文档库 最新最全的文档下载
当前位置:文档库 › 最全面的函数的奇偶性知识总结及练习题

最全面的函数的奇偶性知识总结及练习题

最全面的函数的奇偶性知识总结及练习题
最全面的函数的奇偶性知识总结及练习题

函数的奇偶性

中山七欧阳志平

【教学目标】

一、知识目标

1、深刻理解奇偶性的定义及图象特征;

2、掌握判定和证明奇偶性的方法;

3、学会利用函数的奇偶性解决问题

二、能力目标

培养学生的观察、分析、归纳、概括和综合分析能力,培养学生用数形结合和转化变换等思想分析数学问题。

三、情感目标

培养学生自主学习、积极主动探求知识的习惯和品质、合作交流的意识,改变学习方式,改善数学学习信念,帮助学生建立勇于探索创新的精神和克服困难的信心。

【教学重点】

1、理解奇偶性的定义;

2、掌握判定方法;

3、学会利用函数的奇偶性解题。

【教学难点】

灵活运用函数的奇偶性求解函数解析式、对称区间上函数的单调性的判断。

【考点分析】

1、考查判断函数的奇偶性的能力;

2、利用函数奇偶性的图像解题;

3、利用函数的奇偶性求解析式;

4、利用函数奇偶性求单调区间。

【知识点梳理】 一、函数奇偶性的概念

1函数的奇偶性的定义:在定义域关于原点对称的前提乐件下,

如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 就叫做偶函数。例如:函数2

()1f x x =+, 4

()2f x x =-等都是偶函数。

如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=-,那么函数

()f x 就叫做奇函数。例如:函数x x f =)(,x

x f 1

)(=

都是奇函数。 说明:从函数奇偶性的定义可以看出,具有奇偶性的函数: (1)其定义域关于原点对称;

(2) ()()f x f x -=或()()f x f x -=-必有一成立。

因此,判断某一函数的奇偶性时,首先看其定义域是否关于原点对称,若对称,再计算()f x -,看是等于()f x 还是等于()f x -,然后下结论;若定义域关于原点不对称,则函数没有奇偶性。

(3)无奇偶性的函数是非奇非偶函数。

(4)函数0)(=x f 既是奇函数也是偶函数,因为其定义域关于原点对称且既满足

)()(x f x f -=也满足)()(x f x f --=。

(5)一般的,奇函数的图象关于原点对称,反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数。偶函数的图象关于y 轴对称,反过来,如果一个函数的图形关于y 轴对称,那么这个函数是偶函数。

(6)奇函数若在0x =时有定义,则(0)0f =. 2、主要方法:

(1)、判断函数的奇偶性,首先要研究函数的定义域,有时还要对函数式化简整理,但必须注意使定义域不受影响;

(2)、牢记奇偶函数的图象特征,有助于判断函数的奇偶性;

(3)、判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,

()

1()

f x f x =±-.

(4)、设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶,奇?偶=奇.

2. 函数的奇偶性的性质

①对称性:奇(偶)函数的定义域关于原点对称....

; ②整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立; ③可逆性:)()(x f x f =- ?)(x f 偶函数;

)()(x f x f -=-?)(x f 奇函数;

④等价性:)()(x f x f =-?0)()(=--x f x f

)()(x f x f -=-?0)()(=+-x f x f

⑤奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;

⑥可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。 【典型例题】

题型一 判断函数的奇偶性 例1判断下列函数的奇偶性: (1)f(x)=x 4

; (2)f(x)=x 5; (3)f(x)=x+x

1

; (4)f(x)=

2

1x . 思路分析:学生思考奇偶函数的定义,利用定义来判断其奇偶性.先求函数的定义域,并判断定义域是否关于原点对称,如果定义域关于原点对称,那么再判断f(-x)=f(x)或f(-x)=-f(x).

解答过程:

解:(1)函数的定义域是R ,对定义域内任意一个x ,都有f(-x)=(-x)4

=x 4

=f(x), 所以函数f(x)=x 4

是偶函数.

(2)函数的定义域是R ,对定义域内任意一个x ,都有f(-x)=(-x)5

=-x 5

=-f(x), 所以函数f(x)=x 4

是奇函数.

(3)函数的定义域是(-∞,0)∪(0,+∞),对定义域内任意一个x ,都有

f(-x)=-x+

x

-1

=-(x+x 1)=-f(x),

所以函数f(x)=x+x

1

是奇函数.

(4)函数的定义域是(-∞,0)∪(0,+∞),对定义域内任意一个x ,都有f(-x)=

)(12

x -=21x

=f(x), 所以函数f(x)=

21

x

是偶函数. 点评:本题主要考查函数的奇偶性.函数的定义域是使函数有意义的自变量的取值范围,对定义域内任意x ,其相反数-x 也在函数的定义域内,此时称为定义域关于原点对称. 小结:利用定义判断函数奇偶性的格式步骤:

①首先确定函数的定义域,并判断其定义域是否关于原点对称; ②确定f(-x)与f(x)的关系; ③作出相应结论:

若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数; 若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.

变式一 设f(x)是R 上的任意函数,则下列叙述正确的是( )

(x)f(-x)是奇函数 (x)|f(-x)|是奇函数 (x)-f(-x)是偶函数 (x)+f(-x)是偶函数

思路分析:A 中设F(x)=f(x)f(-x),则F(-x)=f(-x)f(x)=F(x),即函数F(x)=f(x)f(-x)为偶函数;

B 中设F(x)=f(x)|f(-x)|,F(-x)=f(-x)|f(x)|,此时F(x)与F(-x)的关系不能确定,即函数F(x)=f(x)|f(-x)|的奇偶性不确定;

C 中设F(x)=f(x)-f(-x),F(-x)=f(-x)-f(x)=-F(x),即函数F(x)=f(x)-f(-x)为奇函数;

D 中设F(x)=f(x)+f(-x),F(-x)=f(-x)+f(x)=F(x),即函数F(x)=f(x)+f(-x)为偶函数. 答案:D

变式二 设)(x f 是(-∞,+∞)上的奇函数,)2(+x f =-)(x f ,当0≤x ≤1时,)(x f =x ,x 则)5.7(f 等于( )

A .

B . -0.5

C .

D . -

解析:)5.7(f =)25.5(+f =-)5.5(f =-)25.3(+f =)5.3(f =)25.1(+f =-

)5.1(f =-)25.0(+-f =)5.0(-f =-)5.0(f =-.

答案:B

解析: 这里反复利用了)(x f =-)(x f 和)2(+x f =-)(x f ,后

面的学习我们会知道这样的函数具有周期性.

题型二 利用函数奇偶性求函数解析式

例2已知函数f(x)是定义在(-∞,+∞)上的偶函数.当x ∈(-∞,0)时,f(x)=x-x 4

,则当x ∈(0,+∞)时,f(x)=_______.

思路分析:学生思考偶函数的解析式的性质,考虑如何将在区间(0,+∞)上的自变量对应的函数值,转化为区间(-∞,0)上的自变量对应的函数值.利用偶函数的性质f(x)=f(-x),将在区间(0,+∞)上的自变量对应的函数值,转化为区间(-∞,0)上的自变量对应的函数值. 解答过程:当x ∈(0,+∞)时,则-x<0.

又∵当x ∈(-∞,0)时,f(x)=x-x 4

, ∴f(x)=(-x)-(-x)4

=-x-x 4

. 答案:-x-x 4

点评:本题主要考查函数的解析式和奇偶性.已知函数的奇偶性,求函数的解析式时,要充分利用函数的奇偶性,将所求解析式的区间上自变量对应的函数值转化为已知解析式的区间上自变量对应的函数值.

变式一 已知函数f(x)是定义在R 上的奇函数,当x>0时,f(x)=x 2

+3x ,求f(x).

解:当x=0时,f(-0)=-f(0),则f(0)=0; 当x<0时,-x>0,由于函数f(x)是奇函数,则

f(x)=-f(-x)=-[(-x)2+3x -]=-x 2

+3x ,

综上所得,f(x)=??

?

??<+-=>+.0,,0,0,0,3232x x x x x x x

例3.已知二次函数2

()4f x x ax =-+,若(1)f x +是偶函数,则实数a 的值为( )

A.-1

B.1

C.-2

解析:∵f (x )=x 2-ax +4,∴f (x +1)=(x +1)2-a (x +1)+4=x 2

+2x +1-ax -a +4

=x 2

+(2-a )x +5-a ,

f (1-x )=(1-x )2-a (1-x )+4=x 2-2x +1-a +ax +4=x 2+(a -2)x +5-a .

∵f (x +1)是偶函数,∴f (x +1)=f (-x +1),∴a -2=2-a ,即a =2.

题型三 函数的奇偶性与单调性综合

例4.已知函数()y f x =在定义域[1,1]-上是奇函数,又是减函数。 (1)证明:对任意的,[,]x x ∈-1211有:

[()()]()f x f x x x ++≤12120

(2)若()()f a f a -+-<2110求实数a 的取值范围。 解答过程:

解:(1)证明:若x x +=120,显然不等式成立;

若x x +<120,则x x -<<-<1211 ()f x Q 在[,]-11上是奇函数又是减函数, ()()()()f x f x f x f x ∴>-?>-1212

()()f x f x ∴+>120 ∴原不等式成立

同理可证当x x +>120时原不等式也成立。 (2)解:由()()f a f a -+-<2110得 ()()f a f a -<--211,

即()()f a f a -<-211

由函数在[,]-11上是单调减函数,故有 a a a a a a a ??-≤-≤≤≤??

-≤-≤?≤≤????

->--<

22211102111021121 a ∴≤<01

所以,所求a 的取值范围是[0,1)。

点评: (1)函数的单调性广泛应用于比较大小,解不等式,求参数的范围,最值问题中,应引起足够的重视。

变式一:已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1

()3

f 的x 取值 范围是( )

A.12(,)33

B.12[,)33

C.12(,)23

D.12[,)23

解析:由于()f x 是偶函数,故()f x =(||)f x ∴得1(|21|)()3

f x f -<, 再根据()f x 的单调性, 得|2x -1|<

13 解得13<x <23

.

变式二:已知奇函数()f x 在区间[3,7]上是增函数,且最小值为5,那么函数()f x 在区间[-7,-3]上是 ( )

A.增函数且最小值为-5

B.增函数且最大值为-5

C.减函数且最小值为-5

D.减函数且最大值为-5

解析:∵f (x )为奇函数,∴f (x )的图象关于原点对称.∵f (x )在[3,7]上是增函数,

∴f (x )在[-7,-3]上也是增函数.∵f (x )在[3,7]上的最小值为5, ∴由图可知函数f (x )在[-7,-3]上有最大值-5. 题型四 图形、单调性综合利用

例题5。(2004年上海卷)设奇函数f (x )的定义域是[-5,5]。当x ∈[]05,时,f (x )的图象如图 ,则不等式f (x )<0的解是______________。()(]-?2025,,

例题6 、定义在[-2,2]上的偶函数g (x ),当x ≥0时,g (x )单调递减,

若g (1-m )<g (m ),求m 的取值范围.

解:由g (1-m )<g (m )及g (x )为偶函数,可得g (|1-m |)<g (|m |).又g (x )在

(0,+∞)上单调递减,∴|1-m |>|m |,且|1-m |≤2,|m |≤2,解得-1≤m <2

1

.

题型五 抽象函数的奇偶性

例7.函数)(x f 的定义域为D ={}

0≠∈x R x ,且满足对于任意D x x ∈21,,有

1212()()()f x x f x f x ?=+

(1)求(1)f 的值; (2)判断函数)(x f 的奇偶性,并证明; 解:(1)令121x x ==,得()10f =;

(2)令121x x ==-,得()10f -=,令121,x x x =-=,得()()()1f x f f x -=-+ ∴ ()()f x f x -=,即)(x f 为偶函数.

点评:赋值法是解决抽象函数问题的切入点.常赋值有0,1,―1,2,―2,等等.

例8. 已知函数)(x f 在(-1,1)上有定义,)2

1

(f =-1,当且仅当0<x <1时)(x f <0,且对任意x 、y ∈(-1,1)都有)(x f +)(y f =)1(

xy

y

x f ++,试证明: (1) )(x f 为奇函数;(2) )(x f 在(-1,1)上单调递减. 解答过程:

证明:(1) 由)(x f +)(y f =)1(

xy

y

x f ++,令x =y =0,得)0(f =0, 令y =-x ,得)(x f +)(x f -=)1(2

x

x

x f --=)0(f =0,∴ )(x f =-)(x f -, ∴)(x f 为奇函数.

(2)先证)(x f 在(0,1)上单调递减.

令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (

2

11

21x x x x --)

∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴2

11

21x x x x -->0,

又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0 ∴x 2-x 1<1-x 2x 1, ∴0<

21121x x x x --<1,由题意知f (2

11

21x x x x --)<0,

即f (x 2)<f (x 1).

∴ )(x f 在(0,1)上为减函数,又)(x f 为奇函数且f (0)=0.

∴ )(x f 在(-1,1)上为减函数.

点评: 这种抽象函数问题,往往需要赋值后求特殊的函数值,如(0),(1),(2)f f f ±±等等,一般(0)f 的求解最为常见.赋值技巧常为令0==y x 或y x -=等。本例中第一问

求解特殊函数值的过程中就采用了这两个技巧;对于(2),判定 2

11

21x x x x -- 的范围是解题

的焦点.

变式练习1.已知函数()f x 对一切,x y R ∈,都有()()()f x y f x f y +=+, 求证:()f x 是奇函数;

解:(1)显然()f x 的定义域是R ,它关于原点对称.在()()()f x y f x f y +=+中,

令y x =-,得(0)()()f f x f x =+-,令0x y ==,得(0)(0)(0)f f f =+, ∴(0)0f =,∴()()0f x f x +-=,即()()f x f x -=-, ∴()f x 是奇函数.

题型四 利用函数奇偶性求值

例9. 已知8)(3

5

-++=bx ax x x f 且10)2(=-f ,那么=)2(f ____________. 解:设8)()(+=x f x F ,则bx ax x x F ++=3

5

)(为奇函数,于是有)()(x F x F =-,

从而有]8)([8)(+-=+-x f x F 即:16)()(-=+-x f x f

令2=x ,得16)2()2(-=+-f f ,又10)2(=-f ,故261016)2(-=--=f

【巩固练习】 1.函数①x

x x f 1)(-

= ②1)(+=x x f ③1)(2

4-+=x x x f ④[)10,10,1)(2

-∈+=x x x f ⑤0)(=x f

⑥2)1(3)1()(2

3++-+=x x x f ⑦x

x

x x f -+?

-=11)1()( 上述函数中为奇函数的是( )

A. ①⑥⑦ B .①⑥ C.③⑥ D.①②

2.(2011年安徽理科卷)设()f x 是定义在R上的奇函数,当0x ≤时,()2

2f x x x =-,

则()1f =( )

A-3 B -1 C 1 D 3

3.如果奇函数)(x f 在区间[3,7]上是增函数且最小值是5,那么)(x f 在区间[-7,-3]上( )

A.是增函数且最小值为-5

B.是增函数且最大值是-5

C.是减函数且最小值为-5

D.是减函数且最大值是-5 4.已知函数)(x f = x 5+a x 3+b x -8,且)2(f =0,则)2(-f 等于( )

A.-16

B.-18

C.-10 5.若)(x f 在[-5,5]上是奇函数,且)3(f <)1(f ,则( )

A. )1(-f <)1(f

B. )0(f >)1(f

C. )1(-f <)3(-f

D. )3(-f >)5(-f

6.已知函数

()()

0f x x a x a a =+--≠,

()(

1g x x =-,

()()

()

22

00x x x h x x x x ?-+>?=?+≤??

,则 ()()(),,f x g x h x 的奇偶性依次为( )

A .奇函数,偶函数,奇函数

B .非奇非偶函数,奇函数,偶函数

C .奇函数,奇函数,奇函数

D .奇函数,非奇非偶函数,奇函数

7.(2011年广东理科卷)设函数和分别是R上的偶函数和奇函数,则下列结论恒成立的是

A.是偶函数 B.是奇函数 C.是偶函数 D.是奇函数

8.(2009年陕西文科卷)定义在R 上的偶函数满足:对任意的,有.则 ( )

A . B. C. D.

9.(2009年四川文科卷)已知函数是定义在实数集R 上的不恒为零的偶函数,且对任意实数都有,则的值是 ( )

A. 0

B.

C. 1

D.

10.设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1

()()1

f x

g x x +=-,求()f x 与()g x 的解析式. 【课后作业】 一、选择题

1.已知函数f (x )=ax 2

+bx +c (a ≠0)是偶函数,那么g (x )=ax 3

+bx 2

+cx ( )

A .奇函数

B .偶函数

C .既奇又偶函数

D .非奇非偶函数 2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( ) A .3

1

=

a ,

b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2

-2x ,则f (x )在R 上的表达式是( )

A .y =x (x -2)

B .y =x (|x |-1)

C .y =|x |(x -2)

D .y =x (|x |-2) 4.已知f (x )=x 5

+ax 3

+bx -8,且f (-2)=10,那么f (2)等于( )

A .-26

B .-18

C .-10

D .10 5.函数1

11

1)(22+++-++=

x x

x x x f 是(

A .偶函数

B .奇函数

C .非奇非偶函数

D .既是奇函数又是偶函数 6.若f(x),g (x )都是奇函数,F(x)=af(x)+bg(x)+2在(0,+∞)上有最大值5, 则F (x )在(-∞,0)上有( )

A .最小值-5

B .最大值-5

C .最小值-1

D .最大值-3 二、填空题 7.函数2

122)(x

x x f ---=

的奇偶性为________(填奇函数或偶函数) .

8.若y =(m -1)x 2

+2mx +3是偶函数,则m =_________. 9.已知f (x )是偶函数,g (x )是奇函数,若1

1)()(-=+x x g x f ,则f (x )的解析式

为_______.

10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为________.

三、解答题

11.设定义在[-2,2]上的偶函数f(x)在区间[0,2]上单调递减,若f(1-m)<f (m),求实数m的取值范围.

12.已知函数f(x)满足f(x+y)+f(x-y)=2f(x)·f(y)(x∈R,y∈R),且f(0)≠0,试证f(x)是偶函数.

13.已知函数f(x)是奇函数,且当x>0时,f(x)=x3+2x2—1,求f(x)在R上的表达式.

(x)是定义在(-∞,-5]Y[5,+∞)上的奇函数,且f(x)在[5,+∞)上单调递减,试判断f(x)在(-∞,-5]上的单调性,并用定义给予证明.

15.设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2),

求证f (x )是偶函数.

【拓展训练】

1.已知8)(3

5

-++=bx ax x x f 且10)2(=-f ,那么=)2(f ____________.

2.若f (x )=1

2x -1

+a 是奇函数,则a =____________.

3.已知函数f (x )=a -1

2x +1,若f (x )为奇函数,则a =________.

4.设()f x 是定义在R 上的奇函数,且当0x >时, ()23x

f x =-,

则(2)f -=________.

5.若函数)(x f y =是奇函数,3)1(=f ,则)1(-f 的值为 -3

6.已知分段函数)(x f 是奇函数,当),0[+∞∈x 时的解析式为2

x y =,

则这个函数在区间)0,(-∞上的解析式为2

x y -=

7.设函数是奇函数. 若 则 -3 .

8.已知函数为上的奇函数, 当时,.若,则实数 -1 .

【巩固练习】答案

1. B 9. 解析:若≠0,则有,取,则有:

∵是偶函数,则 由此得于是, 故选 A

10. 解析:∵ )(x f 是偶函数, )(x g 是奇函数,

∴ 由 )(x f -+)(x g -=

11

--x ,有

)(x f -)(x g =11

--x ………①

又∵ 1

()()1

f x

g x x +=- ………②

由①②得)(x f =211

11-+

--x x =11

2-x ,

)(x g =21111---

-x x =1

2-x x

【课后作业】答案

1. 解析:f (x )=ax 2

+bx +c 为偶函数,x x =)(?为奇函数,

∴g (x )=ax 3

+bx 2

+cx =f (x )·)(x ?满足奇函数的条件. 答案:A

2.解析:由f (x )=ax 2

+bx +3a +b 为偶函数,得b =0. 又定义域为[a -1,2a ],∴a -1=2a ,∴3

1

=

a .故选A . 3.解析:由x ≥0时,f (x )=x 2

-2x ,f (x )为奇函数,

∴当x <0时,f (x )=-f (-x )=-(x 2

+2x )=-x 2

-2x =x (-x -2).

∴,

,)0()0()

2()2()(<≥---=??

?x x x x x x x f 即f (x )=x (|x |-2)

答案:D

4.解析:f (x )+8=x 5+ax 3

+bx 为奇函数,

f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26. 答案:A

5.解析:此题直接证明较烦,可用等价形式f (-x )+f (x )=0. 答案:B 6.解析:)(x ?、g (x )为奇函数,∴)()(2)(x bg x a x f +=-?为奇函数. 又f (x )在(0,+∞)上有最大值5, ∴f (x )-2有最大值3.、

∴f (x )-2在(-∞,0)上有最小值-3, ∴f (x )在(-∞,0)上有最小值-1. 答案:C

7.答案:奇函数

8.答案:0解析:因为函数y =(m -1)x 2

+2mx +3为偶函数,

∴f (-x )=f (x ),即(m -1)(-x )2

+2m (-x )+3=(m —1)x 2

+2mx +3,整理,得

m =0.

9.解析:由f (x )是偶函数,g (x )是奇函数,

11)()(--=

-x x g x f ,联立1

1

)()(-=

+x x g x f ,∴

11)1111(21)(2

-=----=

x x x x f . 答案:1

1

)(2-=x x f 10.答案:0 11.答案:2

1

<

m 12.证明:令x =y =0,有f (0)+f (0)=2f (0)·f (0),又f (0)≠0,∴可证f (0)=1.令x =0,∴f (y )+f (-y )=2f (0)·f (y )?f (-y )=f (y ),故f (x )为偶函数.

13.解析:本题主要是培养学生理解概念的能力. f (x )=x 3

+2x 2

-1.因f (x )为奇函数,∴f (0)=0. 当x <0时,-x >0,f (-x )=(-x )3

+2(-x )2

-1=-x 3

+2x 2

-1,∴f (x )=x 3

-2x 2

+1.

因此,.

)0()0()0(1

20

12)(,,2323

<=>+--+=??

?

??x x x x x x x x f 点评:本题主要考查学生对奇函数概念的理解及应用能力. 14.解析:任取x 1<x 2≤-5,则-x 1>-x 2≥-5.

因f (x )在[5,+∞]上单调递减,所以f (-x 1)<f (-x 2)?f (x 1)<-f (x 2)?f (x 1)>f (x 2),即单调减函数.点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.

15.解析:由x 1,x 2∈R 且不为0的任意性,令x 1=x 2=1代入可证,

f (1)=2f (1),∴f (1)=0.又令x 1=x 2=-1,

∴f [-1×(-1)]=2f (1)=0,

∴f (-1)=0.又令x 1=-1,x 2=x , ∴f (-x )=f (-1)+f (x )=0+f (x )=

f (x ),即f (x )为偶函数.

点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,x 1=x 2=1,x 1=x 2=-1或x 1=x 2=0等,然后再结合具体题目要求构造出适合结论特征的式子即可.

(2)x<-1 【拓展训练】答案

1解:设8)()(+=x f x F ,则bx ax x x F ++=3

5

)(为奇函数,于是有)()(x F x F =-, 从而有]8)([8)(+-=+-x f x F 即:16)()(-=+-x f x f

令2=x ,得16)2()2(-=+-f f ,又10)2(=-f ,故261016)2(-=--=f

2解:f (-x )=12-x -1+a =2x 1-2x +a ,f (-x )=-f (x )?2x

1-2x +a =-? ??

??12x

-1+a ?

2a =11-2x -2x

1-2x =1,故a =1

2

.

3解析:解法一:∵f (x )为奇函数,定义域为R ,∴f (0)=0?a -120+1=0?a =12.

经检验,当a =1

2

时,f (x )为奇函数.

解法二:∵f (x )为奇函数,∴f (-x )=-f (x ),即a -12-x +1=-? ????a -12x +1.

∴2a =12x +1+2x

1+2x =1,∴a =1

2

.

4解析:设x <0,则-x >0,f (-x )=2-x

-3=-f (x ),故f (x )=3-2-x

, 所以f (-2)=3-22

=-1.

函数的单调性及奇偶性(含答案)

函数的单调性及奇偶性 一、单选题(共10道,每道10分) 1.已知函数是上的增函数,若,则下列不一定正确的是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:函数单调性的定义 2.已知定义在上的函数满足:对任意不同的x1,x2,都有.若 ,则实数a的取值范围是( ) A. B. C. D. 答案:C 解题思路:

试题难度:三颗星知识点:函数单调性的定义 3.已知定义在上的函数满足:对任意不同的x1,x2,都有 .若,则实数a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:函数单调性的定义 4.函数的单调递减区间是( ) A. B. C. D.无减区间 答案:A 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 5.函数的单调递减区间是( ) A., B., C., D., 答案:A 解题思路:

试题难度:三颗星知识点:函数的单调性及单调区间 6.函数的单调递增区间是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 7.若是奇函数,则实数a的值为( ) A.1 B.-1

C.0 D.±1 答案:A 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 8.若是定义在上的偶函数,则a的值为( ) A.±1 B.1 C.-1 D.-3 答案:C 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 9.设是定义在[-2,2]上的奇函数,若在[-2,0]上单调递减,则使成立的实数a的取值范围是( ) A.[-1,2] B. C.(0,1) D.

高中数学解题方法谈:函数奇偶性的判定方法

函数奇偶性的判定方法 函数奇偶性的判定方法较多,下面把常见的判定方法分类加以研究分析. 1.定义域判定法 例1 判定()(1)2f x x x =-- 的奇偶性. 解:要使函数有意义,须20x -≥,解得2x ≥, 定义域不关于原点对称, ∴原函数是非奇非偶函数. 评注:用定义域虽不能判定一个函数是奇函数还是偶函数,但可以通过定义域不关于原点对称,来否定一个函数的奇偶性. 2.定义判定法 例2 判断()f x x a x a =++-和奇偶性. 解: 函数()f x x a x a =++-的定义域为R ,且 ()()()()f a x a x a x a x a x a x a f x -=-++--=--+-+=-++=, ∴函数()f x 是偶函数. 评注:在定义域关于原点对称的前提下,可根据定义判定函数的奇偶性. 3.等价形式判定法 例3 判定2211 ()11x x f x x x ++-=+++的奇偶性. 解:()f x 的定义域为R ,关于原点对称,当0x =时,()0f x =, ∴图象过原点. 又0x ≠ 时,22 22 ()(1)(1)1()(1)(1)f x x x f x x x -+-+==-+--, (1)()f f x ∴-=-. 又(0)0f =,∴()f x 为奇函数. 评注:常用等价变形形式有:若()()0f x f x +-=或()1() f x f x -=-,则()f x 为奇函数;若()()0f x f x --=或 ()1() f x f x -=,则()f x 为偶函数(其中()0f x ≠). 4.性质判定法 例4 若0a >,()([])f x x a a ∈-,是奇函数,()() g x x ∈R 是偶函数,试判定()()()x f x g x ?= 的奇偶性.

集合-基础知识点汇总与练习-复习版

集合知识点总结 一、集合的概念 教学目标:理解集合、子集的概念,能利用集合中元素的性质解决问 题,掌握集合问题的常规处理方法. 教学重点:集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用.: 一)主要知识: 1.集合、子集、空集的概念; 2.集合中元素的3个性质,集合的3 种表示方法; 3. 若有限集A有n个元素,则A的子集有2n个,真子集有2n 1,非空子集有2n 1个,非空真子集有2n 2个. 二、集合的运算 教学目标:理解交集、并集、全集、补集的概念,掌握集合的运算性 质,能利用数轴或文氏图进行集合的运算,进一步掌握 集合问题的常规处理方法. 教学重点:交集、并集、补集的求法,集合语言、集合思想的运用. 一)主要知识: 1. 交集、并集、全集、补集的概念; 2. AI B A A B,AUB A A B; 3. C U AI C U B C U (AUB),C U AUC U B C U(AI B). 二)主要方法: 1. 求交集、并集、补集,要充分发挥数轴或文氏图的作用;

2.含参数的问题,要有讨论的意识,分类讨论时要防止在空集上出 问题; 3.集合的化简是实施运算的前提,等价转化常是顺利解题的关键. 考点要点总结与归纳 一、集合有关概念 1. 集合的概念:能够确切指定的一些对象的全体。 2. 集合是由元素组成的 集合通常用大写字母A、B、C,…表示,元素常用小写字母a b、c, …表示。 3. 集合中元素的性质:确定性,互异性,无序性。 (1)确定性:一个元素要么属于这个集合,要么不属于这个集 合,绝无模棱两可的情况。如:世界上最高的山 (2)互异性:集合中的元素是互不相同的个体,相同的元素只能 出现一次。如:由HAPPY 的字母组成的集合{H,A,P,Y} ( 3)无 序性:集合中的元素在描述时没有固定的先后顺序。 女口:{a,b,c}和{a,c,b}是表示同一个集合 4. 元素与集合的关系 (1)元素a是集合A中的元素,记做a€ A,读作“ a属于集合A”; (2)元素a不是集合A中的元素,记做a?A,读作“a不属于集合A”。 5. 集合的表示方法:自然语言法, 列举法,描述法,图示法。 ( 1)自然语言法:用文字叙述的形式描述集合。如大于等于2 且小于等于8 的偶数

数列知识点总结及题型归纳

数列 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位 置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 例:判断下列各组元素能否构成数列 (1)a, -3, -1, 1, b, 5, 7, 9; (2)2010年各省参加高考的考生人数。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就 叫这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 14131211 ,,,,… 数列①的通项公式是n a = n (n ≤7,n N +∈), 数列②的通项公式是n a = 1 n (n N +∈)。 说明: ① {}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21 ()1,2n k k Z n k -=-?∈? +=?; ③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9 上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。从函数观点看,数列 实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始依次取值时对应的一系列函数值 (1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。 例:画出数列12+=n a n 的图像. (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列(递增数列、递减数列)、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系:1 1 (1)(2)n n n S n a S S n -=?=?-?≥ 例:已知数列}{n a 的前n 项和322+=n s n ,求数列}{n a 的通项公式

函数奇偶性的归纳总结

函数的奇偶性的归纳总结 考纲要求:了解函数的奇偶性的概念,掌握判断一些简单函数的奇偶性的方法。 教学目标:1、理解函数奇偶性的概念; 2、掌握判断函数的奇偶性的类型和方法; 3、掌握函数的奇偶性应用的类型和方法; 4、培养学生观察和归纳的能力,培养学生勇于探索创新的精神。 教学重点:1、理解奇偶函数的定义; 2、掌握判断函数的奇偶性的类型和方法,并探索其中简单的规律。 教学难点:1、对奇偶性定义的理解; 2、较复杂函数奇偶性的判断及函数奇偶性的某些应用。 教学过程: 一、知识要点: 1、函数奇偶性的概念 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数。 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数。 理解: (1)奇偶性是针对整个定义域而言的,单调性是针对定义域内的某个区间而言的。这两个概念的区别之一就是,奇偶性是一个“整体”性质,单调性是一个“局部”性质; (2)定义域关于原点对称是函数具有奇偶性的必要条件。 2、按奇偶性分类,函数可分为四类: 奇函数非偶函数、偶函数非奇函数、非奇非偶函数、亦奇亦偶函数. 3、奇偶函数的图象:

奇函数?图象关于原点成中心对称的函数,偶函数?图象关于y 轴对称的函数。 4、函数奇偶性的性质: ①具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。 ②常用的结论:若f(x)是奇函数,且x 在0处有定义,则f(0)=0。 ③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同,最值相反。奇函数f(x)在区间[a,b](0≤a

第招 如何判断函数的奇偶性

第11招 如何判断函数的奇偶性? 判断函数的奇偶性(有的还牵涉三角函数)是高考中常考的知识点,一般以选择题形式出现. 解法指导与经典范例 (一) 判断函数奇偶性的方法 1. 定义法 这是最常用的方法.其解法步骤如下:(1)确定函数的定义域是否是关于原点的对称区间.若不是,可判断该函数是非奇非偶函数.若是,再按下列步骤继续进行.(2)在定义域内任取x ,以-x 代换f(x)中的x 得f(-x).(3)依据定义得出结论. 注意:(1)既是奇函数又是偶函数的函数只能是f(x)=0. (2)若奇函数f(x)在x=0处有定义,则f(0)=0.(如例6证一) 【例1】函数 ()()是x x x x f +-? +=11( ). A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D0非奇非偶函数 解 (]()() 的奇偶性】判断函数【例原点对称的区间由于这定义域不是关于想)的定义域为函数得?????>+-<+=-≤<-≥+-00)(2. .1,19,1101122x x x x x x x f f x x x 解 当x<0时,-x>0,()()() ().)(22x f x x x x x f -=+-=-+--=-∴ 而当x>0时,-x<0,()()()()x f x x x x x f -=-=-+-=-∴22 ()()()()().,,00,为奇函数故都有对任意x f x f x f x =-+∞∞-∈∴ 【例3】2002.北京文三(22)已知f(x)是定义在R 上的不恒为零的函数,且对于任意的a 、b R ∈都满足:()()().a bf b af b a f +=? (1) 求f(0)、f(1)的值;(2)判断f(x)的奇偶性,并证明你的结论. 解(1)()()()()()()=?==?+?=?=111.00000000f f f f f f ()()1111f f ?+? ()f f ∴=,12(1)=0. (2)f(x)是奇函数.证明如下: ()()()[]()()()()().01.01,1211111=-∴=--=----=-?-=f f f f f f f 而 又 ()()()()()().,11是奇函数x f x f xf x f x f x f ∴-=-+-=?-=- 2. 利用定义的等价命题来判断 ()()()()()().00是偶函数是奇函数;x f x f x f x f x f x f ?=--?=-+ 或:当()()()()()() ().110是偶函数是奇函数;时, x f x f x f x f x f x f x f ?=-?-=-≠

1.高考数学考点与题型全归纳——集合

第一章 集合与简易逻辑 第一节 集 合 ? 基础知识 1. 集合的有关概念 1.1.集合元素的三个特性:确定性、无序性、互异性. 1. 2.集合的三种表示方法:列举法、描述法、图示法. 1.3.元素与集合的两种关系:属于,记为∈;不属于,记为?. 1.4.五个特定的集合及其关系图: N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. 2. 集合间的基本关系 2.1.子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ?B(或B ?A). 2.2.真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作AB 或B A. A B ?? ???? A ? B ,A≠B.既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A. 2.3.集合相等:如果A ?B ,并且B ?A ,则A =B. 两集合相等:A =B ?? ??? ? A ? B ,A ?B.A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性. 2.4.空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作?. ?∈{?},??{?},0??,0?{?},0∈{0},??{0}.

3. 集合间的基本运算 (1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A∩B ,即A∩B ={x|x ∈A ,且x ∈B}. (2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A ∪B ,即A ∪B ={x|x ∈A ,或x ∈B}. (3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作?U A ,即?U A ={x |x ∈U ,且x ?A }. 求集合A 的补集的前提是“A 是全集U 的子集”,集合A 其实是给定的条件.从全集U 中取出集合A 的全部元素,剩下的元素构成的集合即为?U A . ? 常用结论 (1)子集的性质:A ?A ,??A ,A ∩B ?A ,A ∩B ?B . (2)交集的性质:A ∩A =A ,A ∩?=?,A ∩B =B ∩A . (3)并集的性质:A ∪B =B ∪A ,A ∪B ?A ,A ∪B ?B ,A ∪A =A ,A ∪?=?∪A =A . (4)补集的性质:A ∪?U A =U ,A ∩?U A =?,?U (?U A )=A ,?A A =?,?A ?=A . (5)含有n 个元素的集合共有2n 个子集,其中有2n -1个真子集,2n -1个非空子集. (6)等价关系:A ∩B =A ?A ?B ;A ∪B =A ?A ?B . 考点一 集合的基本概念 [典例] 1. (2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0 2. 已知a ,b ∈R ,若? ?? ? ??a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( ) A .1 B .0 C .-1 D .±1 [解析] (1)因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2. (2)由已知得a ≠0,则b a =0,所以 b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可 知a =1应舍去,因此a =-1,故a 2 019+b 2 019=(-1)2 019+02 019=-1. [答案] (1)B (2)C [提醒] 集合中元素的互异性常常容易忽略,求解问题时要特别注意. [题组训练]

函数的奇偶性-知识点及习题

函数的奇偶性 一、关于函数的奇偶性的定义 一般地,如果对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就称偶函数; 一般地,如果对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就称奇函数; 二、函数的奇偶性的几个性质 1、对称性:奇(偶)函数的定义域关于原点对称; 2、整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立; 3、可逆性:)()(x f x f =-?)(x f 是偶函数;)()(x f x f -=-?)(x f 奇函数; 4、等价性: )()(x f x f =-?0)()(=--x f x f (||)()f x f x ?=()() 1=-? x f x f ;)()(x f x f -=-?0)()(=+-x f x f ()()1-=-?x f x f ; 5、奇函数的图像关于原点对称,偶函数的图像关于y 轴对称; 6、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。 7、设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇±奇=奇(函数) 偶±偶=偶(函数) 奇×奇=偶(函数) 偶×偶=偶(函数)奇×偶=奇(函数) 8、多项式函数110()n n n n P x a x a x a --=+++的奇偶性 多项式函数()P x 是奇函数?()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数?()P x 的奇次项(即偶数项)的系数全为零. 9、复合函数[])(x g f y =的奇偶性 若函数[])(),(),(x g f x g x f 的定义域都是关于原点对称的,那么由 )(),(u f y x g u ==的奇偶性得到)(x g f y =的奇偶性的规律是: )(x g u =)(u f y =. 三、函数的奇偶性的判断

高中数学知识点:函数的奇偶性概念及判断步骤

高中数学知识点:函数的奇偶性概念及判断步骤 1.函数奇偶性的概念 偶函数:若对于定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释: (1)奇偶性是整体性质; (2)x 在定义域中,那么-x 在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; (3)f(-x)=f(x)的等价形式为:()()()0,1(()0)() f x f x f x f x f x ---==≠, f(-x)=-f(x)的等价形式为:()()()01(()0)()f x f x f x f x f x -+-==-≠, ; (4)由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0; (5)若f(x)既是奇函数又是偶函数,则必有f(x)=0. 2.奇偶函数的图象与性质 (1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数. (2)如果一个函数为偶函数,则它的图象关于y 轴对称;反之,如果一个函数的图像关于y 轴对称,则这个函数是偶函数.

3.用定义判断函数奇偶性的步骤 (1)求函数() f x的定义域,判断函数的定义域是否关于原点对称,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步; (2)结合函数() f x的解析式; f x的定义域,化简函数() (3)求() f x f x的 -与() f x之间的关系,判断函数() -,可根据() f x 奇偶性. 若() f x,则() f x是奇函数; f x -=-() 若() f x是偶函数; f x,则() -=() f x 若() f x f x既不是奇函数,也不是偶函数; ≠±,则() -() f x 若() -=-() f x既是奇函数,又 f x f x,则() f x f x -() =且() 是偶函数

(完整版)集合知识点点总结

集合概念 一:集合有关概念 1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西, 并且能判断一个给定的东西是否属于这个整体。 2.一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。 3.集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。 例:世界上最高的山、中国古代四大美女、教室里面所有的人…… (2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。 例:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 例:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 1)列举法:将集合中的元素一一列举出来 {a,b,c……} 2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 {x∈R| x-3>2} ,{x| x-3>2} ①语言描述法:例:{不是直角三角形的三角形} 4、集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合例:{x|x2=-5} 5、元素与集合的关系: (1)元素在集合里,则元素属于集合,即:a∈A (2)元素不在集合里,则元素不属于集合,即:a A 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 二、集合间的基本关系 1.“包含”关系—子集 (1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有 A?(或B?A) 包含关系,称集合A是集合B的子集。记作:B A?有两种可能(1)A是B的一部分,; 注意:B (2)A与B是同一集合。 ?/B或B?/A 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A) 或若集合A?B,存在x∈B且x A,则称集合A是集合B的真子集。 ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

高中数学集合基础知识及题型归纳复习

集合基础知识及题型归纳总结 1、集合概念与特征: 例:1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 例:下列命题正确的有( ) (1)很小的实数可以构成集合; (2)集合{}1|2-=x y y 与集合(){} 1|,2-=x y y x 是同一个集合; (3)36 11,,,,0.5242 -这些数组成的集合有5个元素; (4)集合(){}R y x xy y x ∈≤,,0|,是指第二和第四象限内的点集。 A .0个 B .1个 C .2个 D .3个 2、元素与集合、集合与集合间的关系 元素集合的关系:∈?或 集合与集合的关系=?或 例:下列式子中,正确的是( ) A .R R ∈+ B .{}Z x x x Z ∈≤?-,0| C .空集是任何集合的真子集 D .{}φφ∈ 3、集合的子集:(必须会写出一个集合的所有子集) 例:若集合}8,7,6{=A ,则满足A B A =?的集合B 的个数是 4、集合的运算:(交集、并集、补集) 例1:已知全集}{5,4,3,2,1,0=U ,集合}{5,3,0=M ,}{5,4,1=N ,则=N C M U I 例2:已知 {}{}=|3217,|2A x x B x x -<-≤=< (1)求A ∩B ; (2)求(C U A )∪B 例3:已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ?,求m 的取值范围 例4:某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人 例5:方程组? ??=-=+9122y x y x 的解集是( ) A .()5,4 B .()4,5- C .(){}4,5- D .(){}4,5-

函数的奇偶性与周期性 知识点与题型归纳

1.结合具体函数,了解函数奇偶性的含义. 2.会运用函数的图象理解和研究函数的奇偶性. 3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. ★备考知考情 1.对函数奇偶性的考查,主要涉及函数奇偶性的判断,利用奇偶函数图象的特点解决相关问题,利用函数奇偶性求函数值,根据函数奇偶性求参数值等. 2.常与函数的求值及其图象、单调性、对称性、零点等知识交汇命题. 3.多以选择题、填空题的形式出现. 一、知识梳理《名师一号》P18 注意: 研究函数奇偶性必须先求函数的定义域 知识点一函数的奇偶性的概念与图象特征 1.一般地,如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=f(x),那么函数f(x)就叫做偶函数. 2.一般地,如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=-f(x),那么函数f(x)就叫做奇函数. 1

2 3.奇函数的图象关于原点对称; 偶函数的图象关于y 轴对称. 知识点二 奇函数、偶函数的性质 1.奇函数在关于原点对称的区间上的单调性相同, 偶函数在关于原点对称的区间上的单调性相反. 2. 若f (x )是奇函数,且在x =0处有定义,则(0)0=f . 3. 若f (x )为偶函数,则()()(||)f x f x f x =-=. 《名师一号》P19 问题探究 问题1 奇函数与偶函数的定义域有什么特点? (1)判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. (2)判断函数f (x )的奇偶性时,必须对定义域内的 每一个x , 均有f (-x )=-f (x )、f (-x )=f (x ), 而不能说存在x 0使f (-x 0)=-f (x 0)、f (-x 0)=f (x 0). (补充) 1、若奇函数()f x 的定义域包含0,则(0)0=f . (0)0=f 是()f x 为奇函数的 既不充分也不必要条件 2.判断函数的奇偶性的方法 (1)定义法: 1)首先要研究函数的定义域,

最新函数的奇偶性的经典总结

x x x f 1)(+ =1 )(2+= x x x f x x f 1)(= 函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-, 0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-, 0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及) () (x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴ x x x f +=2)(,(2) x x x f -=3)( (3) ()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3 )(x x f =,x x f sin )(=, (3)常见的奇函数有:2 )(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时, ) () (x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时, ) () (x g x f 是偶函数。

集合知识点总结

集合知识点总结 Prepared on 22 November 2020

辅导讲义:集合与常用逻辑用语 1、集合:一定范围内某些确定的、不同的对象的全体构成一个集合。集合中的每一个对象称为该集合的元素。 集合的常用表示法:列举法、描述法。 集合元素的特征:确定性、互异性、无序性。 2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为 A ? B ,或B ?A ,读作“集合A 包含于集合B ”或“集合B 包含集合A ”。 即:若A a ∈则B a ∈,那么称集合A 称为集合B 的子集 注:空集是任何集合的子集。 3、真子集:如果A ?B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ?B 或B ?A ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,?。 4、补集:设A ?S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ?∈且,|。 5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。通常全集记作 U 。 6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作 B A ?(读作“A 交B ”),即:B A ?=}{B x A x x ∈∈且,|。 B A ?=A B ?,B A ?B B A A ???,。 7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作 B A ?(读作“A 并B ”),即:B A ?=}{B x A x x ∈∈或,|。 B A ?=A B ?,?A B A ?,?B B A ?。 8、元素与集合的关系:有属于和不属于两种,集合与集合间的关系,用包含、真包含

(完整版)一元一次不等式组知识点及题型总结(可编辑修改word版)

x 一元一次不等式与一元一次不等式组 一、不等式 考点一、不等式的概念 不等式:用不等号表示不等关系的式子,叫做不等式。不等号包括 . 题型一 会判断不等式 下列代数式属于不等式的有 . ① -x≥5 ② 2x -y <0 ③ 2 + 5 ≥ 3 ④ -3<0 ⑤ x=3 ? x 2 + xy + y 2 ⑦ x≠5 ⑧ x 2 - 3x + 2>0 ⑨x + y ≥ 0 题型二 会列不等式 根据下列要求列出不等式 ①.a ②.m 的 5 倍不大于 3 可表示为 . ③.x 与 17 的和比它的 2 倍小可表示为 . ④.x 和 y 的差是正数可表示为 . ⑤. x 的3 5 与 12 的差最少是 6 可表示为 . 考点二、不等式基本性质 1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。 逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向不变,则这个数是正数. 基本训练:若 a >b ,ac >bc ,则 c 0. 3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。 逆定理:不等式两边都乘以(或除以)同一个数,若不等号的方向改变,则这个数是负数。 基本训练:若 a >b ,ac <bc ,则 c 0. 4、如果不等式两边同乘以 0,那么不等号变成等号,不等式变成等式。 练习:1、指出下列各题中不等式的变形依据 ①.由 3a>2 得 a> 2 理 3 由: . ②. 由 a+7>0 得 a>-7 理 由: -1 . 5 ③.由-5a<1 得 a> 理

由:. ④.由 4a>3a+1 得 a>1 理 由:. 2、若x>y,则下列式子错误的是() A.x-3>y-3 B.x > y 3 3 3、判断正误 ①. 若a>b,b<c 则a>c. () ②.若a>b,则ac>bc. () ③.若ac2>bc2,则a>b. () ④.若a>b,则ac2>bc2. () ⑤.若 a>b,则a(c2+1)>b(c2+1) C. x+3>y+3 D.-3x>-3y () ?. 若a>b,若c 是个自然数,则ac>bc. () 考点三、不等式解和解集 1、不等式的解:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。 练习:1、判断下列说法正确的是() A.x=2 是不等式x+3<2 的解 B.x =3 是不等式3x<7 的解。 C.不等式3x<7 的解是x<2 D.x=3 是不等式3x≥9的解 2.下列说法错误的是() A.不等式 x<2 的正整数解只有一个 B.-2 是不等式 2x-1<0 的一个解 C. 不等式-3x>9 的解集是 x>-3 D.不等式 x<10 的整数解有无数个 2、不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。 题型一会求不等式的解集 练习:1、不等式x-8>3x-5 的解集是. 2、不等式x≤4的非负整数解是. 3、不等式2x-3≤0的解集为. 题型二知道不等式的解集求字母的取值范围 2、如果不等式(a-1)x<(a-1)的解集是x<1,那么a 的取值范围是. x< 1

函数的奇偶性的经典总结

函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-, 0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-, 0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及) () (x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴x x x f +=2 )(,(2)x x x f -=3 )( (3)()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3 )(x x f =,x x f sin )(=, (3)常见的奇函数有:2 )(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在(x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时, ) () (x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时, ) () (x g x f 是偶函数。 (6)常函数()()为常数c c x f =是偶函数,()f x =0既是偶函数又是奇函数。 (7)在公共定义域内偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数和、差仍为奇函数;奇(偶)数个奇函数积、商(分母不为零)为奇(偶)函数;一个奇函数与一个偶函数的积为奇函数.(8)对于复合函数()()[]x g f x F =;若()x g 为偶函数, ()f x 为奇(偶)函数,则()x F 都为

高一数学集合知识点归纳

高一数学集合知识点归纳 高一数学的集合学习以及总结需要把集合相关知识点进行归纳,只有把知识点归纳好才可以学好高一数学集合,以下是我总结了高一数学的知识点,希望帮到大家更好地归纳好集合的知识点同时复习好集合。 一、知识点总结 1.集合的有关概念。 1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。 ②集合中的元素具有确定性、互异性和无序性({a,b}与{b,a}表示同一个集合)。 ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件 2)集合的表示方法:常用的有列举法、描述法和图文法 3)集合的分类:有限集,无限集,空集。 4)常用数集:N,Z,Q,R,N* 2.子集、交集、并集、补集、空集、全集等概念。 1)子集:若对x∈A都有x∈B,则AB(或AB); 2)真子集:AB且存在x0∈B但x0A;记为AB(或,且) 3)交集:A∩B={x|x∈A且x∈B}

4)并集:A∪B={x|x∈A或x∈B} 5)补集:CUA={x|xA但x∈U} 3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号。 4.有关子集的几个等价关系 ①A∩B=AAB;②A∪B=BAB;③ABCuACuB; ④A∩CuB=空集CuAB;⑤CuA∪B=IAB。 5.交、并集运算的性质 ①A∩A=A,A∩B=B∩A;②A∪A=A,A∪B=B∪A; ③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB; 6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。 二、集合知识点整合 集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急~。2、数学名词。一组具有某种共同性质的数学元素:有理数的~。3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G.F.P.,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。 集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。 集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称

相关文档
相关文档 最新文档