文档库 最新最全的文档下载
当前位置:文档库 › 第四章架空线路的选线和定位

第四章架空线路的选线和定位

第四章架空线路的选线和定位
第四章架空线路的选线和定位

第四章架空线路的选线和定位

第三节架空送电线路模板定位方法

字体大小小中大

一、纵断面图及平面图

纵断面图是沿线路中心线的剖面图,表示沿中心线的地形、被跨越物的位置和高程。

而平面图则表示沿线路中心线左右各20-50m宽地带的地形平面图。平面图和断面图都展

成直线画在一张图上,简称平断面图。当线路遇到有转角时,在平面图上标出转角方向,

并注明转角的度数。

地形复杂时,例如当线路中心与边线高差较大,边线对地限距有可能不满足要求时,还需画出局部横断面图。

纵断面图比例一般水平方向为1:5000、垂直方向为1:500;对于地形复杂的地区或要求精度比较高时,水平方向为1:2000,垂直方向为1:200。

在平断面图的下方,应填上桩号、标高和桩距。并应留有填写杆塔形式、杆塔编号和档距等的空栏,备定位时使用。图4-2示出了某条线路的一段平断面图。

图4-2线路平断面图

二、定位模板曲线

模板曲线就是最大弧垂气象条件下按一定比例尺绘制的导线的悬垂曲线。它是在最大弧垂的时候,导线悬挂在空中的相似形状,绘制模板曲线是用于进行杆塔定位的。已知导线悬挂曲线的平抛方程为;

根据悬链线方程的展开式,取前两项为或用导线的悬链线方程,即

令:(4-3)

显然,在一定气象条件下,K是个常数。

则导线悬垂曲线的前述三种方程分别变为:

(4-4)

或(4-5)

或(4-6)

在绘制定位模板曲线时,上列各式中

g—最大垂直弧垂时的比载(N/m·mm2);

σ0—最大垂直弧垂时的导线水平应力(MPa)式(4-4)~式(4-6)所表示的曲线叫最大垂直弧垂曲线,也叫模板曲线,把它按一定比例尺刻在透明的赛璐珞板(1-2mm厚)上,就是弧垂模板,称为通用弧垂模板(也叫热线板)。

应当注意,模板曲线的比例尺应和所用平断面图的比例尺相同。

模板曲线通常绘制成和纵轴对称形式,横方向的总长度约为代表档距的2-3倍,一般平原地区可取±400m.。模板上应标明K值和比例尺。模板的形状示于图4-3。

图4-3模板曲线

由式(4-4)~式(4-6)可知,当系数K或比值为一定值时,导线悬垂的形状(弯曲度)也就确定了。根据连续档导线力学计算原理可知,在连续档各档导线的水平应力相等,比载也相等。所以,连续档各档档距无论档距大小,悬垂线的形状也是相同的。因此,把模板曲线上任意两点固定作悬挂点,则其间的弧线即为该档距的导线的悬垂曲线。三、用模板定位方法

1.杆高和杆位的关系

图4-4表明了杆高和杆位的基本关系。注意三条曲线的含义:

图4-4用模板定位

图4-4中,虚线①是导线的悬垂曲线;从曲线①的位置把曲线向下平移h(导线对地允许距离)得到曲线②,曲线②叫做导线地面安全线;从曲线①位置向下平移的距离等于杆塔上导线悬挂点高度H',得到曲线③。

下层横担导线悬挂点高度H'按下列公式确定。

对于直线杆:H'=H-λ(4-7)

对于耐张杆:H…=H(4-8)

式中H…-导线垂挂点距地面的高度(m);

H-塔杆的呼称高(m)。

使模版曲线的对称轴处于铅锤位置,并使曲线②上距地面最近点对地面的铅垂距离等于定位裕度,则曲线①即为导线在空中悬挂的实际位置。而曲线③与地面的交点即为杆塔的位置。从图4-4可以清楚地看出上述结论。因为,AA…=H?是导线悬挂点的高度。

在A点立一基杆塔,当其呼称高:H=H…+λ时,恰恰可以使导线的悬挂点高度等于H…,并保证导线对地距离满足要求,同样,B点也是塔位。

从上面的塔高和塔位的关系可知,在平原地区杆塔的呼称高H满足式(4-1)。在山区则不然,如果塔位利用有利地形,可以使杆塔呼称高;如果塔位选在洼池,可能使。

2.塔位定位高度

在模版曲线上也可以只画一条曲线②(即导线地面安全线),而其它两条曲线可以不画。这时,为了确定杆位,引用“定位高度”的概念。悬挂点下垂线和曲线②的交点(图4-4中的A…?点)到杆塔基础施工面间的高差叫做杆塔的定位高度E。

选定杆塔的呼称高后,其定为高度为:

直线杆塔E=H-h-λ(4-9)

耐张杆塔E=H-h(4-10)

上两式中H―杆塔呼称高(m);

h-导线对地允许距离(m);

λ—悬垂绝缘子串长度(m)。

有了定位高度的概念,则把曲线②的位置摆正并使其对地面保留定位裕度之后,根据已知呼称高的杆塔,求出定位高度E,导线地面安全线②上与地面的高度差等于定位高度E的点,与地面上相对应的点即为杆位。

或者相反,当杆位确定后,可以从图上求出定位高度,再由式(4-9)或式(4-10)确定需要的杆塔呼称高H。

3.在平断面图上用模板曲线定位的方法

(1)先确定特殊杆塔的塔位。

例如终端杆,耐张杆,转角杆或特殊跨越塔杆等可以先确定。

(2)由已定位的杆塔开始定其它中间杆位。

首先算出已定位杆塔和待定位杆塔导线悬挂点的高度H…。

然后在断面图上移动模板曲线,并使对称轴(y轴)始终保持铅锤位置,对地面的最小距离等于定位裕度Δh,在已定位杆塔处,曲线①对地面的高差等于该杆塔导线悬挂点高度H…。则模板曲线①另一侧对地面高差等于导线悬挂点高度的点所对应的地面即为待定杆位。

定位时,同时要考虑其他影响因素,如下面讲到的定位原则等,以尽量减少返工。

4.模板曲线k值的选择和校核

根据上面所介绍的杆位定位方法排定杆位时,实际上还有一个矛盾尚未解决:即在未排出杆位之前,我们还不知道各个耐张段内各档的档距是多少,从而也不知道代表档距是何值,因而也就无法算出最大弧垂条件下导线的应力σ0,进而模板曲线也无从绘制。

这是一个需要我们同前边第二章所出的几个思考题相联系在一起的问题。

解决的办法是试凑和逐渐趋近。即先假定一个代表档距,求出K值,绘制或选择弧垂模板,排定杆位。然后,根据所排定的杆位计算实际的代表档距和相应的K值。如果实际的K值和原有模板曲线的K值相等或误差在允许范围之内,则所排杆位有效。否则,应采用实际的K值绘制或选择模板,重新排定杆位,直到K值误差在允许范围为止。

K值的误差范围为

ΔK=+0.2X10-5~-0.2X10-5(1/m)

为了减少返工,可以充分利用以往的设计经验,通常代表档距标准档距。在山区:

标准档距;在平地:标准档距。

按照上述关系来假设代表档距与定位后的实际代表档距相差不会太大。

此外,有的设计单位,技术档案中已积累了一系列K值的模板曲线。还可以对不同的导线事先绘制出

的曲线。这样,假定一个代表档距,即可从曲线查出相应的K值,由K值选择模板曲线进行定位,可使工作大大简化。

四、杆塔定位的原则

杆塔定位原则主要指选定塔位、配置档距和选择杆型等方面应考虑的主要问题,这些问题在用模板定位时即应加以注意。

1.塔位选择原则

应尽量少占耕地和良田,减少施工土石量。塔位尽可能避开洼地、泥塘、水库、冲沟、断层等水文、地质条件不良地带,对于带拉线杆塔还应考虑打拉线处的条件。

应具有较好的施工(组杆、立杆)条件,对于非直线杆塔宜立于较平坦、便于紧线和机具运输的处所。

2. 杆塔选用原则

应尽可能选用较经济的杆塔型式或高度,充分利用杆塔的使用荷重条件,尽量使用节省钢材的杆塔型式,注意尽可能避免使用特殊杆塔和特殊设计的杆塔,大转角应尽量降低塔高。

3. 档距的配置原则

档距的配置应最大限度地利用杆塔高度和强度,相邻档距的大小应不十分悬殊以避免过大的纵向不平衡张力。尽量避免出现孤立档。

同时还应考虑档距中央导线的接近情况(特别是当不同杆型或不同导线排列方式杆塔相邻时)。还有其它若干注意事项,略。

五、定位校验

在初步排定杆位后,需要进行多项验算以判明定位是否适当,是否满足各项技术要求。

验算的项目或内容比较多,包括杆塔荷载、杆塔倒拔、杆塔空气间隙、绝缘子串强度,导线悬挂点应力、导线的风偏等,有关校验方法后边章节另有介绍。

但为了便于对架空线路设计内容的了解,我们就杆塔定位后所进行的校验项目先作一下大致说明。在初步排定杆塔的位置后,应对线路各部分的设计条件进行检查或校验,通常有以下几方面的内容:

1.各种杆塔的设计条件校验杆塔的机械荷重条件,包括水平档距、垂直档距、最大档距、转角度数等,不应超过设计允许值。

2.直线杆塔摇摆角的校验

当摇摆角超过杆塔的允许值时,将引起带电部分对杆塔构件间隙不够,因此对有些位于低处的杆塔必须进行校验。允许摇摆角根据允许间隙用作图法确定。

3.直线杆塔的上拔校验

导线或避雷线上拔时,将使横担承受向上的弯曲力矩,从而影响横担的机械强度和杆塔的稳定性。同时,由于导线上拔,使绝缘子串摇摆角增大,危及安全运行。因此,若直线杆塔位于低处,除了校验摇摆角外,还要进行上拔校验。

4.耐张绝缘子倒挂校验

定位于低处的耐张型杆塔, 将引起耐张绝缘子串上仰,致使部分绝缘子裙边积雨、雪、污垢等,从而降低了绝缘强度。因此,当耐张串在常年运行情况下(即温度为年平均气温、无风、无冰)会产生这种现象时,则绝缘子串应当倒挂。

5.杆塔基础的倾覆校验

杆塔定位时,若某杆塔的水平档距较大而垂直档距较小甚至为负值时,应验算杆塔的倾覆力,进行基础倾覆计算,必要

时需采取抗倾覆措施,即若无卡盘的电杆应加卡盘,若加卡盘后仍不能解决时,可加拉线以保证稳定。

6.悬垂串垂直荷重的校验

在山区线路中,立于高处的杆塔,其垂直档距往往比水平档距大很多,因而导线重量可能超过绝缘子串的承载能力,为此,需使定位后高处杆塔的垂直档距小于悬垂串承载能力对应的最大允许的垂直档距。若校验不合格,则应调整杆塔位置,仍不能解决问题时,可用双串或多串悬垂串以提高其承载能力。同时对横担也应作相应的强度检查和采取补强措施。

7.导线悬挂点应力校验

高处杆塔的两侧档距过大或悬点高差过大时,导线悬点的应力可能超过允许值。故定位中对大档距或大高差档距因进行悬点应力校验。

若发现悬点应力超过允许值,可通过调整杆位或杆高,以减小高差和档距的办法来改善悬点应力。条件许可时,也可适当放松耐张段的导线,降低水平应力。

8.悬垂角校验

高处杆塔的垂直档距较大时,可使导线、避雷线的悬垂角超过其线夹的允许悬垂角,致使导线、避雷线在线夹出口处产生过大的静弯曲应力而损伤,因而需进行校验。校验。方法是通过杆位或杆高的改变,或采用双悬垂线夹的办法来改善。

9.导线风偏后对地、物距离的校验

定位时,能直接从断面图上量出导线静止时对线路中心线各点的距离。

为确保运行安全,尚需检查边导线在风偏时对地、物净空距离是否满足规程要求。如果安全距离不够,应调整杆塔位置及高度,或挖掉土方。

10.交叉跨越间距的校验

导线和被跨越物之间需保持一定的安全距离,定位时,可直接在断面图上量取。当量得的距离和规定值很接近时,可采用计算方法求出此距离的精确值。

浅论架空输电线路施工基础的几种形式 刘爱辉

浅论架空输电线路施工基础的几种形式刘爱辉 发表时间:2018-05-21T16:20:21.603Z 来源:《基层建设》2018年第5期作者:刘爱辉 [导读] 摘要:近年来,架空输电线路施工基础问题得到了业内的广泛关注,研究其相关课题有着重要意义。 国网湖北送变电工程有限公司湖北武汉 430063 摘要:近年来,架空输电线路施工基础问题得到了业内的广泛关注,研究其相关课题有着重要意义。本文首先对相关内容做了概述,分析了架空输电线路基础选型,并结合相关实践经验,分别从塔脚施工方案优化等多个角度与方面,就输电线路杆塔施工方案优化问题展开了研究,阐述了个人对此的几点看法与认识,望有助于相关工作的实践。 关键词:架空输电线路;施工;基础;形式 1前言 作为一项实际要求较高的实践性工作,架空输电线路施工基础的特殊性不言而喻。该项课题的研究,将会更好地提升对输电线路施工基础形式的分析与掌控力度,从而通过合理化的措施与途径,进一步优化该项工作的最终整体效果。 2架空输电线路基础选型 2.1岩石基础 岩石基础大概分为两大类,一类是岩石嵌固基础,另一类是岩石锚杆基础。前一种是一般利用机械在岩石地基中直接挖需要的基坑,然后将钢筋骨架直接浇注在岩石基坑,适用于无覆盖层或者覆盖层较浅的掩饰地基;后一种主要是把锚筋锚固与灌浆的岩石内,适用于中等风化及以上整体性较好的硬质岩。岩石地基对岩石依赖性较高,主要是借助岩石本身或者是岩石和砂浆间的粘结力来稳固上部杆塔体,进而保证对杆塔结构的稳定。在有良好岩石基础的山区地带,这种类型的基础比较有效,特点是上拔稳定,具有坚强的抗拔性能,由于充分利用了岩石的强度和稳固性,使得这种地基能大量节约钢材及混泥土用量,挖掏式的作业使施工费用也比较低。但是岩石基础对岩石的完整性、硬度、风化情况、稳定性、层理等都有很高的要求,所以虽然这种地基有很多优点,也只是用于一些山区或者是地质条件和它符合较好的一些地方,局限性很强。 2.2斜柱板式基础 斜柱板式基础主要利用回填土的自重抵抗基础的上拔力,基础底板大而薄,双向配筋以承担基础力引起的弯矩和剪力,受力合理,能节省材料,是目前送电线路最常用的基础型式。但其立柱倾斜率,使其质量控制点多,基础的施工质量难于有效控制,此类基础设计时,基础主柱悬臂长度与底板厚度的比值得小于3。 2.3直柱全掏基础 直柱全掏基础型式广泛用于架空输电线路中,山区丘陵地区地质条件比较好的铁塔基础使用,弃土弃渣少,水土流失量较少,对环境影响破坏小;掏挖基础的计算有三项:上拔、下压、侧向弯矩;基础底面邊缘最大压力设计值不大于调整后的地基承载力特征值的1.2倍。 2.4钻孔灌注桩类基础 以专门的机具施工成孔,放入钢筋骨架并浇注混凝土的基础。各种基础型式,都有自身的特点和经济优势,要结合工程地质、交通等具体情况确定基础型式。 基础类型很多,本文不一一叙述。 3输电线路工程基础设计类型及特点 3.1软土地基 我国幅员辽阔,不同地区的地质类别差异很大。有些地区的土质为软土,在这种土质上建筑,所建的输电线路地基叫做软土地基。这种地基一般有灌注桩、扩展式和大板式3种基础。其中扩展式基础计算起来简单,不过工程对土方开挖以及配筋的要求很高,且其占地面积很大,在施工过程中经常会发生搬运材料困难的问题,使得灵活施工率明显降低;大板式基础施工的成本相对比较大,施工设计的内容比较广泛,施工较为复杂,特别是施工过程有很多软弱地基的情况下会影响施工的质量,使得施工的难度增大,其质量自然难以有保障;灌注桩这种基础的造价相对较高,且施工的质量不容易控制。 3.2冻土地基 线路基础工程在不同的地方,其施工的材料、工艺和地基的判断方法都有一定的区别。其中冻土地基大约占全部国土的1/5左右,主要原理是由于冻土在融合及冻结的条件下,力学性质常常有所变化,与之相应的强度指标、地形特点和地面构造亦随之出现变化。在冬天里最容易发生安全隐患,冻胀和融沉是冻土发生隐患的最常见的形式,常从结构措施方面予以防治。按照所在地的气候特点,考虑施工的需要,一般运用排水隔水法、物理化学法和换填法等方式对冻土地基予以处理。 3.3黄土地基 黄土地基线路工程常见的有三个类型,分别是开挖式、刚性台阶以及掏挖。在软土相对比较厚的位置,大多利用桩基穿越软土层进行处置。但是对于刚性台阶会出现受力不均匀的情况,施工材料就会被浪费,工程造价高。随着发展这种方式很容易被废弃;而对于掏挖基础的模型应用的比较广泛。 4输电线路杆塔施工方案优化 4.1塔脚施工方案优化 输电线路经过的地区地形存在着较大的差异,当铁塔位于台阶或斜坡上时,塔脚之间会形成高差,对于该种情况需要运用高低脚来平衡。第一,一般高低脚的级差通常被设置1.5m。受地面高差影响较大,能够确保主柱露出地面,缩短了塔脚的极差。为了提升施工效果,需要对杆塔位置进行合理设置,将其在陡峭的山顶处保持正侧面根开,减少施工基面挖方量。塔的长短脚受地形影响较大,主要是通过基础柱升高的形式,来完成高差平衡,必要时,结合工程的具体施工情况,做特殊基础。对于在基础情况下无法满足立柱升高要求的情况下,可以采用在短脚处基面进行适当的挖方。第二,全方位高低脚。全方位高低脚在实际的使用过程中,需要结合各地区塔位的地形需求来决定,以此来组合成不同长度的全方位高低脚,要确保高脚侧与低脚侧保持一致性,对角钢的规格进行合理的选材。 4.2基础施工方案优化 随着电力行业的快速发展,输电线路杆塔的建设数量逐渐提升,开挖量持续增大,对塔位周围的原有植被造成了严重的破坏,对稳定

架空输电线路设计要点

架空输电线路设计要点 一、线路路径的选择与杆塔的定位 1 路径选择应采用卫片、航片、全数字摄影测量系统等新技术,必要时可采用地质遥感技术,综合考虑线路长度、地形地貌、城镇规划、环境保护、交通条件、运行和施工等因素,进行多方案技术比较,使路径走向安全可靠,经济合理。 2 路径选择应尽量避开军事设施、大型工矿企业及重要设施等,符合城镇规划,并尽量减少对地方经济发展的影响。 3 路径选择应尽量避开不良地质地带和采动影响区,当无法避让时,应采取必要的措施;路径选择应尽量避开重冰区及影响安全运行的其他地区;应尽量避开原始森林、自然保护区、风景名胜区。 4 路径选择应考虑对邻近设施如电台、机场、弱电线路等的相互影响。 5 路径选择宜靠近现有国道、省道、县道及乡镇公路,改善交通条件,方便施工和运行。 6 应根据大型发电厂和枢纽变电所的总体布置统一规划进出线,两回或多回路相邻线路通过经济发达地区或人口密集地段时,应统一规划。规划中的两回或多回同行线路,在路径狭窄地段宜采用同杆塔架设。 7 耐张段长度,单导线线路不宜大于5km;两分裂导线线路不宜大于10km;三分裂导线及以上线路不宜大于20km。如运行、施工条件许可,耐张段长度可适当延长。在耐张段长度超出上述规定时应考虑防串倒措施。在高差或档距相差非常悬殊的山区或重冰区等运行条件较差的地段,耐张段长度应适当缩短。 8选择路径和定位时,应注意限制使用档距和相应的高差,避免出现杆塔两侧大小悬殊的档距,当无法避免时应采取必要的措施,提高安全度。 9与大跨越连接的输电线路,应结合大跨越的选点方案,通过综合技术经济比较确定。 二、导线与避雷线的选择 1 输电线路的导线截面,宜按照系统需要根据经济电流密度选择;也可按系统输送容量,结合不同导线的材料进行比选,通过年费用最小法进行综合技术经济比较后确定。 2 输电线路的导线截面和分裂型式应满足电晕、无线电干扰和可听噪声等要求。海拔不超过1000m地区,采用现行国标中钢芯铝绞线外径不小于表1所列数值,可不必验算电晕。 3 大跨越的导线截面宜按允许载流量选择,其允许最大输送电流与陆上线路相配合,并通过综合技术经济比较确定。 4 距输电线路边相导线投影外20m处,80%时间,80%置信度,频率0.5MHz 时的无线电干扰限值不应超过表2的规定。

架空输电线路杆塔基础的几种形式图文【最新版】

架空输电线路杆塔基础的几种形式图文 输电线路杆塔的地面以下部分的总体统称为杆塔基础。它的作用是用来稳定输电线路的杆塔,防止杆塔因为承受导地线、风、覆冰、断线张力等垂直荷载、水平荷载和其他外力作用而产生的上拔、下压或倾覆。 基础形式可分为以下几种: 1.岩石嵌固基础

岩石嵌固基础适用于覆盖层较浅或无覆盖层的强风化岩石地基,其特点是底板不配筋,基坑全部掏挖。上拔稳定,具有较强的抗拔承载能力。 需要时,可将主柱的坡度设置与塔腿主材坡度相同,以减小偏心弯矩,还可省去地脚螺栓。由于该基型充分利用了岩石本身的抗剪强度,混凝土和钢筋的用量都较小,同时减少了基坑土石方量,浇制混凝土不需要模板,施工费用较低。 岩石嵌固基础分利用了岩石本身的抗剪强度,混凝土和钢筋的用量都较小,同时减少了基坑土石方量,浇制混凝土不需要模板,施工费用较低。但对勘测深度要求较高,要求逐基鉴定岩石的稳定性、覆盖层厚度、岩石的坚固及风化程度情况,准确落实相关设计参数。 2.岩石锚杆基础

岩石锚桩基础适用于中等风化以上的整体性好的硬质岩。该基础型式是在岩石中直接钻孔、插入锚杆,然后灌浆,使锚杆与岩石紧密粘结,借岩石本身、岩石与砂浆间和锚筋的粘结力来抵抗上部杆塔结构传来的外力, 以保证对杆塔结构的锚固稳定,从而大大降低了基础混凝土和钢材量。岩石锚桩基础一般宜用于未风化、微风化和中等风化程度的岩石地基, 但随着现在实验和实践经验的积累, 强风化岩石地区亦可做岩石基础。岩石锚桩基础常用型式有直锚式、斜锚式、承台式、嵌固式、半嵌固式5种类型, 应用较为成功。直锚式岩石锚桩基础具有工艺简便、灵活性高、适用性强、造价低等优势, 适用于基础作用力较小的直线塔;斜锚式岩石锚桩基础使用于基础作用力较小的直线水泥杆或直线拉线塔等塔型; 而承台式岩石锚桩基础和嵌固式、半嵌固式岩石锚桩基础使用于基础作用力较大的耐张塔等塔型。 3.掏挖基础

基于10kv架空线路单相接地故障定位方法

基于10kv架空线路单相接地故障定位方法 发表时间:2019-06-21T16:49:42.283Z 来源:《河南电力》2018年22期作者:梁庆斌 [导读] 笔者在本文中先是阐述了故障定位的必要性,再分析了当前一些常用的故障定位措施。 (广东电网有限责任公司肇庆广宁供电局 526300) 摘要:在电网系统中,10KV架空线路具有十分重要的意义。一旦发生故障,便会带来许多问题,除了会严重影响供电系统的安全之外,还会带来一系列其他部件的故障,以及带来多线路故障的发生,所以相关研究人员应该加大力度,对10KV架空线路单相接地故障定位方法进行深入研究和探索。笔者在本文中先是阐述了故障定位的必要性,再分析了当前一些常用的故障定位措施。 关键词:架空线路;故障定位;解决措施;电网 前言 由于10KV架空线路的特殊性,发生单相接地故障的次数相对较多,而且会导致故障跳闸,从而使得电器装置发生故障、继电保护设备失效,更严重的时候甚至会发生配电线路大面积断电。一旦这些问题产生,便会给配网造成大量损失,以及引起用掉事故,造成人员伤亡[1]。在引发架空线路故障的原因中,最常见也是最主要的原因,便是单相接地故障。 1、10KV架空线路单相接地故障定位的意义 在电网系统中,当单相接地故障时,会产生许多危害,具体如下: 1.1首先,由于当下10KV输电线变压器基本上采用的都是三角形连接方式,所有都没有设置消弧线圈,当其中一个线路发生单相接地故障的时候,剩下的线路电压便会发生跳动,从而用电设备进入过电压模式,导致两点甚至多点的故障短路,由此带来大范围的跳闸停电,有时候也会造成电缆的烧毁,带来巨大的经济损失。 1.2此外,由于配电网一般会采取中性点接地模式,当线路发生单相接地故障的时候,由于低阻抗短路回路不能够正常形成,所以接地短路电流会比常规情况要小很多,从而出现小电流接地的情况,此外,由于电网结构一般是单端电源供电的树形结构,所以当出现单相接地故障的时候,不能迅速找出故障所在具体位置以及相应相位,从而找不出故障具体发生位置[2]。当前,普遍使用的方法是拉路法,通过单相接地选线,以及人工排查的方式,去不断测试出故障接地的方位,这种方法不仅影响了供电恢复的时间,也会给供电部门的经济成本带来一定的影响。 1.3从以上两点可以得知,对于10KV架空线路单相接地故障来说,一方面会影响架空线路自身的运转和运行情况,从而导致供电质量不够,另外,还会因此而带来其他比较严重的供电系统的损坏,增加设备使用风险。同时,由于当前故障定位技术比较落后,不能够满足先进的电力系统的需要,因此定位技术需要引起足够的重视和研究,确保电网平稳运行。 2、10kV架空线路单相接地故障的定位方法 2.1原始故障定位方式 一般来说,当10KV架空线路配电网单相接地故障发生时,供电企业会使用人为巡检的方式对故障线路进行依次摸排、巡查,一点一点地发现故障点,并予以解决。这种人工方法不仅耽误的时间长,而且投入的人力物力巨大,除了用户不能正常用电之外,也会给供电公司带来一定的经济损失。因此传统的单相接地故障定位方法已不适用于当下,应该针对常见故障研究出新的定位方法。 2.2现代故障定位方法 2.2.1阻抗法。在10KV架空线路配电网单相接地故障发生的时候,检修人员可以对故障线路进行电流、电压进行检测,从而得知故障回路的阻抗,接着假设架空线路是均匀的,因此长度和阻抗是正比关系,这样算来,就能得知故障线路的大概位置。这种阻抗法花费成本低,而且操作简洁安全,与此同时,它的不足之处在于容易受到路径阻抗等因素的影响从而数据存在误差。一般来说,阻抗法常用于结构比较基础以及线路清晰的架空线路上[3]。由于阻抗法的局限性,不能够真正排查出故障的发生位置,所以进行具体排查还需要一定的时间,因此不适用于结构复杂,支线多的电路网中。阻抗法一般不会单独使用,仅作为附加的辅助性方法去进行故障定位。 2.2.2注入法。所谓注入法,也就是交流注入法,实际操作方式为:借助重合器,隔离出发生故障的线路,接着输入高压信号,并控制线路电流在一百到两百毫安之间,接着使用检测器对架空线路进行逐级检查,检查顺序为隔离段的初始位置,一直到隔离段末尾,在这过程中,如果发现某一点存在两倍的信号差,那么基本上可以判定故障发生点。电流注入法也存在一些不足,这是因为一般情况下,架空线路与地面之间有十米左右的距离,之间的电流不大。由于检测的信号与流经线路的信号是正比关系,所以检测器不需要太高的精确性,在故障点附近,检测信号的差别尤其明显,因此容易被检测出来,从而科学性地找出故障点位置,具体应用的信号源结构如下图所示: 图2:注入法结构图 当配电网处于正常工作状态的时候,AN端的电压应该与BN端以及CN端相同,如果A相发生故障,导致短路,则A端电压为零,但是此

接地故障指示器原理

电力事业快速发展,电力线路和电网越来越密集,电力资源形势严峻。现在保证电缆线路的畅通已经是重中之重的事情,电力故障给人们带来了巨大的经济损失。故障指示器的出现有效地解决了这一问题。 由于我国的10KV、35KV线路的运行方式为中性点不接地方式,接地故障的查找一直以来是电力部门非常头疼的问题,加上接地故障在现实中的多样性和复杂性,所以接地故障的查找就更加困难。 目前电力部门查找接地故障基本上采用使用接地检查设备和人工巡线的方式相配合的方法,常用的接地检测设备有接地选线设备、单相接地故障检测系统、接地故障指示器三种方式。但是这些设备使用都有局限性,小电流接地选线设备只能帮助选线,确定接地发生的线路但无法确定接地的位置,由于线路的分支很多线路距离长所以对接地故障的查找帮助非常有限;单相接地故障检测系统采用变电站安装接地信号源和线路安装指示器的方法配合使用组成一个系统,接地故障的查找较接地选线设备有了很大的进步,但是由于投资较大,在使用中受到非常大的限制;无源的接地故障指示器虽然接地故障的查找准确性有限,但是由于其价格低廉、安装方便灵活(无需停电装卸)加之目前的无源故障指示器把短路功能合在一起更加方便了用户查找短路和接地两种故障,在市场上颇受欢迎,使用量很大,有很大的市场空间。 目前市场上就10kv、35KV线路故障判断的接地短路主要采用的技术而言,短路检测技术已经非常成熟,产品的可靠性也很高。接地的检测由于线路运行方式(中性点不接地)非常困难,检测的方式由很多种。 小电流接地选线的设备采用的是零序电流的检测原理,而单相接地检测系统则采用的是安装信号源配合外部指示器在发生接地的时候形成回路来判断接地故障。 这里,我们只着重介绍目前市场使用最为广泛的无源接地短路二合一故障指示器的检测原

线路故障排查和故障定位方法及措施(光、电缆)全解

1.光缆线路故障排查和故障定位方法及措施 1.1光缆线路故障的分类 根据故障光缆光纤阻断情况,可将故障类型分为光缆全断、部分束管中断、单束管中的部分光纤中断三种。 (1)光缆全断 如果现场两侧有预留,采取集中预留,增加一个接头的方式处理; 故障点附近有接头并且现场有足够的预留,采取拉预留,利用原接头的方式处理; 故障点附近既无预留、又无接头,宜采用续缆的方式解决。 (2)光缆中的部分束管中断 其修复以不影响其他在用光纤为前提,推荐采用开天窗接续方法进行故障光纤修复。 (3)单束管中的部分光纤中断 其修复以不影响其他在用光纤为前提,推荐采用开天窗接续方法进行故障光纤修复。 1.2造成光缆线路故障的原因分析 引起光缆线路故障的原因大致可以分为四类:外力因素、自然灾害、光缆自身缺陷及人为因素。 1.2.1外力因素引发的线路故障 (1)外力挖掘:处理挖机施工挖断的故障,管道光缆因打开故障点附近人手井查看光缆是否在人手井内受损,并双向测试中断光缆。 (2)车辆挂断:处理车挂故障时,应首先对故障点光缆进行双方向测试,确认光缆阻断处数,然后再有针对性地处理。 (3)枪击:这类故障一般不会使所有光纤中断,而是部分光缆部位或光纤损坏,但这类故障查找起来比较困难。 1.2.2自然灾害原因造成的线路故障 鼠咬与鸟啄、火灾、洪水、大风、冰凌、雷击、电击。 1.2.3光纤自身原因造成的线路故障 (1)自然断纤:由于光纤是由玻璃、塑料纤维拉制而成,比较脆弱,随着时间的推移会产生静态疲劳,光纤逐渐老化导致自然断纤。或者是接头盒进水,导致光纤损耗增大,甚至发生断纤。 (2)环境温度的影响:温度过低会导致接头盒内进水结冰,光缆护套纵向收缩,对光

电力架空线路导线

架空绝缘线 问:有JKLYL-10/50这种型号的架空绝缘线吗? 没有,型号编制不符合规范。JK——架空电缆;L——铝芯,YL——??!(应该是YJ吧)。 猜想为:JKLYJ-10 1x50 GB/14049-2008,单芯铝芯交联聚乙烯绝缘架空电缆,额定电压10kV,50平方毫米。 GB/14049-2008 额定电压10kV架空绝缘电缆的标准型号: JK YJ——铜芯交联聚乙烯绝缘架空电缆 JK TR YJ——软铜芯交联聚乙烯绝缘架空电缆 JK L YJ——铝芯交联聚乙烯绝缘架空电缆 JKY——铜芯聚乙烯绝缘架空电缆 JKTR Y——软铜芯聚乙烯绝缘架空电缆 JK L Y——铝芯聚乙烯绝缘架空电缆 JK LH Y——铝合金芯聚乙烯绝缘架空电缆 JKLYJ/B——铝芯本色交联聚乙烯绝缘架空电缆 JKLHYJ/B——铝合金芯本色交联聚乙烯绝缘架空电缆 JKLYJ/Q——铝芯轻型交联聚乙烯绝缘架空电缆 JKLHYJ/Q——铝合金芯轻型交联聚乙烯绝缘架空电缆 JKLY/Q——铝芯轻型聚乙烯绝缘架空电缆 JKLHY/Q——铝合金芯轻型聚乙烯绝缘架空电缆。 GB∕T12527-2008额定电压1kV及以下架空绝缘电缆的标准型号:

JK V——铜芯聚氯乙烯绝缘架空电缆 JK Y——铜芯聚乙烯绝缘架空电缆 JK YJ——铜芯交联聚乙烯绝缘架空电缆 JK LV——铝芯聚氯乙烯绝缘架空电缆 JK L YJ——铝芯交联聚乙烯绝缘架空电缆 JKLY——铝芯聚乙烯绝缘架空电缆 JK LH Y——铝合金芯聚乙烯绝缘架空电缆 JKLHV——铝合金芯聚氯乙烯绝缘架空电缆 JKLHYJ——铝合金芯交联聚乙烯绝缘架空电缆 现在还有钢芯铝绞线芯架空电缆,尚无国家标准: JKL G V——钢芯铝绞线芯聚氯乙烯绝缘架空电缆(1kV) JK LG Y——钢芯铝绞线芯聚乙烯绝缘架空电缆(10kV以下) JKLGYJ——钢芯铝绞线芯交联聚乙烯绝缘架空电缆(10kV以下)JKLG V/Q——钢芯铝绞线芯轻型聚氯乙烯绝缘架空电缆(1kV) JKLGY/Q——钢芯铝绞线芯轻型聚乙烯绝缘架空电缆(10kV以下)JKLGYJ/Q——钢芯铝绞线芯交联聚乙烯绝缘架空电缆(10kV以下) 另外,交联聚乙烯绝缘架空电缆很多厂家可以生产额定电压35kV。

分析架空输电线路铁塔结构与基础设计

分析架空输电线路铁塔结构与基础设计 发表时间:2016-12-26T13:50:27.263Z 来源:《电力设备》2016年第21期作者:买生玉解媛媛 [导读] 对铁塔结构与基础结构进行科学的设计,才能保证输电线路的稳定性。 (国网宁夏电力设计有限公司宁夏银川 750002) 摘要:架空输电线路是电力系统的重要组成部分,由于架空线路的特殊性,铁塔结构设计的合理性和稳定性决定了线路结构的安全性,因此要根据架空线路的运行要求,对铁塔结构与基础结构进行科学的设计,才能保证输电线路的稳定性。 关键词:架空;输电线路;铁塔;结构;基础设计 作为我国当前电力供应的基础保障性设施,架空输电线路在电力供应系统中所发挥的作用是非常重要的。但结合我国电力行业实际情况来看,企业目前仍然是电力供应的主要对象,因此,在电力供应经济改善方面的需求仍然是非常明确的。在对架空输电线路铁塔的设计中,除需保障铁塔结构的安全、稳定以外,还需综合考虑设计的经济效益。在目前已发生的各类输电线路安全事故中,因铁塔结构设计不合理所致事故的比例是非常高的。因此,为提高架空输电线路运行安全性和稳定性,做好对铁塔结构与基础的设计、优化工作有着非常重要的意义与价值。 1 架空输电线路铁塔塔型设计 在有关架空输电线路铁塔内力的分析中,可将铁塔杆系节点作为铰接点。考虑到架空输电线路铁塔结构多在相对复杂的自然环境中运行,因此对铁塔塔型的规划必须兼顾技术和经济层面的合理性。根据架空输电线路工程导线型号、基本环境条件以及敷设路径情况选择基础塔型形式,基于铁塔所承受机械外负荷条件进行设计和计算,以确保铁塔结构稳定性、刚度、强度满足设计要求。除此以外,在架空输电线路铁塔塔型的选择设计上还应当考虑施工条件、施工技术以及运行便捷性等因素的影响。 根据底部宽度,可以将架空输电线路铁塔设置为窄基铁塔和宽基铁塔两种类型。其中,窄基铁塔底部宽度与塔体高度的比值在 1/14~1/12 的范围内,宽基铁塔底部宽度与塔体高度的比值则在 1/6 ~1/4 的范围内。对于窄基铁塔而言,由于铁塔底部宽度较小,因此主材所受作用力较大,适用于小挡距(使用挡距不足 100 m)铁塔的设计选型;对于宽基铁塔而言,由于铁塔底部宽度较大,因此主材所受力作用力较小,适用于大挡距(使用挡距在 100 m 及以上)铁塔的设计选型。 2 架空输电线路铁塔结构设计 对于宽基铁塔而言,根据导线回数的不同可以采取不同的结构布置方案。比如对于采用单导线回路的铁塔而言,结构布置上具有“上”字型特点;对于采用双导线回路的铁塔而言,结构布置上则具有鼓型特点。 对于窄基铁塔而言,根据横担以及支架的通用情况可以采取以下两种不同的结构布置方案:①将塔头区域布置为垂直段,口宽固定,塔身开始起坡,铁塔整体高度与底部宽度参数一致,不考虑回路数划分影响;横担具有通用性特点,可根据架空输电线路实际回路数选择相应的横担数量。②铁塔塔身与塔头均设置通用坡度,铁塔总高度与上口宽度和底部宽度完全一致;横担固定不通用,可划分为单导线回路和双导线回路两种形式。 3 架空输电线路铁塔基础优化 在对架空输电线路铁塔结构基础进行优化设计的过程中,必须遵循以下三点基本原则:①优化设计前期,应当对沿线工程水文条件、地质条件和气象条件进行详尽的调查。②制订科学的铁塔杆塔位置排定原则,即在线路敷设经过各类作物林区时不砍伐通道。如果垂直距离受到影响,则对个别部位进行剪枝或削顶处理。③做好对架空输电线路沿线主力杆塔造影的优化设计工作。具体而言,结构基础设计中可采取的优化措施有以下几点。 3.1 强化架空输电线路铁塔基础 输电线路杆塔基础常见类型包括钢管杆、水泥杆和直立式铁塔系列基础三类。其中,钢管杆基础可见非原状混凝土、非原状土台阶式和非原状土直柱式柔性这三类;水泥杆基础则可见非原状土无拉线盘和非原状土有拉线盘这两类;直立式铁塔系列基础在基础类型方面划分更细,共有 16 种类型。 在杆塔基础的选型中,如果混凝土浇筑难度较大,则可以优先选择金属式基础或预制装配式基础。如果涉及到电杆及拉线,则建议选择预制装配式基础。在基础设计过程中,以安全为前提,对架空输电线路铁塔基础受力性能进行分析。新基础计算的基本前提是铁塔基础所处区域地基基础承载力符合设计要求。但是,如果地基基础为淤泥质土或淤泥,则应当重新设计。在对架空输电线路铁塔基础进行优化设计的过程中,必须充分评价工程实践中的施工条件、杆塔形式以及沿线地质条件对铁塔结构稳定性的影响,在最大程度上确保架空输电线路铁塔结构的基础稳定性和位移允许性。 3.2 适当降低架空输电线路铁塔接地电阻 高压输电线路接地电阻的大小与线路耐雷水平呈反相关,因此,为有效提高高压输电线路整体耐雷水平,应在基础设计环节中结合各基杆塔土壤电阻率取值情况,有效控制杆塔接地电阻的大小。在基础设计的优化中,可采取的措施包括以下几种:①若架空输电线路铁塔杆塔所处区域周边允许水平放设,则应当采取水平外延接地的处理措施。这样,一方面能够使冲击性接地电阻得到控制,另一方面能够有效降低工频接地电阻。②可结合架空输电线路铁塔结构的基本情况,适当增加埋设深度接地极,遵循就地原则增加垂直接地极。③若杆塔所处区域地下地质条件特殊,影响土壤电阻率水平,则可在基础设计中适当增加木炭及酸、碱性物质,以改善土壤电阻率水平。④可合理敷设降阻剂,以起到合理控制杆塔接地电阻大小的效果。 3.3 优化输电线路基础路径和塔型搭配 城市紧凑型多回路钢管杆走廊或钢管塔走廊在技术上能满足输电线路的实际要求,且钢管杆造型美观,安装快捷,占地面积小,还与城市地势较为平坦、走廊宽度小、线路施工方便等特点相适应,因此得以迅速发展。对于架空输电线路而言,线路走廊宽度主要会受到风偏、安全距离和塔头尺寸三方面参数的影响。其中,安全距离的波动范围小,因此,控制架空输电线路走廊宽度的关键在于合理控制风偏和塔头参数。结合实践经验来看,为有效限制导线风偏,对塔头尺寸进行控制,可采取固定挂点的直线式杆塔和固定跳线的耐杆塔。同时,考虑到城市地区架空输电线路有大截面和多回路发展的趋势,因此在基础设计环节中,可适当增大绝缘子部件、避雷线、接地和金具

10kV架空线路单相接地故障的定位方法分析

10kV架空线路单相接地故障的定位方法分析 发表时间:2018-11-14T16:04:50.920Z 来源:《防护工程》2018年第20期作者:张雄标 [导读] 近年来,经常出现10kV架空线路单相接地故障,影响了配网系统的正常运转,降低了供电质量,必须找准故障线路,科学定位故障线路区段 广东电网有限责任公司清远供电局 511500 摘要:近年来,经常出现10kV架空线路单相接地故障,影响了配网系统的正常运转,降低了供电质量,必须找准故障线路,科学定位故障线路区段,明确故障点,借助新的信息技术科学定位故障点。文章首先分析了10kV架空线路单相接地故障定位与选线的必要性,然后探究了具体的故障定位方法。 关键词:10kV架空线路;单相接地故障;供电系统;故障定位;故障选线 1 10kV架空线路单相接地故障定位的意义 10kV架空线路发生单相接地故障频率较高,故障发生后可能造成故障跳闸,电气装置损坏、继电保护性设备不动作,配电线路大规模断电等问题。这些故障问题的出现会为配网带来巨大的经济损失,引发较为复杂的事故与伤亡问题。引发架空线路故障问题的原因十分复杂,其中单相接地故障就是主要原因之一。单相接地故障会引发多方面的危害性问题,具体体现在:第一,因为现阶段大多数10kV输电线变压器一端选择三角形接法,尚未设置消弧线圈,某一线路出现单相接地故障,其他线路对地工频电压就会相对上升,使得用电设备走向过电压运行模式,从而形成两点、多点的故障短路以及相间短路问题,造成严重的跳闸停电问题,也可能导致电缆烧毁,引发严重的经济损失性问题。第二,通常的配电网都选择中性点接地模式。一旦线路出现单相接地故障,因为无法形成低阻抗短路回路,就会导致接地短路电流变小,出现小电流接地的问题,更重要的是电网结构一般呈现出树形结构,单端电源供电。因此,一旦出现单相接地故障,则很难判断究竟故障所在的具体相路、方位,也就是无法准确定位故障位置。现阶段,针对这一问题依然选择拉路法,依靠这一方法来实施单相接地选线,或者通过人工巡视的方法来目测故障接地的具体位置,这无疑会加剧供电部门故障排除的成本投入,也影响供电恢复的时间,从而引发更为严重的单相接地问题。从以上分析能够看出,10kV架空线路单相接地故障问题不仅会影响架空线路自身的运转与运行,影响供电质量,还可能造成其他较为严重的供电系统危害和风险,而且当前的故障定位技术也相对落后,无法同现代化自动化的电力系统相适应,亟待改进和发展。因此,必须加强10kV架空线路单相接地故障的定位技术和方法的研究,发挥这些方法的积极作用。 2 10kV架空线路单相接地故障的定位方法 2.1 以往的故障定位模式 10kV架空线路配电网单相接地故障定位通常采用人为的巡检的方法,故障查找工作者要围绕故障线路来巡查、寻找,逐渐排除发现故障点,最终解决故障。这样的方法往往会延长时间,也会加大人力、物力等的投入与消耗,而且会影响用户的正常用电,影响供电服务质量。由此可见,传统的单相接地故障定位方法具有一定的局限性,需要改进和优化。2.2 改进后的故障定位模式 2.2.1 阻抗法。当故障发生时,可以通过测量故障线路的电流、电压,来计算故障回路的阻抗,再假设架空线路为均匀性,其长度与阻抗则成正比,根据这一关系,就能大致计算得出故障线路的位置。这一故障定位法最明显的优势体现在:成本低、简便安全;然而其也存在缺陷,那就是很容易受到路径阻抗、电源参数等因素的影响。通常阻抗法适合应用在结构相对基础、线路较为清晰、简单的架空线路中。同时,阻抗法还存在一些弱点,那就是不能有效识别真正的故障点,也无法及时排除伪故障点。因此,阻抗法不适合用在分支较多、结构复杂的配网线路中,一般来说,阻抗法只作为一种附加的辅助性方法用在架空线路单相接地故障定位,将阻抗法同S注入法、行波法等有效配合起来,能够更加有效地定位故障。 2.2.2 注入法。交流注入法的具体工作过程为:依靠重合器将发生故障的线路隔离出来,再输入高压信号,并使电流控制在100~200mA。再利用检测器顺着架空线路来逐级检查,自隔离部位的初始位置开始到末尾慢慢检查,一旦发现被检测区段的前后存在两倍以上的信号差,就能初步断定故障点大概在这一位置。这种检测方法也存在一些缺点和弊端,这是由于通常情况下,架空线路和地面之间存在一定距离,更长的距离达到10米,期间电流也相对较小。然而,因为所测算的信号同流经线路的信号之间成正比。这种定位检测方法无需过高的精度,对于故障点附近较为明显、强度较高的信号,检测器就能将其准确地检测出,进而科学定位故障点。 2.2.3 行波法。架空线路出现故障问题时,会对应出现行波,可以根据行波在母线与故障点间来回往返所花费的时间来对应测算故障的实际距离,或者通过分析行波抵达线路两侧的时间差来对应测算出故障距离。这种故障定位法就是行波法,主要的行波法包括四大类。A 类行波定位:就是通过依靠故障发生时出现的行波来具体分析单端故障所在的位置。B类行波定位:就是通过依靠故障发生时出现的行波来具体分析双端故障所在的位置。C类行波定位:当线路发生故障后,认为地把脉冲信号输入。E型行波定位:当单线接地故障出现后,在开关重合闸的一刹那来输入电流脉冲。同时,行波的运行会受到故障点的干扰,因为位于故障点之前和之后的波形会差异较大,位于故障点的相位差也会发生畸变,在已经定位故障区域的基础上,凭借行波能量对应发现故障点。由于10kV配网拓扑结构相对简单、稳定,根据S、V的关系,能够知道行波达到故障点的时长,对应算出行波能量。假设故障区域的行波能量忽然上升,则意味着能量较高的点为故障点,具体可以运用以下公式计算: 式中:i为节点行波;j为频带;x为离散点个数。行波法的故障检测法其构造相对简单,便于操作,而且不容易受到各种变化性因素的影响,行波法在实际运用中,要想切实发挥故障定位的功能,就要重点捕捉行波波头,明确波头抵达的具体时间来明确故障的位置。行波法在故障定位中也存在一些弱点和问题,那就是由于行波信号属于传播性质的混合信号,这些信号可能会对行波定位故障的精准度带来影响,因为不同的传播方式,有不同的频率分量,对应的传播速度也不同,最终造成行波畸变现象的出现,这样就会影响行波法定位故障的精准度。 3 结语 10kV架空线路结构相对复杂,且存在较多的分支线路与节点,这就使得其故障判断难免出现困难,必须加大对单相接地故障定位方法

架空输电线路中导线的选型..

架空输电线路中导线的选型 牟俊 (中工武大设计研究有限公司,武汉市,430072) 摘要:随着社会科技的进步发展,架空输电线路中导线的形式越来越多样化,导线受环境、材质、输送容量等多种因素的影响,在实际应用中如何选择合适的导线? 关键词:输电线路;导线;选型;经济电流密度 0引言 在架空输电线路的设计中,导线的选型至关重要,架空输电线路工程本是导线与杆塔结合的艺术,目前国家电网提出打造坚强可靠、经济高效、清洁环保、透明开放、友好互动的现代电网。对目前导线产品的多样性,每种产品优缺点不同,我们需要根据输送容量和线路环境因素,选择经济适用的导线。 1、导线的选型原则 送电线路的导线和地线长期在旷野、山区或湖海边缘运行,需要经常耐受风、冰等外荷载的作用,气温的剧烈变化以及化学气体等的侵袭,同时受国家资源和线路造价等因素的限制。因此,在设计中特别是大跨越地段,对电线的材质、结构等必须慎重选取。 选定电线的材质、结构一般应考虑以下原则: ⑴导线材料应具有较高的导电率。但考虑国家资源情况,一般不应采用铜线。

⑵导线和地线应具有较高的机械强度和耐振性能。 ⑶导线和地线应具有一定的耐化学腐蚀,抗氧化能力。 ⑷选择电线材质和结构时,除满足传输容量外还应保证线路的造价经济和技术合理。 2、导线截面的选择 架空送电线路导线截面一般按经济电流密度来选择,并应根据事故情况下的发热条件、电压损耗、机械强度和电晕进行校验。必要时,通过技术经济比较确定;但对110KV 及以下线路,电晕往往不成为选择导线截面的决定因素。 1)按经济电流密度选择导线截面 按经济电流密度选择导线截面所用的输送容量,应考虑线路投入运行后5~10年电力系统的发展规划,在计算中必须采用正常进行方式下经常重复出现的最大负荷。但在系统还不明确的情况下,应注意勿使导线截面选的过小。 导线截面的计算公式为 S =cos φ3J U P e (1~1) 式中 S ——导线截面,mm 2 P ——输送容量,kw U e ——线路额度电压,kv J ——经济电流密度,A/ mm 2 cos φ—功率因素

架空输电线路基础选型

基础形式选择 1 基础方案选择原则 在基础方案选择时,遵循下面的原则: (1)基础设计必须在安全、可靠的前提下,坚持保护环境和节约资源的原则; (2)根据线路的地形、施工条件、岩土工程勘查资料,综合考虑基础型式和设计方案,使基础设计达到安全、经济合理的目的。 (3)充分发挥每种基础型式的特点,针对不同的地形、地质,选择不同的基础型式;(4)对不良地基,提出特殊的基础型式和处理措施。 2 基础方案选择要求 根据我国目前特高压输电线路杆塔基础工程的设计和施工现状,并结合本工程地基及杆塔基础的工程特性,在基础方案选择应考虑以下几方面: (1)采取合理的结构型式,减小基础所受的水平力和弯矩,改善基础受力状态。 (2)充分利用原状土地基承载力高、变形小的良好力学性能,因地制宜采用原状土基础。(3)注重环境保护和可持续发展战略。 (4)注重施工的可操作性和质量的可控制性。 2.1 基础方案的选择 根据沿线地质和水文状况,按照安全可靠、技术先进、经济适用、因地制宜的原则选定常采用的基础型式如下:掏挖式基础、斜柱柔性基础、扩展底柔板斜柱基础、直柱刚性基础、斜柱刚性基础、岩石基础、装配式金属基础,灌注桩等。 下文将结合本工程基础作用力大及复杂的地形地质条件,通过对基础型式的优化比较以及对以往工程的经验分析,初步确定适合本工程的基础形式。 目前,架空输电线路杆塔常用的基础型式大体可分为两大类:大开挖基础和原状土基础。(1)大开挖基础 主要包括现浇钢筋混凝土斜柱基础、阶梯式刚性基础、大板基础、装配式基础等,该类基础适用于线路一般地质情况较差的塔位,施工难度较小。对于斜柱基础,其混凝土方量较小,施工容易;而对于阶梯式刚性基础、大板基础其混凝土方量较大,但埋深浅,施工相对简单。对于平丘地区的塔基以及地下水水位较高地区,可采用大开挖基础。 (2)原状土基础 主要包括掏挖基础(直掏挖、斜掏挖)、人工挖孔桩、岩石基础。掏挖基础及岩石基础适用于地质情况较好(能成型开挖)、对环境要求高、基础负荷不太大的塔位,当基础埋深较深时,施工时往往需要护壁。另外,掏挖桩基础也是近年来在工程中应用比较多的基础型式,掏挖桩基础适用于地质情况较好、边坡比较紧张的山地、陡坡或陡坎边,由于掏挖桩基础埋深较深,施工时需要护壁。 (3)其它类型基础 根据工程特性和地基特点,输电线路杆塔基础还有一些其它的型式,如在大荷载、地基承载能力差的条件下采用的联合基础以及在施工难度大的流砂和软弱地层中采用的灌注桩基础、复合式沉井基础等。 基础型式选择,当有条件时应优先采用原状土(不含桩;根据沿线地质和水文状况,按照安全可靠、技术先进、;2.3.1掏挖基础;掏挖式基础施工时以土代模,直接将基础的钢筋骨架和;掏挖式基础又分为全掏挖基础和半掏挖基础;图2.3-1;全掏挖基础、半掏挖基础示意图;全掏挖基础、半掏挖基础优点:;(1)全掏挖基础、半掏挖基础可减小基础变形;(2)山区回填土(粘性土)来源 基础型式选择,当有条件时应优先采用原状土(不含桩基础)基础,也可采用钢筋混凝土板

第3章故障定位的基本思路与方法

第3章故障定位的基本思路与方法 本章介绍常见故障的基本处理思路和方法。包括: ●对维护人员的要求 ●故障定位的基本原则 ●故障判断与定位的常用方法 ●故障处理的过程示例 3.1 对维护人员的要求 快速定位和及时排除光传送系统的故障,对维护人员的业务技能、操作规范等 都有很高要求。维护人员应做到以下应知应会。 3.1.1 专业技能 1. 熟练掌握SDH的基本原理 参见《光同步数字传送网》主编:韦乐平人民邮电出版社。 2. 熟练掌握传输系统告警信号流及告警产生的机理 参见《OptiX OSN 3500/2500/1500智能光传输系统维护手册告警及性能事 件分册》。 3. 熟练掌握以下常见告警信号的处理 (1)线路告警 ●R_LOS ●R_LOF ●R_OOF ●AU_AIS ●AU_LOP ●MS_AIS ●MS_RDI ●B1_EXC ●B2_EXC ●HP_LOM ●HP_SLM ●HP_TIM

●HP_UNEQ (2)支路告警 ●TU_AIS ●TU_LOP ●T_ALOS ●P_LOS ●EXT_LOS ●UP_E1_AIS ●LP_RDI ●LP_SLM ●LP_TIM ●LP_UNEQ ●B3_EXC (3)保护倒换告警 ●PS (4)时钟告警 ●LTI ●SYNC_C_LOS ●SYN_BAD (5)设备告警 ●POWER_FAIL ●FAN_FAIL ●BD_STATUS 告警信号的处理方法,参见《OptiX OSN 3500/2500/1500智能光传输系统维 护手册告警及性能事件分册》。 4. 熟练掌握传输设备和网管的基本操作 参见网管操作手册和网管的联机帮助。 5. 熟练掌握传输常用仪表的基本操作 传输设备在维护中常用的仪表包括:2M误码仪、光功率计、SDH分析仪、示 波器、万用表等,使用方法参见各仪表的使用手册。 3.1.2 工程组网信息 ●熟悉组网情况。 ●熟悉业务配置。 ●熟悉设备运行状况。

架空输电线路设计考试重点

第一章架空输电线路基本知识 1、输电线路的任务是输送电能,并联络各发电厂、变电站使之并列运行,实现电力系统联网。 2、输电线路的分类:输电线路按电压等级分为高压、超高压、特高压线路;按架设方式分为架空线路和电缆线路;按输送电流的性质分为交流线路和直流线路;按杆塔上的回路数目分为单回路、双回路和多回路线路;按相导线之间的距离分为常规型和紧凑型线路。 3、架空输电线路的组成:架空输电线路主要有导线、地线、绝缘子(串)、线路金具、杆塔和拉线、基础以及接地装置等部分组成。 4、架空线结构及规格:输电线路用架空线基本都由多股圆线同心绞合而成;在现行国家标准中,导线用型号、规格号、绞合结构及本标准号表示。型号第一个字母均用J,表示同心绞合;例如JG1A-40-19表示19根A级镀层普通强度镀锌钢线绞制成的镀锌钢绞线,相当于40mm2硬铝线的导电性;JL/G1B-500-45/7表示由45根硬铝线和7根B级镀层普通强度镀锌钢线绞制成的钢芯铝绞线,硬铝线的截面积为500mm2. 5、导线的接截面选择:导线的截面选择应从其电气性能和经济性能两个方面考虑,保证安全经济地输送电能。一般先按经济电流密度初选导线截面,再按允许电压损失、发热、电晕等条件校验。大跨越的导线截面宜按允许载流量选择,并应通过技术经济比较确定。 6、地线架设及选择:输电线路是否架设地线,应根据线路电压等级、负荷性质和系统运行方式,并结合当地已有线路的运行经验、地区雷电活动的强弱、地形地貌特点及土壤电阻率高低等来决定。110kv输电线路宜全线架设地线,在平均雷暴日不超过15日或运行经验证明雷电活动轻微的地区可不架设地线。无地线的输电线路宜在变电站或发电厂的进线段架设1~2km的地线。在平均雷暴日超过15日的地区的哦220~330kv输电线路应沿全线架设地线,山区宜采用双地线。500kv输电线路应沿全线架设双地线。 7、导线的排列方式:单回路的导线常呈三角形、上字形和水平排列,双回路有伞形、倒伞形、六角形和双三角形排列,在特殊地段还有垂直排列、斜三角形排列等。 8、导线的换位方法:直线杆塔换位、耐张杆塔换位和悬空换位。 9、绝缘子片数公式:n≥a·Un/h 绝缘子联数确定公式:N≥G/[Tj] 第二章设计用气象条件 1、主要气象参数对线路的影响:风作用于架空线上形成风压,产生水平方向上的荷载。风荷载使架空线的应力增大,杆塔产生附加弯矩,会引起断线、倒杆事故。微风会引起架空线的振动,使其疲劳破坏断线。大风引起架空线不同步摆动,特殊条件下会引起舞动,造成相间闪络,甚至产生鞭击。风还使悬垂绝缘子串产生偏摆,可造成带电部分与杆塔构件间电气间距减小而发生闪络;覆冰增加了架空线的垂直荷载,使架空线的张力增大,同时也增大了架空线的迎风面积,使其所受水平风载荷增加,加大了断线倒塔的可能。覆冰的垂直荷载使架空线的弧垂增大,造成对地或跨越物的电气距离减小而产生事故。覆冰后,下层架空线脱冰时,弹性能的突然释放使架空线向上跳跃,这种脱冰跳跃可引起与上层架空线之间的闪络。覆冰还使架空线舞动的可能性增大;气温的变化引起架空线的热胀冷缩。气温降低,架空线线长缩短,张力增大,有可能导致断线。气温升高,线长增加,弧垂变大,有可能保证不了对地或其他跨越物的电气距离。在最高气温下,电流引起的导线温升可能超过允许值,导线因温度升高强度降低而断线。 2、重现期:气象条件重现期是指该气象条件“多少年一遇”。 3、最大设计风速:最大设计风速,应按最大风速统计值选取,山区输电线路的最大设计风速如无可靠资料应比附近平原地区的统计值提高10%;大跨越的最大设计风速如无可靠资料,宜将附近平地相同电压等级输电线路重现期下的风速设计值,换算成历年大风季节平均最低水位以上10m处的风速并增加10%,然后再考虑水面影响增加10%后选用。由收集来的非设计高度的4次定时2min平均年最大风速得到最大设计风速,一般应经过风速的次时换算,风速的高度换算和风速的重现期计算三个步骤

相关文档