文档库 最新最全的文档下载
当前位置:文档库 › 绝缘斗臂车伸缩臂结构及机构研究

绝缘斗臂车伸缩臂结构及机构研究

绝缘斗臂车伸缩臂结构及机构研究
绝缘斗臂车伸缩臂结构及机构研究

绝缘斗臂车伸缩臂结构及机构研究

发表时间:2019-01-08T15:22:16.450Z 来源:《电力设备》2018年第24期作者:蔡雷郑磊

[导读] 摘要:伸缩臂是绝缘斗臂车的重要结构,保证斗臂车的安全性能和作业性能。

(徐州海伦哲专用车辆股份有限公司徐州 221000)

摘要:伸缩臂是绝缘斗臂车的重要结构,保证斗臂车的安全性能和作业性能。目前被广泛使用的绝缘斗臂车的伸缩臂有三种结构,在性能上和使用上存在差异,分析三种不同结构伸缩臂结构和机构,能够更好的进行绝缘斗臂车的选择和使用。

随着我国对供电可靠性要求的不断提高,用于带电作业的绝缘斗臂车的使用越来越多,混合臂式和伸缩臂式绝缘斗臂车是目前国内使用最多的产品,这两种结构的斗臂车都带有伸缩臂结构,伸缩臂结构及其伸缩机构对作业时有效绝缘段保证、玻璃钢臂的保护等都有严格要求。目前国内使用的绝缘斗臂车的主要是美国和日本生产,本文针对国内常见的绝缘斗臂车的伸缩臂结构及机构进行研究,为斗臂车的选用和维护提供参考。

目前的国内使用的斗臂车的伸缩臂结构主要有三种,分别为油缸和管路分离式、油缸和管路结合式以及管路外置式。下面分别进行分析。

一、油缸和管路分离式

这种结构伸缩臂伸缩油缸和控制管路都布置在臂架内部,管路(拖链系统)和伸缩油缸相互独立。其结构和机构见下图。

这种伸缩臂架结构的两节伸缩臂具有如下特点:

1、伸缩臂架部分只有两节臂。一节基本臂,为金属臂;另一节为伸缩臂,是玻璃钢臂与金属臂胶粘和螺栓连接而成,中间为玻璃钢段,两端为金属段。

2、采用单根油缸,油缸布置为倒置式。缸杆与基本臂铰接,靠近缸杆一端缸筒与伸缩臂通过螺栓进行固定,缸筒多在伸缩臂里。

3、内置式拖链布置在基本臂与伸缩臂之间。

4、基本臂前端与绝缘伸缩臂下方受力接触处为尼龙托辊,其余为滑块结构。

5、无同步伸缩链。

从功能上看具有如下特点:

1、油缸直推绝缘伸缩臂,油缸伸出距离全为玻璃钢臂伸出距离。工作时,相比同步伸缩(三节臂及以上),可更快获得有效绝缘长度,提高工作效率,对作业空间要求不高。

2、预伸的一段伸缩绝缘臂,为更快的获得有效绝缘长度做出了贡献。

3、采用尼龙托辊取代滑块,由臂间滑动摩擦改为滚动摩擦,大大降低对绝缘臂的损坏,且与绝缘臂接触面无需润滑油润滑,避免绝缘性能降低,提高作业可靠性。

采用这种结构的三节伸缩臂结构具有如下特点:

1、第一节基本臂,为金属臂;第二、三节为伸缩臂,其中第二节臂为也为金属臂,第三节为玻璃钢绝缘臂。

2、采用两根油缸,一级油缸缸杆与第一节臂连接,缸筒靠近缸杆端与第二节臂相连,缸筒尾部落在二级油缸上。二级油缸缸杆与第二节臂相连,缸筒靠近缸杆端与第三节臂相连,缸筒落在第三节臂里。

3、一套拖链系统置于臂架侧面,一端连接在第一节臂,另一端连接在第三节臂。

4、第二节臂前端与绝缘伸缩臂下方受力接触处为尼龙托辊,其余为滑块。

5、无伸缩链。

从功能上看具有如下特点:

1、采用两根油缸,每节伸缩臂均采用单独油缸进行驱动。工作开始时,先伸第三节绝缘伸缩臂,再伸第二节金属臂;工作结束时,先缩回第二节臂,再缩第三节绝缘伸缩臂。这样做的目的是,优先保证玻璃钢臂的有效绝缘长度伸出,提高工作效率,保证工作安全,同时适应较小空间。

2、一套拖链系统置于臂架外侧,不受臂内两根油缸伸缩先后顺序的影响。但有二级油缸的两根管路是通过一二节臂下方空间形成单独小拖链实现的,容易受到挤压磨损的可能。

3、采用尼龙托辊。优点不再赘述。

二、油缸和管路结合式

采用油缸和管路结合式的伸缩臂结构与机构比较复杂,这种结构型式的伸缩臂基本为两节臂,基本臂为也是由两部分组成,一段是金属臂,另一段是玻璃钢臂。纯玻璃钢段长度约1米。伸缩臂主体为玻璃钢臂,在臂尾上方有金属垫板,臂头有金属连接座。

伸缩臂在基本臂内,通过尼龙滑板作为接触面。设有管路保护托槽,一端与基本臂连接,另一端在伸缩臂里底面接触,可以在里面滑动。伸缩油缸缸筒与基本臂铰接,缸杆与链轮支架的一端铰接,通过固定在此端的带有滚轴的滑块支撑在伸缩臂里;链轮支架包住伸缩油缸,但可相对油缸产生平移运动,链轮支架另一端通过滑块落在基本臂内;有链条绕过链轮支架两端的链轮,形成环状,其中靠近缸筒头部的滚子链结点与管路保护托槽相接,靠近缸筒尾部的滚子链结点与伸缩臂进行铰接;管路系统通过臂尾进入管路保护托槽里,从托槽头部出来后,再折返至伸缩臂臂头的阀块上。

伸出时,伸缩油缸带动链轮支架向前运动,伸缩臂通过滚子链的运动以二倍速率往前运动,同时固定在伸缩臂头部阀块带动管路向前运动,尼龙滚轴起到将管路捋顺的作用。

其结构型式具有以下特点:

1、伸缩臂架部分只有两节臂,基本臂与伸缩臂都是由玻璃钢臂与金属臂连接而成。均为玻璃钢臂包金属臂结构型式。

起重机伸缩臂的结构原理

起重机伸缩臂的结构原理 起重机是利用吊臂顶端的滑轮组支承卷扬钢丝绳悬挂重物,利用吊臂的长度和倾角的变化改变起升高度和工作半径,汽车起重机的吊臂是起重机最重要的部分。虽然吊臂的作用都是悬挂和搬运物体,但是不同的吊臂结构和技术,使起重机的性能和效率有很大的不同。 汽车起重机的吊臂一般包括主臂和副臂两部分。主吊臂主要有两种类型,一种是由型材和管材焊接而成的桁架结构吊臂,一种是有各种断面的箱型结构吊臂。随着汽车起重机的发展,现在大部分的汽车起重机主吊臂都是箱型结构,只有少部分是桁架结构。副臂的作用是,当主臂的高度不能满足需要时,可以在主臂的末端连接副臂,达到往高处提升物体的目的。副臂只能提升较轻的物体。副臂一般只有一节臂,也有两节以上的折叠式副臂或伸缩式副臂,其中以折叠式的桁架结构副臂最为常见。 汽车起重机的吊臂伸缩形式有以下几种: 1、顺序伸缩机构–伸缩臂的各节臂以一定的先后次序逐节伸缩。 2、同步伸缩机构–伸缩臂的各节臂以相同的相对速度进行伸缩。 3、独立伸缩机构–各节臂能独立进行伸缩的机构。 4、组合伸缩机构–当伸缩臂超过三节时,可以同时采用上列的任意两种伸缩方式进行伸缩的机构。 无销全液压伸缩机构的优点是臂长变化容易,工作臂长种类多,实用性很强。缺点是自重大,对整机稳定性的影响较大。 无销全液压伸缩机构有不同的组合形式,可以是多液压缸加一级绳排,可以是单液压缸或多液压缸加两级绳排。 多液压缸加一级绳排的特点是最末一节伸缩臂采用钢丝绳伸缩,其它伸缩臂采用多级缸或多个单级缸或多级缸和单级缸套用等方式直接用油缸伸缩。因而最末伸缩臂的截面变化较大,其它臂节截面的变化较小。 1.绳排系统 绳排系统在中国已经应用的比较成熟,也是一种历史比较悠久的技术。此技术的优点是臂长变化容易、工作臂长种类多、可以带载伸缩、实用性很强,缺点是自重重、对整机稳定性的影响较大。现在在100吨以下的起重机上应用的比较广泛,其原理如图,就是简单的滑轮原理。对于四节臂以上起重臂的伸缩机构又分为以下两种:多缸或多级缸加一级绳排、单缸或多缸加两级绳排。DEMAG和TADANO部分产品采用第一种伸缩机构,这种伸缩机构的特点是最末一节伸缩臂采用钢丝绳伸缩,其它伸缩臂采用多级缸或多个单级缸或多级缸和单级缸套用等方式直接用液压缸伸缩。因而最末伸缩臂的截面变化较大,其它臂节截面的变化较小。在过去,徐重、浦沅、长起跟随LIEBHERR技术多年,普遍使用第二种伸缩机构,使用单缸或双缸加绳排实现四节或五节臂的伸缩。这种伸缩方式在国内最先进,但解决五节臂以上起重臂的伸缩难度很大。北起、泰起、锦重等厂家采用第一种伸缩机构(多个单级缸加一级绳排),但由于技术落后,第二缸、第三缸的进回油依靠软管卷筒输送。现在,大多数5节臂的起重机使用的是双缸双绳排的技术,一般为第2节臂独立伸缩,第3.4.5节臂同步伸缩;4节臂的一般单缸双绳排为2.3.4节同步伸缩。其局限性在于最末一、二节伸缩臂采用钢丝绳伸缩,其它伸缩臂用油缸伸缩,因而最末伸缩臂的截面变化较大,大大降低了起重机在大幅度下的起重性能;同时,对于大吨位的起重机,对钢丝绳的要求也非常高,符合要求钢丝绳非常难加工。虽然有些日本企业有将绳排技术发展到6节甚至更多,但是对于中大吨位起重机,一般企业还是优先考虑单缸插销技术。 2.单缸插销系统 单缸插销式伸缩臂技术是典型的机、电、液一体化系统.以较典型的德国利勃海尔为例,作为伸缩臂伸缩的执行机构,主要由(见图)1.伸缩缸、2.拔销机构、3.缸销等组成,为保证伸缩臂伸缩过程的安全性、可靠性,该机构采用内置式互锁系统即在伸缩油缸上装的弹簧驱动缸销销定伸缩臂后,才机械释放该节臂和其他节臂的连接。该方式确保某一节伸缩臂和伸缩油缸互相锁定后才能释放该节臂和其它节臂的联接。利勃海尔将拔销装置置于伸缩机构上方,其优点是结构简单,自锁性强,便于实现;格鲁夫GROVE、德马格(DEMAG)、多田野(TADANO&FAUN)将拔销装置置于伸缩机构两侧,结构布置上比较困难,对加工、装配精度要求高,插拔销难度相对较大。缸销则都布置在伸缩机构的侧方。单缸伸缩机构要求动作灵活、可靠性高、响应速度快、互锁性好,否则,很难实现吊臂的可靠伸缩。此技术采用单缸、互锁的缸销和臂销、精确测长电子技术,优点是重量最轻,对整机稳定性的影响最小,但技术难度大、成本较高、臂长种类少、伸缩时间长、臂长变化时麻烦。现在,徐重和浦沅等国内企业也成功研制出了此项技术,采用的是和LIEBHERR相似的拔销装置置于伸缩机构上方的形式。由于此技术对于电液的要求较高,尤其是在自动伸缩的PLC控制和伸缩系统的液压回路的设计上,国内企业的技术还不是太成熟,可靠性还不是太高,还有较长的路去走。 这里有个单缸插销系统的动画演示,是TADANO的,可以看一看,

起重机伸缩臂绳排伸缩原理

起重机伸缩臂绳排伸缩机构伸缩原理 主臂的伸缩机构很多,可以从两种角度进行分类,即按驱动形式的不同,以及各节臂间的伸缩次序关系不同进行分类。 按驱动形式的不同,可分为液压、液压—机械和人力三种。采用液压驱动时,执行元件选用液压油缸,利用缸体和活塞杆的相对运动推动,推动下节臂的伸缩,在设计三节臂伸缩机构时,为了减轻重量,还可以利用吊臂之间的伸缩比例,采用钢丝绳和滑轮组实现第三节臂的伸缩,以实现第三节臂的伸缩,这就形成了液压机械驱动。在某些情况下可以取消伸缩机构,代之采用人力驱动,或采用推杆和绳索的器件,而辅之以人工安装插销等方法伸缩吊臂,这就形成了人力驱动。这几种方法往往在小于等于三节臂的情况下使用。 对于拥有三节或三节以上的吊臂来讲,各节臂的伸缩方式可以由不同的选择,但是,由前面提到的大致可以分为三类。 (1)顺序伸缩:指吊臂在伸缩过程中,各节伸缩臂必须按一定先后顺序,完成伸缩动作。 (2)同步伸缩:指吊臂在伸缩过程中,各节伸缩臂同时以相同的形成比例进行伸缩。(3)独立伸缩:指吊臂在伸缩过程中,各节臂均能独立进行伸缩。显然,独立伸缩构,同样也可以完成顺序伸缩或同步伸缩的动作。 在现实中,三节伸缩臂或三节以上的伸缩机构,往往式上述几种伸缩机构的中和,而很少单独采用某一种伸缩机构。在三节伸缩臂时,基本上采用一个液压缸加一个滑轮组的同步伸缩机构。超过三节臂时,常用两个液压缸加一个滑轮组的伸缩机构,或采用三个液压缸的伸缩机构,五节臂时为两个液压缸加两个滑轮组,或最后一节的伸缩可用手动的或简单的插销式伸缩机构。 本次设计的四节臂伸缩,采用后种方法过于落后,顾采用第一种方法。即,用一个液压缸加两个滑轮组的伸缩方式。传动方案如图3.1

汽车起重机吊臂结构与伸缩原理

汽车起重机吊臂结构与伸缩原理 发布日期:2012-05-03 来源:网络我要评论(0) 核心提示:汽车起重机的吊臂是起重机最重要的部分,起重机是利用吊臂顶端的滑轮组支承卷扬钢丝绳悬挂重物,利用吊臂的长度和倾角的变化改变起升高度和工作半径。虽然吊臂的作用都是悬挂和搬运物体,但是不同的吊臂结构和技术,使起重机的性能和效率有很大的不同。 汽车起重机的吊臂是起重机最重要的部分,起重机是利用吊臂顶端的滑轮组支承卷扬钢丝绳悬挂重物,利用吊臂的长度和倾角的变化改变起升高度和工作半径。虽然吊臂的作用都是悬挂和搬运物体,但是不同的吊臂结构和技术,使起重机的性能和效率有很大的不同。 一、汽车起重机的吊臂结构 汽车起重机的吊臂一般包括主臂和副臂两部分。汽车起重机主吊臂主要有两种类型,一种是由型材和管材焊接而成的桁架结构吊臂,一种是有各种断面的箱型结构吊臂。随着汽车起重机的发展,现在大部分的汽车起重机主吊臂都是箱型结构,只有少部分是桁架结构。 汽车起重机副臂的作用是,当主臂的高度不能满足需要时,可以在主臂的末端连接副臂,达到往高处提升物体的目的。副臂只能提升较轻的物体。副臂一般只有一节臂,也有两节以上的折叠式副臂或伸缩式副臂,其中以折叠式的桁架结构副臂最为常见。 二、汽车起重机的吊臂伸缩原理 (一)汽车起重机的吊臂伸缩形式有以下几种: 1、顺序伸缩机构--伸缩臂的各节臂以一定的先后次序逐节伸缩。 2、同步伸缩机构--伸缩臂的各节臂以相同的相对速度进行伸缩。 3、独立伸缩机构--各节臂能独立进行伸缩的机构。 4、组合伸缩机构--当伸缩臂超过三节时,可以同时采用上列的任意两种伸缩方式进行伸缩的机构。 (二)汽车起重机按伸缩机构的技术分,可以分为无销全液压伸缩机构和自动插销式伸缩机构。

伸缩臂抖动原因分析及解决措施

伸缩臂抖动原因分析及解决措施 通过对伸缩臂抖动机理的分析,结合伸缩臂抖动相关试验,总结出可能造成伸缩臂抖动的因素,同时进一步提出相关的解决措施。伸缩臂抖动;解决措施 背景现状 伸缩臂结构形式不仅占用空间小而且工作效率高广泛使用于各类工程车和各种专用车上,如起重机、消防车、高空作业车等。伸缩臂运动的主要执行机构为伸缩系统,伸缩系统的性能直接决定了伸缩臂运动的平稳性和可靠性。目前伸缩系统在运动过程中或多或少存在有冲击或抖动现象,导致臂架不能平稳运动。 抖动机理分析 一般伸缩系统主要构成有:臂架结构(主要有三节伸缩臂或四节伸缩臂)、伸缩链条(钢丝绳)、链轮、滑块、润滑油、伸缩油缸等。伸缩系统构成如下图所示[1]。 上图为普通伸缩臂伸缩系统的结构形式,伸缩原理为:伸缩油缸的伸缩运动带动二节臂运动,固定在二节臂上的伸缩链轮跟随二节臂运动,伸缩链条在伸缩链轮的驱动下带动三节臂运动,最终形成二节和三节臂架的同步伸缩。在伸缩运动过程中,伸缩油缸为伸缩运动的动力单元,伸缩链条是三节臂伸缩运动的驱动单元。四节臂的伸缩臂结构即在三节臂的基础上增加一节臂架和一套伸缩链。 结合伸缩系统的结构形式,并经过研究伸缩臂抖动的现象,最终可将该现象解释为两个振动模型:一是强迫振动模型;一是摩擦自激振动模型。 伸缩臂强迫振动模型如下图: 振动体M为末节臂架或者需要带动运动的臂端结构,激励F一部分来自底盘的振动,一部分来自链条传动产生的振动;系统刚度K和结构件刚度、液压刚度、伸缩链刚度、各装配体间的间隙等因素有关;系统阻尼和个结构件重量、摩擦系数等因素有关。 在强迫振动系统中主要影响因素有:激励大小、激励频率、系统刚度、系统阻尼等,这些因素和我们产品的底盘、结构件、配合间隙、摩擦系数等相互对应。 伸缩臂摩擦自激振动模型如下[2]: 摩擦自激振动的基本特征为: a振动呈典型的“爬行”(粘滑)运动。

五节伸缩臂的结构原理

五节伸缩臂的结构原理

1.绳排系统 绳排系统在中国已经应用的比较成熟,也是一种历史比较悠久的技术。 此技术的优点是臂长变化容易、工作臂长种类多、可以带载伸缩、实用性很强,缺点是自重重、对整机稳定性的影响较大。 现在在100吨以下的起重机上应用的比较广泛,其原理如图,就是简单的滑轮原理。 对于四节臂以上起重臂的伸缩机构又分为以下两种: 多缸或多级缸加一级绳排、单缸或多缸加两级绳排。 DEMAG和TADANO部分产品采用第一种伸缩机构,这种伸缩机构的特点是最末一节伸缩臂采用钢丝绳伸缩,其它伸缩臂采用多级缸或多个单级缸或多级缸和单级缸套用等方式直接用液压缸伸缩。因而最末伸缩臂的截面变化较大,其它臂节截面的变化较小。 在过去,徐重、浦沅、长起跟随LIEBHERR技术多年,普遍使用第二种伸缩机构,使用单缸或双缸加绳排实现四节或五节臂的伸缩。 这种伸缩方式在国内最先进,但解决五节臂以上起重臂的伸缩难度很大。 北起、泰起、锦重等厂家采用第一种伸缩机构(多个单级缸加一级绳排),但由于技术落后,第二缸、第三缸的进回油依靠软管卷筒输送。 现在,大多数5节臂的起重机使用的是双缸双绳排的技术,一般为第2节臂独立伸缩,第3.4.5节臂同步伸缩;4节臂的一般单缸双绳排为2.3.4节同步伸缩。 其局限性在于最末一、二节伸缩臂采用钢丝绳伸缩,其它伸缩臂用油缸伸缩,因而最末伸缩臂的截面变化较大,大大降低了起重机在大幅度下的起重性能; 同时,对于大吨位的起重机,对钢丝绳的要求也非常高,符合要求钢丝绳非常难加工。 虽然有些日本企业有将绳排技术发展到6节甚至更多,但是对于中大吨位起重机,一般企业还是优先考虑单缸插销技术。 2.单缸插销系统 单缸插销式伸缩臂技术是典型的机、电、液一体化系统.以较典型的德国利勃海尔为例,作为伸缩臂伸缩的执行机构,主要由(见图)1.伸缩缸、2.拔销机构、3.缸销等组成,为保证伸缩臂伸缩过程的安全性、可靠性,该机构采用内置式互锁系统即在伸缩油缸上装的弹簧驱动缸销销定伸缩臂后,才机械释放该节臂和其他节臂的连接。 该方式确保某一节伸缩臂和伸缩油缸互相锁定后才能释放该节臂和其它节臂的联接。 利勃海尔将拔销装置置于伸缩机构上方,其优点是结构简单,自锁性强,便于实现;

起重机伸缩臂绳排伸缩原理

起重机伸缩臂绳排伸缩原理

起重机伸缩臂绳排伸缩机构伸缩原理 主臂的伸缩机构很多,可以从两种角度进行分类,即按驱动形式的不同,以及各节臂间的伸缩次序关系不同进行分类。 按驱动形式的不同,可分为液压、液压—机械和人力三种。采用液压驱动时,执行元件选用液压油缸,利用缸体和活塞杆的相对运动推动,推动下节臂的伸缩,在设计三节臂伸缩机构时,为了减轻重量,还可以利用吊臂之间的伸缩比例,采用钢丝绳和滑轮组实现第三节臂的伸缩,以实现第三节臂的伸缩,这就形成了液压机械驱动。在某些情况下可以取消伸缩机构,代之采用人力驱动,或采用推杆和绳索的器件,而辅之以人工安装插销等方法伸缩吊臂,这就形成了人力驱动。这几种方法往往在小于等于三节臂的情况下使用。 对于拥有三节或三节以上的吊臂来讲,各节臂的伸缩方式可以由不同的选择,但是,由前面提到的大致可以分为三类。 (1)顺序伸缩:指吊臂在伸缩过程中,各节伸缩臂必须按一定先后顺序,完成伸缩动作。 (2)同步伸缩:指吊臂在伸缩过程中,各节伸缩臂同时以相同的形成比例进行伸缩。(3)独立伸缩:指吊臂在伸缩过程中,各节臂均能独立进行伸缩。显然,独立伸缩构,同样也可以完成顺序伸缩或同步伸缩的动作。 在现实中,三节伸缩臂或三节以上的伸缩机构,往往式上述几种伸缩机构的中和,而很少单独采用某一种伸缩机构。在三节伸缩臂时,基本上采用一个液压缸加一个滑轮组的同步伸缩机构。超过三节臂时,常用两个液压缸加一个滑轮组的伸缩机构,或采用三个液压缸的伸缩机构,五节臂时为两个液压缸加两个滑轮组,或最后一节的伸缩可用手动的或简单的插销式伸缩机构。 本次设计的四节臂伸缩,采用后种方法过于落后,顾采用第一种方法。即,用一个液压缸加两个滑轮组的伸缩方式。传动方案如图3.1

绝缘斗臂车伸缩臂结构及机构研究

绝缘斗臂车伸缩臂结构及机构研究 发表时间:2019-01-08T15:22:16.450Z 来源:《电力设备》2018年第24期作者:蔡雷郑磊 [导读] 摘要:伸缩臂是绝缘斗臂车的重要结构,保证斗臂车的安全性能和作业性能。 (徐州海伦哲专用车辆股份有限公司徐州 221000) 摘要:伸缩臂是绝缘斗臂车的重要结构,保证斗臂车的安全性能和作业性能。目前被广泛使用的绝缘斗臂车的伸缩臂有三种结构,在性能上和使用上存在差异,分析三种不同结构伸缩臂结构和机构,能够更好的进行绝缘斗臂车的选择和使用。 随着我国对供电可靠性要求的不断提高,用于带电作业的绝缘斗臂车的使用越来越多,混合臂式和伸缩臂式绝缘斗臂车是目前国内使用最多的产品,这两种结构的斗臂车都带有伸缩臂结构,伸缩臂结构及其伸缩机构对作业时有效绝缘段保证、玻璃钢臂的保护等都有严格要求。目前国内使用的绝缘斗臂车的主要是美国和日本生产,本文针对国内常见的绝缘斗臂车的伸缩臂结构及机构进行研究,为斗臂车的选用和维护提供参考。 目前的国内使用的斗臂车的伸缩臂结构主要有三种,分别为油缸和管路分离式、油缸和管路结合式以及管路外置式。下面分别进行分析。 一、油缸和管路分离式 这种结构伸缩臂伸缩油缸和控制管路都布置在臂架内部,管路(拖链系统)和伸缩油缸相互独立。其结构和机构见下图。 这种伸缩臂架结构的两节伸缩臂具有如下特点: 1、伸缩臂架部分只有两节臂。一节基本臂,为金属臂;另一节为伸缩臂,是玻璃钢臂与金属臂胶粘和螺栓连接而成,中间为玻璃钢段,两端为金属段。 2、采用单根油缸,油缸布置为倒置式。缸杆与基本臂铰接,靠近缸杆一端缸筒与伸缩臂通过螺栓进行固定,缸筒多在伸缩臂里。 3、内置式拖链布置在基本臂与伸缩臂之间。 4、基本臂前端与绝缘伸缩臂下方受力接触处为尼龙托辊,其余为滑块结构。 5、无同步伸缩链。 从功能上看具有如下特点: 1、油缸直推绝缘伸缩臂,油缸伸出距离全为玻璃钢臂伸出距离。工作时,相比同步伸缩(三节臂及以上),可更快获得有效绝缘长度,提高工作效率,对作业空间要求不高。 2、预伸的一段伸缩绝缘臂,为更快的获得有效绝缘长度做出了贡献。 3、采用尼龙托辊取代滑块,由臂间滑动摩擦改为滚动摩擦,大大降低对绝缘臂的损坏,且与绝缘臂接触面无需润滑油润滑,避免绝缘性能降低,提高作业可靠性。 采用这种结构的三节伸缩臂结构具有如下特点: 1、第一节基本臂,为金属臂;第二、三节为伸缩臂,其中第二节臂为也为金属臂,第三节为玻璃钢绝缘臂。 2、采用两根油缸,一级油缸缸杆与第一节臂连接,缸筒靠近缸杆端与第二节臂相连,缸筒尾部落在二级油缸上。二级油缸缸杆与第二节臂相连,缸筒靠近缸杆端与第三节臂相连,缸筒落在第三节臂里。 3、一套拖链系统置于臂架侧面,一端连接在第一节臂,另一端连接在第三节臂。 4、第二节臂前端与绝缘伸缩臂下方受力接触处为尼龙托辊,其余为滑块。 5、无伸缩链。 从功能上看具有如下特点: 1、采用两根油缸,每节伸缩臂均采用单独油缸进行驱动。工作开始时,先伸第三节绝缘伸缩臂,再伸第二节金属臂;工作结束时,先缩回第二节臂,再缩第三节绝缘伸缩臂。这样做的目的是,优先保证玻璃钢臂的有效绝缘长度伸出,提高工作效率,保证工作安全,同时适应较小空间。 2、一套拖链系统置于臂架外侧,不受臂内两根油缸伸缩先后顺序的影响。但有二级油缸的两根管路是通过一二节臂下方空间形成单独小拖链实现的,容易受到挤压磨损的可能。 3、采用尼龙托辊。优点不再赘述。 二、油缸和管路结合式 采用油缸和管路结合式的伸缩臂结构与机构比较复杂,这种结构型式的伸缩臂基本为两节臂,基本臂为也是由两部分组成,一段是金属臂,另一段是玻璃钢臂。纯玻璃钢段长度约1米。伸缩臂主体为玻璃钢臂,在臂尾上方有金属垫板,臂头有金属连接座。 伸缩臂在基本臂内,通过尼龙滑板作为接触面。设有管路保护托槽,一端与基本臂连接,另一端在伸缩臂里底面接触,可以在里面滑动。伸缩油缸缸筒与基本臂铰接,缸杆与链轮支架的一端铰接,通过固定在此端的带有滚轴的滑块支撑在伸缩臂里;链轮支架包住伸缩油缸,但可相对油缸产生平移运动,链轮支架另一端通过滑块落在基本臂内;有链条绕过链轮支架两端的链轮,形成环状,其中靠近缸筒头部的滚子链结点与管路保护托槽相接,靠近缸筒尾部的滚子链结点与伸缩臂进行铰接;管路系统通过臂尾进入管路保护托槽里,从托槽头部出来后,再折返至伸缩臂臂头的阀块上。 伸出时,伸缩油缸带动链轮支架向前运动,伸缩臂通过滚子链的运动以二倍速率往前运动,同时固定在伸缩臂头部阀块带动管路向前运动,尼龙滚轴起到将管路捋顺的作用。 其结构型式具有以下特点: 1、伸缩臂架部分只有两节臂,基本臂与伸缩臂都是由玻璃钢臂与金属臂连接而成。均为玻璃钢臂包金属臂结构型式。

汽车起重机吊臂结构与伸缩原理

汽车起重机的吊臂是起重机最重要的部分,起重机是利用吊臂顶端的滑轮组支承卷扬钢丝绳悬挂重物,利用吊臂的长度和倾角的变化改变起升高度和工作半径。虽然吊臂的作用都是悬挂和搬运物体,但是不同的吊臂结构和技术,使起重机的性能和效率有很大的不同。 一、汽车起重机的吊臂结构 汽车起重机的吊臂一般包括主臂和副臂两部分。汽车起重机主吊臂主要有两种类型,一种是由型材和管材焊接而成的桁架结构吊臂,一种是有各种断面的箱型结构吊臂。随着汽车起重机的发展,现在大部分的汽车起重机主吊臂都是箱型结构,只有少部分是桁架结构。汽车起重机副臂的作用是,当主臂的高度不能满足需要时,可以在主臂的末端连接副臂,达到往高处提升物体的目的。副臂只能提升较轻的物体。副臂一般只有一节臂,也有两节以上的折叠式副臂或伸缩式副臂,其中以折叠式的桁架结构副臂最为常见。 二、汽车起重机的吊臂伸缩原理 (一)汽车起重机的吊臂伸缩形式有以下几种: 1、顺序伸缩机构--伸缩臂的各节臂以一定的先后次序逐节伸缩。 2、同步伸缩机构--伸缩臂的各节臂以相同的相对速度进行伸缩。 3、独立伸缩机构--各节臂能独立进行伸缩的机构。 4、组合伸缩机构--当伸缩臂超过三节时,可以同时采用上列的任意两种伸缩方式进行伸缩的机构。 (二)汽车起重机按伸缩机构的技术分,可以分为无销全液压伸缩机构和自动插销式伸缩机构。 1、无销全液压伸缩机构的优点是臂长变化容易,工作臂长种类多,实用性很强。缺点是自重大,对整机稳定性的影响较大。 无销全液压伸缩机构有不同的组合形式,可以是多液压缸加一级绳排,可以是单液压缸或多液压缸加两级绳排。 多液压缸加一级绳排的特点是最末一节伸缩臂采用钢丝绳伸缩,其它伸缩臂采用多级缸或多个单级缸或多级缸和单级缸套用等方式直接用油缸伸缩。因而最末伸缩臂的截面变化较大,其它臂节截面的变化较小。

单缸插销式伸缩臂系统的故障排除

(7)控制系统具有抗干扰能力,对电磁波辐射、电网电压瞬间波动、无线电波、电源高次谐波都有屏蔽过滤功能,控制系统在电网电压波动10%时仍能正常工作; (8)前方柔腿侧4个11kW的大车电动机,变频器用CI MR-G7A4055+PG B2,制动单元用4030B,日本安川; (9)后方刚腿侧4个11kW的大车电动机,变频器用CI MR-G7A4055+PG B2,制动单元用4030B,日本安川; (10)大车放电电阻器采用ZX25S2-4055/2H -X的电阻器,2套共8箱; 3 电气自动纠偏原理 (1)基本程序编制和参数设定方法是通过计速脉冲计算刚(柔)腿侧大车走轮实际运行的距离———采用高性能的接近开关记录下起重机钢轨压板上固定螺栓上的感应螺母个数确定; (2)设首先发出脉冲的接近开关一侧实际运行速度快,这个脉冲信号马上进P LC输入X17(或X20),立即进行记速并进行自动纠偏控制。 (3)自动纠偏的方法是快了就减速的方法———如起重机在运行过程中,柔腿侧较快,柔腿侧接近开关首先感应到螺栓上的感应螺母,柔腿接近开关控制端由常开变为常闭,使继电器K510吸合, P LC输入端X20产生了输入信号,可编制程序: LD X20,ANI X17,OUT Y20,这时柔腿变频器的控制端S9B输入了减速控制信号,柔腿侧的4个电动机则立即进行减速运行,当刚腿侧的接近开关也检测到螺栓的感应螺母时,就自动断开了S9B的输入信号,使柔、刚腿侧电动机又同时以相同的转速稳定运行; (4)如起重机在运行过程中,刚腿侧较快,刚腿侧接近开关首先感应到螺栓上的螺母,刚腿接近开关控制端由常开变为常闭,使继电器K509吸合, P LC输入端X17产生了输入信号,可编制程序: LDX17,ANI X20,OUT Y7,这时刚腿变频器的控制端S9输入了减速控制信号,刚腿侧的4个电动机则立即进行减速运行,当柔腿侧的接近开关也检测到螺栓上的螺母时,就自动断开了S9的输入信号,使刚、柔腿侧电动机又同时以相同的转速稳定运行; 4 结束语 大跨度龙门起重机的电气自动纠偏方法还很多,例如采用全球卫星定位系统G PS等,但安装调试和维护成本相对较高。该方案的优点在于线路简单,偏差采样部件采用与感应螺母相距5~20 mm就可正常工作的电磁接近开关,该开关的防护等级大于IP56,没有转动、摩擦的器件,使用寿命长,安装调试和维护都很方便。 作者地址:浙江省三门县城关沙田洋经济开发区 邮 编:317100 收稿日期:2005-10-10 单缸插销式伸缩臂系统的故障排除兰州石化公司中油二建吊装公司 王 云 1 单缸插销式伸缩臂的技术 伸缩臂作为轮式起重机的主要受力构件,其重量一般占整机的13%~20%,而大型起重机占的比例则更大。因此,伸缩臂技术对大吨位轮式起重机在大幅度、高起升高度情况下的性能起到至关重要的影响,而伸缩臂的关键技术在于伸缩机构的形式。目前我国生产的起重机普遍采用伸缩液压缸加绳排的伸缩机构形式,这种伸缩机构的特点是最末1、2节伸缩臂采用钢丝绳伸缩,其它伸缩臂用液压缸伸缩,因而最末伸缩臂的截面变化较大,大大降低了起重机在大幅度下的起重性能。单缸插销式伸缩臂技术是典型的机电液一体化系统,代表了当前世界最高水平,是轮式起重机伸缩臂技术的发展

五节伸缩臂的结构原理

五节伸缩臂的结构原理.

1.绳排系统 绳排系统在中国已经应用的比较成熟,也是一种历史比较悠久的技术。此技术的优点是臂长变化容易、工作臂长种类多、可以带载伸缩、实用性很强,缺点是自重重、对整机稳定性的影响较大。现在在100吨以下的起重机上应用的比较广泛,其原理如图,就是简单的滑轮原理。对于四节臂以上起重臂的伸缩机构又分为以下两种:多缸或多级缸加一级绳排、单缸或多缸加两级绳排。DEMAG和TADANO部分产品采用第一种伸缩机构,这种伸缩机构的特点是最末一节伸缩臂采用钢丝绳伸缩,其它伸缩臂采用多级缸或多个单级缸或多级缸和单级缸套用等方式直接用液压缸伸缩。因而最末伸缩臂的截面变化较大,其它臂节截面的变化较小。在过去,徐重、浦沅、长起跟随LIEBHERR技术多年,普遍使用第二种伸缩机构,使用单缸或双缸加绳排实现四节或五节臂的伸缩。这种伸缩方式在国内最先进,但解决五节臂以上起重臂的伸缩难度很大。北起、泰起、锦重等厂家采用第一种伸缩机构(多个单级缸加一级绳排),但由于技术落后,第二缸、第三缸的进回油依靠软管卷筒输送。现在,大多数5节臂的起重机使用的是双缸双绳排的技术,一般为第2节臂独立伸缩,第3.4.5节臂同步伸缩;4节臂的一般单缸双绳排为2.3.4节同步伸缩。其局限性在于最末一、二节伸缩臂采用钢丝绳伸缩,其它伸缩臂用油缸伸缩,因而最末伸缩臂的截面变化较大,大大降低了起重机在大幅度下的起重性能;同时,对于大吨位的起重机,对钢丝绳的要求也非常高,符合要求钢丝绳非常难加工。虽然有些日本企业有将绳排技术发展到6节甚至更多,但是对于中大吨位起重机,一般企业还是优先考虑单缸插销技术。 2.单缸插销系统 单缸插销式伸缩臂技术是典型的机、电、液一体化系统.以较典型的德国利勃海尔为例,作为伸缩臂伸缩的执行机构,主要由(见图)1.伸缩缸、2.拔销机构、3.缸销等组成,为保证伸缩臂伸缩过程的安全性、可靠性,该机构采用内置式互锁系统即在伸缩油缸上装的弹簧驱动缸销销定伸缩臂后,才机械释放该节臂和其他节臂的连接。该方式确保某一节伸缩臂和伸缩油缸互相锁定后才能释放该节臂和其它节臂的联接。利勃海尔将拔销装置置于伸缩机构上方,其优点是结构简单,自锁性强,便于实现;格鲁夫GROVE、德马格(DEMAG)、多田野(TADANO&FAUN)将拔销装置置于伸缩机构两侧,结构布置上比较困难,对加工、装配精度要求高,插拔销难度相对较大。缸销则都布置在伸缩机构的侧方。单缸伸缩机构要求动作灵活、可靠性高、响应速度快、互锁性好,否则,很难实现吊臂的可靠伸缩。此技术采用单缸、互锁的缸销和臂销、精确测长电子技术,优点是重量最轻,对整机稳定性的影响最小,但技术难度大、成本较高、臂长种类少、伸缩时间长、臂长变化时麻烦。现在,徐

随车起重机伸缩臂技术的研究

随车起重机伸缩臂技术的研究 摘要:近年来,随车起重机臂架技术的研究得到了业内的广泛关注,研究其相 关课题有着重要意义。本文以随车起重机吊臂伸缩型式为对象,对多级臂同步、 组合伸缩系统结构特点分别进行分析,总结了两种伸缩系统的优缺点,望有助于 实践。 关键词:随车起重机;伸缩臂;技术;研究 1前言 随着物流运输业的迅速崛起以及人力成本的不断提高,集吊装运输于一体的 随车起重设备作为一个新兴的产业从工程起重机械门类中迅速崛起。作为随车起 重机关键部件吊臂,其可靠性、成本及可维修性是起重机设计的重中之重。在设 计过程中,合理选择与工况相适应的臂体伸缩系统,可以提高吊装时的多项性能。随车起重机吊臂从臂体伸缩同步性来分,分为同步伸缩系统和组合伸缩系统。 2同步伸缩系统 2.1同步伸缩系统的执行过程 同步伸缩的原理:吊臂在伸缩过程中,各节伸缩臂同时以相同行程比率进行 伸缩。如图1。 单缸加绳索滑轮伸缩机构内部钢丝绳的联接形式如图1:顶节臂缩臂绳序5两端与顶节 臂联接,绕过序17二节臂尾滑轮,与序13伸缩油缸固定轮相连。序7顶节臂伸臂绳一端通 过一节臂头联接轴序9与一节伸缩臂相连,另一端绕过序6二节臂头滑轮,之后通过序14顶 节臂尾固定轮再绕过二节臂头另一个滑轮。最后也固定在一节臂头联接轴序9上。序10二 节臂伸臂绳一端通过固定臂头联接轴序11与固定臂相连,另一端绕过序8一节臂头滑轮,之 后通过序15二节臂尾固定轮再绕过一节臂头另一个滑轮。最后也固定在固定臂头联接轴序 11上。序18二节臂缩臂绳为左右两根,两套钢丝绳一端固定在序12固定臂头连接块上。另 一端绕过序19一节臂尾滑轮最后固定在序16二节臂尾联接轴上。 其伸缩过程为:固定臂序1不动。伸臂时,伸缩油缸序20伸出带动一节伸缩臂序2向外 运动,同时序10钢丝绳拉动序3二节伸缩臂伸出,序7钢丝绳拉动序4顶节臂伸出。缩臂时,序6油缸缩回拉动序2缩回,同时钢丝绳序5拉动序3二节伸缩臂拉动4顶节臂缩回, 钢丝绳序18拉动序3二节伸缩臂缩回。 2.2同步伸缩系统的特点 1)多节吊臂同步伸缩,作业速度快。2)结构紧凑,充分利用臂体内部空间,但组装困难。3)可降低重量,节约成本。 3组合伸缩系统 3.1组合伸缩机构的执行过程 组合伸缩机构是顺序伸缩与同步伸缩的综合。如图2。 图2中顶节臂缩臂绳序5两端顶节臂联接,绕过序11二级油缸上的滑轮与序9一级油缸 上的固定轮相连。序7顶节臂伸臂绳一端通过一节臂头联接轴序8与一节伸缩臂相连,另一 端绕过序6二节臂头滑轮,之后通过序10顶节臂尾固定轮再绕过二节臂头另一个滑轮。最后 也固定在一节臂头联接轴序8上。 其伸缩过程为:固定臂序1不动。伸臂时,一级伸缩油缸序13伸出带动一节伸缩臂序2 向外运动。在一级伸缩油缸序13全部伸出后,二级伸缩油缸序12开始伸出,带动序3二节 伸缩臂伸出。同时序4顶节臂在序7钢丝绳拉动下与二节伸缩臂同步伸出。缩臂时,二级油 缸先缩回,通过序5钢丝绳的拉动,二节伸缩臂和顶节臂同步缩回。在二级油缸全部缩回后, 一、二节伸缩臂和顶节臂在一级伸缩油缸的带动下一起缩回。 3.2组合伸缩系统的特点

相关文档
相关文档 最新文档