文档库 最新最全的文档下载
当前位置:文档库 › 利用三次样条插值函数模拟机翼下曲线轮廓

利用三次样条插值函数模拟机翼下曲线轮廓

利用三次样条插值函数模拟机翼下曲线轮廓

样条插值函数与应用

样条插值函数及应用

摘要 样条函数具有广泛的应用,是现代函数论的一个十分活跃的分支,是计算方法的主要基础和工具之一,由于生产和科学技术向前发展的推动以及电子计算机广泛应用的需要,人们便更多地应用这个工具,也更深刻的认识了它的本质。 在实际问题中所遇到许多函数往往很复杂,有些甚至是很难找到解析表达式的。根据函数已有的数据来计算函数在一些新的点处的函数值,就是插值法所需要解决的问题。 插值法是数值逼近的重要方法之一,它是根据给定的自变量值和函数值,求取未知函数的近似值。早在一千多年前,我国科学家就在研究历法时就用到了线性插值和二次插值。而在实际问题中,有许多插值函数的曲线要求具有较高的光滑性,在整个曲线中,曲线不但不能有拐点,而且曲率也不能有突变。因此,对于插值函数必须二次连续可微且不变号 ,这就需要用到三次样条插值。 关键词三次样条函数;插值法

目录 引言 0 第一章三次样条插值 (1) 1.1 样条插值函数简介 (1) 1.2 三次样条函数应用 (2) 第二章AMCM91A 估计水塔水流量 (4) 2.1 理论分析及计算 (5) 2.2运用MATLAB软件计算 (8) 参考文献 (13)

引言 样条函数具有广泛的应用,是现代函数论的一个十分活跃的分支,是计算方法的主要基础和工具之一,由于生产和科学技术向前发展的推动以及电子计算机广泛应用的需要,人们便更多地应用这个工具,也更深刻的认识了它的本质。上世纪四十年代,在研究数据处理的问题中引出了样条函数,例如,在1946年Schoenberg将样条引入数学,即所谓的样条函数,直到五十年代,还多应用于统计数据的处理方面,从六十年代起,在航空、造船、汽车等行业中,开始大量采用样条函数。 在我国,从六十年代末开始,从船体数学放样到飞机外形设计,逐渐出现了一个使用样,逐渐出现了一个使用样条函数的热潮,并推广到数据处理的许多问题中。 在实际生活中有许多计算问题对插值函数的光滑性有较高的要求,例如飞机机翼外形、发动机进、排气口都要求有连续的二阶导数,用三次样条绘制的曲线不仅有很好的光滑度,而且当节点逐渐加密时其函数值整体上能很好地逼近被插函数,相应的导数值也收敛于被插函数的导数值,不会发生“龙格现象”。 现在国内外学者对这方面的研究也越来越重视,根据我们的需要来解决不同的问题,而且函数的形式也在不断地改进,长期以来很多学者致力于样条插值的研究,对三次样条的研究已相当成熟。

三次样条插值作业题

例1 设)(x f 为定义在[0,3]上的函数,有下列函数值表: 且2.0)('0=x f ,1)('3-=x f ,试求区间[0,3]上满足上述条件的三次样条插值函数)(x s 本算法求解出的三次样条插值函数将写成三弯矩方程的形式: ) ()6()() 6()(6)(6)(211123 13 1j j j j j j j j j j j j j j j j x x h h M y x x h h M y x x h M x x h M x s -- + -- + -+ -= +++++其中,方程中的系数 j j h M 6, j j h M 61+,j j j j h h M y )6(2- , j j j j h h M y ) 6(211++- 将由Matlab 代码中的变量Coefs_1、Coefs_2、Coefs_3以及Coefs_4的值求出。 以下为Matlab 代码: %============================= % 本段代码解决作业题的例1 %============================= clear all clc % 自变量x 与因变量y ,两个边界条件的取值 IndVar = [0, 1, 2, 3]; DepVar = [0, 0.5, 2, 1.5]; LeftBoun = 0.2; RightBoun = -1; % 区间长度向量,其各元素为自变量各段的长度 h = zeros(1, length(IndVar) - 1); for i = 1 : length(IndVar) - 1 h(i) = IndVar(i + 1) - IndVar(i); end % 为向量μ赋值

三次样条插值方法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

三次样条插值方法的应用 一、问题背景 分段低次插值函数往往具有很好的收敛性,计算过程简单,稳定性好,并且易于在在电子计算机上实现,但其光滑性较差,对于像高速飞机的机翼形线船体放样等型值线往往要求具有二阶光滑度,即有二阶连续导数,早期工程师制图时,把富有弹性的细长木条(即所谓的样条)用压铁固定在样点上,在其他地方让他自由弯曲,然后沿木条画下曲线,称为样条曲线。样条曲线实际上是由分段三次曲线并接而成,在连接点即样点上要求二阶导数连续,从数学上加以概括就得到数学样条这一概念。下面我们讨论最常用的三次样条函数及其应用。 二、数学模型 样条函数可以给出光滑的插值曲线(面),因此在数值逼近、常微分方程和偏微分方程的数值解及科学和工程的计算中起着重要的作用。 设区间[]b ,a 上给定有关划分b x x n =<<<= 10x a ,S 为[]b ,a 上满足下面条件的函数。 ● )(b a C S ,2∈; ● S 在每个子区间[]1,+i i x x 上是三次多项式。 则称S 为关于划分的三次样条函数。常用的三次样条函数的边界条件有三种类型: ● Ⅰ型 ()()n n n f x S f x S ''0'',==。 ● Ⅱ型 ()()n n n f x S f x S ''''0'''',==,其特殊情况为()()0''''==n n x S x S 。 ● Ⅲ型 ()() 3,2,1,0,0==j x S x S n j j ,此条件称为周期样条函数。 鉴于Ⅱ型三次样条插值函数在实际应用中的重要地位,在此主要对它进行详细介绍。 三、算法及流程 按照传统的编程方法,可将公式直接转换为MATLAB 可是别的语言即可;另一种是运用矩阵运算,发挥MATLAB 在矩阵运算上的优势。两种方法都可以方便地得到结果。方法二更直观,但计算系数时要特别注意。这里计算的是方法一的程序,采用的是Ⅱ型边界条件,取名为spline2.m 。 Matlab 代码如下: function s=spline2(x0,y0,y21,y2n,x) %s=spline2(x0,y0,y21,y2n,x) %x0,y0 are existed points,x are insert points,y21,y2n are the second

样条插值和曲线拟合

第三章 样条插值和曲线拟合 1.x y = 有如下的函数表 8。 解 先作差商表 4 167 1210 13 9 3 42015 11008 16012 4 60 13 1611 1 10 0-?- -- 故:8.2)48(5 1 2)8(1=-+=p 819047619.2) 98)(48(210 1 )48(512)8(2=----+=p 844444.2)98)(48)(18(3 4201) 48)(18(601 )18(311)8(3=---?+----+=p 6222.2)1(4781008 1478601) 18(86 1 )08(10)8(4=-???-??+---?+=p 已知 828427.28=,因此选定 )8(,16,9,42321p x x x ===最接近8。 利用Neville 方法得: xi 8-xi f(xi) 2.8284271 8 0 8 1 7 1 -1.33333333 3.3333333 2.4 4 4 2 2.866666667 2.6222222 2.8 2.8444444 9 -1 3 2.819047619 2.8571429 16 -8 4 f(8)= 2.828427125 xi 8-xi f(xi) 8 0 8 1 7 1 -1 1/3 3 1/3 2 2/5 4 4 2 2 13/15 2 28/45 2 4/5 2 38/45 9 -1 3 2 86/105 2 6/7 16 -8 4 已知 828427.28=,故选定)8(,16,9,42321 p x x x ====2.819047619最接近8.

三次样条插值在工程拟合中的应用

三次样条插值在工程拟合中的应用 摘要: 介绍了工程实验、勘测、设计中常见的列表函数之数值插值方法、程序实现及工程应用, 应用此法可方便地将任何列表函数计算到工程设计、施工所需要的精确程度, 给 出了各参数随主要参数变化而变化的光滑曲线, 并将其应用推广到一般情况. 关键词: 列表函数; 数值拟合; 三次样条插值; MA TLAB 程序设计与应用 在实际工程中, 广泛存在这样的问题: 根据设计要求和具体的工程条件, 在初始设计阶段会勘测得到若干组该工程的控制参数, 但这些参数之间彼此离散、不够密集, 利用它们来施工则不能满足施工的精度要求. 为了解决这一问题, 需要对已知的参数数据进行分析处理, 进行必要的插值、拟合, 以达到施工所需要的数据精度.本文以工程实例为基础, 对实际工程中插值方法的选取、插值的实现和插值曲线的拟合加以讨论, 提出能得到较合乎实际的插值方法, 给出一般工程人员就能实现的计算方法以及能得到光滑曲线的拟合方法. 1 工程应用实例 表1 所示的为某双曲拱坝体形原始参数[ 1 对于这一类工程列表参数有一个显著的特点:尽管不同工程的参数多寡不同, 但都是由n 行k 列的离散的列表数据给出, 虽然同一行代表某工程特定位置的几个参数(或高程参数, 或上游 半径参数?) , 但相邻两行由于位置距离太大, 两行各参数之间究竟存在什么数值关系, 对工 程设计、施工有何影响, 这是工程技术人员需要弄清楚的[ 2 ].以双曲拱坝为例, 它沿整个高程的变化是一个连续光滑的空间曲面. 从施工需要来看, 这些数据太稀疏, 难以满足设计、施工放样与钢筋配置等要求, 如果照此施工, 则有可能达不到工程精度、降低工程效率; 从计算机图形模拟来看, 要生成这个曲面仅由这一列表函数是得不到光滑曲面的, 是不可取的. 所以, 为使计算精确, 满足工程施工过程中任何断面位置、任意水平位置、任意高程位置所必需的施工数据与设计图纸, 保证工程施工的高品质,就要求作精确的数据处理.进一步分析可知, 在这 些参数表中, 各行的参数都随某一主要参数的变化而变化, 如上游半径参数随高程的变化而变化?, 它们的这种函数关系,在数值分析中有许多的方法可以求得. 但是哪种方法能更好、更合 乎实际地给出平滑曲线呢? 下面所选的插值方法能够较好地满足这一要求.

数值分析作业-三次样条插值

数值计算方法作业 实验4.3 三次样条差值函数 实验目的: 掌握三次样条插值函数的三弯矩方法。 实验函数: dt e x f x t ? ∞ -- = 2 221)(π 实验内容: (1) 编程实现求三次样条插值函数的算法,分别考虑不同的边界条件; (2) 计算各插值节点的弯矩值; (3) 在同一坐标系中绘制函数f(x),插值多项式,三次样条插值多项式的曲线 比较插值结果。 实验4.5 三次样条差值函数的收敛性 实验目的: 多项式插值不一定是收敛的,即插值的节点多,效果不一定好。对三次样条插值函数如何呢?理论上证明三次样条插值函数的收敛性是比较困难的,通过本实验可以证明这一理论结果。 实验内容: 按照一定的规则分别选择等距或非等距的插值节点,并不断增加插值节点的个数。 实验要求: (1) 随着节点个数的增加,比较被逼近函数和三样条插值函数的误差变化情 况,分析所得结果并与拉格朗日插值多项式比较; (2) 三次样条插值函数的思想最早产生于工业部门。作为工业应用的例子,考

虑如下例子:某汽车制造商根据三次样条插值函数设计车门曲线,其中一 算法描述: 拉格朗日插值: 错误!未找到引用源。 其中错误!未找到引用源。是拉格朗日基函数,其表达式为:() ∏ ≠=--=n i j j j i j i x x x x x l 0) ()( 牛顿插值: ) )...()(](,...,,[.... ))(0](,,[)0](,[)()(1102101210100----++--+-+=n n n x x x x x x x x x x f x x x x x x x f x x x x f x f x N 其中????? ?? ?? ?????? --=--= --= -)/(]),...,[],...,[(]...,[..],[],[],,[)()(],[01102110x x x x x f x x x f x x x f x x x x f x x f x x x f x x x f x f x x f n n n n i k j i k j k j i j i j i j i 三样条插值: 所谓三次样条插值多项式Sn(x)是一种分段函数,它在节点Xi(a

三次样条拟合范例

1设计目的、要求 对龙格函数2 2511 )(x x f += 在区间[-1,1]上取10=n 的等距节点,分别作多项式插值、三次样条插值和三次曲线拟合,画出)(x f 及各逼近函数的图形,比较各结果。 2设计原理 (1) 多项式插值:利用拉格朗日多项式插值的方法,其主要原理是拉格朗日多项 式,即: 01,,...,n x x x 表示待插值函数的1n +个节点, 0()()n n j k k j j k L x y l x y ===∑,其中0,1,...,j n =; 011011()...()()...() ()()...()...()...() k k n k k k k k k k n x x x x x x x x l x x x x x x x x x -+-+----= ---- (2) 三次样条插值:三次样条插值有三种方法,在本例中,我们选择第一边界条 件下的样条插值,即两端一阶导数已知的插值方法: 00'()'S x f = '()'n n S x f = (3)三次曲线拟合:本题中采用最小二乘法的三次多项式拟合。最小二乘拟合是 利用已知的数据得出一条直线或者曲线,使之在坐标系上与已知数据之间的距离的平方和最小。在本题中,n= 10,故有11个点,以这11个点的x 和 y 值为已知数据,进行三次多项式拟合,设该多项式为 23432xi i i i p a a x a x ax =+++,该拟合曲线只需2[]xi i p y -∑的值最小即可。 3采用软件、设备 计算机、matlab 软件

4设计内容 1、多项式插值: 在区间[] -上取10 1,1 n的等距节点,带入拉格朗日插值多项式中,求出各个节点的插值, = 并利用matlab软件建立m函数,画出其图形。 在matlab中建立一个lagrange.m文件,里面代码如下: %lagrange 函数 function y=lagrange(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end end s=p*y0(k)+s; end y(i)=s; end 建立一个polynomial.m文件,用于多项式插值的实现,代码如下: %lagrange插值 x=[-1:0.2:1]; y=1./(1+25*x.^2); x0=[-1:0.02:1]; y0=lagrange(x,y,x0); y1=1./(1+25*x0.^2); plot(x0,y0,'--r') %插值曲线 hold on %原曲线 plot(x0,y1,'-b') 运行duoxiangshi.m文件,得到如下图形:

关于三次样条插值函数的学习报告(研究生)资料

学习报告—— 三次样条函数插值问题的讨论 班级:数学二班 学号:152111033 姓名:刘楠楠

样条函数: 由一些按照某种光滑条件分段拼接起来的多项式组成的函数;最常用的样条函数为三次样条函数,即由三次多项式组成,满足处处有二阶连续导数。 一、三次样条函数的定义: 对插值区间[,]a b 进行划分,设节点011n n a x x x x b -=<< <<=,若 函数2()[,]s x c a b ∈在每个小区间1[,]i i x x +上是三次多项式,则称其为三次样条函数。如果同时满足()()i i s x f x = (0,1,2)i n =,则称()s x 为()f x 在 [,]a b 上的三次样条函数。 二、三次样条函数的确定: 由定义可设:101212 1(),[,] (),[,]()(),[,] n n n s x x x x s x x x x s x s x x x x -∈??∈?=???∈?其中()k s x 为1[,]k k x x -上的三次 多项式,且满足11(),()k k k k k k s x y s x y --== (1,2,,k n = 由2()[,]s x C a b ∈可得:''''''()(),()(),k k k k s x s x s x s x -+-+== 有''1()(),k k k k s x s x -++= ''''1()(),(1 ,2,,1)k k k k s x s x k n -+ +==-, 已知每个()k s x 均为三次多项式,有四个待定系数,所以共有4n 个待定系数,需要4n 个方程才能求解。前面已经得到22(1)42n n n +-=-个方程,因此要唯一确定三次插值函数,还要附加2个条件,一般上,实际问题通常对样条函数在端点处的状态有要求,即所谓的边界条件。 1、第一类边界条件:给定函数在端点处的一阶导数,即 ''''00(),()n n s x f s x f == 2、第二类边界条件:给定函数在端点处的二阶导数,即

试求三次样条插值S(X)

给定数据表如下: 试求三次样条插值S(X),并满足条件: i)S’(0.25)=1.0000, S’(0.53)-0.6868; ii) S”(0.25)= S”(0.53)=0; 解: 由给定数据知: h0 =0.3-0.25 - 0.05 , h 1=0.39-0.30-0.09 h 2=0.45-0.39-0.06, h 3=0.53-0.45-0.08 由μ i=h i/(h i1+h i), λ i= h i/(h i1+h i) 得: μ1= 5/14 ; λ 1= 9/14 μ2= 3/5 ; λ 2= 2/5 μ3= 3/7 ; λ 3=4/7 0.25 0.5000 ﹨ ﹨ 1.0000 ∕﹨ 0.25 0.5000 ∕ -0.9200-f[x 0,x 0, x 1 ] ﹨∕ 0.9540 ∕﹨ 0.30 0.5477 -0.7193-f[x 0,x 1,x 2 ] ﹨∕

0.8533 ∕﹨ 0.39 0.6245 -0.5440-f[x1,x2,x 3 ] ﹨∕ 0.7717 ∕﹨ 0.45 0.6708 -0.4050-f[x 2,x 3,x 4 ] ﹨∕ 0.7150 ∕﹨ 0.53 0.7280 -0.3525-f[x 3,x 4,x 5 ] ﹨∕ 0.6868 ∕ 0.53 0.7280 i)已知一节导数边界条件,弯矩方程组 ┌┐┌┐ │ 2 1 │┌M 0 ┐│-0.9200 ︳ ︳5/14 2 9/14 ︳︳M ︳︳-0.7193 ︳ 1 ︳3/5 2 2/5 ︳︳M 2 ︳_6 ︳-0.5440︳ ︳ 3/7 2 4/7 ︳︳M ︳︳-0.4050 ︳ 3

三次样条插值自然边界条件

例:已知一组数据点,编写一程序求解三次样条插值函数满足 并针对下面一组具体实验数据 0.25 0.3 0.39 0.45 0.53 0.5000 0.5477 0.6245 0.6708 0.7280 求解,其中边界条件为. 1)三次样条插值自然边界条件源程序: function s=spline3(x,y,dy1,dyn) %x为节点,y为节点函数值,dy1,dyn分别为x=0.25,0.53处的二阶导 m=length(x);n=length(y); if m~=n error('x or y输入有误') return end h=zeros(1,n-1); h(n-1)=x(n)-x(n-1); for k=1:n-2 h(k)=x(k+1)-x(k); v(k)=h(k+1)/(h(k+1)+h(k)); u(k)=1-v(k); end g(1)=3*(y(2)-y(1))/h(1)-h(1)/2*dy1; g(n)=3*(y(n)-y(n-1))/h(n-1)+h(n-1)/2*dyn; for i=2:n-1 g(i)=3*(u(i-1)*(y(i+1)-y(i))/h(i)+v(i-1)*(y(i)-y(i-1))/h(i-1)); end for i=2:n-1; A(i,i-1)=v(i-1); A(i,i+1)=u(i-1); end A(n,n-1)=1; A(1,2)=1; A=A+2*eye(n); M=zhuigf(A,g); %调用函数,追赶法求M fprintf('三次样条(三对角)插值的函数表达式\n'); syms X;

for k=1:n-1 fprintf('S%d--%d:\n',k,k+1); s(k)=(h(k)+2*(X-x(k)))./h(k).^3.*(X-x(k+1)).^2.*y(k)... +(h(k)-2*(X-x(k+1)))./h(k).^3.*(X-x(k)).^2.*y(k+1)... +(X-x(k)).*(X-x(k+1)).^2./h(k).^2*M(k)+(X-x(k+1)).*... (X-x(k)).^2./h(k).^2*M(k+1); end s=s.'; s=vpa(s,4); %画三次样条插值函数图像 for i=1:n-1 X=x(i):0.01:x(i+1); st=(h(i)+2*(X-x(i)))./(h(i)^3).*(X-x(i+1)).^2.*y(i)... +(h(i)-2.*(X-x(i+1)))./(h(i)^3).*(X-x(i)).^2.*y(i+1)... +(X-x(i)).*(X-x(i+1)).^2./h(i)^2*M(i)+(X-x(i+1)).*... (X-x(i)).^2./h(i)^2*M(i+1); plot(x,y,'o',X,st); hold on End plot(x,y); grid on %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %调用的函数: %追赶法 function M=zhuigf(A,g) n=length(A); L=eye(n); U=zeros(n); for i=1:n-1 U(i,i+1)=A(i,i+1); end U(1,1)=A(1,1); for i=2:n L(i,i-1)=A(i,i-1)/U(i-1,i-1); U(i,i)=A(i,i)-L(i,i-1)*A(i-1,i); end Y(1)=g(1); for i=2:n Y(i)=g(i)-L(i,i-1)*Y(i-1); end M(n)=Y(n)/U(n,n); for i=n-1:-1:1 M(i)=(Y(i)-A(i,i+1)*M(i+1))/U(i,i);

三次样条差值拟合车门曲线

数学实验(三次样条)

数学实验(三次样条插值) 实验1: 某汽车制造商用三次样条插值设计车门的曲线,其中一段的数据如下: i x 0 1 2 3 4 5 6 7 8 9 10 i y 0.0 0.79 1.53 2.19 2.71 3.03 3.27 2.89 3.06 3.19 3.29 i y 0.8 0.2 用三次样条插值求)(10x S ,用软件绘制)(10x S 的图像,即车门的曲线。 1、计算)(10x S : 程序: // splineaaaa.cpp : 定义控制台应用程序的入口点。 //**三次样条差值** //***第一步,利用差商,代替导数,求差商; //***第二步,利用追赶法求解三对角方程组,得到M[i]; //***第三步,将求得值带入三次样条函数,求得S(x); #include #include #include #define N 10 double x[N + 1], fx[N + 1], h[N ], H[N ], f[N ], a[N + 1], b[N + 1], c[N + 1], M[N + 1], beta[N + 1], y[N + 1],s[N ];//定义变量数组; double tiaojian1, tiaojian2; //边界条件; //求插商; void chashang() { int i; for (i = 0; i <= N - 1; i++) h[i] = x[i + 1] - x[i]; for (i = 0; i <= N - 1; i++) f[i] = (fx[i + 1] - fx[i]) / (x[i + 1] - x[i]); for (i = 1; i <= N - 1; i++) { a[i] = h[i - 1] / (h[i - 1] + h[i]); b[i] = h[i] / (h[i - 1] + h[i]); c[i] = 3 * (a[i] * f[i - 1] + b[i] * f[i]); }

三次样条函数

计算方法实验报告 1、实验题目 三次样条插函数。 2、实验内容 三次样条插值是建立在Hermite 插值的基础上的。Hermite 插值是在一个区间上的插值,而三次样条插则是建立多个区间上插值,构造一个具有二阶光滑度的曲线,在求出给定点上对应的函数。本实验就是建立一个能根据三次样条插值函数求根的程序。 3、算法思想 给定一个区间,并把它分成n 等份,并且给出了每个结点对就的横坐标和纵坐标。利用程序输出给定插值点对应的值。横坐标设为:X 0, X 1, X 2, X 3, …X n 纵坐标为Y 0, Y 1, Y 2, …Y n ,设插点为u 。则令h k =X k+1-X k ,λk =1-+k k k h h h , μk =11--+k k k h h h , g k =3(1 11--+-+-k k k k k k k k h y y h y y λμ), 其中k=1,2,…,n-1 再根据第一类边界条件则可以确定公式6.16,再根据6.17解出方程中的m 向量,最后代入公式6.8求解。 4、源程序清单 #include #define N 21/*最大结点个数减一*/ void sanCi() { /*定义过程数据变量*/ float x[N],y[N],h[N]; /*横纵坐标及区间长度*/ float rr[N],uu[N],gg[N]; /*计算m 用的中间数组rr 、uu 、gg 分别对应:λ、μ、g 数组*/

float aa[N],bb[N],tt[N]; /*矩阵分解时用到的中间变量aa、bb、tt分别对应:α、β数组以及A=LU时中间矩阵*/ float mm[N]; /*最后要用到的系数m*/ int n,k,kv,chose; /* n为实际结点个数,k为下标,kv为最后确定k的值*/ float s,u; /*最后计算u对应的值*/ printf("请输入区间段数:"); scanf("%d",&n); /*输入结点个数*/ /*输入所有横坐标:*/ printf("输入所有横坐标:"); for(k=0; k<=n; k++) scanf("%f",&x[k]); /*输入对应纵坐标:*/ printf("输入对应纵坐标:"); for(k=0; k<=n; k++) scanf("%f",&y[k]); for(k=0; k

样条函数(三次样条)

样条插值是一种工业设计中常用的、得到平滑曲线的一种插值方法,三次样条又是其中用的较为广泛的一种。 1. 三次样条曲线原理 假设有以下节点 1.1 定义 样条曲线是一个分段定义的公式。给定n+1个数据点,共有n个区间,三次样条方程满足以下条件: a. 在每个分段区间(i = 0, 1, …, n-1,x递增),都是一个三次多项式。 b. 满足(i = 0, 1, …, n ) c. ,导数,二阶导数在[a, b]区间都是连续的,即曲线是光滑的。 所以n个三次多项式分段可以写作: ,i = 0, 1, …, n-1 其中ai, bi, ci, di代表4n个未知系数。 1.2 求解 已知: a. n+1个数据点[xi, yi], i = 0, 1, …, n b. 每一分段都是三次多项式函数曲线 c. 节点达到二阶连续 d. 左右两端点处特性(自然边界,固定边界,非节点边界) 根据定点,求出每段样条曲线方程中的系数,即可得到每段曲线的具体表达式。 插值和连续性: , 其中i = 0, 1, …, n-1 微分连续性:

, 其中i = 0, 1, …, n-2 样条曲线的微分式: 将步长带入样条曲线的条件: a. 由(i = 0, 1, …, n-1)推出 b. 由(i = 0, 1, …, n-1)推出 c. 由(i = 0, 1, …, n-2)推出 由此可得: d. 由(i = 0, 1, …, n-2)推出 设,则 a. 可写为:

,推出 b. 将ci, di带入可得: c. 将bi, ci, di带入(i = 0, 1, …, n-2)可得: 端点条件 由i的取值范围可知,共有n-1个公式,但却有n+1个未知量m 。要想求解该方程组,还需另外两个式子。所以需要对两端点x0和xn的微分加些限制。选择不是唯一的,3种比较常用的限制如下。 a. 自由边界(Natural) 首尾两端没有受到任何让它们弯曲的力,即。具体表示为和 则要求解的方程组可写为: b. 固定边界(Clamped) 首尾两端点的微分值是被指定的,这里分别定为A和B。则可以推出

基于多项式插值与三次样条插值曲线拟合的比较

2015级《数值分析》课外课堂大作业 论文题目:基于多项式插值与三次样条插值曲线拟合的比较姓名:XXX 学号:XXXXXXXXXXX 学院:XXXXXXXXXXXXXXX 专业方向: XXXXXXXXXXXXXXX 联系方式:(QQ号) (手机号) 导师姓名: 完成人(亲笔)签字 二0一五年十二月

基于多项式插值与三次样条插值曲线拟合的比较 摘要:在数值计算中经常要计算函数,当函数只在有限点集上给定函数值要包含改点集的区间上用公式给出函数的简单表达式,这就涉及在已知区间上用简单函数逼近已知复杂函数问题。本文为了解决这类问题就采用多项式插值与三次样条插值两种插值法并利用MATLAB数值分析软件进行编程,实现相应数据的曲线拟合以获得最佳曲线模型与相应数据的曲线拟合,选出最优的插值法以解决所给数据的曲线拟合问题。 关键词:函数;多项式插值;三次样条插值;曲线拟合;MATLAB Abstract:In numerical analysis ,the function value is often calculated .when the function is only given a function point set ,the simple expression of the function is given by the interval .which involves the use of a simple function to approximate the known complex function .in order to solve this problem ,we use polynomial interpolation and cubic spline interpolation tow kind of interpolation method and use MATLAB numerical analysis software to program ,to achieve the curve fitting of the corresponding date to obtain the best cure fitting ,and to choose the best interpolation method to solve the problem of curve fitting to the date. Keyword: Function ; Polynomial interpolation ; Cubic spline interpolation ; Fitting of a curve ; MATLAB

三次样条插值函数matlab程序绝不坑爹

x0=[0 0.9211 1.8431 2.9497 3.8714 4.9781 5.9 7.0064 7.9286 8.9678 10.9542 12.0328 12.9544 13.8758 14.9822 15.9039 16.8261 17.9317 19.0375 19.9594 20.8392 22.9581 23.88 24.9869 25.9083]; >> >> y0=[14405 11180 10063 11012 8797 9992 8124 10160 8488 11018 19469 20196 18941 15903 18055 15646 13741 14962 16653 14496 14648 15225 15264 13708 9633]; >> x=0:0.1:25.9; >> y1=interp1(x0,y0,x,'spline'); >> pp1=csape(x0,y0); %样条插值工具箱函数 y2=ppval(pp1,x); %计算x对应的y值 pp2=csape(x0,y0,'second'); y3=ppval(pp2,x); xydata=[x',y1',y2',y3'] subplot(1,2,1) plot(x0,y0,'+',x,y1) title('Spline1') subplot(1,2,2) plot(x0,y0,'+',x,y2) title('Spline2') dx=diff(x); dy=diff(y2); dy_dx=dy./dx; dy_dx0=dy_dx(1) ytemp=y2(13<=x&x<=15); ymin=min(ytemp); xmin=x(y2==ymin); xymin_1315=[xmin,ymin]

第三章 样条插值和曲线拟合

第三章样条插值与曲线拟合 学习目标:掌握分段线性插值、分段Hermite插值、样条插值 方法以及贝齐尔曲线拟合曲 线的方法。重点是分段线性 插值、分段Hermite插值、样 条插值。

1901年龙格(Runge )给出一个例子: ,定义在区间[-1,1]上,这是一个很光滑的函数,它的任意阶导数都存在,对它在[-1,1]上作等距节点插值时,插值多项式的情况见图1 §1 多项式插值的龙格现象 22511)(x x f +=

俄罗斯数学家伯恩斯坦(C.H.Bernstein )在1916年还给出如下定理。 定理1 函数 在[-1,1]上取n 个等距节点 ,构造n-1次插值多项式 ,当n 增大时,除了-1,0,1三点外,在[-1,1]中任何点处都不收敛于 。 x x f = )(1,11=-=n x x )(1 x P n -x 上述介绍的现象和定理告诉我们用高次插值多项式是不妥当的,从数值计算上来看也是这样,前一章介绍过的差分的误差传播会随阶数的提高越来越严重,因此,实践上作插值时一般只用一次、二次,最多用三次插值多项式。而提高插值精度的方法,可采用分段插值:

譬如在[a,b]上定义的连续函数 ,在[a,b]上取节点 构造一个分段一次多项式 ,即 在 上为 由一次插值的余项知在 上, )(x f b x x x x a n n =<<<<=-121 )(x L )(x L ],[1+i i x x i i i i i i i i x x x x x f x x x x x f --+--++++1111)()() )()(,,()()()(11++--=-=i i i i x x x x x x x f x L x f x R ],[1+i i x x 228 )(h M x R ≤

三次样条插值

3.6三次样条插值 一、教学目标及基本要求 通过对本节的学习,使学生掌握三次样条插值方法。 二、教学内容及学时分配 本章主要介绍线性方程求根的迭代法的加速方法。要求 1.了解数值分析的三次样条函数及有关概念。 2.正确理解三次样条差值的基本思想、数学原理、算法设计。 3.了解插值是数值逼近的重要方法之一,正确理解三次样条插值的基本思想、计算公式、算法设计、程序框图设计和源程序。 4.掌握三次样条差值原理和程序设计方法。 三、教学重点难点 1.教学重点:三次样条函数、三次样条插值。 2. 教学难点:三次样条插值。 四、教学中应注意的问题 多媒体课堂教学为主。适当提问,加深学生对概念的理解,迭代加速的算法实现。 五、教案正文 一 样条函数的概念 分段线性插值在节点处没有连续的一阶导函数,其光滑性较差。对于飞机的机翼的型线及船舶型往往要求有二阶光滑度(即在节点处要求二阶导函数连续)。 样条函数的概念来源于工程设计的实践。所谓“样条”(spline)是早期工程设计中的一种绘图工具,它是富有弹性的细长条。绘图时,用压铁迫使样条通过指定的型值点,并保证样条的光滑外形。在绕度不大的情况下,样条的曲线即为三次样条函数。 二 几何意义

三 构造三次样条函数的理论分析 如上图所示,通过已知的六个点,构造5个三次多项式函数分别是:红色、蓝色、黑色、紫色和绿色5根曲线。为确定一根曲线,就需要确定4个待定系数,所以总共需要4*5=20个待定系数。 另外,分析需要的约束条件。 每一根函数都要过已知的左右两个点,则有5*2=10个约束条件。 此外,每两个相邻曲线在相邻点处要求充分光滑,即在连接点处左右两个函数在该点具有1次和2次的导函数连续,图中有4个“中间点”,故又有4*2=8个约束条件。 若在整个图形的两端在加2个约束条件,整个3次样条函数就确定了。如: ①左右两端点上的1阶导函数已知; ②左右两端点上的2阶导函数已知,如()()00n S x S x ′′′′==(称为自然边界条件); ③若原来的函数f(x)是以xn-x0为周期的周期函数,则y0=yn,且()()000n S x S x ′′′′+=?。

三次样条插值多项式matlab

三次样条插值多项式 ——计算物理实验作业四 陈万物理学2013级 主程序: clear,clc; format rat x = [1,4,9,16,25,36,49,64]; y = [1,2,3,4,5,6,7,8]; f1 = ; fn = 1/16; [a,b,c,d,M,S] = spline(x,y,f1,fn); 子程序1: function [a,b,c,d,M,S]=spline(x,y,f1,fn) % 三次样条插值函数 % x是插值节点的横坐标 % y是插值节点的纵坐标 % u是插值点的横坐标 % f1是左端点的一阶导数 % fn是右端点的一阶导数 % a是三对角矩阵对角线下边一行 % b是三对角矩阵对角线 % c是三对角矩阵对角线上边一行 % S是插值点的纵坐标

n = length(x); h = zeros(1,n-1); deltay = zeros(1,n); miu = zeros(1,n-1); lamda = zeros(1,n-1); d = zeros(1,n-1); for j = 1:n-1 h(j) = x(j+1)-x(j); deltay(j) = y(j+1)-y(j); end % 得到h矩阵 for j = 2:n-1 sumh = h(j-1) + h(j); miu(j) = h(j-1) / sumh; lamda(j) = h(j) / sumh; d(j) = 6*( deltay(j)/h(j)-(deltay(j-1)/h(j-1)))/sumh; end % 根据第一类边界条件,作如下规定 lamda(1) = 1; d(1) = 6*(deltay(1)/h(1)-f1)/h(1); miu(1) = 1; d(n) = 6*(fn-deltay(n-1)/h(n-1))/h(n-1);

数值分析作业-三次样条插值教学提纲

数值分析作业-三次样 条插值

数值计算方法作业 实验4.3 三次样条差值函数 实验目的: 掌握三次样条插值函数的三弯矩方法。 实验函数: dt e x f x t ? ∞ -- =2 221)(π 求f(0.13)和f(0.36)的近似值 实验内容: (1) 编程实现求三次样条插值函数的算法,分别考虑不同的边界条件; (2) 计算各插值节点的弯矩值; (3) 在同一坐标系中绘制函数f(x),插值多项式,三次样条插值多项式的曲 线比较插值结果。 实验4.5 三次样条差值函数的收敛性 实验目的: 多项式插值不一定是收敛的,即插值的节点多,效果不一定好。对三次样条插值函数如何呢?理论上证明三次样条插值函数的收敛性是比较困难的,通过本实验可以证明这一理论结果。

实验内容: 按照一定的规则分别选择等距或非等距的插值节点,并不断增加插值节点的个数。 实验要求: (1) 随着节点个数的增加,比较被逼近函数和三样条插值函数的误差变化情 况,分析所得结果并与拉格朗日插值多项式比较; (2) 三次样条插值函数的思想最早产生于工业部门。作为工业应用的例子, 考虑如下例子:某汽车制造商根据三次样条插值函数设计车门曲线,其中一段数据如下: k x 0 1 2 3 4 5 6 7 8 9 10 k y 0.0 0.79 1.53 2.19 2.71 3.03 3.27 2.89 3.06 3.19 3.29 k y ' 0.8 0.2 算法描述: 拉格朗日插值: 其中 是拉格朗日基函数,其表达式为:() ∏ ≠=--=n i j j j i j i x x x x x l 0 ) ()( 牛顿插值: ) )...()(](,...,,[.... ))(0](,,[)0](,[)()(1102101210100----++--+-+=n n n x x x x x x x x x x f x x x x x x x f x x x x f x f x N

相关文档
相关文档 最新文档