文档库 最新最全的文档下载
当前位置:文档库 › LCMs适用的溶剂

LCMs适用的溶剂

LCMs适用的溶剂
LCMs适用的溶剂

LCMS适用的溶剂

通常根据目标化合物的溶解性和与LCMS中使用的各种电离技术的兼容性选择溶剂。在ESI和其它常压电离技术中,溶剂的挥发性和给质子的能力很重要。使用的主要质子溶剂像甲醇和其与水的混合物,比如1:1的甲醇水,或1:1的乙腈水(甲醇水混合物增加的粘度超过了纯净的水或甲醇,因为发生了放热反应)。当使用100%的水时,水相对低的蒸汽压可能对灵敏度不利。通过添加挥发性有机溶剂,降低表面张力,能提高灵敏度。表面活性剂,虽然能增加从喷雾液滴中释放出离子,但因其较高的质子亲和力,可能降低灵敏度。质子惰性的共溶剂,像10%DMSO水溶液和异丙醇,对一些化合物,能提高溶解度。在确保被测物比溶剂更偏碱性的前提下,甲酸通常以较低的水平(0.1%)添加,便于电离。一些酸,即使是很少量,像TFA,也可能限制灵敏度,但对增加一些化合物的溶解度可能是必需的。

在ESI电离模式中,缓冲液和盐(Na+,k+和磷酸盐)可降低蒸汽压,导致信号减弱。液滴的表面张力增加,挥发性降低,可用相对更易挥发的缓冲液,像醋酸铵,形成弱酸-碱对,进行补救。

选择溶剂需要考虑的问题

- 对于比溶剂更偏碱性的分子,气相中的溶剂将限制ESI电离。光电离除外(不是酸碱电离),但受溶剂调节。

- 从电离区域去除溶剂和水蒸气,增加在大气压下电离化合物的种类。

- 相对于样品或溶解在液体中的目标被测物减少液体体积,将提高ESI的性能(如,使用较低流速)。

- 有用的溶剂

- 可接受的添加物

- 非挥发性盐(磷酸盐,硼酸盐,柠檬酸盐等等)

会在离子源沉积,阻塞毛细管,因此需要更多的清洗和维护操作。现代离子源设计,相比以往的设计,能较好地处理非挥发性物质。

- 表面活性试剂(表面活性剂/去垢剂)抑制电喷雾电离的效率

- 无机酸具有腐蚀性

- 三氟乙酸(TFA)

超过0.01%的水平时,会在一定程度上抑制阳离子电喷雾。大大的抑制了阴离子电喷雾。

- 三乙基胺(TEA)

高PA(232千卡/摩尔)在m/z102处,产生强[M+H]离子。抑制弱碱性化合物阳离子的电喷雾。

- 四氢呋喃(THF)

100%的THF具有高可燃性,因此APCI和绝大多数接口技术使用氮气作为喷雾气。(使用空气可能引起爆炸危险。)会与PEEK?管反应。

离子抑制

离子抑制是质谱学家使用ESI作为电离方式时面对的比较多的具体问题之一。2001年,美国食品药品管理局(美国FDA)出版了工业生物分析有效方法指南(联邦注册号,66,100,28526),表明确保分析质量的要求是不能妥协的。该条款指明了可用于评估离子抑制是否存在的几个实验方案。将基质提取后加标样品中的被测物的多反应监测(MRM)响应(峰面积或峰高),与直接溶于纯流动相的被测物的多反应监测响应进行对比。基质中被测物的信号比在纯溶剂中的地,表明基质中存在干扰物质。

C.Mallet等发表的文章表明,在色谱图中被测物(和内标物)基质效应的存在。试验人员使用三通装置,将含有目标被测物及其内标物的溶液以连续进样方式引入质谱,将空白基质样品抽取物通过LC系统自动进样引入质谱后,连续的基线出现下降,表明连续进样的被测物的电离受到抑制,因为基质中有干扰物质存在。柱化学杂交柱化学和直径低于2微米的高选择性颗粒的使用,是色谱柱技术的一项革命性进步。这种杂交化学性质不依赖于可能引起离子抑制的流动相的改性,并且增加了颗粒的选择性。

超高压力LC与传统HPLC

通常称为UHPLC(超高压液相色谱),J.Jorgenson教授(北卡罗来纳大学)的工作近来实现了这项技术的商业化,UHPLC为增加常规LCMS分析的信息量提供了可能。Waters公司对这项技术进行了商业化,称为UPLC技术,或超高效液相色谱,与HPLC相比,UPLC的峰容量增加,对HPLC中形成较宽峰的共流出物,可以在UPLC能够实现分离。将色谱峰形(通常条件下)浓缩成2秒或更短的谱带,为灵敏度的提高提供了可

能,有利于质谱响应,改善信噪比。UPLC技术的概念改变了传统LC分离实践中建立起来的一些熟知的参数,比如流速、颗粒大小,甚至对范第姆特曲线的理解。其工作压力从大约2000psi增加到高达20000psi,固定相颗粒直径小于2μm,接近1969年John Knox在其"Knox方程式"中理论极限。一些伴随出现的问题,象增大机械压力和过大的热效应等,促进了MS性能的提高,也稍微偏离了对理论结果的直觉。

图20:由范第姆特曲线描述的线速度的变化,导致分离效能变化的趋势。由图可知,1.7μm直径颗粒色谱柱效能更好,且不随流速变化而改变。虽然所有色谱柱的证据表明在极端低线速度下会降低柱效,但是对HPLC我们所熟知的一个事实是,填料直径越小分离性能越好,并且随着线速度的增加,性能较少受到影响。在现在被称为‘传统'HPLC分离与UPLC分离的比较中,可以认为是一个关于技术怎样重新定义实验设计方法的事例。不但在原理上重新定义分离技术(速度快近4倍),而且增强了选择性,揭示了一些常规HPLC无法看清的细节,比如在图中的咪达唑仑的代谢物。提高的分离度显示出葡萄糖苷酸的二次级代谢物,m/z=548.125。

图21:技术的提高通常能揭示更多未知细节,比如单一葡萄糖苷酸代谢物的色谱峰。

咪达唑仑的氧化代谢是由肝脏细胞色素P450蛋白催化的。在上述药物结构式中,代谢氧化[羟化]最可能发生的分子内主要位点已使用红星标出。1对咪达唑仑在胆汁中的代谢物,使用HPLC/MS和UPLC/MS 比较分析,发现在HPLC上有一名义m/z为548的色谱峰。但在UPLC/MS中,则分离出一对色谱峰,每个的准确质量值相同,m/z为548.1248。实测裂解确认这两个代谢物均为葡萄糖苷酸化代谢物。作者给出了完全

分离的两种物质准确质量对应的经验分子式,表明咪达唑仑在标示的位点发生双羟化,然后可能在一个位点发生O-甲基化,另一个与葡萄糖醛酸结合,反之亦然。

液相色谱流动相的选择经验

一.关于液相色谱仪紫外检测器中分析波长的选择一般来说应该遵循以下原则: 1、你的分析目的,也就是你的目标组分是什么,是主要组分还是杂质组分。 2、确定目标组分之后,一般选择目标组分的特征波长。按照朗伯-比尔定律来说只有在特征波长处的吸光度才可以和浓度成正比关系。 3、确定了特征吸收波长之后,根据灵敏度的不同来选择是选择最灵敏度线还是选择次灵敏度线。有时有的组分灵敏度过高,会造成标准曲线的弯曲,所以要选择次灵敏度线。 4、确定了吸收波长之后,根据样品的实际情况来选择定量方法。 二.最好是246nm,甲醇,乙腈等吸收都在190左右了,210距离太近,仪器平衡时间常是当然的了,如果选用210,环境一定要稳定才行啊。 不知道你是怎样定量,其他物质在246处是否都出峰呢? 三.最大吸收波长处的干扰过大,选择肩峰位置的吸收波长是可行的,很多文献就是这么处理的。 四.不知道你使用的流动相有哪些成分,经常使用的甲醇乙腈和水在此波长下是没有紫外吸收的,我经常使用210nm这个波长测定物质含量.在低波长基线不大稳,干扰比较大的情况我也遇到过,在低波长下好多物质都有吸收,经常出现很多未知峰.有的检测器氘灯使用一段时间后,在低波长下检测也会出现上述情况,换到高波长基线就好许多.我觉得你应该再去系统的尝试一下. 五.要求最佳吸收波长做,但不一定是最大吸收波长,最适合的才是最好的六.DAD收集200-400(700)nm全部数据,分别进空白和标准样品,三维谱图可以清晰地帮助你选择吸收波长。原则是:干扰物吸收尽量小,目标物尽量吸收尽量大! 推荐 326nm 276nm 同时采集不就可以啦,分别能得到分辨率高的色谱图!只要标准样品和试样在同样的采集参数下测试,对于结果的测定没有什么影响!

nmr常见溶剂峰和水峰()

注:JHD为溶剂本身的其他1H对与之相对应的1H之间的耦合常数,JCD为溶剂本身1H对13C的耦合常数,H2O和交换了D的HOD上的1H产生的即水峰的化学位移 氯仿:小、中小、中等极性 DMSO:芳香系统(日光下自然显色、紫外荧光)。对于酚羟基能够出峰。芳香化合物还是芳香甙,都为首选。 吡啶:极性大的,特别是皂甙 对低、中极性的样品,最常采用氘代氯仿作溶剂,因其价格远低于其它氘代试剂。极性大的化合物可采用氘代丙酮、重水等。 ??? 针对一些特殊的样品,可采用相应的氘代试剂:如氘代苯(用于芳香化合物、芳香高聚物)、氘代二甲基亚砜(用于某些在一般溶剂中难溶的物质)、氘代吡啶(用于难溶的酸性或芳香化合物)等。 丙酮:中等极性 甲醇:极性大 氯仿—甲醇: 石:乙 5;1小极性 石:丙 2:1——1:1中等极性 氯仿:甲醇6:1极性以上含有一个糖 2:1 含有两个糖 含有糖的三萜皂甙:一般用吡啶

常见溶剂的化学位移 常见溶剂的1H在不同氘代溶剂中的化学位移值 常见溶剂的化学位移 常见溶剂的13C在不同氘代溶剂中的化学位移值

核磁知识(NMR) 一:样品量的选择 氢谱,氟谱,碳谱至少需要5mg. 1H-1H COSY, 1H-1H NOESY, 1H-13C HMBC, 1H-13C HSQC需要10-15mg. 碳谱需要30mg. 二:如何选择氘代溶剂 常用氘代溶剂: CDCl3, DMSO, D2O, CD3OD.特殊氘代溶剂: CD3COCD3, C6D6, CD3CN。 极性较大的化合物可以选择用D2O或CD3OD,如果想要观察活泼氢切记不能选择D2O和CD3OD。CDCl3为人民币2-3元,D2O为人民币6元,DMSO为人民币10元,CD3OD为人民币30元。Solvent 化学位移(ppm) 水峰位移(ppm) CDCl3 7.26 1.56 DMSO 2.50 3.33 CD3OD 3.31 4.87 D2O 4.79 CD3COCD3 2.05 2.84

HPLC流动相的选择

题目:HPLC流动相的选择 来源:中国化学化工论坛 主要内容:主要讲了在进行HPLC时,对流动相的选择及各流动相对样品处理的要求。 液相色谱的柱子通常分为正相柱和反相柱。正相柱以硅胶为柱,或是在硅胶表面键合-CN,-NH3等官能团的键合相硅胶柱;反相柱填料主要以硅胶为基质,在其表面键合非极性的十八烷基官能团(ODS)称为C18柱,其它常用的反相柱还有C8,C4,C2和苯基柱等。另外还有离子交换柱,GPC柱,聚合物填料柱等。 一、反相色谱柱的选择 1.柱子的pH值使用范围 反相柱优点是固定相稳定,应用广泛,可使用多种溶剂。但硅胶为基质的填料,使用时一定要注意流动相的pH范围。一般的C18柱pH值范围都在2-8,流动相的pH值小于2时,会导致键合相的水解;当pH值大于7时硅胶易溶解;经常使用缓冲液固定相要降解。一旦发生上述情况,色谱柱入口处会塌陷。同样填料各种不同牌号的色谱柱不尽相同。如果流动相pH较高或经常使用缓冲液时,建议选择pH范围大的柱子,例如戴安公司的Acclaim柱pH 2-9或Zorbax的pH 2-11. 5的柱子。 2.填料的端基封尾(或称封口) 把填料的残余硅羟基采用封口技术进行端基封尾,可改善对极性化合物的吸附或拖尾;含碳量增高了,有利于不易保留化合物的分离;填料稳定性好了,组分的保留时间重现性就好。如果待分析的样品属酸性或碱性的化合物,最好选用填料经端基封尾的色谱柱。 3.戴安公司Acclaim柱子介绍—极性封尾C16固定相柱 戴安公司有28种类型的柱子,Acclaim反相柱填料高纯,金属含量极低,完全封尾。PH 2-9范围内兼容,低流失,高柱效。尤其是2003年推出的Acclaim 极性封尾C16柱,是最先商品化的磺酰氨-O链接键的色谱柱,具极低的硅羟基活性,能在极性溶剂甚至100%水的条件下长期使用。对酸性和碱性化合物有极为尖锐的好的色谱峰形,与现有的一流色谱柱相比有好的立体选择性。 二、液相色谱柱的使用 色谱柱在使用前,最好进行柱的性能测试,并将结果保存起来,作为今后评价柱性能变化的参考。在做柱性能测试时要按照色谱柱出厂报告中的条件进行(出厂测试所使用的条件是最佳条件),只有样,测得的结果才有可比性。 但要注意:柱性能可能由于所使用的样品、流动相、柱温等条件的差异而

高效液相色谱流动相选择

高效液相色谱流动相选择 流动相 流动相的性质要求:一个理想的液相色谱流动相溶剂应具有低粘度、与检测器兼容性好、易于得到纯品和低毒性等特征。 流动相选择 1:由强到弱:一般先用90%的乙腈(或甲醇)/水(或缓冲溶液)进行试验,这样可以很快地得到分离结果,然后根据出峰情况调整有机溶剂(乙腈或甲醇)的比例。2:三倍规则:每减少10%的有机溶剂(甲醇或乙腈)的量,保留因子约增加3倍,此为三倍规则。这是一个聪明而又省力的办法。调整的过程中,注意观察各个峰的分离情况。 3:粗调转微调:当分离达到一定程度,应将有机溶剂10%的改变量调整为5%,并据此规则逐渐降低调整率,直至各组分的分离情况不再改变。 选择流动相时应考虑以下几个方面: ①流动相应不改变填料的任何性质。低交联度的离子交换树脂和排阻色谱填料有时遇到某些有机相会溶胀或收缩,从而改变色谱柱填床的性质。碱性流动相不能用于硅胶柱系统。酸性流动相不能用于氧化铝、氧化镁等吸附剂的柱系统。②纯度。色谱柱的寿命与大量流动相通过有关,特别是当溶剂所含杂质在柱上积累时。③必须与检测器匹配。使用UV检测器时,所用流动相在检测波长下应没有吸收,或吸收很小。当使用示差折光检测器时,应选择折光系数与样品差别较大的溶剂作流动相,以提高灵敏度。④粘度要低(应<2cp)。高粘度溶剂会影响溶质的扩散、传质,降低柱效,还会使柱压降增加,使分离时间延长。最好选择沸点在100℃以下的流动相。⑤对样品的溶解度要适宜。如果溶解度欠佳,样品会在柱头沉淀,不但影响了纯化分离,且会使柱子恶化。⑥样品易于回收。应选用挥发性溶剂。 流动相的pH值 采用反相色谱法分离弱酸(3≤pKa≤7)或弱碱(7≤pKa≤8)样品时,通过调节流动相的pH值,以抑制样品组分的解离,增加组分在固定相上的保留,并改善峰形的技术称为反相离子抑制技术。对于弱酸,流动相的pH值越小,组分的k值越大,当pH值远远小于弱酸的pKa值时,弱酸主要以分子形式存在;对弱碱,情况相反。分析弱酸样品时,通常在流动相中加入少量弱酸,常用50mmol/L磷酸盐缓冲液和1%醋酸溶液;分析弱碱样品

核磁谱图NMR常见溶剂峰杂质峰分析_(中文版)

测试核磁的样品一般要求比较纯,并且能够溶解在氘代试剂中,这样才能测得高分辨率的图谱。 为不干扰谱图,所用溶剂分子中的氢都应被氘取代,但难免有氢的残余(1%左右),这样就会产生溶剂峰;除了残存的质子峰外,溶剂中有时会有微量的H2O而产生水峰,而且这个H2O峰的位置也会因溶剂的不同而不同;另外,在样品(或制备过程)中,也难免会残留一些杂质,在图谱上就会有杂质峰,应注意识别。 常用氘代溶剂和杂质峰在1H谱中的化学位移单位:ppm 溶剂—CDCl3 (CD3)2CO (CD3)2SO C6D6 CD3CN CD3OH D2O 溶剂峰—7.26 2.05 2.49 7.16 1.94 3.31 4.80 水峰— 1.56 2.84 3.33 0.40 2.13 4.87 — 乙酸— 2.10 1.96 1.91 1.55 1.96 1.99 2.08 丙酮— 2.17 2.09 2.09 1.55 2.08 2.15 2.22 乙腈— 2.10 2.05 2.07 1.55 1.96 2.03 2.06 苯—7.36 7.36 7.37 7.15 7.37 7.33 — 叔丁醇CH3 1.28 1.18 1.11 1.05 1.16 1.40 1.24 OH —— 4.19 1.55 2.18 —— 叔丁基甲醚 CCH3 1.19 1.13 1.11 1.07 1.14 1.15 1.21 OCH3 3.22 3.13 3.08 3.04 3.13 3.20 3.22 氯仿—7.26 8.02 8.32 6.15 7.58 7.90 — 环己烷— 1.43 1.43 1.40 1.40 1.44 1.45 — 1,2-二氯甲烷 3.73 3.87 3.90 2.90 3.81 3.78 — 二氯甲烷— 5.30 5.63 5.76 4.27 5.44 5.49 — 乙醚 CH3(t) 1.21 1.11 1.09 1.11 1.12 1.18 1.17 CH2(q) 3.48 3.41 3.38 3.26 3.42 3.49 3.56 二甲基甲酰胺 CH 8.02 7.96 7.95 7.63 7.92 7.79 7.92 CH3 2.96 2.94 2.89 2.36 2.89 2.99 3.01 CH3 2.88 2.78 2.73 1.86 2.77 2.86 2.85 二甲基亚砜— 2.62 2.52 2.54 1.68 2.50 2.65 2.71 二氧杂环— 3.71 3.59 3.57 3.35 3.60 3.66 3.75

如何选择流动相

流动相的调节是搞液相分析最重要的环节,也是液相水平高低的度量,每一种液相都有影响它的主要因素,抓住主要因素,问题就容易解决。欢迎大家讨论。一则可以为新手传播知识,二则大家相互学习共同提高!先开个头:常用的是化学键合相色谱,分离 中性化合较简单,主要是调节溶剂强度,可从有机相的比例合种类两个方面入手,例如:有机相占的比例大,出峰就早。分离酸碱化合物就就复杂一点,增加了添加剂,明白了添加剂的作用,然后从溶剂,酸碱性,添加剂等方面入手。问题就容易解决。 液相色谱采用键合硅胶可以分离绝大多数的分析物质,针对不同化学性质的单体采用不同的键合硅胶,现在有什么十八烷、氨基柱、氰基、苯基太多了,再加上不同流动相也就是加入不同的抑制剂可以测许多成分,比如:酸性的可以用十八烷加入酸,加缓冲盐;碱性物质可以加缓冲盐,以个人来讲用离子对的形式较多,并且效果也很好,现在分析生物碱是比较难做的,我现在就有一个难题,就说盐酸水苏碱吧,在低波长的吸收,UV是不行了,用蒸发光检测器,但是分离又成了问题,我试了十八烷,氨基柱、氰基、都不理想,并且用过日本的shodex(C18)柱PH9-10不好。不好做呀,在郁闷中………………… 如用反相色谱柱时,一般先改变有机相与水相的比例;再考虑改变pH值,酸 性物质将pH值调低,碱性物质将pH值调高;如两者都无效,可考虑加入离子 对试剂,如庚烷磺酸钠用于(碱性药物) 我觉得溶剂过滤器抽滤时抽走一部分有机相使保留时间相差较大。 其实流动相的调节也是很难的,一个条件下来是非常的不易呀,从查文献到,条件成熟,有一次我做麻黄就是二个月呀,最后才定下来,现在的水苏碱又是一个大头,现在为什么生物碱这样的难做呢,柱前衍生我是考虑过,但对柱子是有影响的,同时处理也麻烦。对于流动相的抽滤对测定是没什么影响的,一个稳定的条件,是不计较那一点损失的,如果抽滤对于测定的影响非常之大这个条件是不稳的。现在的流动相在检验所比例是可调的,但酸碱不变,所以我个人认为在一定的比例范围内,耐用性一定要好。有高手的话对我的水苏碱给一点意见 一. 反相HPLC中的溶剂优化:1.首先应调整k’值:强溶剂→20%递减→选择合适的溶液强度,使得k’在1~20(tR:3~35min)。一种方法是首先试用一种可能过强的流动相,在后面的试验中逐渐减小溶剂强度以增大k’。当所有谱峰符合1<k’<20的范围时,从溶剂强度的观点来说,其流动相已接近最佳了。(观察待分离组分的分离度)。(反相色谱——溶剂极性弱洗脱能力强,组分k’减小)。另一种方法是首次用梯度洗脱试验。通过这一实验,有可能估计出使样品的k’值符合1<k’<20范围的大概溶剂成分。2.改变选择性(á):根据分子间作用力将溶剂分组。不同组的溶剂选择性不同,根据溶剂分组改变溶剂种类即可改变选择性。二. 离子对HPLC中的溶剂优化: 离子对色谱法是分离离子,或可电离的分子的一种色谱技术。关于离子对色谱的机理,至今仍不

流动相的选择

本人最近在做三甲基-喹噁啉二羧酸,但在用甲醇和水(水分别含5%和10%的甲酸),乙肼水做流动相,都没有分开,峰形呈严重拖尾,都是这样,各位大侠能否给点建议,最好应有点依据。谢谢! 分析一个样品,不是一拿来就试着用各种流动相来分离,而是首先要分析样品着手。是否为高分子化合物、粘度大、具有生物活性的生物分子、有些或全部的样品成分是否可电离(根据这样条件可选择色谱柱、流动相、柱温、流速、离子对试剂、是否需要预处理等等)...... 具体分析:首先应了解样品的溶解性质,判断样品分子量的大小以及可能存在的分子结构及分析特性,最后再选择HPLC的分离模式,以完成对样品的分析。 样品的溶解度,由样品在有机溶剂中溶解度的大小,初步判断样品是非极性化合物还是极性化合物,进而推断用非极性溶剂戊烷、己烷、庚烷等,还是极性溶剂二氯甲烷、氯仿、乙酸乙酯、甲醇、乙腈等来溶解样品,并通过实验判断。 若样品溶于非极性溶剂,表明样品为非极性化合物,通常可以选吸附色谱法或正相分配色谱法、正相健合色谱法进行分析。苦样品溶于极性溶剂或相混溶的极性溶剂,表明样品为极性化合物,通常选用反相分配色谱法或更为广泛应用的反相键合相色谱法进行分析。 若样品溶于水相,可首先检查水溶液的pH值,若呈中性为非离子型组分,常可用反相(或正相)键合相色谱法进行分析。若pH呈弱酸性,可采用抑制样品电离的方法,在流动相中加入硫酸、磷酸调节pH=2~3,再用反相键合相色谱法进行分析。若pH呈弱碱性,则可向流动相中加入阳离子型反离子,再用离子对色谱法进行分析。若pH呈强酸性或强碱性,则可用离子色谱法进行分析。由于除去固定相中的离子对试剂较慢,当改变流动相时,有时需要长时间的平衡;再由于离子对试剂纯度问题,使离子对中的基线波动问题和干扰问题现象比较常见。 优化条件在于最终色谱图中能产生出最多可分开的谱峰。了解化合物的化学结构,知道是否存在酸或碱,当流动相的pH值=混合物的平均pKa值或接近时,可能会使分离较好。先优化K;随着容量因子的增加,谱峰会展宽,峰形变矮。(当所有谱峰符合1<K;<20的范围时,其流动相已接近最佳了;再α(≥1.05);最后优化N,不同微粒的柱子均有一个最佳流速,流速再高会降低N值;如果降低流速,则会增加工作时间,但分离度会更好。当流动相粘度增加时,N值也将降低;因此尽可能使用低粘度的溶剂。用最小RS法,另加常识(数一下峰!),在大多数情况下将是最佳方案。 至于谱峰拖尾影响因素是很多的,可解决的办法有: 在缓冲不好或离子强度过低的分离中,也会出现保留值重现性差和峰拖尾。增加缓冲浓度(与样品大小相匹配)能大大改善此情况。 柱子变得严重拖尾,甚至出现双峰,通常是进口滤板发生了部分堵塞或柱进口处出现塌陷(可将空隙填满接着反相冲洗柱子)。柱子出现峰展宽、拖尾则标志着样品中有保留性极强的“污物”在柱子的进口处堆集起来。样品在柱子上超载能引起峰展宽、拖尾(或伸舌)。通常减少进样量或提高检测器灵敏度。 早出的峰拖尾最甚是仪器存在柱外效应的最好佐证。要排除柱外效应,这不用我来说了吧! 分析酸性或碱性组分,一般必须采用缓冲液流动相。流动相中无缓冲液,样品组分在柱内形成谱带的哪一部分会引起流动相pH增加或降低,样品组分改变了电离程度,产生峰拖尾。缓冲液除了能改变峰形外,还能改变峰的保留。一般用中等偏高的浓度有利于减少峰拖尾(0.05~0.1mol/L)。 可加适量的修正剂!

高效液相色谱的色谱柱的类型和流动相的选择方法_徐红

高效液相色谱的色谱柱的类型和流动相的选择方法The Choicing W ays of Chromatographic Colum n and Mobil Phase about HPLC 徐 红 侯 健 (新疆昌吉州产品质量检验所,新疆昌吉831100) 摘 要:高效液相色谱仪的核心是色谱柱。另外,流动相对改善分离效果也有重要的辅助效应。色谱柱的关键内容是制备出高效的填料。现代高效液相色谱填料多使用键合固定相。色谱柱的填充技术直接影响柱效的发挥。在研究制定一个高效液相色谱方法时,选择适宜的流动相也很重要。 关键词:高效液相色谱;色谱柱;填料;流动相;溶剂 色谱柱的关键内容是制备出高效的填料。这些填料装成的色谱柱既要有好的选择性,又要有高的柱效。要提高柱效是现代高效液相色谱的又一重要问题。所以填料和装柱技术是关键问题。 现代高效液相色谱填料多使用键合固定相,其固定相膜很薄,因而大大提高了柱效。高效液相色谱填料的基质有以下几种:(1)全多孔硅胶。现代高效液相色谱填料绝大多数用键合的方法把活性基团接枝到基质上,全多孔硅胶是使用最为普遍的基质。全多孔硅胶的孔径有三种类型:①微孔全多孔硅胶,孔径<2nm;(2)中孔全多孔硅胶,孔径<50nm,>2nm;(3)大孔全多孔硅胶,孔径>50nm。高效液相色谱填料使用中孔和大孔全多孔硅胶,在分离低分子量的混合物时,选择(6~15)nm孔径的全多孔硅胶,其比表面相当于(500~200)m2/g。在分离合成聚合物或生物大分子时,要使用(15~100)nm的全多孔硅胶。如果使用<2nm的全多孔硅胶,色谱峰就会拖尾。(2)其他金属氧化物基质。由于硅胶有一些缺点:在碱性介质中(pH>8)不稳定;在孔隙中大分子扩散困难,降低柱效;硅胶表面上的剩余硅羟基有离子交换作用。为此近年来用氧化铝、氧化锆、氧化钍和氧化钛作为高效液相色谱填料的基质有很大的H PLC应用前景。高效液相色谱固定相有以下几种:(1)硅胶表面键合或涂渍各种聚合物。(2)其他氧化物表面上涂渍聚合物。(3)无孔单分散填料。(4)有机高聚填料。(5)灌注色谱填料。(6)手性固定相填料。 色谱柱的填充技术直接影响柱效的发挥。如果色谱柱填充不好,如填料颗粒之间不均匀、不密实,就会使涡流扩散项增加,导致柱效下降。高效液相色谱柱的性能主要决定于固定相填料,但是色谱柱的填充好坏也有很大的影响。填充色谱柱的方法有干法和湿法两种,一般大颗粒的(如外径>20nm)可以用干法填充;一般小粒径的填料宜用湿法填充。湿法填充也称作匀浆法,即用密度和填料相近的液体或混合液作分散介质,用超声波处理此浆液,然后用高压泵快速压入色谱柱管中,这样就可以制备出高效的色谱柱。 在研究制定一个高效液相色谱方法时,选择适宜的流动相也很重要。在选择流动相溶剂时,首先要考虑的是溶剂的物理性质,其次要考虑溶剂对所要分离样品的容量因子,最后是所使用的溶剂要有分离能力。用作高效液相色谱流动相溶剂,首先要满足以下几点要求:(1)容易得到;(2)适合于所用的检测器;(3)纯净、有一定的惰性;(4)无毒、使用安全;(5)对所分离的样品有一定的溶解性能。 下面介绍选择流动相的要点: (1)首先要考虑溶剂对检测器的适应性。 高效液相色谱在多数情况下要使用紫外检测器,所以必须考虑所用溶剂在紫外波段的吸收。如使用示差折光检测器,要考虑溶剂的折光率。 (2)溶剂的活性 有许多溶剂可能与样品发生反应,或在某些固定相的存在下产生聚合,他们就不能作为流动相使用。 (3)溶剂的沸点和粘度 溶剂的沸点和粘度密切相关,低沸点的溶剂通常其粘度也低。通常选用沸点高于柱温(20~50)℃、粘度不大于5×10-4Pa.S的流动相。 (4)高效液相色谱流动相溶剂的极性 在分配色谱和吸附色谱中,溶剂的极性是用混合溶剂的比例来调节的,一个极性强的溶剂和一个极性弱的溶剂经过适当的混合可以得到一定极性的混合溶剂。 (5)溶剂的选择性和溶剂的分类 选择流动相的极性能使被分离样品的分配容量在1~5之间,这时如果有两个或几个色谱峰重叠,可以通过调节溶剂的选择性来解决。 选择合适的色谱柱和流动相是高效液相色谱的关键。 参考文献 [1]富玉,陈能武.高温液相色谱的原理及研究进展.中国测试技术, 2006(3)36. 作者简介:徐红,女,副高级工程师,所长。工作单位:新疆昌吉州产品质量检验所。通讯地址:831100新疆昌吉市健康西路17号。 侯健,新疆昌吉州产品质量检验所(昌吉831100)。 收稿时间:2009-10-16   10 《计量与测试技术》2010年第37卷第2期

NMR常见溶剂峰和水峰

常数,H2O和交换了D的HOD上的1H产生的即水峰的化学位移 氯仿:小、中小、中等极性 DMSO:芳香系统(日光下自然显色、紫外荧光)。对于酚羟基能够出峰。芳香化合物还是芳香甙,都为首选。 吡啶:极性大的,特别是皂甙 对低、中极性的样品,最常采用氘代氯仿作溶剂,因其价格远低于其它氘代试剂。极性大的化合物可采用氘代丙酮、重水等。 针对一些特殊的样品,可采用相应的氘代试剂:如氘代苯(用于芳香化合物、芳香高聚物)、氘代二甲基亚砜(用于某些在一般溶剂中难溶的物质)、氘代吡啶(用于难溶的酸性或芳香化合物)等。丙酮:中等极性 甲醇:极性大 氯仿—甲醇: 石:乙 5;1小极性 石:丙 2:1——1:1中等极性 氯仿:甲醇6:1极性以上含有一个糖 2:1 含有两个糖 含有糖的三萜皂甙:一般用吡啶

常见溶剂的化学位移 常见溶剂的1H在不同氘代溶剂中的化学位移值 常见溶剂的化学位移 常见溶剂的13C在不同氘代溶剂中的化学位移值

核磁知识(NMR) 一:样品量的选择 氢谱,氟谱,碳谱至少需要5mg. 1H-1H COSY, 1H-1H NOESY, 1H-13C HMBC, 1H-13C HSQC需要10-15mg. 碳谱需要30mg. 二:如何选择氘代溶剂 常用氘代溶剂: CDCl3, DMSO, D2O, CD3OD.特殊氘代溶剂: CD3COCD3, C6D6, CD3CN。 极性较大的化合物可以选择用D2O或CD3OD,如果想要观察活泼氢切记不能选择D2O和CD3OD。CDCl3为人民币2-3元,D2O为人民币6元,DMSO为人民币10元,CD3OD为人民币30元。Solvent 化学位移(ppm) 水峰位移(ppm) CDCl3 ? ? ? ? DMSO? ? ? ? ? ? ? ? CD3OD? ? ? ? ? ? ? ? D2O? ? ? ? ? ? ? ? CD3COCD3? ? ? ? ? ? ? ?

核磁常见溶剂峰

NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities Hugo E.Gottlieb,*Vadim Kotlyar,and Abraham Nudelman* Department of Chemistry,Bar-Ilan University, Ramat-Gan52900,Israel Received June27,1997 In the course of the routine use of NMR as an aid for organic chemistry,a day-to-day problem is the identifica-tion of signals deriving from common contaminants (water,solvents,stabilizers,oils)in less-than-analyti-cally-pure samples.This data may be available in the literature,but the time involved in searching for it may be considerable.Another issue is the concentration dependence of chemical shifts(especially1H);results obtained two or three decades ago usually refer to much more concentrated samples,and run at lower magnetic fields,than today’s practice. We therefore decided to collect1H and13C chemical shifts of what are,in our experience,the most popular “extra peaks”in a variety of commonly used NMR solvents,in the hope that this will be of assistance to the practicing chemist. Experimental Section NMR spectra were taken in a Bruker DPX-300instrument (300.1and75.5MHz for1H and13C,respectively).Unless otherwise indicated,all were run at room temperature(24(1°C).For the experiments in the last section of this paper,probe temperatures were measured with a calibrated Eurotherm840/T digital thermometer,connected to a thermocouple which was introduced into an NMR tube filled with mineral oil to ap-proximately the same level as a typical sample.At each temperature,the D2O samples were left to equilibrate for at least 10min before the data were collected. In order to avoid having to obtain hundreds of spectra,we prepared seven stock solutions containing approximately equal amounts of several of our entries,chosen in such a way as to prevent intermolecular interactions and possible ambiguities in assignment.Solution1:acetone,tert-butyl methyl ether,di-methylformamide,ethanol,toluene.Solution2:benzene,di-methyl sulfoxide,ethyl acetate,methanol.Solution3:acetic acid,chloroform,diethyl ether,2-propanol,tetrahydrofuran. Solution4:acetonitrile,dichloromethane,dioxane,n-hexane, HMPA.Solution5:1,2-dichloroethane,ethyl methyl ketone, n-pentane,pyridine.Solution6:tert-butyl alcohol,BHT,cyclo-hexane,1,2-dimethoxyethane,nitromethane,silicone grease, triethylamine.Solution7:diglyme,dimethylacetamide,ethyl-ene glycol,“grease”(engine oil).For D2O.Solution1:acetone, tert-butyl methyl ether,dimethylformamide,ethanol,2-propanol. Solution2:dimethyl sulfoxide,ethyl acetate,ethylene glycol, methanol.Solution3:acetonitrile,diglyme,dioxane,HMPA, pyridine.Solution4:1,2-dimethoxyethane,dimethylacetamide, ethyl methyl ketone,triethylamine.Solution5:acetic acid,tert-butyl alcohol,diethyl ether,tetrahydrofuran.In D2O and CD3OD nitromethane was run separately,as the protons exchanged with deuterium in presence of triethylamine. Results Proton Spectra(Table1).A sample of0.6mL of the solvent,containing1μL of TMS,1was first run on its own.From this spectrum we determined the chemical shifts of the solvent residual peak2and the water peak. It should be noted that the latter is quite temperature-dependent(vide infra).Also,any potential hydrogen-bond acceptor will tend to shift the water signal down-field;this is particularly true for nonpolar solvents.In contrast,in e.g.DMSO the water is already strongly hydrogen-bonded to the solvent,and solutes have only a negligible effect on its chemical shift.This is also true for D2O;the chemical shift of the residual HDO is very temperature-dependent(vide infra)but,maybe counter-intuitively,remarkably solute(and pH)independent. We then added3μL of one of our stock solutions to the NMR tube.The chemical shifts were read and are presented in Table 1.Except where indicated,the coupling constants,and therefore the peak shapes,are essentially solvent-independent and are presented only once. For D2O as a solvent,the accepted reference peak(δ)0)is the methyl signal of the sodium salt of3-(trimeth-ylsilyl)propanesulfonic acid;one crystal of this was added to each NMR tube.This material has several disadvan-tages,however:it is not volatile,so it cannot be readily eliminated if the sample has to be recovered.In addition, unless one purchases it in the relatively expensive deuterated form,it adds three more signals to the spectrum(methylenes1,2,and3appear at2.91,1.76, and0.63ppm,respectively).We suggest that the re-sidual HDO peak be used as a secondary reference;we find that if the effects of temperature are taken into account(vide infra),this is very reproducible.For D2O, we used a different set of stock solutions,since many of the less polar substrates are not significantly water-soluble(see Table1).We also ran sodium acetate and sodium formate(chemical shifts: 1.90and8.44ppm, respectively). Carbon Spectra(Table2).To each tube,50μL of the stock solution and3μL of TMS1were added.The solvent chemical shifts3were obtained from the spectra containing the solutes,and the ranges of chemical shifts (1)For recommendations on the publication of NMR data,see: IUPAC Commission on Molecular Structure and Spectroscopy.Pure Appl.Chem.1972,29,627;1976,45,217. (2)I.e.,the signal of the proton for the isotopomer with one less deuterium than the perdeuterated material,e.g.,C H Cl3in CDCl3or C6D5H in C6D6.Except for CHCl3,the splitting due to J HD is typically observed(to a good approximation,it is1/6.5of the value of the corresponding J HH).For CHD2groups(deuterated acetone,DMSO, acetonitrile),this signal is a1:2:3:2:1quintet with a splitting of ca.2 Hz. (3)In contrast to what was said in note2,in the13C spectra the solvent signal is due to the perdeuterated isotopomer,and the one-bond couplings to deuterium are always observable(ca.20-30Hz). Figure1.Chemical shift of H DO as a function of tempera-ture. https://www.wendangku.net/doc/8a3467115.html,.Chem.1997,62,7512-7515 S0022-3263(97)01176-6CCC:$14.00?1997American Chemical Society

HPLC流动相选择

液相色谱的柱子通常正相柱和反相柱。正相柱以硅胶为柱,或是在硅胶表面键合-CN,-NH3等官能团的键合相硅胶柱;反相柱填料主要以硅胶为基质,在其表面键合非极性的十八烷基官能团(ODS)称为C18柱,其它常用的反相柱还有C8,C4,C2和苯基柱等。另外还有离子交换柱,GPC柱,聚合物填料柱等。本文重点介绍反相色谱柱的选择和使用: 一、反相色谱柱的选择 1.柱子的PH值使用范围 反相柱优点是固定相稳定,应用广泛,可使用多种溶剂。但硅胶为基质的填料,使用时一定要注意流动相的PH范围。一般的C18柱PH值范围都在2-8,流动相的PH值小于2时,会导致键合相的水解;当PH值大于7时硅胶易溶解;经常使用缓冲液固定相要降解。一旦发生上述情况,色谱柱人口处会塌陷。同样填料各种不同牌号的色谱柱不尽相同。如果流动相PH较高或经常使用缓冲液时,建议选择PH范围大的柱子,例如戴安公司的Acclaim 柱PH 2-9或Zorbax的PH 2-11. 5的柱子。 2.填料的端基封尾(或称封口) 把填料的残余硅羟基采用封口技术进行端基封尾,可改善对极性化合物的吸附或拖尾;含碳量增高了,有利于不易保留化合物的分离;填料稳定性好了,组分的保留时间重现性就好。如果待分析的样品属酸性或碱性的化合物,最好选用填料经端基封尾的色谱柱。 3.戴安公司Acclaim柱子介绍—极性封尾C16固定相柱 戴安公司有28种类型的柱子,Acclaim反相柱填料高纯,金属含量极低,完全封尾。PH 2-9范围内兼容,低流失,高柱效。尤其是2003年推出的Acclaim极性封尾C16柱,是最先商品化的磺酰氨-O链接键的色谱柱,具极低的硅羟基活性,能在极性溶剂甚至100%水的条件下长期使用。对酸性和碱性化合物有极为尖锐的好的色谱峰形,与现有的一流色谱柱相比有好的立体选择性。(下图是Acclaim极性封尾C16柱和市售极性封尾一流色谱柱分离酸性化合物谱图的比较) 二、液相色谱柱的使用 色谱柱在使用前,最好进行柱的性能测试,并将结果保存起来,作为今后评价柱性能变化的参考。在做柱性能测试时要按照色谱柱出厂报告中的条件进行(出厂测试所使用的条件是最佳条件),只有样,测得的结果才有可比性。 但要注意:柱性能可能由于所使用的样品、流动相、柱温等条件的差异而有所不同。 1、样品的前处理 a、最好使用流动相溶解样品。 b、使用预处理柱除去样品中的强极性或与柱填料产生不可逆吸附的杂质。

流动相的选择技巧

流动相的选择技巧 常用做反相流动相的溶剂是甲醇和乙腈,甲醇有其性价比的优势,但是甲醇活性高,可能与某些样品发生反应,而且甲醇在低波长下有紫外吸收,会降低分析方法的灵敏度;乙腈虽然价格很高,毒性比甲醇大,但是洗脱能力比甲醇强,很少与样品发生反应,用作流动相系统常用做反相流动相的溶剂是甲醇和乙腈,甲醇有其性价比的优势,但是甲醇活性高,可能与某些样品发生反应,而且甲醇在低波长下有紫外吸收,会降低分析方法的灵敏度;乙腈虽然价格很高,毒性比甲醇大,但是洗脱能力比甲醇强,很少与样品发生反应,用作流动相系统压力要比甲醇低很多,且截止波长比甲醇低20nm,增加了检测出在低波长下才有吸收的杂质的可能性,所以我们一般倾向于多用乙腈,少用甲醇。但是有时候样品峰形不好或者分离不好,更换溶剂试试是一个很好的选择,毕竟不同的溶剂提供不同的选择性。 对流动相的优化主要在水相上下功夫,水里可以加酸、加碱、加盐,从而改善峰形、提高分离度。流动相里加碱的情况比较少,主要还是加酸,常用的酸有磷酸、三氟乙酸、甲酸、乙酸、高氯酸、甲基磺酸等,其中最常用的是磷酸和三氟乙酸,磷酸在低波长下没有紫外吸收,而三氟乙酸在低波长下有,但是三氟乙酸易挥发而磷酸不行,所以单纯做液相,低波长下磷酸最合适,三氟乙酸有吸收,运行梯度时基线漂移很严重,而做液质就要考虑首选三氟乙酸了,近些年还比较流行加甲酸或乙酸。一般情况下这几种酸没有太大区别,我们更多的是考虑通过加酸改变流动相的pH值,从而改善样品的分离度和峰形。 相同进样量样品峰越高则意味着峰形越好,从图中可以看出多数样品在低pH值下峰形都比中性要好,这个主要是由色谱柱本身的性质所决定的。色谱柱主要都是硅胶基质,现有的填料处理工艺无法将硅胶上残余的硅羟基全部去除,硅羟基会造成样品峰拖尾,一般认为硅羟基的pKa在3.5到4.5之间,低pH值能帮助抑制硅羟基的活性,减小拖尾,从而改善峰形,提高分离度。水溶液中添加0.1%(体积)的磷酸或者三氟乙酸其pH值大概在2左右,用作流动相正好抑制硅羟基的活性,所以开发液相分析方法时流动相首选水加01.%的磷酸,然后再以此为基础做优化。 在单独用酸不行的时候就要考虑使用缓冲盐,缓冲盐的选择原则是:简单、稳定、缓冲能力强、配制简单,需要调pH值时要有相应的酸或碱。常用的缓冲盐是磷酸盐,主要是钾盐和钠盐,再有就是醋酸盐,常用的盐浓度在10~20mM 左右。以前因为色谱柱填料生产工艺的问题,往往需要在流动相里添加三乙胺来减少拖尾,但是三乙胺对色谱柱的寿命有很大影响,现在新的色谱柱都不再需要了。流动相里有时会需要调节pH值到碱性,具体pH要视色谱柱的耐受范围而定,常用 NaOH、KOH溶液或氨水做为调节缓冲盐溶液碱性pH的试剂,也可以往水里单独添加氨水做碱性流动相。 在缓冲盐做流动相时,出峰太早、峰形很差、相似结构的化合物峰因为拖尾或峰型太宽而不能达到基线分离时,可以考虑使用离子对试剂,常用的离子对试剂主要是各种烷基磺酸钠和四丁基铵盐,但是流动相里使用离子对试剂时,系统

相关文档
相关文档 最新文档