6]王春茂,祝卫国,袁涛,申孝民.基于声发射和超声TOFD的在线检验技术研究及应用[J].石油和化工设备,2009(03).

超声相控阵检测教材-第四章-超声检测设备探头及试块

第四章超声相控阵检测设备、探头及试块 4.1 相控阵检测的设备 4.1.1 相控阵检测设备概述 1、设备的作用 相控阵检测设备时超声波相控阵检测的主体设备,它的作用是通过改变相控阵探头晶片的激发接受延迟产生超声波,同时将探头送回的电信号进行放大,通过一定图像方式显示出来,从而得到被检测工件内部有无缺陷及缺陷位置和大小等信息。 2、相控阵检测设备系统结构 超声相控阵检测设备主要包括超声发射部分和接收部分,目前国内外大型超声检测设备的系统设设计方案主要有三种:发射与接收分离系统;发射与接收集成且发射与接收板集成和发射与接收集成但是发射与接收板级分离。它们的优缺点如下所示。

数字相控阵超声成像检测系统是一个复杂的系统,通道数多,而且通道之间一致性要求很高,为了较高的综合指标,采用发射与接收集成但是发射与接收板级分离的方案。板卡之间通过总线相连。 总线的带宽对于系统的性能也有着较大的影响,也是系统设计的关键之一。目前仪器系统中采用的总线主要有PXI总线和VXI总线。 表4-1 PXI总线与VXI总线对比

PXI VXI 总线宽度32/64b32b 数据交换能力132/328Mb/s40/80Mb/s 集成度高高 接口开发方便方便 价格低高 4.1.2 数字相控阵超声成像检测硬件系统 数字相控阵超声成像检测的硬件系统,其内容包括相控阵超声发射和接收电路、前置放大与阻抗转换、程控放大、滤波与检波、A/D转换、同步与相位延迟控制、程控与逻辑控制等硬件。 图4-1 数字相控阵超声成像检测硬件系统 4.1.2.1 数字相控阵超声发射电路 (1)发射电路有较高的发射效率。原因是相控阵超声系统的通道数比较多,系统的发射功率和散热是一个非常重要的问题。相关研究表明,当探头的激励脉冲宽度为探头中心频率对应周期的一半时,发射电路的发射效率较高。由于检测不同的工件需要使用不同频率的探头,为保证系统较高的发射效率,在设计相控阵超声发射电路时,需要所设计的发射电路能够调节激励脉宽。 (2)由于相控很超声检测对通道之间的一致性要求比较高,因此要求发射电路通道间一致

使用相控阵进行超声检测的常规步骤

使用相控阵 进行超声检测的常规步骤 2006.5.1 制作者:马克.戴维斯 美国无损检测学会超声三级 奥林巴斯无损检测

免责条款 使用这个程序之前仔细阅读下面的内容,你确信可以接受下面所有的条款和条件。 1.这个程序没有进行任何形式的授权,提供给客户的仅仅是一个最基本的原理,使用此程序的全部风险和后果由消费者和最终用户承担,奥林巴斯无损检测和戴维斯不能做出明确的和含蓄的保证,但是不包括商业上的承诺,要尊重此程序。 2.无论使用这个程序所产生的任何直接的、间接的和附带的损害结果,奥林巴斯无损检测和戴维斯不承担任何责任,包括商业利益的损失、商业中断、商业信息的丢失等等,在这个程序派生出来的其他技术,在这个协议之外或者不能使用这个程序,奥林巴斯已经考虑到这个损害的可能性。

目录 1.0 目的 2.0 范围 3.0 参考书目 4.0 超声相控阵检测设备 5.0 相控阵设备的线性 6.0 相控阵探头可操作确认 7.0 相控阵系统校准 8.0 表面处理 9.0 扫查覆盖和扫查方法 10.0 记录评价标准和波幅判断 11.0 检测后的清理 12.0 文件 附录1 相控阵术语学 附录2 相控阵内不可用晶片的评价指导方针附录3 超声信号的缺陷定性 附录4 相控阵确定缺陷的尺寸

1.0目的 1.1这个程序提供了手动和带编码器的相控阵检测焊缝和母材的 必要条件。 1.2这个程序也对相控阵的以下几个方面很有用 1.2.1 探测 1.2.2 定性 1.2.3 缺陷长度 1.2.4 缺陷位置:距离上表面或者下表面 1.2.5 缺陷尺寸:向内表面或者外表面延伸的连接裂纹 2.0 应用范围 2.1 此程序可以用于一般的相控阵检测,也可以用于炭钢和不锈钢的焊缝和母材的检测 2.2 这个程序可应用在0.5到1英寸的厚度上,为了和程序保持一致,有效的范围要乘以0.5到1.5倍(举个例子:最小的尺寸是0.25英寸,和最小的一样最大的尺寸是1 .5英寸)。 2.3 当需要一个标准的时候,此程序的设计论证了奥林巴斯无损检测相控阵系统Omniscan是符合美国机械工程师协会的标准。 2.4 使用Omniscan 相控阵系统做一个标准的测试演示实例。 2.5 针对产品外形和材料的特殊要求,设计一个大概的相控阵检测计划。 3.0 参考书目 3.1美国机械工程师协会,锅炉和压力容器标准,第四章第五节,

超声波检测技术

超声工业测量技术 在非电量电测技术中,许多非电量可以通过电学方法加以测定,同样,许多非声量也可通过声学方法来加以测定,这就是所谓超声工业测量技术。非电量的电测主要是通过一些元件的电阻、电容或电感等量来进行的。在超声工业测量技术中,非声量的测定也往往是通过某些媒质声学特性(主要是声速、声衰减和声阻抗率等)的测量来进行的。 超声工业测量技术中应用最广的是媒质的声速这一物理量。 第一,媒质的声速与媒质 的许多特性有直接或间接的关系。有些关系非常简单直接,已有精确的理论公式,例如,在测定声速和密度后,就可求出媒质的弹性模量。有些关系比较间接而且复杂,但在特定的条件下,仍可以建立一些半理论或纯经验的关系式,例如,媒质的成分,混合物的比例,溶液的浓度,聚合物的转化率,某些液体产品的比重,某些材料的强度等等,都可与声速建立一定的关系,利用这些关系,就熊通过测量声速来测定这些媒质的非声特性。上述原则是声速分析仪的基本原理。 第二,媒质的声速与媒质所处的状态也有相互关系。例如,媒质的温度、压强和流速等状态参量的变化都会引起相应的声速的变化。如声学温度计、超声波风速仪和超声流量计就是用这一类关系来测量温度或流量的。 第三,其他应用,例如在声速c已经测知的媒质中,可以利用声波传播距离L和传播时间t 的关系L=ct,或利用波长λ和频率f(或周期T)之间的关系c=fλ=λ/T,进行超声测距的应用。如超声液位计和超声测厚计就是这一方面的典型应用技术。 声阻抗率方法也是一种较常用于媒质特性分析的技术。在这种技术中,所测定的声学 量是换能器对媒质的辐射阻抗率。如果换能器在媒质中所激起的是平面纵波行波,则辐射阻抗率就是声阻率ρc。当两种媒质的声速c几乎相同,但密度ρ有很大不同时,往往就可根据ρc的测量来加以区别。在同时测得声速的情况下,也可用这种方法来测量液体的密 度p或弹性模量ρc2等。如果换能器在液体媒质中激起的是切变行波,其声阻抗率将与 成正比,η是液体的粘性,这就是超声粘度计的原理。如果换能器是在流体中作弯曲振动的,则其辐射声抗率将与流体的密度p有关,因而使换能器的共振频率随p而变化,这也是一种可以精确测定液体密度的原理。 遇到需要采用声学方法来测定一个非声量的情况时,在声速、衰减和阻抗这三种技术途径中,应按什么准则来决定取舍呢?第一是看要测的非声量究竟与那一个声学量的关系比较明显。这就是说,相应于同样大小的非声量的变化,如果某一声学量能够有最大的变化,这一声学量就比较值得考虑。第二,应该考虑到声速、衰减和声阻抗率都是随很多因素变化的,除待测的那种非声量外,其他媒质特性或媒质状态的变化往往也会引起声学量的变化,对于须测的非声量来说,这些其他因素引起的变化就是一种干扰。因此,选用某种声学量的途径时,应注意干扰因素要尽可能少,干扰影响要尽可能小,或可采用切实可行的补偿措施来避免这些干扰。第三,挑选技术途径时必须注意满足现场的使用、安装和维护等条件并应达到要求的精度,在这一前提下还应力求稳定耐久和方便可靠,才能有较高的实用价值。上述准则只是一些原则性的意见,还应根据具体情况作具体的考虑。 声发射检测技术 材料或结构受外力或内力作用产生形变或断裂 ,以弹性波的形式释放出应变能的现象称为声发射。各种材料声发射的弹性波的频率范围很宽 ,从次声频、声频到超声频 ,因此 ,

超声相控阵检测教材-第七章-ISONIC相控阵操作说明

ISONIC相控阵设备操作指南焊缝高级检测软件功能

一、进入检测界面 1、根据所使用的仪器进入相控阵检测模式,在相控阵界面下点击,见图1所示。 图1 2、点击进入选项模式,见图2所示。 图2 3、点击进入焊缝检测模式。见图3所示。

图3 4、相控阵探头选择 根据检测选用的相控阵探头选择相应的探头型号,如图4所示,图4右上角所显示的即为探头楔块及探头的参数。如果在“选择探头”的下拉选项中无检测所用的探头型号,则点击手动输入探头及楔块的参数进行保存。然后点击。 图4

5、点击进入相控阵扇形扫描参数设置界面,如图5所示。 图5

二、检测参数设置: 1、基础参数设置: ●增益:根据检测对象所需的检测灵敏度进行设置。 ●声程:根据检测对象设置声程范围。 ●声速:设置为横波声速(例如:钢中横波声速为3230m/s)。 ●显示延迟:就是常说的“零偏”设置。点击(如图6所示),通过点击左键或 右键,将“表面补偿”设置为激活状态(如图7、图8所示),点击,仪器将自动校准“零偏”。自动校准后的显示延迟将会自动修正为探头延迟,如图6所示。 注: 此处“表面补偿”为调节检测参数时所选用的入射角度(“激发设置”中所选取的调节检测参数的入射角度)在探头楔块中传播的延时,及探头延时,仪器自动校准“表面补偿”,即零偏后,显示延迟与“测量参数”中的探头延迟相同。“测量参数”中的探头延迟,当选定入射角度后,仪器自动计算生成,所以是不可修改的,调节的左键右键为灰色图标。如图9、图10所示。 本次示例选择的入射角度为55°,探头延时为13.45us。 图6

图7 图8

超声相控阵检测教材超声相控阵技术

第三章超声相控阵技术 3.1 相控阵的概念 3.1.1相控阵超声成像 超声检测时,如需要对物体内某一区域进行成像,必须进行声束扫描。相控阵成像是通过控制阵列换能器中各个阵元激励(或接收)脉冲的时间延迟,改变由各阵元发射(或接收)声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方位的变化,从而完成相控阵波束合成,形成成像扫描线的技术,如图3-1所示。 图3-1 相控阵超声聚焦和偏转

3.2 相控阵工作原理 相控阵超声成像系统中的数字控制技术主要是指波束的时空控制,采用先进的计算机技术,对发射/接收状态的相控波束进行精确的相位控制,以获得最佳的波束特性。这些关键数字技术有相控延时、动态聚焦、动态孔径、动态变迹、编码发射、声束形成等。 3.2.1相位延时 相控阵超声成像系统使用阵列换能器,并通过调整各阵元发射/接收信号的相位延迟(phase delay),可以控制合成波阵面的曲率、指向、孔径等,达到波束聚焦、偏转、波束形成等多种相控效果,形成清晰的成像。可以说,相位延时(又称相控延时)是相控阵技术的核心,是多种相控效果的基础。 相位延时的精度和分辨率对波束特性的影响很大。就波束的旁瓣声压而言,文献研究表明,延时量化误差产生离散的误差旁瓣,从而降低图像的动态范围。其均方根(RMS)延时量化误差与旁瓣幅值之比为 (式3-1) 式中,; N-----阵元数目; μ----中心频率所对应一个周期与最小量化延时之比。 图3-2示出了延时量化误差引起的旁瓣随N、μ变化的关系曲线。早期的超声成像设备如医用B超中,由LC网络组成多抽头延迟线直接对模拟信号进行延迟,用电子开关来分段切换以获得不同的延迟量。这种延迟方式有两大缺点:①延迟量不能精细可调,只能实现分段聚焦,当聚焦点很多时需要庞大的LC网络和电子开关矩阵;②由于是模拟延迟方式,电气参数难以未定,延时量会发生温漂、时漂、波形容易被噪声干扰。

超声相控阵检测系统

超声相控阵检测系统

超声相控阵检测系统 摘要:在无损检测领域里,超声检测凭借可靠、安全、经济的优势,得到了越来越广泛的应用。超声相控阵系统由于具有独特的线性扫查、动态聚焦、扇形扫描的特点,成为近几年超声检测领域里的一个研究热点。本文介绍了超声相控阵的发展、在工业领域中的应用以及国内外现状。简述了超声相控阵系统工作原理、主要特点及相控阵系统的探头、超声发射接收电路、超声成像部分。说明了超声相控阵的研究在无损检测领域里具有广阔的应用前景。 关键词:无损检测;超声相控阵;相控阵探头;超声成像 Ultrasonic phased array testing system Liu Shengchun (College of information and communication Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China) Abstract:In non-destructive detecting field, depending on the superiorities of credibility, security and economy, ultrasonic detecting is getting more and more broad application. Ultrasonic phased array system which has characteristics of linearity scanning , dynamic focus and sector scanning, is becoming a hot research in the ultrasonic detecting field in recent years.This paper introduce the development, status quo of ultrasonic phased array, and its application in industry. Briefly describe its work principle, main characteristic and phased array system including probe,ultrasonic transmitting and receiving circuit and ultrasonic imaging. It illuminates that there is a wide application foreground of ultrasonic phased array's research in non-destructive detecting field. Key words:Non-destructive defecting;Ultrasonic phased array;Phased array probe;Ultrasonic imaging 1 引言 超声相控阵技术已有40多年的发展历史,初期,由于系统的复杂

超声监测专业技术的新应用

超声监测技术的新应用

————————————————————————————————作者:————————————————————————————————日期:

超声监测技术的新应用 超声检测技术是一门以物理、电子、机械以及材料学为基础,各行各业都在使用的通用技术之一,他是通过超声波的产生、传播及接受的物理过程完成的。目前,超声波技术广泛应用于工业领域的很多方面。 其中超声探伤检测是无损探伤中最为重要一种方法,由于超声波具有穿透能力强、对材料人体无害、使用方便等特点,可对各种锻件、轧制件、铸件、焊缝等进行内部缺陷检测,因而得到广泛应用。 此外利用超声波的各种特性,超声技术还应用于金属与非金属材料厚度测量、流量测量、料位及液位检测与控制、超声波零件清洗等工业领域。 本文主要介绍超声技术在设备故障检测及诊断方面的最新应用。 一.压力及真空系统的泄漏检测 当气体在压力下通过限流孔时,它从一个有压层流变为低压紊流(参见图1)。紊流产生所谓的“白噪声”广谱声音。在这种白噪声中含有超声波分量。因为泄漏部位的超声最大,探测这些信号通常是非常简单的。 目前已有成熟的超声检测专用仪器,可将探测到的超声波信号转换为人耳可听见的音频信号,适用于各种泄漏检测。(参见附录) 泄漏可以在压力系统或真空系统中出现。在这二种系统中,超声的产生方式如上所述。二者之间唯一不同的是真空泄漏产生的超声波振幅通常小于同等流速的压力泄漏。其原因在于真空泄漏产生的紊流是发生在真空室内,而压力泄漏产生的紊流出现在大气中 什么样的气体泄漏采用超声波探测呢?一般来说,不管何种气体,包括空气在内,只要它从限流孔泄出时产生紊流,就可以用超声波探测。与气体专用的传感器不同,超声检测是属于声音专用检测。气体专用传感器仅能用于它所能辨别的具体气体(如氦)。而超声检测能辨别出任何类型的气体,因为它探测的是泄漏紊流所产生的超声。

无损检测新技术-超声波相控阵检测技术简介

无损检测新技术-超声波相控阵检测技术简介 夏纪真 无损检测资讯网 https://www.wendangku.net/doc/8a18949365.html, 广州市番禺区南村镇恒生花园14梯701 邮编:511442 摘要:本文简单介绍了超声波相控阵检测技术的基本原理、应用与局限性 关键词:无损检测超声检测相控阵 1 超声波相控阵检测技术的基本原理 超声波相控阵检测技术是一种新型的特殊超声波检测技术,类似相控阵雷达、声纳和其他波动物理学应用,依据惠更斯(Huyghens-Fresnel)原理:波动场的任何一个波阵面等同于一个次级波源;次级波场可以通过该波阵面上各点产生的球面子波叠加干涉计算得到。 并显示保真的(或几何校正的)回波图像,所生成材料内部结构的图像类似于医用超声波图像。 常规的超声波检测技术通常采用一个压电晶片来产生超声波,一个压电晶片只能产生一个固定的声束,其波束的传递是预先设计选定的,并且不能变更。 超声波相控阵检测技术的关键是采用了全新的发生与接收超声波的方法,采用许多精密复杂的、极小尺寸的、相互独立的压电晶片阵列(例如36、64甚至多达128个晶片组装在一个探头壳体内)来产生和接收超声波束,通过功能强大的软件和电子方法控制压电晶片阵列各个激发高频脉冲的相位和时序,使其在被检测材料中产生相互干涉叠加产生可控制形状的超声场,从而得到预先希望的波阵面、波束入射角度和焦点位置。因此,超声波相控阵检测技术实质上是利用相位可控的换能器阵列来实现的。超声波相控阵激发的超声波进入材料后,仍然遵循超声波在材料中的传播规律。因此,对于常规超声波检测应用的频率、聚焦的焦点尺寸、聚焦长度、入射角、回波幅度与定位等等,超声波相控阵也是同样应用的。 超声波相控阵探头的每个压电晶片都可以独立接受信号控制(脉冲和时间变化),通过软件控制,在不同的时间内相继激发阵列探头中的各个单元,由于激发顺序不同,各个晶片激发的波有先后,这些波的叠加形成新的波前,因此可以将超声波的波前聚焦并控制到一个特定的方向,可以以不同角度辐射超声波束,可以实现同一个探头在不同深度聚焦(电子动态聚焦)。此外,从电子技术上为阵列确定相位顺序和相继激发的速度可以使固定在一个位置上的探头发出的超声波束在被检工件中动态地“扫描”或“扫调”通过一个选定的波束角范围或者一个检测的区域,而不需要对探头进行人工操作。相控阵探头的关键特性包括:电子焦距长度调整、电子线性扫描和电子波束控制/偏角。 图1示出了超声波相控阵换能器实现电子聚焦和波束偏转的原理示意图。 图1超声波相控阵换能器实现电子聚焦和波束偏转的原理示意图超声波相控阵换能器的晶片不同组合构成不同的相控阵列,目前主要有三种阵列类型:线形阵列(晶片成间隔状直线形分布在探头中)、面形(二维矩阵)阵列和圆(环)形阵列,

超声相控阵检测教材-第三章-超声相控阵技术

第三章超声相控阵技术 3.1相控阵的概念 3.1.1相控阵超声成像 超声检测时,如需要对物体内某一区域进行成像, 必须进行声束扫描。相控阵成像是通 过控制阵列换能器中各个阵元激励(或接收)脉冲的时间延迟,改变由各阵元发射(或接收) 声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方位的变化,从而完成相 控阵波束合成,形成成像扫描线的技术,如图 3-1所示。 图3-1 相控阵超声聚焦和偏转

3.2相控阵工作原理 相控阵超声成像系统中的数字控制技术主要是指波束的时空控制, 采用先进的计算机技 术,对发射/接收状态的相控波束进行精确的相位控制,以获得最佳的波束特性。这些关键 数字技术有相控延时、动态聚焦、动态孔径、动态变迹、编码发射、声束形成等。 3.2.1相位延时 相控阵超声成像系统使用阵列换能器,并通过调整各阵元发射 /接收信号的相位延迟 (phase delay ),可以控制合成波阵面的曲率、指向、孔径等,达到波束聚焦、偏转、波束 形成等多种相控效果,形成清晰的成像。可以说,相位延时(又称相控延时)是相控阵技术 的核心,是多种相控效果的基础。 相位延时的精度和分辨率对波束特性的影响很大。 就波束的旁瓣声压而言, 文献研究表 明,延时量化误差产生离散的误差旁瓣,从而降低图像的动态范围。其均方根( ,r . / \ 诙爲 式中, 一-—— N-----阵元数目; 尸--中心频率所对应一个周期与最小量化延时之比。 图3-2示出了延时量化误差引起的旁瓣随 N 、□变化的关系曲线。早期的超声成像设备 如医用B 超中,由LC 网络组成多抽头延迟线直接对模拟信号进行延迟, 用电子开关来分段 切换以获得不同的延迟量。这种延迟方式有两大缺点:①延迟量不能精细可调,只能实现分 段聚焦,当聚焦点很多时需要庞大的 LC 网络和电子开关矩阵;②由于是模拟延迟方式,电 气参数难以未定,延时量会发生温漂、时漂、波形容易被噪声干扰。 RMS )延 (式 3-1)

小径管对接焊接接头的相控阵超声检测

小径管对接焊接接头的相控阵超声检测 摘要:对小径管对接焊接接头中的裂缝、密集气孔、未焊透等缺陷进行相控阵超声波检测和射线检测,通过将两者的检测结果进行分析和比较,对两者的检测效果进行评价。本文主要是对相控阵超声波检测手段的优势和其在小管径检测中的应用进行了一定的分析,旨在推动相控阵超声波检测技术的广泛应用。 关键词:小径管对接焊接;接头;相控阵超声检测 引言 相控阵超声检测可以获取实时的检测结果,能够对工件的缺陷进行多种方式的扫描,是一种可以记录的无损检测方式。相控阵超声检测的主要优势就是声束角度和聚焦深度精确可控,声束可达性强,检测精度高,缺陷显示直观,检测速度快,是具有较高可靠性的检测技术,在工业领域有着颇为广泛的应用。笔者对小径管对接焊接接头中的缺陷进行了相控阵超声波检测,并且与射线检测结果进行了一定的比较分析。 一、相控阵超声检测技术 (一)相控阵超声检测技术的原理 相控阵超声检测方法主要是通过对换能器阵列中的单个阵元进行分别控制,以特定的时序法则进行激发和接收,进而实现声束在工件中的偏转和聚焦。采用自聚焦传感器能进一步增强聚焦能力和分辨力,有效的改善了小径管中波型畸变和杂波干扰的情况。 (二)试样管的焊制 小径管的试样管采用的是与广东省某电厂机组锅炉受热面管同规格同材质的管件,其中对接接头存在着一定的裂纹、未熔合、密集气孔有缺陷等问题,具体的示意图可以如下图1所示,焊接的方法主要是钨极氩弧焊。 图1 焊接接头简图 (三)相控阵检测系统 1、相控阵检测仪器 本次研究主要采用的仪器是phascan 32/128相控阵检测仪,Cobra16阵元自聚焦传感器,一次性激发16阵元。 2、相控阵检测探头和楔块 对于相控阵超声探头来说,它主要是阵列探头,在进行现场检测的时候要根据小径管的尺寸来对探头和楔块的型号和大小进行选择。一般来说,探头在进行使用的过程中,因为小径管的曲率过大,要将其和探头之间的耦合损失降低,就需要使用能够与小径管进行紧密切合的楔块,选择曲率相近的曲面。 (四)声束覆盖范围设置 在对小径管焊缝进行相控阵超声扇形扫查的时候,要对探头前沿到焊缝中心线的距离进行正确的选择,要保证在进行扇形扫查的时候大角度声束能够对焊缝的下面部分进行覆盖,小角度声束可以覆盖到焊缝的上面部分,进而达到对焊接接头的全面检测,避免出现遗漏。在对小径管对接接头进行检测的时候,还可以通过使用专业的软件来对声束覆盖范围进行模拟,然后对的不同角度的波束覆盖情况的进行模拟现实,通过这样的模拟结果可以找到适当的探头前沿距离和波束角度范围等等。 (五)相控阵检测校准设置

超声波检测新技术

超声波检测新技术-TOFD 摘要:本文通过简单介绍超声波检测中TOFD方法的物理原理和在无损探伤中的应用,提出了TOFD检测技术将会更加广泛应用于焊缝的无损检测工作中。TOFD检测技术的发展过程、TOFD检测的原理、优点及其局限性,对TOFD检测主要应用范围进行了阐述。给出了TOFD检测的一般工艺流程,并结合实际操作,说明了该技术的重要用途,对TOFD技术对缺陷精确定量进行了简要说明。 关键词:超声波;TOFD;检测 New technology of ultrasonic TOFD ABSTRACT: in this paper, the physical principle of TOFD in ultrasonic testing method is briefly introduced and applied in non-destructive inspection, put forward a nondestructive test technique for the detection of TOFD will be more widely used in the welding seam. TOFD detection technology development process, the TOFD detection principle, advantages and limitations of TOFD testing, main application range are described. The general process of TOFD detection is presented, and combined with the actual operation, explains the important uses of the technology, the TOFD technology of the precise and quantitative defects are introduced briefly. Keywords: ultrasonic; TOFD; detection 0 引言 TOFD(Time-of-flight-diffraction technique)检测技术于1977年,由英国Silk教授根据超声波衍射现象首次提出。现已在核电、建筑、化工、石化、长输管道等工业的厚壁容器和管道方面多有应用。TOFD技术的检测费用是脉冲回声技术的1/10。现在,TOFD检测技术在西方国家是一个热门话题,现已开始大量推广应用,几年以后,将有取代RT的可能。 2006年9月TOFD标准组成立暨首次会议上,中国特检院提出由全国锅容标委归口,2009年12月《固定式压力容器安全技术监察规程》(简称“新容规”)开始实施,后延至2010年11月正式实施。TOFD监测系统由计算机超声波探伤仪本体、发射探头、接收探头、前置放大器、光学或磁性编码器以及连接电缆组成。仪器能以不可更改的方式将所有扫描信号和TOFD图像存储于磁、光等永久介质,并能输出其硬拷贝。[1] 《固定式压力容器安全技术监察规程》第4.5.3.1无损检测方法的选择:压力容器的对接接头应当采用射线检测或者超声检测,超声检测包括衍射时差超声检测(TOFD)、可记录的脉冲反射法超声检测和不可记录的脉冲反射法超声检测;当采用不可记录的脉冲反射法超声检测时,应当采用射线检测或者衍射时差超声检测(TOFD)做为附加局部检测。第 4.5.3.4.2超声检测技术要求:采用衍射时差超声检测(TOFD)的焊接接头,合格级别不低于II级。[2] 1 TOFD检测的原理和应用 1.1 基本原理 TOFD检测原理:当超声波遇到诸如裂纹等缺陷时,将在缺陷尖端发生叠加到正常反射波上的衍射波,探头探测到衍射波,可以判定缺陷的大小和深度。也可理解为当超声波在存在缺陷的线性不连续处,如裂纹等处出现传播障碍时,在裂纹端点处除了正常反射波以外,还要发生衍射现象。 两束衍射波信号在直通波与底面反射波之间出现。缺陷两端点的信号在时间上将是可分辨的,根据衍射波信号传播的时间差可判定缺陷高度的量值。因为衍射波分离的空间(或时间)与裂纹高度直接相关。[3] 非平行扫查一般作为初始的扫查方式,用于缺陷的快速探测以及缺陷长度、缺陷自身高度的

相控阵超声新技术在电站设备无损检测中的实践思路探索(正式版)

文件编号:TP-AR-L2243 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 相控阵超声新技术在电站设备无损检测中的实践思路探索(正式版)

相控阵超声新技术在电站设备无损 检测中的实践思路探索(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 超声相控阵检测技术20世纪60年代就已经出 现,被应用于医疗领域。但是由于固体中波动传播复 杂性、系统复杂性和成本费用高等因素存在,限制了 超声相控阵检测技术在无损检测中的运用。而电子技 术和计算机技术以及压电复合材料等高新技术被广泛 综合应用,促进了超声相控阵技术发展,并且渐渐应 用到工业无损检测中。 现代技术飞速发展,带动了很多高新技术在超声 相控阵技术中被综合应用,从而降低了相控阵系统复 杂性与制作费用[1]

。而且相控阵技术具有比传统超声波检测更加明显的优势,使得超声相控阵检测技术被广泛应用于工业无损检测领域,并且日渐得到人们重视,迎来了很大的发展空间。 超声相控阵检测技术 超声相控阵检测技术建立在惠更斯原理上,其探头由许多个晶片组成。要应用时,则需要按照相关规则以及时序激活探头中一组或全部晶片,其中相控阵仪器的控制能力与检测需要决定着晶片激活数量。晶片被激活后,发出的超声波即为次波。每一个晶片的次波会彼此干涉,形成新波阵面并传播开来,从而形成超声波束检测工件。 无损检测技术 无损检测就是在不损坏被检测设备的基础上,根据物理特性将被检对象的内外部缺陷的位置、形状、

超声波检测技术的实验原理和方法

实验超声波检测 一、实验目的 1、了解超声波检测的基本原理和方法; 2、了解超声波检测的特点和适用范围; 3、掌握斜探头横波探伤的距离-波幅(DAC)曲线制作方法。 二、实验设备器材 1、ZXUD-40E型智能超声波探伤仪 ZXUD-40E型数字式超声波探伤仪是小型化的便携式超声波探伤仪器,特别适用于材料缺陷的评估和定位、壁厚测量等,适合各种大型工件和高分辨率测量的要求。

⑴仪器外观如图9-1所示:

图9-1 仪器外观 当连接仅带有一个超声晶片的探头(自发自收)时,可以任意插入一个仪器上的探头连接器。 当连接带有双超声晶片的探头(一个为发射晶片,一个为接收晶片)或连接两个探头(一个发射探头,一个接收探头)时,必须注意:发射的一端接入左边一个探头连接器插孔,接收的一端接入右边一个探头连接器插孔,如图9-1所示。 ⑶键盘及其功能 图9-2ZXUD-40E的薄膜键盘按键排列 仪器包含27个按键。这些按键分成5大类:电源键、方向键、功能菜单键、子菜单键和功能热键。关于各按键的具体功能概述,参见表9-1。 表9-1各按键的具体功能概述

⑷参数设置规程 参数设置可通过以下两种规程来完成。 有些参数设置仅遵照“方向键增减调节规程”,比如:探头类型、声程跨距等;有些参数设置又仅遵照“直接数字输入规程”,比如:探头频率、探头规格等;还有些参数设置可遵照两种规程,比如:检测范围、零位偏移等。 ⑸方向键增减调节规程 可按下或

来增减参数设置。 ⑹直接数字输入规程 对于垂直菜单探伤通道设置,按下进入探伤通道设置状态,再次按下则进入直接数字输入状态;对于水平菜单,按下子菜单键选中子菜单项,再次按下子菜单键则也进入直接数字输入状态。 一旦进入直接数字输入状态,将在菜单项上出现闪烁光标,等待用户直接输入数字。在输入的过程中,若发现先前输入的数字错误,可按下 使得光标回退,删除刚才输入的错误数字。输入完成之后,用户可按下来接受输入,也可按下

超声相控阵检测教材-填充焊缝操作说明

ISONIC相控阵设备操作指南填充焊缝检测软件功能 Israel(以色列)- Sonotron NDT 北京邹展麓城科技有限公司

一、进入检测界面 1、根据所使用的仪器进入相控阵检测模式,在相控阵界面下点击,见图1所示。 图1 2、点击进入选项模式,见图2所示。 图2 3、点击进入填充焊缝检测模式。见图3所示。 图3

二、A超参数设置、DAC曲线制作、角度增益补偿曲线及耦合监控设置方法参见“焊缝 高级检测”软件功能操作说明书进行设置。

三、焊缝几何形状设置 1、在扫查设置界面,点击几何尺寸设置栏的,进入焊缝几何参数设置界面。见图4所示。 图4 2、进入到焊缝几何参数设置界面后,输入焊缝的几何参数。选择扫查面,输入角度、法兰厚度、梁 腹厚度及焊接位置尺寸。见图5、图6所示。 本次示例所检测的焊缝几何参数如图5、图6所示。 图5 图6

四、扇形扫查范围及探头位置设置 1、点击焊缝几何形状设置界面的,返回至扫查设置界面,进行检测扇形扫查范围设置。 2、在扫查参数栏通过调节检测所需的最小角度、最大角度及角度步进。角度步进有0.2°、 0.5°、1°、2°和5°工五种选项。检测所需的最大最小角度的选择主要依据能否全部覆盖或者最大 程度覆盖检测焊缝区域的宗旨来进行调节,在满足覆盖要求的前提下,一次波声束与二次波声束的重叠部分尽可能的少。角度步进越小声束覆盖焊缝区域越密集,但同时检测数据量越大,采集速度及保存速度越慢(建议在检测中选择0.5°的角度步进足以满足检测要求)。 3、在焊缝参数设置界面,通过调节。通过探头位置的调节,可以在示意图中看 出已设定的扇形扫查范围是否满足声束覆盖要求,从而找到适合的探头位置。在探头位置满足声束覆盖范围时,探头位置越小越好,以减少声波的衰减。 注: 探头位置代表探头距焊缝根部的的距离。 本次示例选择的扇形扫查范围为40°~76°,扫查步进为0.2°,选择在梁腹右侧检测,探头位置为0mm。 见图5,图7所示。 图7

超声相控阵相关知识

相控阵的概念起源于雷达天线电磁波技术,超声相控阵最早仅用于医疗领 域。近年来,随着微电子、计算机等新技术的快速发展,超声相控阵逐渐被应用 于工业无损检测领域。 超声相控阵通过各阵元发出声束的有序叠加可以灵活地生成偏转及聚焦声 束,不需更换探头即可完成对关心区域的高分辨率检测,且其特有的线性扫查、 扇形扫查、动态聚焦等工作方式可在不移动或少移动探头的情况下对零件进行高效率检测。因此,较传统的单晶片超声检测,超声相控阵的声束更灵活、检测速度更快、分辨率更高、更适用于形状复杂的零部件检测。 超声相控阵探头是将若干个独立的压电晶片按照一定的排列组合成一个阵 列,通过控制压电晶片的激励顺序及延时,来实现声束的偏转以及聚焦。 超声相控阵是基于Huygens-Fresnel原理,由各个阵元发出的超声波经过干涉形成预期的声束。以同一频率的脉冲激发各个阵元,并对各个阵元的激发时间施加一定的延迟,于是各阵元的发射声波产生了相位差,从而影响干涉结果,即可以形成偏转及聚焦声束。各阵元的激发延时一般被称为聚焦法则或延时法则。

&恤I hit IJI Itic fuiniiiiion of beam 聚焦点 崖焦百虫形處示豈 (b*i l he torm&twri of tu^using buMi 图2超声相控阵偏转疑聚焦声束的形成 与传统单晶片换能器的超声检测不同,超声相控阵不同的阵元组合与不同的聚焦法则相结合,形成了3种特有的工作方式,即线性扫查,扇形扫查和动态聚焦。 线性扫查 线性扫查,又称为电子扫查,具体步骤为: 1)假设相控阵阵元总数为N,令其中相邻的n( 1v* N)个阵元为一组,对每一组阵元施加相同的聚焦法则 2)以设定的聚焦法则激发第一组阵元; 3)沿阵列长度方向向前移动一个步进值(一般为一个阵元晶片),以同样的 聚 焦法则激发第2组阵元。以此类推,直至最后一个阵元。一般将上述的一组阵元称 为一个序列。这样扫查完成后会得到N-n+1个序列回波信号,在不移动探头 的情况下就可以检测到较大区域。线性扫查的示意图如图3( a)所示

超声波检测技术新继续教育答案

超声波检测技术(每日一练) 考生姓名:苏东旭考试日期:【2020-08-13 】单项选择题(共10 题) 1、声波透射法检测中,当声测管堵塞导致检测数据不全时,该如何 处理?(D) ?A,对上部检测完整的数据进行完整性评价 ?B,可直接判为IV类桩 ?C,根据上部数据估计声测管堵塞处以下混凝土质量 ?D,不得采用规范方法对整桩的桩身完整性进行评定 答题结果: 正确答案:D 2、下列关于声速的说法中,哪一项是正确的?(C) ?A,用声波检测仪测得的声速与测距无关 ?B,用声波检测仪测得的声速与声波频率无关 ?C,超声波在介质中的传播速度就是声能的传播速度

?D,超声波在介质中的传播速度就是质点的运动速度 答题结果: 正确答案:C 3、在桩身某处粗骨料大量堆积往往会造成(C) ?A,波速下降,波幅下降 ?B,波速下降,波幅提高 ?C,波速并不低,有时反而提高,波幅下降 ?D,波速提高,波幅提高 答题结果: 正确答案:C 4、换能器直径D为30mm,将发收换能器置于水中,在换能器表面净 距离d1=500mm、d2=200mm时测得仪器声时读数分别为t1=342.8μs,t2=140.1μs,请计算仪器系统延迟时间(即仪器零读数)t0。将上述换能器放入50号钢管(内径Φ1=54mm,外径Φ2=60mm)的声测管中进行测桩,请计算出该测试中的最终用于计算波速时需扣除的时间是()。(测试时声测管中水的声速为1500m/s;钢的声速为 5000m/s) (D) ?A,19.2

?B,19.9 ?C,18.7 ?D,22.2 答题结果: 正确答案:D 5、气泡密集的混凝土,往往会造成(A) ?A,波速没有明显降低,波幅明显下降 ?B,波速下降,波幅提高 ?C,波速不变,有时反而提高,波幅下降 ?D,波速提高,波幅提高 答题结果: 正确答案:A 6、调试超声波检测仪时,测得t0=5μs,已知某测点声距L=40cm, 仪器显示声时为105μs,则超声波在混凝土中传播的声速为(C)?A,3636m/s ?B,3810m/s

超声波检测技术的应用概述

现代工程测试技术论文

超声波技术应用综述 +++ (++++++++++++++++++) 摘要 简述超声波的产生方式,特点和主要参数,其特点决定在实际生活中的诸多领域广泛应用,着重分析了超声波传感器的应用和研究现状,对超声波技术发展做出展望。 关键词:超声波,检测技术,传感器 Abstract The article sketch the main parameters, features and the production of ultrasonic. Its features determine the wide application in our lives. We analyzed the application of the ultrasonic sensor and the research status and prospect the development of ultrasonic technology. Key words: Ultrasonic; Measurement Technique; Sensor 超声波是一种频率高于20000赫兹的声波,它的方向性好,穿透能力强,易于获得较集中的声能,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。在医学、军事、工业、农业等诸多领域有广泛应用。 1.超声波的产生和主要参数 声波是物体机械振动状态(或能量)的传播形式。超声波是指振动频率大于20000Hz以上的声波,其每秒的振动次数(频率)甚高,超出了人耳听觉的上限,人们将这种听不见的声波叫做超声波。超声和可闻声本质上是一致的,它们的共同点都是一种机械振动模式,通常以纵波的方式在弹性介质内传播,是一种能量的传播形式。 1.1超声波特点 超声波有如下特点: (1)方向性强,能量易于集中。 (2)能在各种不同媒质中传播,且可传播较远距离。 (3)与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息诊断或对传声媒质产生效用及治疗。 (4)反射、干涉、叠加和共振现象明显。 1.2超声波的两个主要参数 频率:F≥20KHz(在实际应用中因为效果相似,通常把F≥15KHz的声波也称为超声波)。 功率密度:p=发射功率(W)/发射面积(cm2),通常p≥0.3w/cm2。

TOFD与超声波相控阵检测技术特点比较

TOFD与超声波相控阵检测技术特点比较TOFD方法具有超声成像技术,它通过采用一发一收探头布置,然后要求相应的探头入射点间距离,在平板对接焊缝、环焊缝方面具有很大的优势,下面是小编搜集的一篇探究TOFD与超声波相控阵检测技术特点的论文范文,欢迎阅读查看。目前我国无损检领域应用最广泛的是TOFD技术,业界人士已经普遍认可了TOFD技术,这项技术在我国的工业领域已经有了数不胜数的成功案例。21世纪初,我国引入了Isonic系列便携式超声波成像检测系统(以色列的IsonotronNDT公司出品),经由一系列的实际的对比以及验证加之不断改进和创新了的扫查器系统,TOFD技术被更多的应用到各工业现场检测中。TOFD方法具有超声成像技术,它通过采用一发一收探头布置,然后要求相应的探头入射点间距离,在平板对接焊缝、环焊缝及直径大于500mm的纵缝中厚板检测方面具有很大的优势,但是该技术也存在一些弊端,比如对于复杂几何形状的结构件、焊缝检测盲区等束手无策。到目前为止超声相控阵技术已经在我国发展了20年,在早期主要应用在医疗领域,利用该技术可以在实际的医学超声成像中对被检器官进行成像,有益于医学的不断发展和进步,但是由于很多客观因素的限制,比如系统的复杂性、固体中波动传播的复杂性及成本费用高等,使得该技术的应用面受限。在这种情况下,在超声相控阵成像领域应用压电复合材料、数据处理分析等高新技术是大势所趋,未来超声相控阵检测技术一定会得到更加广泛的应用。超声相控阵是采用多晶片控制声束聚焦技术,探头可以在同一位置实现很大声

束及角度范围内的电子扫查,适用于复杂几何形状结构件的检测。 下面对TOFD和相控阵的检测技术做简要对比。 1、TOFD的技术特点 1.1 TOFD的优点 TOFD技术不仅具有很强的缺陷检出能力,还具有很高的缺陷定量精度,除此之外还具有很高的时效性和安全性,可永久保存其检测数据。 ①效率高:该技术只需要做线性扫查就可以对焊缝完成扫查,很大程度上扩大了单组探头检测对焊缝的覆盖范围大,远远超过了传统的检测方法。 ②灵敏度高:由于该技术的衍射波信号具有很高的灵敏度,很大程度上保证了检出率。 ③精度高:利用衍射时差计算方法,缺陷的高度可以得到精确的计算。 ④影响小:该技术不会因焊缝结构或缺陷的方向性就左右最后的检测结果,其检测结果具有很高的稳定性,几乎不受其他因素的影响。 ⑤漏检少:衍射波具有高灵敏度,通过图像记录完整检测数据,重复性好。 ⑥数据全:检测结果的时效性很强,并且相关数据和资料会以存盘、打印出来等形式永久的保留下来,以便随时进行分析处理。 ⑦更安全:采用该技术不会对相关人员造成人身伤害。

相关文档
相关文档 最新文档