文档库 最新最全的文档下载
当前位置:文档库 › 快速成形技术的特点及应用

快速成形技术的特点及应用

快速成形技术的特点及应用
快速成形技术的特点及应用

快速成形技术的特点及应用

(1)成形速度快:从CAD设计到原型零件制成,一般只需几个小时至几十个小时,成形速度比传统的成形方法快得多,快速成形技术尤其适合于新产品的开发与管理。

(2)设计制造一体化:落后的CAPP一直是实现设计制造一体化的较难克服的一个障碍,而对于快快速成形来说,由于采用了离散堆积的加工工艺,CAPP已不再是难点,CAD和CAM能够很好地结合。

(3)自由成形制造:自由的含义有两个:一是指可以根据零件的形状,无需专用工具的限制而自由地成形,可以大大缩短新产品的试制时间;二是指不受零件形状复杂程度限制。

(4)高度柔性:仅需改变CAD模型,重新调整和设置参数即可生产出不同形状的零件模型。

(5)材料的广泛性:快速成形技术可以制造树脂类、塑料原型,还可以制造出纸类、石蜡类、复合材料以及金属材料和陶瓷的原型。

(6)技术的高度集成:RP技术是计算机、数据、激光、材料和机械的综合集成,只有在计算机技术、数控技术、激光器件和控制技术高度发展的今天才可能诞生快速成形技术,因此快速成形技术带有鲜明的时代特征。

(7)零件的复杂程度和生产批量与制造成本基本无关。

4快速成形工艺分析

4.1快速成形工艺分析的基本方面

当前已开发的快速成形工艺方法就有十几种,新的工艺还在不断地出现。根据成形的基本原理,可以从输入模型、成形方法、成形材料和应用领域等四个方面来分析快速成形工艺。

(1)输入模型

实现快速成形的系统只能接受产品的三维模型,然后才能进行分层切片处理。因此,CAD系统是快速成形技术的重要组成部分。CAD软件的造型功能主要有线框模型、实体模型和曲面模型三种。从理论上讲,这三种造型功能均可以用于快速成形技术,但由于线框模型的数据表示直观性差,因而多用实体模型和曲

面模型来进行原型设计。目前,快速成形行业中常用的CAD软件系统有Pro/Engineer、AutoCAD、I-DEAS、Unigraphics、CATIA、SolidWorks等。也可采用三维数字化仪将实物模型转化为CAD建模所需的数据,设备可选用三坐标测量仪、三维激光扫描仪、工业CT和MRI以及自动断层扫描仪等。加工前必须从三维模型上沿成形的高度方向,每隔一定的间隔进行分层处理,以获得截面的轮廓。各种快速成形系统都有分层处理软件,能自动提取模型的截面轮廓。

(2)成形方法

快速成形技术中主要的成形方法有激光固化法、叠层制造法、激光烧结法、液滴沉积法、粘结法等,分别用于不同的快速成形系统。所有这些方法都有一个共同的几何物理基础——分层制造原理,将三维转化为二维,既降低了处理难度又不受零件复杂程度的限制。

(3)成形材料

按材料的物理形态,快速成形材料可分为薄片材料、丝状材料、粉末材料和液体材料等;按成形方法可分为SLA材料、LOM材料、SLS材料、FDM材料等;按材料的化学性能又可分为树脂类材料、塑料类材料、石蜡材料、金属材料、陶瓷材料等。不同的快速成形方法要求不同性能的材料,同一种性能的材料用于不同的快速成形方法时要求材料不同的状态。例如:塑料薄膜可用于LOM,塑料粉可用于SLS。塑料丝只用于FDM。快速成形对材料的总体要求是:

a.有利于快速、精确地原型成形;

b.当原型直接用做制件、模具时,原型的机械性能和物理化学性能(强度、刚度、热稳定性、导热和导电性、加工性等)要满足使用要求;

c.当原型要间接使用时,其性能要有利于快速、精确的后续处理和应用工序,但不同的快速成形方法对原型材料性能要求不同。

(4)应用领域

目前快速成形技术被广泛地用于产品的设计评估及快速开发、产品功能的实验验证、模具快速制作、快速制造金属原型零件、微型制造等许多方面,并取得了显著的效果。

认识快速成型技术

教学难点与重点: 难点: 《产品逆向工程技术》教案 共 页 第 页 授课教师: 教研室: 备课日期: 年 月 日 课 题: 教 学 准 备: 教学目的与要求: 授 课 方 式: 项目四 快速成型技术认识 任务一 认识快速成型技术 PPT 掌握快速成型技术的原理、工作流程和特点。 讲授(90') 重点:快速成型技术的原理、工作流程和特点。 教 学 过 程: 上节课回顾→讲授课题→课堂小结

“ “ 张家界航院教案 第 页 上节课回顾: 讲授课题: 项目四 快速成型技术认识 通过前面的几节课我们学习了什么是逆向工程。通过逆向工程技术, 企业可以迅速的设计出符合当前流行趋势,以及符合人们消费需求的产品, 快速抢占市场。市场这块蛋糕就那么大,谁先抢到谁先吃,后来的就只能 看别人吃。现在的企业发展战略已经从以前的“如何做的更多、更好、更 便宜”转变成了“如何做的更快”。所以快速的响应市场需求,已经是制 造业发展的必经之路。 但是一件产品是不是设计出来就完事了?从设计到产品,中间还有一 个制造的过程,逆向工程解决了快速设计的问题,但是如果在制造加工阶 段耗费太长的时间,最后依然是无法快速的响应市场。尤其是在加工复杂 薄壁零件的时候,往往加工一件零件的周期要好几周,甚至几个月才能完 成,比如飞机发动机上的涡轮,加工周期要 90 天。 怎么解决这个问题呢?这就要用到今天我们这节课要讲的内容:快速 成型技术。快速成型技术就是在这种背景需求下发展起来的一种新型数字 化制造技术,利用这项技术可以快速的将设计思想转化为具有结构和功能 的原型或者是直接制造出零部件,以便可以对设计的产品进行快速评价、 修改。按照以往的技术,在生产一件样品的时候,要么开模、要么通过复 杂的机加工艺来生产,这样不管是从成本的角度还是时间的角度来讲,都 会带来成本的提高。而快速成型技术可以极大地缩短新产品的开发周期, 降低开发成本,最大程度避免产品研发失败的风险,提高了企业的竞争力。 任务一 认识快速成型技术 快速成型技术(Rapid Prototype ,简称 RP)有许多不同的叫法,比如 “3D 打印”( 3D printing)、分层制造”( layered manufacturing ,LM) 、增材制 造”( additive manufacturing ,AM) 等。同学们最熟悉的应该就是“3D 打 印”,其实刚开始的时候,3D 打印本是特指一种采用喷墨打印头的快速成 型技术,演变至今,3D 打印成了所有快速成型技术的通俗叫法,但是现在 在学术界被统一称为“增材制造”。 增材制造是一种能够不使用任何工具(模具、各种机床),直接从三 维模型快速地制作产品物理原型也就是样件的技术,可以使设计者在产品 的设计过程中很少甚至不需要考虑制造工艺技术的问题。使用传统机加的 方法来加工零件时,在设计阶段设计师就需要考虑到零件的工艺性,是不 是能够加工出来。对于快速成型技术来讲,任意复杂的结构都可以利用它 的三维设计数据快速而精确的制造出来,解决了许多过去难以制造的复杂 结构零件的成型问题,实现了“自由设计,快速制造”。 一、物体成型的方式 之所以叫“增材制造”很好理解就是通过“堆积”材料的方式进行制 造。与之相应的还有“减材制造”和“等材制造”。在现代成型学的观点 中,物体的成型方式可分以下几类:

Excel电子表格高级使用技巧

Excel高级使用技巧 1.编辑技巧 2.单元格内容的合并 3.条件显示 4.自定义格式 5.绘制函数图象 6.自定义函数 7.矩阵计算 8.自动切换输入法 9.批量删除空行 10.如何避免错误信息 11.宏的使用 12.图标的应用技巧 https://www.wendangku.net/doc/8a7256367.html,/pc/oa/excel2k/ex2k1301.htm 1、编辑技巧 1 编辑技巧 (1)分数的输入 如果直接输入“1/5”,系统会将其变为“1月5日”,解决办法是:先输入“0”,然后输入空格,再输入分数“1/5”。 (2)序列“001”的输入 如果直接输入“001”,系统会自动判断001为数据1,解决办法是:首先输入“'”(西文单引号),然后输入“001”。 (3)日期的输入 如果要输入“4月5日”,直接输入“4/5”,再敲回车就行了。如果要输入当前日期,按一下“Ctrl+;”键。 (4)填充条纹 如果想在工作簿中加入漂亮的横条纹,可以利用对齐方式中的填充功能。先在一单元格内填入“*”或“~”等符号,然后单击此单元格,向右拖动鼠标,选中横向若干单元格,单击“格式”菜单,选中“单元格”命令,在弹出的“单元格格式”菜单中,选择“对齐”选项卡,在水平对齐下拉列表中选择“填充”,单击“确定”按钮(如图1)。 图1

(5)多张工作表中输入相同的内容 几个工作表中同一位置填入同一数据时,可以选中一张工作表,然后按住Ctrl键,再单击窗口左下角的Sheet1、Sheet2......来直接选择需要输入相同内容的多个工作表,接着在其中的任意一个工作表中输入这些相同的数据,此时这些数据会自动出现在选中的其它工作表之中。输入完毕之后,再次按下键盘上的Ctrl键,然后使用鼠标左键单击所选择的多个工作表,解除这些工作表的联系,否则在一张表单中输入的数据会接着出现在选中的其它工作表内。 (6)不连续单元格填充同一数据 选中一个单元格,按住Ctrl键,用鼠标单击其他单元格,就将这些单元格全部都选中了。在编辑区中输入数据,然后按住Ctrl键,同时敲一下回车,在所有选中的单元格中都出现了这一数据。 (7)在单元格中显示公式 如果工作表中的数据多数是由公式生成的,想要快速知道每个单元格中的公式形式,以便编辑修改,可以这样做:用鼠标左键单击“工具”菜单,选取“选项”命令,出现“选项”对话框,单击“视图”选项卡,接着设置“窗口选项”栏下的“公式”项有效,单击“确定”按钮(如图2)。这时每个单元格中的分工就显示出来了。如果想恢复公式计算结果的显示,就再设置“窗口选项”栏下的“公式”项失效即可。 图2

(整理)快速成型技术的应用与发展前景

快速成型技术的应用与发展前景 一.什么是快速成型技术 快速成形技术又称快速原型制造(Rapid Prototyping Manufacturing,简称RPM)技术,诞生于20世纪80年代后期,是基于材料堆积法的一种高新制造技术,被认为是近20年来制造领域的一个重大成果。它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。即,快速成形技术就是利用三维CAD的数据,通过快速成型机,将一层层的材料堆积成实体原型。 二.快速成型技术的产生背景 (1)随着全球市场一体化的形成,制造业的竞争十分激烈,产品的开发速度日益成为主要矛盾。在这种情况下,自主快速产品开发(快速设计和快速工模具)的能力(周期和成本)成为制造业全球竞争的实力基础。 (2)制造业为满足日益变化的用户需求,要求制造技术有较强的灵活性,能够以小批量甚至单件生产而不增加产品的成本。因此,产品的开发速度和制造技术的柔性就十分关键。 (3)从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及为新的制造技术的产生奠定了技术物质基础。 三.快速成形技术的特点 快速成型技术具有以下几个重要特征: l )可以制造任意复杂的三维几何实体。由于采用离散/堆积成型的原理.它将一个十分复杂的三维制造过程简化为二维过程的叠加,可实现对任意复杂形状零件的加工。越是复杂的零件越能显示出 RP 技术的优越性此外, RP 技术特别适合于复杂型腔、复杂型面等传统方法难以制造甚至无法制造的零件。 2 )快速性。通过对一个 CAD 模型的修改或重组就可获得一个新零件的设计和加工信息。从几个小时到几十个小时就可制造出零件,具有快速制造的突出特点。 3 )高度柔性。无需任何专用夹具或工具即可完成复杂的制造过程,快速制造工模具、原型或零件。 4)技术高度集成性。RP技术是计算机、数控、激光、材料和机械等技术的综合集成。CAD技术通过计算机进行精确的离散运算和繁杂的数据转换,实现零件的曲面或实体造型,数控技术为高速精确的二维扫描提供必要的基础,这又是以精确高效堆积材料为前提的,激光器件和功率控制技术使材料的固化、烧结、切割成为现实。快速扫描的高分辨率喷头为材料精密堆积提供了技术保证术产生背景。 5)快速响应性。快速原型零件制造从CAD设计到原型 (或零件 )的加工完毕,只需几个小时至几十个小时,复杂、较大的零部件也可能达到几百小时,但从总体上看,速度比传统成形方法要快得多。尤其适合于新产品的开发,RP技术已成为支持并行工程和快速反求设计及快速模具制造系统的重要技术之一

不锈钢产品的钢种特点及用途

不锈钢产品的钢种特点及用途 分类特点用途 301与304钢相比,Cr和 Ni含量较低,经过冷 轧加工提高抗拉强火车、飞机、传送皮带、车辆、螺度。本来没有磁性,栓、螺母、弹簧、发条 但经过冷轧加工后会 带有磁性。 是在301钢的基础 上,减少含碳量,以 提高焊接部位的耐粒 铁路车辆用Frame及外装饰材料 界腐蚀性的钢种。添 加N以解决含碳量低 而产生的强度降低。 由于添加S,xx家电产品及办公设备用 性好,耐打印性强。Shaft Bolt,Nut 是最普遍的钢种,耐 腐蚀性、耐热性、低 家庭用 1、2种西餐具、Sink、室内温强度、机械性能良

配管、热水器、浴缸、锅炉、汽车好。深冲压、弯曲等 零部件(擦窗器、回气管)、医疗常温加工性能较好, 机械、建筑材料、化学、食品工业、热处理后不会硬化。 纺织产业、制酪产业、船舶零部件(非磁性,使用温度: -196至800℃) 是低碳素304钢,一 般状态下耐腐蚀性类 似于304钢。但经过 焊接或除去应力后, 需要高耐粒界腐蚀性的化学、煤耐腐蚀性特别强。不 炭、石油产业设备、建筑材料、耐经过热处理,仍具有 热部件及不易热处理的部件 耐蚀性,多用于400℃ 以下。 (非磁性,使用温度: 196至800℃) 是添加Cu,以提高抗 菌性及塑造性的钢暖瓶、厨房用Sink Pot、团体供饭种,有利于需要卫生设施、需要Door Knob、Spoinning 观念的环境及深加工的产品 产品。 301L

体304 304L 304Cu 304N1在304钢的基础上减 少S和Mn含量,以 防止延性低下并提高结构用、路灯、蓄水池、自来水管强度,材料厚度也有 所减少。 与304L钢相比,添 加N 以提高结构件 结构用、化学物质运输船 用高强度性及耐粒界 腐蚀性。 304LN 在304钢的基础上, H: Wire Rope、钓鱼钩、CD Bar 调整含碳量,将此变 M: Mesh,Bolt,Nut,CD Bar

现代机械设计方法(答案)

一、绪论 1.设计活动的特征有哪些? 时空性、物质性、需求性、创造性、过程性 2.试比较传统设计和现代设计的区别? 传统设计师静态的、经验的、手工的方法,在设计过程中被动地分析产品的性能;而传统设计师动态的、科学的、计算机化的方法,在设计过程中可以做到主动地设计产品参数。 3.简述现代设计方法的主要内容和基本特点。 主要内容:设计理论是对产品设计原理和机理的科学总结。设计方法是使产品满足设计要求以及判断产品是否满足设计原则的依据。 现代设计方法主要内容:设计方法学、计算机设计、有限元法、优化设计、可靠性设计 基本特点:程式性、创造性、系统性、最优性、综合性、数字性 二、设计方法学 1.设计过程包括哪几个阶段? 计划阶段、设计阶段、样机试制阶段、批量生产阶段、销售阶段 2.常用的创造性技法有哪些? 智力激励法、提问追溯法、联想类推法、组合创新法、反向探求法及系统搜索法6类 3.运用功能分析法进行系统原理方案设计的主要步骤有哪些? 三、相似理论及相似设计方法 1.相似三定理的内容和用途各是什么? 相似定理是用来判断两个现象相似的充分必要条件及其所应遵循的法则 内容: 第一定律:对于彼此相似的现象,其相似指标为1,相似判据为一个不变量; 第二定律:某个现象的物理量总数为n,量纲独立的物理量总数为k,则该现象相似准则的个数为n-k,且描述该现象各个物理量之间的关系可表示为相似准则π1,π2,,,,,,πn-k之间的关系,即 π,π,,,,,,π 第三定律:凡同一完整的方程组所描述的同类现象,当单值条件相似,且由单值条件的物理量所组成的相似准则在数值上相等,则这些现象就相识。 用途: 第一定理:介绍相似现象的属性; 第二定理:确定相似准则的个数以及相似结果的推广,也称π; 第三定理:也称模型化法则,也是相似现象的充要条件。 2.相似准则的导出方法及基本依据是什么? 导出方法:方程分析法、量纲分析法 基本依据:表示各物理量之间关系的方程式,其各项量纲必须是相同的 3.相似准则有哪些特点和性质? 如果两个现象相似,则这两者的无量纲形式的方程组和单值条件应该相同,具有相同的无量纲形式解。 出现在这两者的无量纲形式的方程组及单值条件中的所有无量纲组合数对应相等。 4.白炽灯的功率为其主要技术参数。现在要求在10~100W之间按几何级数分级设计六种型号。试确定其 功率系列(将计算值按0.5圆整) 解: 四、有限单元法 1.试简述有限单元法的主要思路、具体步骤及其依据。 核心思想:将复杂结构分解成形状简单、便于方程描述的规则单元,列出方程组求解 基本思路: “分”:用有限个规则单元代替原来的各种各样的连续系统,并用近似方程对每个单元的行为加以描述。 “和”:根据一定的规则,把关于单元的方程组合起来构成方程组,并引入外载及约束条件进行求解。 三个步骤:结构的离散化、单元分析、整体分析 2.单元刚度矩阵的物理意义是什么,具有哪些主要特征?

快速成型技术与试题---答案

试卷 2. 3.快速成型技术的主要优点包括成本低,制造速度快,环保节能,适用于新产品开发和单间零件生产等 4.光固化树脂成型(SLA)的成型效率主要与扫描速度,扫描间隙,激光功率等因素有关 5. 也被称为:3D打印,增材制造; 6.选择性激光烧结成型工艺(SLS)可成型的材料包括塑料,陶瓷,金属等; 7.选择性激光烧结成型工艺(SLS)工艺参数主要包括分层厚度,扫描速度,体积成型率,聚焦光斑直径等; 8.快速成型过程总体上分为三个步骤,包括:数据前处理,分层叠加成型(自由成型),后处理; 9.快速成型技术的特点主要包括原型的复制性、互换性高,加工周期短,成本低,高度技术集成等; 10.快速成型技术的未来发展趋势包括:开发性能好的快速成型材料,改善快速成形系统的可靠性,提高其生产率和制作大件能力,优化设备结构,开发新的成形能源,快速成形方法和工艺的改进和创新,提高网络化服务的研究力度,实现远程控制等; 11.光固化快速成型工艺中,其中前处理施加支撑工艺需要添加支撑结构,支撑结构的主要作用是防止翘曲变形,作为支撑保证形状; 二、术语解释 1.STL数据模型 是由3D SYSTEMS 公司于1988 年制定的一个接口协议,是一种为快速原型制造技术服务的三维图形文件格式。STL 文件由多个三角形面片的定义组成,每个三角形面片的定义包括三角形各个定点的三维坐标及三角形面片的法矢量。stl 文件是在计算机图形应用系统中,用于表示三角形网格的一种文件格式。它的文件格式非常简单,应用很广泛。STL是最多快速原型系统所应用的标准文件类型。STL是用三角网格来表现3D CAD模型。STL只能用来表示封闭的面或者体,stl文件有两种:一种是ASCII明码格式,另一种是二进制格式。 2.快速成型精度包括哪几部分 原型的精度一般包括形状精度,尺寸精度和表面精度,即光固化成型件在形状、尺寸和表面相互位置三个方面与设计要求的符合程度。形状误差主要有:翘曲、扭曲变形、椭圆度误差及局部缺陷等;尺寸误差是指成型件与CAD模型相比,在x、y、z三个方向上尺寸相差值;表面精度主要包括由叠层累加产生的台阶误差及表面粗糙度等。 3.阶梯误差 由于快速成型技术的成型原理是逐层叠加成型,因此不可避免地会产生台阶效应,使得零件的表面只是原CAD模型表面的一个阶梯近似(除水平和垂直表

电子表格软件Excel详细教程

电子表格软件Excel 1 认识 Excel 1.1 Excel 简介 Excel 是功能强大的电子表格软件。我们在日常学习和工作中经常会用到表格,这些表格通常是用来处理数据并且需要计算的。例如,在教学工作中经常需要制作学生成绩统计表,任课教师要统计学生的考勤、平时成绩、期末成绩,并以此计算学生的综合成绩,并进行成绩的排序、求平均分等;班主任需要汇总学生的各门成绩,得出学生的总分和总成绩排名;教务部门要计算各个班学生成绩的排名等。财务部门需要制作职工的工资表,每个家庭会有家庭收支统计表。在这些数据表中,不仅仅要输入数据,还经常要对数据进行一定的运算。如计算学生成绩的总分,要进行求和运算;要求学生成绩的平均分,要进行求平均数运算;要得出学生成绩的排名,要进行排序运算;要得出成绩的最高分和最低分,要进行最大值和最小值运算;将成绩按一定的条件进行选择,要进行筛选运算。 在人工表格中,所有计算由人工完成,十分麻烦,稍有疏漏就可能出现错误。当发现错误需要改动时,例如有一名学生的成绩在录入时出现了错误,就要把与该学生相关的所有数据进行重新计算,如该学生的总分、平均分、排名,还会对全班的排名造成影响,运算量十分庞大。 而引入电子表格软件可以我们提高工作效率,电子表格软件的一个重要的特征就是数据处理自动化。它不需要人进行手工计算,通过公式、函数自动完成数据的运算。任何一个参加运算的数据发生了改变,其他与这个数据相关的数据都会自动的、实时的更新。 Excel 作为应用广泛、功能强大的电子表格软件,它的功能包括: ⑴ 数据采集。可以在 Excel 中录入数据,也可以将其他形式的数据导入到Excel 中,如记事本、 Word 、 Access 数据库中的数据等。 ⑵ 数据编辑。可以根据需要对数据进行修改,与修改数据相关的数据都可以得到相应的更新。 ⑶ 数据运算。可以通过函数和工作来实现数据运算的自动化。 ⑷ 数据图表化。 Excel 提供了十分强大的图表功能,如可以生成学习成绩的分布图,可以直观的表示出各个分数段的人数在总人数中的比例,图形可以以圆饼图、折线图等多种形式呈现。 ⑸ 数据分析处理。

快速成型专业技术的现状和发展趋势

快速成型技术的现状和发展趋势 1 快速成型技术的基本成型原理 近十几年来,随着全球市场一体化的形成,制造业的竞争十分激烈。尤其是计算机技术的迅速普遍和CAD/CAM技术的广泛应用,使得快速成型技术 (Rapid Prototyping简称RP)得到了异乎寻常的高速发展,表现出很强的生命力和广阔的应用前景。 传统的加工技术是采用去材料的加工方式,在毛坯上把多余的材料去除,得到我们想要的产品。而快速成型技术基本原理是:借助计算机或三维扫描系统构建目标零件的三维数字化模型,之后将该信息传输到计算机控制的机电控制系统,计算机将模型按一定厚度进行“切片”处理,即将零件的3D数据信息离散成一系列2D轮廓信息,通过逐点逐面的增材制造方法将材料逐层堆积,获得实体零件,最后进行必要的少量加工和热处理,使零件性能、尺寸等满足设计要求。。它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。 目前,快速成形的工艺方法已有几十种之多,大致可分为7大类,包括立体印刷、叠层实体制造、选择性激光烧结、熔融沉积成型、三维焊接、三维打印、数码累积成型等。其基本的原理如下图所示。 图1 快速成型原理示意图 2 快速成型技术在产品开发中的应用 不断提高RP技术的应用水平是推动RP技术发展的重要方面。目前,西安交通大学机械学院,快速成型国家工程研究中心,教育部快速成型工程研究中心快

速成型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。并且随着这一技术本身的发展,其应用领域将不断拓展。RP技术的实际应用主要集中在以下几个方面: 2.1用于新产品的设计与试制。 (1)CAID应用: 工业设计师在短时间内得到精确的原型与业者作造形研讨。 (2)机构设计应用: 进行干涉验证,及提早发现设计错误以减少后面模具修改工作。 (3)CAE功效:快速模具技术以功能性材料制作功能性模具,以进行产品功能性测试与研讨。 (4)视觉效果:设计人員能在短时间之内便能看到设计的雛型,可作为进一步研发的基石。 (5)设计确认:可在短时间内即可完成原型的制作,使设计人员有充分的时间对于设计的产品做详细的检证。 (6)复制于最佳化设计:可一次制作多个元件,可使每个元件针对不同的设计要求同时进行测试的工作,以在最短时间内完成设计的最佳化。 (7)直接生产: 直接生产小型工具,或作为翻模工具 2.2 快速制模及快速铸造 快速模具制造传统的模具生产时间长,成本高。将快速成型技术与传统的模具制造技术相结合,可以大大缩短模具制造的开发周期,提高生产率,是解决模具设计与制造薄弱环节的有效途径。快速成形技术在模具制造方面的应用可分为直接制模和间接制模两种,直接制模是指采用RP技术直接堆积制造出模具,间接制模是先制出快速成型零件,再由零件复制得到所需要的模具 2.3 机械制造 由于RP技术自身的特点,使得其在机械制造领域内,获得广泛的应用,多用于制造单件、小批量金属零件的制造。有些特殊复杂制件,由于只需单件生产,或少于50件的小批量,一般均可用RP技术直接进行成型,成本低,周期短。2.4 医疗中的快速成形技术 在医学领域的应用近几年来,人们对RP技术在医学领域的应用研究较多。以医学影像数据为基础,利用RP技术制作人体器官模型,对外科手术有极大的应用价值。 2.5 三维复制 快速成形制造技术多用于艺术创作、文物复制、数字雕塑等。 2.6 航空航天技术领域 航空航天产品具有形状复杂、批量小、零件规格差异大、可靠性要求高等特点,产品的定型是一个复杂而精密的过程,往往需要多次的设计、测试和改进,

常用刀具材料分类特点及应用

金属切削原理读书报告 常用刀具材料分类特点及应用 姓名: 班级: 学号: 2014年5月7日

摘要 本文在阅读有关论文和专著的基础上对现阶段常用的刀具材料进行了总结和分析,总结出了碳素工具钢、合金工具钢、高速钢、硬质合金、陶瓷、金刚石、立方碳化硼等刀具材料的特点及应用范围,同时针对几种常见的切削工序中刀具材料的应用做了简单的分析。

目录 摘要 (1) 1刀具材料的发展历史 (2) 2 常用刀具材料及特点 (2) 2.1 碳素工具钢 (2) 2.2 合金工具钢 (3) 2.3 高速钢 (4) 2.4 硬质合金 (5) 2.5 陶瓷 (7) 2.6 超硬材料 (9) 3 刀具材料的典型应用 (10) 3.1 工件材料与刀具材料 (10) 3.2 加工条件与刀具材料 (11) 4 总结 (11) 5 参考文献 (12)

1刀具材料的发展历史[1] 刀具材料的发展在人类的生活、生产中有着很大的重要性。 18世纪中叶, 在欧洲出现了工业革命以后, 切削刀具一直是用碳素工具钢制造, 其成分与现代的T10、T12相近。1865年,英国罗伯特?墨希特发明了合金工具钢,其牌号有9CrSi、CrWMn等。随着对加工效率要求的提高,新的刀具材料在不断更新。1898年,美国机械工程师泰勒和冶金工程师怀特发明了高速钢。进入20世纪,人们不断寻求新型刀具材料。20世纪20年代中期到30年代初,出现了钨钴类和钨钛类硬质合金。然而硬质合金刀具仍不能满足现代高硬度工件材料的超精密加工的要求,于是更新的刀具材料相继出现。20世纪30年代出现了氧化铝陶瓷,后来又有氦化硅陶瓷到50年代和60年代又制造出人造立方氮化硼和人造聚晶金刚石。 总而言之,20世纪中,刀具材料发展的速度比过去快得多,其种类、类型、数量和性能均有大幅度的发展。 2 常用刀具材料及特点 对于金属切削刀具来说,切削过程中要承受很大的压力,同时会与工件、切屑相互接触的表面产生摩擦力,切削产生的热量使得刀具温度上升,产生一定的热应力。因此刀具材料应能满足这样几个要求:高的硬度和耐磨性、足够的强度和韧性、良好的热物理性能和耐热冲击性能、良好的工艺性以及经济性。目前在机械加工中常用的刀具材料有碳素工具钢、合金工具钢、高速钢、硬质合金、陶瓷、金刚石和立方氮化硼等。[2]不同刀具材料的性能有所不同,因此在应根据具体的切削条件选择合适的刀具材料。下面将分别介绍每种刀具材料。 2.1 碳素工具钢 按照GB/T13304《钢分类》第1部分“钢按化学成分分类”,碳素工具钢属于非合金钢。按照标准第2部分“钢按主要质量等级和主要性能及使用特性分类”,碳素工具钢属于特殊质量非合金钢。碳素工具钢牌号及化学成分见表1

现代机械设计方法

一、绪论 1.设计活动的特征有哪些 时空性、物质性、需求性、创造性、 过程性 2.试比较传统设计和现代设计的区别 传统设计师静态的、经验的、手工的 方法,在设计过程中被动地分析产品 的性能;而传统设计师动态的、科学 的、计算机化的方法,在设计过程中 可以做到主动地设计产品参数。 3.简述现代设计方法的主要内容和基本 特点。 主要内容:设计理论是对产品设计原 理和机理的科学总结。设计方法是使 产品满足设计要求以及判断产品是否 满足设计原则的依据。 现代设计方法主要内容:设计方法学、计算机设计、有限元法、优化设计、 可靠性设计 基本特点:程式性、创造性、系统性、最优性、综合性、数字性 二、设计方法学

1.设计过程包括哪几个阶段 计划阶段、设计阶段、样机试制阶段、批量生产阶段、销售阶段 2.常用的创造性技法有哪些 智力激励法、提问追溯法、联想类推 法、组合创新法、反向探求法及系统 搜索法6类 3.运用功能分析法进行系统原理方案设 计的主要步骤有哪些 三、相似理论及相似设计方法 1.相似三定理的内容和用途各是什么 相似定理是用来判断两个现象相似的 充分必要条件及其所应遵循的法则

内容: 第一定律:对于彼此相似的现象,其相似指标为1,相似判据为一个不变量; 第二定律:某个现象的物理量总数为n,量纲独立的物理量总数为k,则该现象相似准则的个数为n-k,且描述该现象各个物理量之间的关系可表示为相似准则π1,π2,,,,,,πn-k之间的关系,即 第三定律:凡同一完整的方程组所描述的同类现象,当单值条件相似,且由单值条件的物理量所组成的相似准则在数值上相等,则这些现象就相识。用途: 第一定理:介绍相似现象的属性; 第二定理:确定相似准则的个数以及相似结果的推广,也称π; 第三定理:也称模型化法则,也是相似现象的充要条件。 2.相似准则的导出方法及基本依据是什

几种常见的快速成型技术

几种常见的快速成型技术 一、FDM 丝状材料选择性熔覆(Fused Deposition Modeling)快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。 丝状材料选择性熔覆的原理室,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。热塑性丝状材料(如直径为1.78mm的塑料丝)由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。 这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。但仍需对整个截面进行扫描涂覆,成型时间长。适合于产品设计的概念建模以及产品的形状及功能测试。由于甲基丙烯酸ABS(MABS)材料具有较好的化学稳定性,可采用加码射线消毒,特别适用于医用。但成型精度相对较低,不适合于制作结构过分复杂的零件。 FDM快速原型技术的优点是: 1、制造系统可用于办公环境,没有毒气或化学物质的危险。 2、工艺干净、简单、易于材作且不产生垃圾。 3、可快速构建瓶状或中空零件。 4、原材料以卷轴丝的形式提供,易于搬运和快速更换。 5、原材料费用低,一般零件均低于20美元。 6、可选用多种材料,如可染色的ABS和医用ABS、PC、PPSF等。 FDM快速原型技术的缺点是: 1、精度相对国外SLA工艺较低,最高精度0.127mm。 2、速度较慢。 二、SLA 光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速原型技术。 在树脂液槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。成型过程开始时,可升降的工作台处于液面下一个截面层厚的高度,聚焦后的激光束,在计算机的控制下,按照截面轮廓的要求,沿液面进行扫描,使被扫描区域的树脂固化,从而得到该截面轮廓的塑料薄片。然后,工作台下降一层薄片的高度,以固化的塑料薄片就被一层新的液态树脂所覆盖,以便进行第二层激光扫描固化,新固化的一层牢固的粘结在前一层上,如此重复不已,知道整个产品成型完毕。最后升降台升出液体树脂表面,即可取出工件,进行清洗和表面光洁处理。 光敏树脂选择性固化快速原型技术适合于制作中小形工件,能直接得到塑料产品。主要用于概念模型的原型制作,或用来做装配检验和工艺规划。它还能代替腊模制作浇铸模具,以及作为金属喷涂模、环氧树脂模和其他软模的母模,使目前较为成熟的快速原型工艺。 SLA快速原型技术的优点是: 1、需要专门实验室环境,维护费用高昂。 2、系统工作相对稳定。 3、尺寸精度较高,可确保工件的尺寸精度在0.1mm(但,国内SLA精度在0.1——0.3mm之间,并且存在一定的波动性)。 4、表面质量较好,工件的最上层表面很光滑,侧面可能有台阶不平及不同层面间的曲面不平。 5、系统分辨率较高。

快速成型技术及在我国的发展

科学实践 摘要:快速成型技术兴起于20世纪80年代,是现代工业发展不可或缺的一个重要环节。本文介绍了快速成型技术的产生、技术原理、工艺特点、设备特点等方面,同时简述快速成型技术在国内的发展历程。 关键词:快速成型烧结固化叠加发展服务 0引言 在现代市场经济全球一体化背景下的今天,企业要在竞争日益激烈的市场经济中掌握先机,占据有利地位,需要有技术和产品上的创新,把握并引导市场的发展方向。与此同时,对于市场的需求,企业需要做出快速的响应,切合当前需求,而现有的常规技术手段已经不能对市场的需求做出最快的反应。与此同时快速制造技术的快速发展,体现了现代先进制造技术对全球制造业的支撑,通过应用快速成型技术企业能迅速响应市场需求,最快速度的抢占新兴市场。企业需要通过采用快速成型技术来降低开发、生产成本、缩短研发周期、提高市场快速响应能力,保持强大的市场竞争力。 1快速成形技术的产生 快速原型(Rapid Prototyping,RP)技术,又称快速成形技术,是当今世界上飞速发展的制造技术之一。快速成形技术最早产生于二十世纪70年代末到80年代初,美国3M公司的阿伦赫伯特于1978年、日本的小玉秀男于1980年、美国UVP公司的查尔斯胡尔1982年和日本的丸谷洋二1983年,在不同的地点各自独立地提出了RP的概念,即用分层制造产生三维实体的思想。查尔斯胡尔在UVP的继续支持下,完成了一个能自动建造零件的称之为Stere-olithography Apparatus(SLA)的完整系统SLA-1,1986年该系统获得专利,这是RP发展的一个里程碑。同年,查尔斯胡尔和UVP的股东们一起建立了3D System公司。与此同时,其它的成形原理及相应的成形系统也相继开发成功。1984年米歇尔法伊杰提出了薄材叠层(Laminated Object Manufacturing,以下简称LOM)的方法,并于1985年组建Helisys公司,1992年推出第一台商业成形系统LOM-1015。1986年,美国Texas大学的研究生戴考德提出了选择性激光烧结(Selective Laser Sintering,简称SLS)的思想,稍后组建了DTM公司,于1992年开发了基于SLS的商业成形系统Sinter-station。斯科特科瑞普在1988年提出了熔融成形(Fused Deposi-tion Modeling,简称FDM)的思想,1992年开发了第一台商业机型3D-Modeler。 自从80年代中期SLA光成形技术发展以来到90年代后期,出现了几十种不同的RP技术,但是SLA、SLS和FDM几种技术,目前仍然是RP技术的主流,最近几年LJP(立体喷墨打印)技术发展迅速,以色列、美国、日本等国的RP设备公司都力推此类技术设备。 2快速成型技术特点 RP技术与传统制造方法(即机械加工)有着本质的区别,它采用逐渐增加材料的方法(如凝固、焊接、胶结、烧结、聚合等)来形成所需的部件外型,由于RP技术在制造产品的过程中不会产生废弃物造成环境的污染,(传统机械加工的冷却液等是污染环境的),因此在当代讲究生态环境的今天,这也是一项绿色制造技术。 RP技术集成了CAD、CAM、激光技术、数控技术、化工、材料工程等多项技术,解决了传统加工制造中的许多难题。 RP技术的基本工作原理是离散与堆积,在使用该技术时,首先设计者借助三维CAD或者通过逆向工程所采集的几何数据,建立数 字化模型,这是完成快速成型制造的一项基本条件,借助现有的主流三维设计软件建立三维模型,再经过三维CAD导出相应的文件格式输入快速成型机当中,通过逐点、逐面进行三维的立体堆积,部件完成后,再经过必要的后续处理,使完成的部件在性能、形状尺寸、外观上等方面达到设计要求。 RP技术的特点 从原理上说,应用RP技术来进行产品制造,可以忽略产品部件的外形复杂程度(这也是与传统机械加工方式制造产品的最大区别之一),原材料的利用率接近100%,制造精度最高可达0.01mm。 RP技术的主要特点有: 2.1制造快速 RP技术是并行工程中进行复杂原型或者零件制造的有效手段,能使产品设计和模具生产同步进行,从而提高企业研发效率,缩短产品设计周期,极大的降低了新品开发的成本及风险,对于外形尺寸较小,异形的产品尤其适用。 2.2CAD/CAM技术的集成 设计制造一体化一直来说是现在的一个难点,计算机辅助工艺(CAPP)在现阶段由于还无法与CAD、CAM完全的无缝对接,这也是制约制造业信息化一直以来的难点之一,而快速成型技术集成CAD、CAM、激光技术、数控技术、化工、材料工程等多项技术,使得设计制造一体化的概念完美实现。 2.3完全再现三维数据 经过快速成型制造完成的零部件,完全真实的再现三维造型,无论外表面的异形曲面还是内腔的异形孔,都可以真实准确的完成造型,基本上不再需要再借助外部设备进行修复。 2.4成型材料种类繁多 到目前为止,各类RP设备上所使用的材料种类有很多,树脂、尼龙、塑料、石蜡、纸以及金属或陶瓷的粉末,基本上满足了绝大多数产品对材料的机械性能需求。 2.5创造显著的经济效益 与传统机械加工方式比较,开发成本上节约10倍以上,同样,快速成型技术缩短了企业的产品开发周期,使的在新品开发过程中出现反复修改设计方案的问题大大减少,也基本上消除了修改模具的问题,创造的经济效益是显而易见的。 2.6应用行业领域广 RP技术经过这些年的发展,技术上已基本上形成了一套体系,同样,可应用的行业也逐渐扩大,从产品设计到模具设计与制造,材料工程、医学研究、文化艺术、建筑工程等等都逐渐的使用RP技术,使得RP技术有着广阔的前景。 3现阶段主流的RP工艺方法介绍 3.1SLA(立体光造型技术) 立体光造型技术是典型的逐层制造法,采用光敏树脂(聚丙烯酸脂)为原料,紫外激光在工控机的控制下根据零件的分层截面信息,在光敏树脂等相应材料的液面进行逐点扫描,被扫描区域的树脂经过光聚合反应而固化,形成零件的一个分层截面,一层固化好后工作平台下降一个分层厚的距离,以便在先前固化好的零件分层截面是重新涂抹一层新的液态树脂,然后工控机控制激光再扫描下一分层截面,层与层之间也因此而紧密连接在一起没有缝隙。如此反复直至 快速成型技术及在我国的发展罗庚(贵阳生产力促进中心快速成型服务中心) 第一手的测试数据。树立典型,用第一手的数据和直接的经济效率吸取使用单位,使使用单位对锅炉节能降耗改造工程的作用和意义有更直接的认识,吸引其主动开展改造工程,为以后大规模的节能工作打下坚实的基础。 3.5质监系统应强化对工业锅炉节能降耗工作的监管和技术指导与服务。切实加强锅炉给水水质监管,做好水处理设备投入和水处理人员的培训,保障锅炉给水水质指示达到GB1576《工业锅炉水质》标准要求,防止锅炉结垢。 参考文献: [1]颜曙光.浅析工业锅炉节能减排.中小企业管理与科技.2009.(6). [2]陈听宽.节能原理与技术[M].北京.机械工业出版社.1998. [3]刘茂俊.燃煤工业锅炉节煤实用技术[M].北京.中国电力出版社.2000. (上接第165页) 166

机械结构设计的原则和特点

5.1.1机械结构设计的任务 机械结构设计的任务是在总体设计的基础上,根据所确定的原理方案,确定并绘出具体的结构图,以体现所要求的功能。是将抽象的工作原理具体化为某类构件或零部件,具体内容为在确定结构件的材料、形状、尺寸、公差、热处理方式和表面状况的同时,还须考虑其加工工艺、强度、刚度、精度以及与其它零件相互之间关系等问题。所以,结构设计的直接产物虽是技术图纸,但结构设计工作不是简单的机械制图,图纸只是表达设计方案的语言,综合技术的具体化是结构设计的基本内容。 5.1.2机械结构设计特点 机械结构设计的主要特点有:(1)它是集思考、绘图、计算(有时进行必要的实验)于一体的设计过程,是机械设计中涉及的问题最多、最具体、工作量最大的工作阶段,在整个机械设计过程中,平均约80%的时间用于结构设计,对机械设计的成败起着举足轻重的作用。(2)机械结构设计问题的多解性,即满足同一设计要求的机械结构并不是唯一的。(3)机械结构设计阶段是一个很活跃的设计环节,常常需反复交叉的进行。为此,在进行机械结构设计时,必须了解从机器的整体出发对机械结构的基本要求 5.2机械结构件的结构要素和设计方法 5.2.1结构件的几何要素 机械结构的功能主要是靠机械零部件的几何形状及各个零部件之间的相对位置关系实现的。零部件的几何形状由它的表面所构成,

一个零件通常有多个表面,在这些表面中有的与其它零部件表面直接接触,把这一部分表面称为功能表面。在功能表面之间的联结部分称为联接表面。 零件的功能表面是决定机械功能的重要因素,功能表面的设计是零部件结构设计的核心问题。描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。通过对功能表面的变异设计,可以得到为实现同一技术功能的多种结构方案。 5.2.2结构件之间的联接 在机器或机械中,任何零件都不是孤立存在的。因此在结构设计中除了研究零件本身的功能和其它特征外,还必须研究零件之间的相互关系。 零件的相关分为直接相关和间接相关两类。凡两零件有直接装配关系的,成为直接相关。没有直接装配关系的相关成为间接相关。间接相关又分为位置相关和运动相关两类。位置相关是指两零件在相互位置上有要求,如减速器中两相邻的传动轴,其中心距必须保证一定的精度,两轴线必须平行,以保证齿轮的正常啮合。运动相关是指一零件的运动轨迹与另一零件有关,如车床刀架的运动轨迹必须平行于于主轴的中心线,这是靠床身导轨和主轴轴线相平行来保证的,所以,主轴与导轨之间位置相关;而刀架与主轴之间为运动相关。 多数零件都有两个或更多的直接相关零件,故每个零件大都具有两个或多个部位在结构上与其它零件有关。在进行结构设计时,两零件直接相关部位必须同时考虑,以便合理地选择材料的热处理方式、

电子表格的特点及应用

《电子表格的特点及应用》教案 海南(海口)特殊教育学校任课教师:柳茜 【教学目标】: 1、知识与技能: 认识Excel,让学生了解excel对数据进行简单统计的方法; 让学生在自主体验中熟悉电子表格的使用,在体验中感悟电子表格功能的强大。 2、过程与方法: 培养学生的操作及掌握方法的能力。 3、情感态度与价值观: 让学生通过动手操作,使其解决日常生活、学习中的实际问题,体验学习计算机的快乐,从而激发学生学习计算机的浓厚兴趣。 【教学重点】: 能利用excel软件对数据进行简单的统计,体验其功能的强大; 【教学难点】: Excel软件对数据进行简单的统计,体验其功能的强大; 【教学方法】: 讲授法、问答法、演示法、任务驱动法 【教学思路】: 由word表格数据计算与excel表格数据计算的对比,引出本节课要学习的内容。然后根据课程标准的要求和本节课的内容,设置由简单到复杂、由掌握一般方法到实践应用的任务,驱动学生学习本节课的内容,并在自主探究、小组交流、操作实践的基础上,掌握excellent 对数据进行简单统计的一般方法,让学生感悟电子表格功能的强大,并根据学生完成任务的情况进行点评,对学生出现的典型问题进行精讲。 【教学过程】: 一、情景引入

任务3:2008北京奥运会的吉祥物欢欢、贝贝、晶晶、迎迎、妮妮是很多学生喜欢的福娃。小峰同学为了解同学们对它们的喜欢情况,请你帮他统计哪个吉祥物是同学们最喜欢的? 要求:用excel软件统计出来; <学生演示> <教师点评> [小结]从表格中可以看出喜欢妮妮的人数最多,喜欢晶晶的同学最少。同时我们发现使用excel软件计算减少我们的计算时间,并能快速准确统计总数。 师:excel软件给我们生活带来这么多好处,那是不是我们在制作表格时都用excel呢? 学生回答教师总结 三、课堂小结 这一节课,我们学习了电子表格在我们生活中的应用及特点,让我们体会到了excel 软件功能的强大。Excel软件不仅能绘制表格还能提供编辑、计算、排序、筛选和绘制图表等。它简化了我们的工作,提高了工作效率。 四、布置作业 请同学们上网查一查excel软件在我们生活中还有哪些应用呢?有哪些工作能运用这一软件提高我们的工作效率?

快速成型技术的发展和应用

快速成型技术的发展和应用 摘要:科技飞速发展的今天,人类对制造业也提出了更高的要求,行业竞争也日趋激烈。 快速成型技术也应运而生,并且展现了它强大的生命力和广阔的应用前景。目前,快速成型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。并且随着这一技术本身的发展,其应用领域将不断拓展。 The rapid development of science and technology today, the human is put forward higher requirements on manufacturing, industry competition is increasingly fierce. Rapid prototyping technology also arises at the historic moment, and shows its strong vitality and broad application prospects. At present, the modelling of rapid prototyping technology has been in the industry, machinery manufacturing, aerospace, military, architecture, film and television, home appliances, light industry, medicine, archaeology, cultural art, sculpture, jewelry, and other fields has been widely used. And with the development of the technology itself, and will continue to expand its application field. 关键词:快速成型,堆积法,高集成性、高柔性、高速性,自动、直接、快速、精确。 前言: 21世纪是以知识经济和信息社会为特征的时代,随着科学技术的发展和社会需求的多样化,全球统一市场和经济全球化的逐步形成,产品的竞争更加激烈。在工业化的国家中,60%—80%的财富是由制造业提供的。制造业是衡量一个国家实力水平的重要标志之一,也是创造社会财富和国民经济赖以生存发展的重要支柱产业。 现代制造已不仅仅是机械制造,而且具有大制造,全过程,多科学的新特点。大制造应包括机电产品的制造,工业流程制造,材料科学制造等等,所以它是一个广义的制造概念。 我国在先进制造技术方面和国外有比较大的差距,特别是我国制造业的自动化,信息化水平不高。大力发展和应用先进制造技术,勇气改造传统产业和形成高技术,提升我国制造业得产业结构,产品结构和组织结构,增强其技术创新能力,产品开发,和市场竞争能力。是制造业,特别是机械制造业走出困局的关键性措施。这样才能保证我们世界工厂地位的确立,实现由制造业大国向制造业强国的转变。 快速成型技术的诞生 快速成型技术作为一个专用名词在20世纪80年代末期,美国为了加强其制造业的竞争力与促进国民经济的增长,根据其制造业面临的挑战与机遇,并对其制造业存在的问题进行深刻反省提出来的。快速成型技术是集成制造技术,电子技术,信息技术,自动化技术,能源晕技术,材料科学以及现在管理技术等众多技术的交叉,融合和渗透而发展起来的,涉及到制造业中的产品设计,加工装配,检验测试,经营管理等产品生命周期全过程,已实现优质,高效,低耗,清洁,灵活生产,提高对动态多变,细分的市场的适应能力和竞争能力的一项综合技术。 快速成型技术是顺应这一潮流而出现的先进制造技术,它能自动,直接,快速,精确的将设计思想物转化具有一定功能的原型或直接制造零件,快速成型技术是先进制造技术的重要组成部分,也是制造技术在制造理论的一次革命性飞跃,快速成型技术目前在美国,欧洲,日本等地已被广泛应用,受到制造业界及各类用户的普遍重视。 世界上第一台快速成形机于自1988年诞生于美国。快速成型制造技术是国外20世纪80年

相关文档
相关文档 最新文档