文档库 最新最全的文档下载
当前位置:文档库 › 电压波动和闪变

电压波动和闪变

电压波动和闪变
电压波动和闪变

对国家相关电能质量标准的理解与综述

1 电压波动和闪变

范围

本标准适用于交流50Hz 电力系统正常运行方式下,由波动负荷引起的公共连接点电压的快速变动及由此可能引起人对灯光闪烁明显感觉的场合。

1.1 定义:

(1)电压波动(voltage fluctuation )电压方均根值(有效值)一系列的变动或连续的改变

(2)电压方均根值曲线R.M.S. voltage shape

U (t )

每半个基波电压周期方均跟值(有效值)的时间函数

(3)电压变动relative voltage change

d

电压方均根值曲线上相邻两个极值电压之差,以系统标称电压的百分数表示。

(4)电压变动频度rate of occurrence of voltage changes

r

单位时间内电压变动的次数(电压由大到小或由小到大各算一次变动)。不同方向的若干次变动,如间隔时间小于30ms ,则算一次变动。

1.2电压波动的测量和估算

电压波动可以通过电压方均根值曲线U (t )来描述,电压变动d 和电压变动频度r 则是衡量电压波动大小和快慢的指标。

电压变动d 的定义表达式为: %100??=N

U U d 式中:

△U----电压方均根值曲线上相邻两个极值电压之差。

U N ----系统标称电压。

当电压变动频度较低且具有周期性时,可通过电压方均根值曲线U (t )的测量,对电压波动进行评估。单次电压变动可通过系统和负荷参数进行估算。 当已知三相负荷的有功功率和无功功率的变化率分别为△P i 、 △Q i 时,可用下

式计算: %1002??+?=N

i L i L U Q X P R d 式中R L 、X L 分别为电网阻抗的电阻电抗分量。

在高压电网中,一般X L >> R L 则

式中:

S SC ---考察点(一般为PCC )在正常较小方式下的短路容量。

在无功功率的变化量为主要成分时(例如大容量电动机启动),可采用以下两

式进行粗略估算

对于平衡的三相负荷:

%100??≈sc

i S S d 式中:

△S i ---三相负荷的变化量。

对于相间单相负荷:

%1003??≈sc

i S S d △S i ---相间单相负荷的变化量

注:当缺正常方式的较小短路容量时,设计所取的系统短路容量可以用投产时系统最大短路容量乘系数0.7进行计算。

1.3电压波动的限值

任何一个波动负荷用户在电力系统公告连接点产生的电压变动,其限制和电压波动频度、电压等级有关。对于电压变动频度较低,(例如r ≤1000次/h )或规则的周期性电压波动,可通过测量电压均方根值曲线U (t )确定其电压变动频度和电压变动值。电压波动限制见表1

2.1定义:

(1) 闪变:灯光照度不稳定造成的视感

(2) 短时间闪变值(short term severity):

Pst

衡量短时间(若干分钟)内闪变强弱的一个统计量值(见附录A )。短时间闪变的基本记录周期为10min

(3) 累积概率函数

CPF

其横坐标表示被测量值,纵坐标表示超过对应横坐标值的时间占整个测量时间的百分数长时间闪变值Plt

(4)由短时间闪变值Pst 推算出,反映长时间(若干小时)闪变强弱的量值(见附录A ),长时间闪变的基本记录周期为2h

2.2电压闪变的测量和估算

闪变是电压波动在一段时间内的累计效果,它通过灯光照度不稳定造成的视感来反映,主要由短时间闪变Pst 和长时间闪变值Plt 来衡量。短时间闪变Pst 的计算方法见附录A 。长时间闪变值Plt 由测量时间段内包含的短时间闪变值Pst 计算获得:

312

1

31)(121∑==j stj t P P 式中:

P stj ----2h 内第j 个短时间内闪变值。

各种类型电压波动引起的闪变均可采用复合IEC61000-4-15,1996的闪变仪进行直接测量,这是闪变量值判定的基准方法。对于三相等概率的波动负荷,可以任意选取一相测量。

当负荷为周期性等间隔矩形波(或阶跃波)时,闪变可通过其电压变动d 和频度r 时,可以利用图(或表)用Pst=1曲线由r 查出对应于Pst=1时的电压变动dLmin,计算出其短路时间闪变。

电弧炉的闪变的估算

m ax d K P lt lt ?=

式中:

lt K ---交流电弧炉一般取0.48;

t K ---直流电弧炉一般取0.30;

l K ---精炼电弧炉一般取0.20;

康斯丁(CONSTEEL )电弧炉lt K 一般取0.25.

闪变的叠加和传递

n 个波动负荷各自引起的闪变及背景闪变在同一节点上相互叠加,其短时间闪变值可按下式计算

m m stn m st m st st P P P P )()()(21+++=

式中:

m---值取决于主要闪变源的性质及其工况的重叠可能性;

m=1---用于波动负荷引起电压变动同时发生重叠率很高的状况;

m=2---用于随机波动负荷引起电压变动同时发生的状况(例如熔化期重叠的电弧炉)

m=3---用于波动负荷引起的电压变动同时发生的可能性很小的状况(比较常用);

m=4---仅用于熔化期不重叠的电弧炉所引起的电压变动合成

电力系统不同母线节点上闪变的传递如下图所示,简化计算如下:

P stB

stB BA stA P T P ?=

式中:

scB

scA scA BA S S S T '-'=为节点B 短时间闪变值传递到节点A 的传递系数; P stA ---节点B 短时间闪变值传递到节点A ,在节点A 引起的短时间闪变值;

P stB ---节点B 上的短时间闪变值;

/scA S ---节点B 短路时节点A 流向节点B 的短路容量;

scA S ---节点A 的短路容量;

/scB S ---节点A 短路时节点B 流向节点A 的短路容量;

当/scA S =0.而scA S =/scB S 时,P stA = P stB

某台设备在系统短路容量为0sc S 时0sc P 已知,当短路容量变为1sc S 时1st P 按下式计算:

1

001sc sc st st S S P P ?= 长时间闪变值的相关计算也可用上式计算

2.3闪变的评价标准

闪变合格率是指实际运行电压在闪变合格范围内累计运行时间与对应的总运行统计时间的百分比,计算式如下:

闪变合格率=(1-总运行统计时间

闪变超限时间)×100% 闪变状况通常可通过闪变合格率的统计方法进行评估,监测点的闪变合格率通常以月度的时间为闪变监测的总运行统计时间。

电网的闪变合格率为各监测点闪变合格率的平均值:

电压闪变合格率(%)=∑m

1/n 监测点闪变合格率

式中:

n---闪变监测点个数。

电网年(季)度闪变合格率计算式如下:

年(季)度闪变合格率(%)=∑m

1/m 电网闪变合格率

式中:

m---年(季)度闪变合格率统计月数。

2.4闪变的限值

电力系统公共连接点,在系统正常运行的较小方式下,以一周(168h )为测量周期,所有长时间闪变值P lt 都应满足下表闪变限值的要求:

闪变限值

列要求。

电力系统正常运行的较小方式下,波动负荷处于正常、连续工作状态,以一天(24h )为测量周期,并保证波动负荷的最大工作周期包含在内,测量获得的最大长时间闪变值和波动负荷退出时的背景闪变值,通过下列计算获得波动负荷单独引起的长时间闪变值:

330131121t t t P P P -=

式中:

11t P ---波动负荷投入时的长时间闪变测量值;

01t P ---背景闪变值,是波动负荷退出时一段时期内的长时间闪变测量值; 21t P ---波动负荷单独引起的长时间闪变值。

波动负荷单独引起的闪变值根据用户负荷大小、其协议用电量占总供电量的比例以及电力系统公共连接点的状况,分别按三级作不同的规定和处理。

风力发电引起的电压波动和闪变

风力发电引起的电压波动和闪变 孙涛1,王伟胜1,戴慧珠1,杨以涵2 (1.中国电力科学研究院,北京 100085;2.华北电力大学电力工程系,北京 102206) 摘要:并网风电机组在持续运行和切换操作过程中都会产生电压波动和闪变,对当地电网的电能质量有不良影响。从并网风电机组输出的功率波动出发,分析了风力发电引起电压波动和闪变的主要原因。介绍了关于并网风电机组电能质量的国际电工标准IEC 61400-21,给出了风电机组在持续运行与切换操作期间引起的闪变值和相对电压变动的计算公式。然后综述了有关风力发电引起的电压波动和闪变的计算方法和影响因素等方面的研究成果,最后展望了未来的 研究方向和研究重点。 关键词:风力发电;电能质量;电压波动;闪变 1 引言 随着越来越多的风电机组并网运行,风力发电对电网电能质量的影响引起了广泛关注。风资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,可能影响电网的电能质量,如电压偏差、电压波动和闪变、谐波等。电压波动和闪变是风力发电对电网电能质量的主要负面影响之一。电压波动的危害表现在照明灯光闪烁、电视机画面质量下降、电动机转速不均匀和影响电子仪器、计算机、自动控制设备的正常工况等[1,2]。 电压波动为一系列电压变动或工频电压包络线的周期性变化。闪变是人对灯光照度波动的主观视感。人对照度波动的最大觉察频率范围为0.05~35Hz,其中闪变敏感的频率范围约为6~12Hz[1]。衡量闪变的指标有短时间闪变值P st和长时间闪变值P l t。短时间闪变值是衡量短时间(若干分钟)内闪变强弱的一个统计量值。短时间闪变值的计算不仅要考虑电压波动造成的白炽灯照度变化,还要考虑到人的眼和脑对白炽灯照度波动的视感。长时间闪变值由短时间闪变值推出,反映长时间(若干小时)闪变强弱的量值。 本文从并网风电机组输出的功率波动着手,分析了风力发电引起电压波动和闪变的主要原因,并介绍了关于并网风电机组电能质量的国际电工标准IEC 61400-21[3],总结了风力发电引起的电压波动和闪变的计算方法和影响因素,最后对未来的研究方向和研究重点进行了展望。 2机理分析 风力发电引起电压波动和闪变的根本原因是并网风电机组输出功率的波动,下面将分析并网风电机组输出功率波动引起电压波动和闪变的机理[4]。 图1为风电机组并网示意图,其中?为风电机组出口电压相量,为电 网电压相量,R 1、X 1 分别为线路电阻和电抗,分别为线路上流动的有功电 流和无功电流相量。一般而言,有功电流要远大于无功电流。

第二章 电压波动与闪变的概念 危害

第二章电压波动与闪变的概念 2.1 电压波动 电压波动和闪变(voltagefluetuationandflicker)一系列电压随机变动或工颇电压包络线的周期性变化,以及由此引起的照明闪变。它是电能质量的一个重要技术指标。电压波动是指电压均方根值一系列相对快速变动或连续改变的现象,其变化周期大于工频周期。电压闪变是指电压波动造成灯光照度不稳定的人眼视感反应,不属于电磁现象,同时也反映了电压波动引起的灯光闪烁对人视感产生的影响。电压闪变是电压波动引起的结果,它不属于电磁现象。 描述电压均方根值变化特性的参数通常有2个:相对电压波动值(RelativeVoltage Fluctuation)和电压变动频度(VoltageVariation Frequency)。相对电压波动值d定义为一系列电压均方根值变化中相邻2个极值Umax、Umin之差与标称电压的百。分比,即d =Umax- Umi你UN×100% (1 电压变动频度是指单位时间内电压变动的次数。标准规定,电压由大到小或由小到大的变化各算一次变动。 在电力系统中具有冲击性功率的负荷(如轧机、电弧炉)时,电力网中的电压降将发生相应变化,导致电压波动。冲击性负荷可分为周期性冲击负荷和非周期性冲击负荷两类。其中周期性或近似周期性的冲击性负荷的影响更为严重。电压波动使电能用户不能正常工作,在人民生活中最受影响的是白炽灯的闪变(flieker)。频率在5~12Hz范围内的电压波动值,即使只有额定电压的1%,其引起的白炽灯照明的闪变,已足以使人感到不舒适,所以选白炽灯的工况作为判断电压波动值,把电压变动而引起人对灯闪的主观感觉叫“闪变”。广义的闪变包括电压波动的全部有害作用,但不能以电压波动来代替闪变,因为闪变是人对照度波动的主观视感。闪变的主要决定因素:①供电电压波动的幅值、频度和波形,②照明装!,以对白炽灯的照度波动形响最大,而且与白炽灯的功率和额定电压等有关 2.2电压波动与闪变的产生原因

电能质量电压波动和闪变定稿版

/T电能质量电压波动 和闪变 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

电能质量电压波动和闪变 Power quality—Voltage fluctuation and flicker GB12326—2000 代替GB12326—1990 前言 本标准是电能质量系列标准之一,目前已制定颁布的电能质量系列国家标准有:《供电电压允许偏差》(GB 12325—1990);《电压允许波动和闪变》(GB 12326—1990);《公用电网谐波》(GB/T 14549—1993);《三相电压允许不平衡度》(GB/T 15543—1995)和《电力系统频率允许偏差》(GB/T 15945—1995)。 本标准参考了国际电工委员会(IEC)电磁兼容(EMC)标准IEC 61000-3-7等(见参考资料),对国标GB 12326—1990进行了全面的修订。 和GB 12326—1990相比,这次修订的主要内容有: 1)将系统电压按高压(HV)、中压(MV)和低压(LV)划分,分别规定了相关的限值,以及对用户指标的分配原则。 2)将国标中闪变指标由引用日本ΔV10改为IEC的短时间闪变P st和长时间闪变P lt指标,以和国际标准接轨,并符合中国国情。 3)将电压波(变)动限值和变动频度相关联,使标准对此指标的规定更切合实际波动负荷对电网的干扰影响。

4)将原标准中以电压波(变)动为主,改为以闪变值为主(原标准中ΔV10均为推荐值),以和国际标准相对应。 5)对于单个用户闪变允许指标按其协议容量占总供电容量的比例分配,并根据产生干扰量及系统情况分三级处理(原标准中无此内容),既使指标分配较合理,又便于实际执行。 6)引入了闪变叠加、传递等计算公式,高压系统中供电容量的确定方法以及电压变动的计算和闪变的评估等内容,并给出一些典型的实例分析。 7)对IEC 61000-4-15规定的闪变测量仪作了介绍,并作为标准的附录A,以利于测量仪器的统一。 8)整个标准按国标GB/T1.1和GB/T1.2有关规定作编写。原标准名称的引导要素“电能质量”英译为“Power quality of electric energy supply”改为国际上通用的“Power quality”,并将本标准名称改为《电能质量电压波动和闪变》。 作为电磁兼容(EMC)标准,IEC 61000-3-7等涉及的内容相对较多,论述上不够简洁。在国标修订中选取相关内容,基本上删去对概念和原理的解释部分,因为国内将陆续发布等同于IEC 61000的EMC系列标准,可作为执行电能质量国家标准参考。对于国标中所需要的一些定义、符号和缩略语,以及相关闪变测量仪规范和闪变(Pst)的表达式等,主要参考了IEC 61000-3-3、IEC 61000-4-15。 须指出,在采用IEC 61000相关内容中,本标准对于下列几点作了修改: 1)按IEC标准,对闪变P st、P lt指标,每次评定测量时间至少为一个星期,取99%概率大值衡量。这样规定,在电网中实际上难以执行。本标准中对

电压波动和闪变的检测与控制方法

电压波动和闪变的检测与控制方法 摘要:由冲击性功率负荷引起的电压波动与闪变是电能质量问题的重要方面之一。本文论述了电压波动和闪变的常用检测方法,比较分析了几种改善电压波动和闪变补偿装置的性能特点,为电力系统电压波动与闪变的监测及抑制提供参考。 关键词:电压波动;闪变;检测;抑制;电能质量 Detection and Suppression Methods for Voltage Fluctuation and Flicker GUO Shang-hua,HUANG Chun,WANG Lei,CAO Guo-jian (College of Electricity & Information Engineering of Hunan University, Changsha 410082,China) Abstract:Voltage fluctuation and flicker, caused by fast-speed varying load, is one of the most important aspects of power quality. In this paper, the methods of detecting voltage flicker are detailed, and the performances of some common device that suppressed the voltage fluctuation are analyzed and compared. All the study is helpful for the supervision and control of voltage fluctuation and flicker. Key words: voltage fluctuation; flicker; detection; suppression; power quality 0 引言 随着大量的基于计算机系统的控制设备和自动化程度很高的用电设备相继投入使用,工 业用户对电能质量的要求越来越高,甚至几分之一秒的不正常就可造成的巨大的损失。据统计,自动化程度很高的工业用户一般每年要遭受10~50次与电能质量问题有关的干扰,其中因包括电压波动和闪变在内的动态电压质量问题造成的事故数约占事故总数的83%[1]。电压波动和闪变已成为威胁许多重要用户供电可靠性的主要原因之一,必须对其进行有效地监视与抑制。 电力系统的电压波动和闪变主要是由具有冲击性功率的负荷引起的[2],如变频调速装置、炼钢电弧炉、电气化铁路和轧钢机等。这些非线性、不平衡冲击性负荷在生产过程中有功和无功功率随机地或周期性地大幅度变动,当其波动电流流过供电线路阻抗时产生变动的压降,导致同一电网上其它用户电压以相同的频率波动。这种电压幅值在一定范围内(通常为额定值的90%~110%)有规律或随即地变化,即称为电压波动。电压波动通常会引起许多电工设备不能正常工作,如影响电视画面质量、使电动机转速脉动、使电子仪器工作失常、使白炽灯光发生闪烁等等。由于一般用电设备对电压波动的敏感度远低于白炽灯,为此,选择人对白炽灯照度波动的主观视感,即“闪变”,作为衡量电压波动危害程度的评价指标。 1 电压波动与闪变的检测 1.1 调幅波检测 要对电压波动与闪变进行有效的抑制,首先的任务就是要准确的提取出波动信号,通常将波动电压看成以工频额定电压为载波、其电压的幅值受频率范围在0.05~35Hz的电压波动分量调制的调幅波。因此,电压波动分量的检出方法可采用通信理论中大功率载波调制信号解调方法,用与载波信号同频同相的周期信号乘以被调信号,将电压波动分量与工频载波电压分离,通过带通滤波器得到波动分量。

GB/T-电能质量-电压波动和闪变

、GB/T-电能质量-电压波动和闪变

————————————————————————————————作者:————————————————————————————————日期:

电能质量电压波动和闪变 Power quality—Voltage fluctuation and flicker GB12326—2000 代替GB12326—1990 前言 本标准是电能质量系列标准之一,目前已制定颁布的电能质量系列国家标准有:《供电电压允许偏差》(GB 12325—1990);《电压允许波动和闪变》(GB 12326—1990);《公用电网谐波》(GB/T 14549—1993);《三相电压允许不平衡度》(GB/T 15543—1995)和《电力系统频率允许偏差》(GB/T 15945—1995)。 本标准参考了国际电工委员会(IEC)电磁兼容(EMC)标准IEC 61000-3-7等(见参考资料),对国标GB 12326—1990进行了全面的修订。 和GB 12326—1990相比,这次修订的主要内容有: 1)将系统电压按高压(HV)、中压(MV)和低压(LV)划分,分别规定了相关的限值,以及对用户指标的分配原则。 2)将国标中闪变指标由引用日本ΔV10改为IEC的短时间闪变P st和长时间闪变P lt 指标,以和国际标准接轨,并符合中国国情。 3)将电压波(变)动限值和变动频度相关联,使标准对此指标的规定更切合实际波动负荷对电网的干扰影响。 4)将原标准中以电压波(变)动为主,改为以闪变值为主(原标准中ΔV10均为推荐值),以和国际标准相对应。 5)对于单个用户闪变允许指标按其协议容量占总供电容量的比例分配,并根据产生干扰量及系统情况分三级处理(原标准中无此内容),既使指标分配较合理,又便于实际执行。 6)引入了闪变叠加、传递等计算公式,高压系统中供电容量的确定方法以及电压变动的计算和闪变的评估等内容,并给出一些典型的实例分析。 7)对IEC 61000-4-15规定的闪变测量仪作了介绍,并作为标准的附录A,以利于测量仪器的统一。 8)整个标准按国标GB/T1.1和GB/T1.2有关规定作编写。原标准名称的引导要素“电能质量”英译为“Power quality of electric energy supply”改为国际上通用的“Power quality”,并将本标准名称改为《电能质量电压波动和闪变》。 作为电磁兼容(EMC)标准,IEC 61000-3-7等涉及的内容相对较多,论述上不够简洁。在国标修订中选取相关内容,基本上删去对概念和原理的解释部分,因为国内将陆续发布等同于IEC 61000的EMC系列标准,可作为执行电能质量国家标准参考。对于国标中所需要的一些定义、符号和缩略语,以及相关闪变测量仪规范和闪变(Pst)的表达式等,主要参考了IEC 61000-3-3、IEC 61000-4-15。 须指出,在采用IEC 61000相关内容中,本标准对于下列几点作了修改: 1)按IEC标准,对闪变P st、P lt指标,每次评定测量时间至少为一个星期,取99%概率大值衡量。这样规定,在电网中实际上难以执行。本标准中对闪变P st指标规定取1天(24h)测量,而且取95%概率大值衡量;对P lt指标,原则上规定不得超标。

3、GB/T12326-2008电能质量 电压波动和闪变

电能质量电压波动和闪变 Power quality—Voltage fluctuation and flicker GB12326—2000 代替GB12326—1990 前言 本标准是电能质量系列标准之一,目前已制定颁布的电能质量系列国家标准有:《供电电压允许偏差》(GB 12325—1990);《电压允许波动和闪变》(GB 12326—1990);《公用电网谐波》(GB/T 14549—1993);《三相电压允许不平衡度》(GB/T 15543—1995)和《电力系统频率允许偏差》(GB/T 15945—1995)。 本标准参考了国际电工委员会(IEC)电磁兼容(EMC)标准IEC 61000-3-7等(见参考资料),对国标GB 12326—1990进行了全面的修订。 和GB 12326—1990相比,这次修订的主要内容有: 1)将系统电压按高压(HV)、中压(MV)和低压(LV)划分,分别规定了相关的限值,以及对用户指标的分配原则。 2)将国标中闪变指标由引用日本ΔV10改为IEC的短时间闪变P st和长时间闪变P lt 指标,以和国际标准接轨,并符合中国国情。 3)将电压波(变)动限值和变动频度相关联,使标准对此指标的规定更切合实际波动负荷对电网的干扰影响。 4)将原标准中以电压波(变)动为主,改为以闪变值为主(原标准中ΔV10均为推荐值),以和国际标准相对应。 5)对于单个用户闪变允许指标按其协议容量占总供电容量的比例分配,并根据产生干扰量及系统情况分三级处理(原标准中无此内容),既使指标分配较合理,又便于实际执行。 6)引入了闪变叠加、传递等计算公式,高压系统中供电容量的确定方法以及电压变动的计算和闪变的评估等内容,并给出一些典型的实例分析。 7)对IEC 61000-4-15规定的闪变测量仪作了介绍,并作为标准的附录A,以利于测量仪器的统一。 8)整个标准按国标GB/T1.1和GB/T1.2有关规定作编写。原标准名称的引导要素“电能质量”英译为“Power quality of electric energy supply”改为国际上通用的“Power quality”,并将本标准名称改为《电能质量电压波动和闪变》。 作为电磁兼容(EMC)标准,IEC 61000-3-7等涉及的内容相对较多,论述上不够简洁。在国标修订中选取相关内容,基本上删去对概念和原理的解释部分,因为国内将陆续发布等同于IEC 61000的EMC系列标准,可作为执行电能质量国家标准参考。对于国标中所需要的一些定义、符号和缩略语,以及相关闪变测量仪规范和闪变(Pst)的表达式等,主要参考了IEC 61000-3-3、IEC 61000-4-15。 须指出,在采用IEC 61000相关内容中,本标准对于下列几点作了修改: 1)按IEC标准,对闪变P st、P lt指标,每次评定测量时间至少为一个星期,取99%概率大值衡量。这样规定,在电网中实际上难以执行。本标准中对闪变P st指标规定取1天(24h)测量,而且取95%概率大值衡量;对P lt指标,原则上规定不得超标。

电能质量之电压波动与闪变分析与检测方法

电压波动与闪变分析与检测方法 前言 电能质量包括电压、频率、谐波、三相不平衡度、电压的骤升或骤降等等。电压波动是多种电能质量问题的1种。一般是指电网由于雷击、对地短路、发电厂故障及其他外部、内部原因造成电网短时故障, 引起的电网电压短时大幅度波动、甚至短时断电数秒钟的现象, 但如果设备和系统抵御能力较差, 将给生产带来不应有的损失。据统计,自动化程度很高的工业用户一般每年要遭受10~50次与电能质量问题有关的干扰,其中因包括电压波动和闪变在内的动态电压质量问题造成的事故数约占事故总数的83%。电压波动和闪变已成为威胁许多重要用户供电可靠性的主要原因之一,必须对其进行有效的监视与抑制。 1电压波动的种类及产生原因 电压波动的原因多种多样,其危害均是通过电网电压波动或电源的短时消失使工厂生产受到影响的。引起电压波动的因素有多种多样,有自然界因素引起、有电网本身引起、有用电负荷引起的等等。电压波动从类别上分有3大类: 暂态扰动、RMS ( Rights Management Services) 扰动及稳态变化,每种类别又对应多种表现形式。 1.1暂态扰动 暂态扰动分为暂态冲击和短时波动2种表现形式( 见图1、图2) ,暂态冲击是由雷电、电焊机、负荷开关及电容器开关的合断所引起;短时波动是由线路或电缆开关、电容器开关及负荷开关的合断所引起。

图1 暂态冲击表现形式图2短时波动表现形式 1.2RMS扰动 RMS扰动分为电压骤降/ 骤升、电压中断2种表现形式( 见图3、图4) , 电压骤降/ 骤升是由远端系统故障所引起; 电压中断是由系统保护动作、断路器和熔断器的断开及定期检修所引起。 图3 电压骤降/ 骤升表现形式图4 电压中断表现形式 1.3稳态变化 稳态变化分为低电压/ 过电压、谐波及电压闪变3种表形形式( 见图5、图6、图7) ,低电压/过电压是由电机起动和负荷增加或减少所引起;谐波是由非线性负荷和系统谐振所引起;电压闪变是由间隙性负荷、电机起动及电弧炉所引起。 图5 低电压/ 过电压表现形式图6 谐波表现形式

电压波动和闪变

对国家相关电能质量标准的理解与综述 1 电压波动和闪变 范围 本标准适用于交流50Hz 电力系统正常运行方式下,由波动负荷引起的公共连接点电压的快速变动及由此可能引起人对灯光闪烁明显感觉的场合。 1.1 定义: (1)电压波动(voltage fluctuation )电压方均根值(有效值)一系列的变动或连续的改变 (2)电压方均根值曲线R.M.S. voltage shape U (t ) 每半个基波电压周期方均跟值(有效值)的时间函数 (3)电压变动relative voltage change d 电压方均根值曲线上相邻两个极值电压之差,以系统标称电压的百分数表示。 (4)电压变动频度rate of occurrence of voltage changes r 单位时间内电压变动的次数(电压由大到小或由小到大各算一次变动)。不同方向的若干次变动,如间隔时间小于30ms ,则算一次变动。 1.2电压波动的测量和估算 电压波动可以通过电压方均根值曲线U (t )来描述,电压变动d 和电压变动频度r 则是衡量电压波动大小和快慢的指标。 电压变动d 的定义表达式为: %100??=N U U d 式中: △U----电压方均根值曲线上相邻两个极值电压之差。 U N ----系统标称电压。 当电压变动频度较低且具有周期性时,可通过电压方均根值曲线U (t )的测量,对电压波动进行评估。单次电压变动可通过系统和负荷参数进行估算。 当已知三相负荷的有功功率和无功功率的变化率分别为△P i 、 △Q i 时,可用下 式计算: %1002??+?=N i L i L U Q X P R d 式中R L 、X L 分别为电网阻抗的电阻电抗分量。 在高压电网中,一般X L >> R L 则 式中: S SC ---考察点(一般为PCC )在正常较小方式下的短路容量。 在无功功率的变化量为主要成分时(例如大容量电动机启动),可采用以下两

电压波动

1 概述 电压波动常给工业生产、科学研究和日常生活增添不少麻烦,有时会损坏设备,造成事故。随着现代科技的迅猛发展,电子计算机及各种电子设备的日益普及,厂矿、科研、邮电、医院等部门对供电电压的质量要求愈来愈高。但是,由于供电系统中大量冲击性负荷、间歇性负荷的存在以及各种短路故障的发生,常常导致系统电压短时、快速地变化,即电压波动。下面从以下几个方面对此问题作以浅析。 2 电压允许波动的范围 根据《供用电规则》规定,受电端的电压波动幅度不应超过:35kV及以下供电和对电压质量有特殊要求的用户为额定电压的±5%;10kV及以下高压供电和低电力用户为额定电压的± 7%;低压照明用户为额定电压的+5%~-10%。 3 电压波动对电气设备的影响 各种电气设备都设计在额定电压下工作。只有电网内各级电压符合标准,才能使用电设备处于最佳工况运行。当用户端电压波动超过允许值时,则用电设备的性能、生产效率、产品质量等都将受到不同程度的影响,发、供、用电设备的出力降低,供电线路损耗增加,电动机起动困难,另外还将影响通信、广播电视质 量等。 电压波动对电气设备的影响如下: 1)荧光灯及电视亮度随电压波动而变化,当电压在较大范围内持续波动时有闪烁感。 2)白炽灯电压高于额定值10%,寿命要缩短70%;电压低于额定值时,发光效率急剧下降。 3)高压水银灯当电压降低20%~30%,持续时间为0 05~1s时,便会熄灭。 4)试验设备这些设备要求有高度的输出精度,当输入电压波动时,其精度不能保证。 5)电热设备电压低于额定电压10%;供热量减少20%以上,升温时间延长;电压高于额定值会影响发热元件的寿命。 6)感应电动机电压波动会使其转矩、滑差率、负荷电流都受到影响,造成转速不稳或过负荷现象。当电压低于额定电压10%,电动机电磁转矩约下降为额定转矩的81%,而且起动时间延长、电流增大,造成绕组线圈发热、损耗增加、效率降低以及功率因数下降,影响电动机的寿命。对于用电磁起动器控制或装有失压保护的异步电动机瞬时电压降低会导致这些保护装置动作,设备就要停止运转,再起动需花时间。

电压波动和闪变的常用检测方法

随着大量的基于计算机系统的控制设备和自动化程度很高的用电设备相继投入使用,工业用户对电能质量的要求越来越高,甚至几分之一秒的不正常就可造成的巨大的损失。据统计,自动化程度很高的工业用户一般每年要遭受10~50次与电能质量问题有关的干扰,其中因包括电压波动和闪变在内的动态电压质量问题造成的事故数约占事故总数的83%[1]。电压波动和闪变已成为威胁许多重要用户供电可靠性的主要原因之一,必须对其进行有效地监视与抑制。 电力系统的电压波动和闪变主要是由具有冲击性功率的负荷引起的[2],如变频调速装置、炼钢电弧炉、电气化铁路和轧钢机等。这些非线性、不平衡冲击性负荷在生产过程中有功和无功功率随机地或周期性地大幅度变动,当其波动电流流过供电线路阻抗时产生变动的压降,导致同一电网上其它用户电压以相同的频率波动。这种电压幅值在一定范围内(通常为额定值的90%~110%)有规律或随即地变化,即称为电压波动。电压波动通常会引起许多电工设备不能正常工作,如影响电视画面质量、使电动机转速脉动、使电子仪器工作失常、使白炽灯光发生闪烁等等。由于一般用电设备对电压波动的敏感度远低于白炽灯,为此,选择人对白炽灯照度波动的主观视感,即“闪变”,作为衡量电压波动危害程度的评价指标。 1 电压波动与闪变的检测 1.1 调幅波检测 要对电压波动与闪变进行有效的抑制,首先的任务就是要准确的提取出波动信号,通常将波动电压看成以工频额定电压为载波、其电压的幅值受频率范围在0.05~35Hz的电压波动分量调制的调幅波。因此,电压波动分量的检出方法可采用通信理论中大功率载波调制信号解调方法,用与载波信号同频同相的周期信号乘以被调信号,将电压波动分量与工频载波电压分离,通过带通滤波器得到波动分量。 考虑电压波动分量,就是在基波电压上叠加有一系列的调幅波,为使分析简化又不失一般性,研究电压波动的检测方法可分析某单一频率的调幅波对工频载波的调制,将工频电压u(t)的瞬时值解析式写成: 式中:A为工频载波电压的幅值,ω0为工频载波电压的角频率,m为调幅波电压的幅值,mcos(Ωt)为波动电压。 目前,常用的波动电压检出方法有三种:平方解调检波法、全波整流检波法

电压波动与闪变

电压波动与闪变 一、电压波动与闪变的定义 电压波动就是电压均方根值一系列相对快速变动或连续改变的现象,其变化周期大于工频周期(20ms)。 电压波动造成灯光照度不稳定(灯光闪烁)的人眼视感反应称为闪变,换言之,闪变反映了电压波动引起的灯光闪烁对人视感产生的影响;电压闪变是电压波动引起的结果,它不属于电磁现象。 电压闪变与常见的电压波动不同。 (1)电压闪变是指电压形上一种快速的上升及下降,而波动指电压的有效值以低于工频的频率快速或连续变动。 (2)闪变的特点是超高压、瞬时态及高频次。如果直观地从波形上理解,电压的波动可以造成波形的畸变、不对称,相邻峰值的变化等,但波形曲线是光滑连续的,而闪变更主要的是造成波形的毛刺及间断。 二、电压波动与闪变的检测方法 由于电压波动是电压有效值的快速变动,它的波形是工频电压的调幅波。因此,闪变测试首先是通过检波的方法将波动信号从工频电压中分离出来。目前国内外电压波动的检测方法有三种,即平方检测、整流检测和有效值检测。对三种检测方法,论文予以分析、比较,最终确定选用平方检测法的改进法,即本文采用同步电压和小波多分辨率分析检测电压闪变信号。并对小波分解和同步检波对波动信号的检测文中加以说明。常用的几种闪变仪中电压波动的检测方法,可归结为由上式解调出调幅波v = mcos ?t,介绍如下。 2.1 平方检波法 IEC 推荐的闪变仪采用平方检测方法,即由 u (t)、u (t)2和v (t)的波形图例,如图3-1 所示。经过0.05~35Hz 的带通滤波器滤去直流分量和工频及以上的频率分量,便可以检测出调幅波即电压波动分量,其输出 2.2 整流检波法 英国ERA 闪变仪采用整流检测的方法。图3-2(a)所示的电压u ( t )经过整流的波形g ( t )如图3-2(c)所示。理论上,将g(t)可看成u(t)乘以幅值为±1、频率为工频的矩形波p(t)。p(t)的波形图如图3-2(b)所示。由傅立叶级数变换可得

码头电压波动和闪变分析及其解决方案

码头电压波动和闪变分析及其解决方案 摘要:电压波动造成的灯光闪烁的人眼视觉反应称为闪变,电压波动会影响到许多电气设备的正常运行。本文结合某码头电压波动和闪变事件实例,对闪变原因进行了分析,并提出了相应的治理措施,对其解决方案进行了详细的介绍,为类似事件处理提供参考借鉴。 关键词:码头;电压闪变;解决方案 随着我国社会经济的快速发展,码头作为供船舶停靠、货物装卸、旅客上下的重要交通枢纽,也取得了极大的进步。在码头运行中,其供配电系统的稳定运行关系到码头的工作效率及其正常运行。而随着码头电力系统中大容量冲击负荷的不断增加,码头供配电网中的电压闪变现象也越来越严重,严重影响到了码头的正常工作。因此,对其进行分析,进而提出详细的解决方案十分必要。 1 码头配置配电系统 1.1 码头配置配电系统 用户、发电厂以及电力网变电站组成了完整的电力系统。大部分码头电能是经过地区电力网分配,通过电压降低处理,分配到具体的用电场所。港区占地面积一般比较大,用电负荷分布呈分散性,其中大部分容量不大且基本是220~380V的设备。大型码头的作业区通常接入的电能电压高达110kV,桥吊设备使用的电能需要在码头进行降压,电压控制在3~10kV,低压设备的使用需要进行进一步降压的操作。 按照一般具体情况,码头用电负荷等级大多是Ⅱ级或者Ⅲ级。国际性大型码头大多为Ⅱ级负荷;普通的中、小型码头为Ⅲ级负荷,负荷分级不是绝对的,影响因素有:码头性质、规模以及当时当地的电力供应情况。所以码头的用电负荷需要结合具体的实际情况,综合考虑各种影响因素后才能确定。 1.2 码头供配电系统 以负荷等级为Ⅱ级的某大型码头为例,码头供配电系统为:开关站110kV (洋中开关站)、1个6kV降压站(LNG站)以及2个10kV降压站(A站、B 站)。由110kV临洋1541线以及临洋1538线组成供电系统,进线输电电缆长约43km,使用单相混合的方式敷设。其中110kV母线拥有1443MVA的最小短路容量,1482MVA的最大短路容量,一般情况下,两段母线是分列运行的,码头用电负荷目前一般不超过10MW。为补偿由于远距离输电导致的线路电缆电容发生容性无功功率的现象,所以在110kV开关站侧以1541线和1538线设置并联补偿电抗器,设置25MVA的额定容量。A站以及B站的1#、2#主变为50MVA的容量,LNG站1#、2#为25MVA的主变容量,其中,A站所带负荷主要是28台桥吊,B 站所带负荷主要是34台桥吊。 2 电压闪变 2.1 电压闪变的描述 发生电压闪变事件的时候,同时对A站、B站2#主变进行停运检修,1#主变带全部负荷A站、B站2#主变。其中A站所带负荷主要是中242冠二期乙馈线、中224冠东乙馈线、中141冠二期甲馈线以及中123冠东甲馈线;B站所带负荷主要是洋11盛东甲馈线、洋27盛二期甲馈线、洋28盛二期甲馈线以及洋12盛东乙馈线。办公楼出现灯光闪烁现象,并且同时在A、B站的1#主变10kV进线侧进行检测,检测到电压发生振荡[1]。 2.2 分析电压闪变的源头

相关文档