文档库 最新最全的文档下载
当前位置:文档库 › 浅谈闭锁料斗平衡阀死区优化调整

浅谈闭锁料斗平衡阀死区优化调整

浅谈闭锁料斗平衡阀死区优化调整
浅谈闭锁料斗平衡阀死区优化调整

浅谈闭锁料斗平衡阀死区优化调整

摘要:为了能够使重整抽提装置再生区催化剂循环速率得到更好的控制以及再生系统闭锁料斗区设备的重要性与特殊性,特此借装置检修这个契机,对该类设备再次进行系统参数整定及死区调整。平衡阀死区的调整能够避免闭锁料斗区较大的压力波动,减少催化剂表面的磨损延长催化剂的使用寿命,避免粉尘量过大。

关键词:再生系统闭锁料斗平衡阀球阀泄露试验催化剂

闭锁料斗平衡阀应用于重整抽提装置催化剂连续再生单元。催化剂连续再生单元采用UOP第三代催化剂再生工艺CycleMax,其催化剂Pt含量wt%为0.28±0.02(100千克=11万RMB)整个闭锁料斗催化剂约1.01吨。

仪表设备正常精确的工作能够使催化剂再生更加充分和有效,同时节省了投资,而且便于操作和维修。

闭锁料斗平衡阀工作原理:

平衡阀开关的目的:程序控制闭锁料斗上(XV31305)、下(XV31306)部平衡阀开关来升、降闭锁料斗区的压力使催化剂交替的从闭锁料斗区流入闭锁料斗缓冲区,然后从闭锁料斗分离区流入闭锁料斗区,因此平衡阀动作关系到催化剂的循环速率。(尤其平衡阀阀开会导致闭锁料斗区压力有较大的波动)。

补偿阀XV31301的作用在于缓解闭锁料斗平衡阀的开、关对闭锁料斗缓冲区所产生的压力影响。目的在于保持闭锁料斗缓冲区与再生催化剂二次提升气之间的馈入线恒定,以减少对再生催化剂提升速率的影响。

闭锁料斗平衡阀工作位置如下图一所示:(上部平衡阀XV31305、下部平衡阀XV31306),另附重整抽提装置再生单元闭锁料斗区流程概貌图。

补给阀与平衡阀有着一定的关系:补给阀XV31301选型为直通式单座调节阀,其厂家为梅索尼兰(MASONEILAN),对于XV31301调节阀来说,它的死区为0%~1%,也就是说阀门从关的状态慢慢打开当阀位大于1%时才会有流体通过。因此要让平衡阀也具备这样的特性,并且还要具备较好的线性特性,这就是我们所需要做的。

上、下部平衡阀选型均为球阀,其厂家为耐莱斯(NELES ),型号B1JU8/35,配套的智能阀门定位器为费希尔(FISHER DVC6030)。球阀主要优点:适合用在频繁操作的地方,并且启闭迅速、轻便,流体阻力小,结构简单,相对体积小,重量轻,便于维修,密封性能好,不受安装方向的限制,介质的流向可任意,无振动,噪声小。

SVPWM中全新的死区时间效应补偿方法

SVPWM中全新的死区时间效应补偿方法 杨来坡王泰宇徐鸿李千里 安徽中家智锐科技有限公司 摘要:文章对3相逆变的死区时间效应进行了分析,同时给出了一种全新的针对永磁同步电机驱动中死区效应的补偿方法。该方法同时考虑了零电流钳位和寄生电容的影响,经过计算和实际验证,确实改善了死区效应的影响。本方法理论分析的有效性及其实际效果都通过在空调直流电机驱动控制应用中得到了充分验证。 关键词:三电平逆变器;死区时间;补偿;PWM Dead-time compensation in the application of SVPWM  Laipo YangTaiyu WangHong XuQianli Li Anhui Cheari Zhi Rui Technology Limited Company Abstract: The Dead-time effect of the three phases bridge inverter is analyzed in this paper. A Dead-time compensation strategy is presented for a permanent-magnet synchronous motor drive taking zero-current damp and parasitic capacitance effects into account. It improves the Dead-time effect, with practicality and little calculation .The validity of theory analysis and this method is proved by the experiment results, the method is applied to the controlling of Air conditioner motor.  Keywords: Three-level inverter;Dead time;Compensation;PWM

示波器的死区时间

示波器的死区时间 很多客户在选择示波器的时候除了关注带宽、采样率和存储深度外,更关心的就是示波器的死区时间,死区时间的长短直接决定了捕获异常信号的能力大小。示波器的死区时间具体是多少,怎么去计算呢,答案即将揭晓。 1、采样时间、死区时间和捕获时间 数字示波器捕获信号的过程是典型的“采集-处理-采集-处理”过程,如图1所示为数字示波器的采集原理,一个捕获周期由采样时间和(处理时间)死区时间组成,如图2所示。 图1 示波器采集原理图 采样时间:是信号采样存储的过程。 死区时间(处理时间):是示波器对采样存储回来的数字信号进行测量运算,显示等处理的过程。死区时间内示波器不进行采集。 图2 采样时间与死区时间 所以:捕获时间=采样时间+死区时间,而捕获时间又等于波形刷新率的倒数。 波形刷新率即波形捕获率,指的是每秒捕获波形的次数,表示为波形每秒(wfms/s)。 2、死区时间的计算

死区时间的大小影响着遗漏信号的多少,也决定了捕获异常信号概率的大小,那么如何去计算示波器死区时间的大小呢?本次以ZDS2024 Plus示波器为例,ZDS2024 Plus的波形刷新率为330Kwfm/s,将时基档位调制50ns/div,可以看到异常信号闪现在示波器的屏幕上,如图3所示。 图3 ZDS2024 Plus示波器捕获异常信号 根据捕获到的波形进行死区时间的计算,在50ns/div的时基档位下以下为计算的过程: 图4 死区时间计算公式

3、死区时间对捕获信号的影响 上图4和表1为ZDS2024 Plus示波器与普通示波器的死区时间对比,在相同的时基档位下,ZDS2024 Plus有效采样时间为23.1%,普通示波器有效采样时间为0.2%,相当于在1s 内ZDS2024 Plus采集231ms,而普通示波器仅仅采集了20ms,相差20倍以上,如图5所示。 图5 不同示波器死区时间对比 从图5可看出波形刷新率越高,死区时间就越短,捕获异常信号的概率就越高;波形刷新率越低,死区时间就越长,捕获异常信号的概率就越小。 波形刷新率与死区时间就像拍照的瞬间,如下图6所示,拍照的频率越高,中间间隔的时间就越短,能抓拍到一掠而过的飞机的机率就越高,动静结合的美好作品就能呈现在我们眼前。 图6拍照频率对比图

PWM死区时间

死区时间是PWM输出时,为了使H桥或半H桥的上下管不会因为开关速度问题发生同时导通而设置的一个保护时段。通常也指pwm响应时间。由于IGBT(绝缘栅极型功率管)等功率器件都存在一定的结电容,所以会造成器件导通关断的延迟现象。一般在设计电路时已尽量降低该影响,比如尽量提高控制极驱动电压电流,设置结电容释放回路等。为了使igbt工作可靠,避免由于关断延迟效应造成上下桥臂直通,有必要设置死区时间,也就是上下桥臂同时关断时间。死区时间可有效地避免延迟效应所造成的一个桥臂未完全关断,而另一桥臂又处于导通状态,避免直通炸模块。死区时间大,模块工作更加可靠,但会带来输出波形的失真及降低输出效率。死区时间小,输出波形要好一些,只是会降低可靠性,一般为us级。一般来说死区时间是不可以改变的,只取决于功率元件制作工艺! 死区时间是指控制不到的时间域。在变频器里一般是指功率器件输出电压、电流的“0”区,在传动控制里一般是指电机正反向转换电压、电流的过零时间。死区时间当然越小越好。但是所以设置死区时间,是为了安全。因此又不可没有。最佳的设置是:在保证安全的前提下,越小越好。以不炸功率管、输出不短路为目的(baidu的) 死区时间是PWM输出时,为了使H桥或半H桥的上下管不会因为开关速度问题发生同时导通而设置的一个保护时段,所以在这个时间,上下管都不会有输出,当然会使波形输出中断,死区时间一般只占百分之几的周期。但是PWM波本身占空比小时,空出的部分要比死区还大,所以死区会影响输出的纹波,但应该不是起到决定性作用的。 死区,简单解释:通常,大功率电机、变频器等,末端都是由大功率管、IGBT等元件组成的H桥或3相桥。每个桥的上半桥和下半桥是是绝对不能同时导通的,但高速的PWM驱动信号在达到功率元件的控制极时,往往会由于各种各样的原因产生延迟的效果,造成某个半桥元件在应该关断时没有关断,造成功率元件烧毁。死区就是在上半桥关断后,延迟一段时间再打开下半桥或在下半桥关断后,延迟一段时间再打开上半桥,从而避免功率元件烧毁。这段延迟时间就是死区。(就是上、下半桥的元件都是关断的)死区时间控制在通常的低端单片机所配备的PWM中是没有的。 PWM的上下桥臂的三极管是不能同时导通的。如果同时导通就会是电源两端短路。所以,两路触发信号要在一段时间内都是使三极管断开的。这个区域就叫做“死区”优点就不用说了。缺点是使谐波的含量有所增加。

STM32高级定时器死区时间设置探究

STM32高级定时器死区时间设置探究 一、死区设置位置: 决定死区时间设置的位是‘刹车和死区寄存器TIM1->BDTR’中的DTG[7:0],设置范围是0x00~0xff。 二、死区时间设置公式如下: DT为死区持续时间,TDTS为系统时钟周期时长,Tdtg为系统时钟周期时长乘以倍数后的死区设置时间步进值。 在72M的定时器时钟下TDTS=1/72M=13.89ns. 所以以第一个公式,死区时间能以13.89ns的步进从0调整到127*13.89ns=1764ns 第二个公式则能(64+0)*2*13.89~(64+63)*2*13.89=1777.9ns~3528.88ns 换个角度看,就是(128~254)*13.89

同理,第三个公式就是3555.84ns~7000.56ns 换个角度看,就是(256~504)*13.89 第四个公式就是7111.68ns~14001.12ns 换个角度看,就是(512~1008)*13.89 综上: 死区时间就是不同的公式代表不同范围的死区时间设置,这个范围是互不重叠的。而但是在不同的死区时间范围内死区时间设置步进是不同的。 若某个系统时钟下的死区时间不够,可以通过改变定时器时钟来改变最大死区时间范围。 当根据硬件电路的特性定下死区时间后,可以根据目标死区时间范围来找到相应的公式,然后代入公式求解出相应的整数(有时候不一定是整数,那就选择最近的那个),拼接DTG[7:5]+DTG[4:0]即可。 例子:这样当我需要3us的死区持续时间时,则可这么计算: 3us在第二个公式决定的死区范围之内。所以选择第二个公式。 3000/(13.89*2)=108,所以DTG[5:0]=108-64=44,所以DTG=127+44=171=0Xab TIM1->BDTR|=0xab; 反过来验算//72Mhz,死区时间=13.89nsX108*2=3000us 经示波器验证,完全正确。 By zxx2013.07.18

平衡阀在液压系统中的应用及故障排除

平衡阀在液压系统中的应用及故障排除 【摘要】:本文通过对平衡阀结构组成的分析,对其工作原理进行了详细的说明,并介绍了在各种变负载液压系统中广泛的应用;然后从平衡阀结构特性的角度,结合平衡阀在某公司焦炉机械装煤车上实际应用中出现的几种常见的故障,定性的分析了它的故障原因并提出了排除及预防故障的方法。 【关键词】:平衡阀液压系统震颤故障排除 【前言】:平衡阀是当今冶金液压系统中应用及其广泛的一种控制阀,本文通过力士乐液压公司FD型平衡阀工作原理,论述了其在变载机构中的控制作用,并以冶金液压系统中的实例应用加以说明。 一,平衡阀的结构与工作原理 FD 型平衡阀是德国力士乐公司设计的平衡阀, 它采用了液控单向节流设计, 从而实现了液控单向阀和单向节流阀的控制功能。其结构原理图如图1 , 当其控制油口X不工作时, 平衡阀具有单向阀的功能, 压力油从A口流入时, 液压阀单向导通, 当压力油从B口流入时, 液压阀反向封闭。如果其控制油口X通有一定的压力油, 由于X口连接的阻尼口(6)的作用, 控制阀芯(4)缓慢运动, 延时后首先推动卸荷阀芯(3)使B口卸压, 然后推动主阀芯(2)开启, 液压油从B 流向A 口。图2为其图形符号。

图1 FD 平衡阀结构原理图 (1)阀体、(2)主阀芯、(3)先导体、(4)控制阀芯,(5)阻尼阀芯,(6)阻尼孔、(7)(8)(9) 均为控制腔 图2 FD 平衡阀图形符号 二,平衡阀在工业液压系统中的实际应用 2.1平衡阀在单杆缸液压平衡回路中的应用 图3 为采用FD 型平衡阀设计的平衡回路, 在换向阀处于中位(为了安全, 应始终使用闭中位的方向阀)时,平衡阀保持垂直放置的 液压缸不因自重而下落。当换向阀交叉油路供油时, 液压油经过平衡阀(起单向阀作用) ,推动液压缸活塞提升负载。这时如果液压泵到平衡阀之间的液压油管破裂, 压力下降, 由于负载压力作用, 主阀立即关闭, 油缸保持在工作位置。当换向阀平行油路进行工作时, 由平衡

死区时间的影响与形成

死区时间参数 摘要:针对不同厂家IP M要求的死区时间参数的不同,本文从硬件电路角度出发,提出一种延时电路方案,解决了因参数调整而引起软件的不统一问题,进而为M C U的大批量m a s k降低成本提供可能。 关键词:IP M死区时间 随着现代电力电子技术的飞速发展,以绝缘栅双晶体管(IG B T)为代表的功率器件在越来越多的场合得到广泛地应用。I GB T是V D MO S与双极晶体管的组合器件,集M OS FE T与G T R的优点于一身,既具有输入阻抗高,开关速度快,热稳定性好和驱动电路简单的长处,又具有通态电压低,耐压高和承受大电流的优点,特别适合于电机控制。现代逐渐得到普遍推广的变频空调,其内部的压缩机控制单元就是采用以I GB T为主要功率器件的新型智能模块(IP M)。 IP M(智能功率模块)即In te l li ge n t P o we r Mo d ul e的缩写,它是将输出功率器件I GB T和驱动电路、多种保护电路集成在同一模块内,与普通I G B T相比,在系统性能和可靠性上均有进一步提高,而且由于IP M通态损耗和开关损耗都比较低,使散热器的尺寸减小,故整个系统的尺寸减小。下面是IP M内部的电路框图: IP M内部含有门极驱动控制、故障检测和多种保护电路。保护电路分别检测过流、短路、过热、电源欠压等故障,当任一故障出现时,内部电路会封锁驱动信号并向外送出故障信号,以便外部的控制器及时处理现场,避免器件受到进一步损坏。下图是变频空调室外压缩机控制驱动主电路的原理图。

220V交流电压经过由D1~D4和电解电容C1组成的桥式整流和阻容滤波电路后成为给I PM供电的直流电压,六个开关管按照一定规律通断,分别在U、V、W三相输出一系列的矩形信号,通过调整矩形波的频率与占空比达到调节输出电压频率和幅度的目的,即现在应用最广泛的P WM(PU LS E WI D TH M OD UL A TE 脉冲宽度调制)控制技术,PW M控制技术从控制思想上可以分成四类:等脉宽PW M法、正弦波P WM法、磁链追踪PW M法和电流追踪型P W M法。不管采用何种控制方式,都必须注意U、V、W任意一相上下两个桥臂不能同时导通,否则直流电源将在IP M内部形成短路,这是绝对不允许的。为了避免电源元件的切换反应不及时可能造成的短路,一定要在控制信号之间设定互锁时间,这个时间又叫换流时间,或者叫死区时间。 死区时间,一般情况下软件工程师在程序设计时就会考虑并写进控制软件。但是,由于不同公司生产的I P M,对死区时间长短的要求不尽相同,这样软件就会出现多个版本,不便于管理,并且影响CP U的M AS K (掩模)工作。为了控制软件的统一性,有的软件工程师将死区时间放到芯片外扩展的E2中,对不同公司的I P M,只需改变一下E2中的数据,即可简单实现死区时间的匹配。这种方法的缺点是生产成本较高,在实际应用时受到一定限制。随着集成电路工艺的不断改进,各种逻辑门集成电路的价格不断地下降,使采用硬件电路实现死区时间设定应用到生产上成为可能,这种方法的优点是电路简单,延时时间方便可调,成本低廉。 方案原理图如下图3:

平衡阀特点及原理作用

平衡阀特点及原理作用 平衡阀是一种特殊功能的阀门,它具有良好的流量特性,有阀门开启度指示,开度锁定装置及用于流量测定的测压小阀。利用专用智能仪表,输入阀门型号和开度值,根据测得的压差信号就可直接显示出流经该平衡阀的流量值,只要在各支路及用户入口装上适当规格的平衡阀,并用专用智能仪表进行一次性调试,就可使各用户的流量达到设定值。 平衡阀是在水力工况下,起到动态、静态平衡调节的阀门。如:静态平衡阀,动态平衡阀。 静态平衡阀亦称平衡阀、手动平衡阀、数字锁定平衡阀、双位调节阀等,它是通过改变阀芯与阀座的间隙(开度),来改变流经阀门的流动阻力以达到调节流量的目的,其作用对象是系统的阻力,能够将新的水量按照设计计算的比例平衡分配,各支路同时按比例增减,仍然满足当前气候需要下的部份负荷的流量需求,起到热平衡的作用。 动态平衡阀分为动态流量平衡阀,动态压差平衡阀,自力式自身压差控制阀等。平衡阀属于调节阀范畴,它的工作原理是通过改变阀芯与阀座的间隙(即开度),改变流体流经阀门的流通阻力,达到调节流量的目的。 平衡阀相当于一个局部阻力可以改变的节流元件,对不可压缩流体,由流量方程式可得。与其它阀门相比,平衡阀主要有以下特点: (1)直线型流量特性,即在阀门前后压差不变情况下,流量与开度大体上成线性关系; (2)有精确的开度指示; (3)有开度锁定装置,非管理人员不能随便改变开度;表连接,可方便地显示阀门前后的压差及流经阀门的流量。尽管平衡阀具有很多优点,但它在空调水系统的应用还存在不少问题。如果这些问题解决不好,平衡阀的特点并不能充分显现出来。平衡阀的作用是为了调节系统内,各个分配点的(如每一个楼座)的预定流量。每一座楼的入口处都安装平衡阀,可以使供暖系统的总流量得到合理分配。 平衡阀的原理是阀体内的反调节,当入口处压力加大时,自动减小通径,减少流量的变化,反之亦然。如果反接,这套调节系统就不起作用。而且起调节作用的阀片,是有方向性的,反向的压力甚至可以减少甚至封闭流量。既然安装平衡阀是为了更好的供暖,就不存在反装的问题。如果是反装,就是人为的错误,当然就会纠正。平衡阀属于调节阀范畴,它的工作原理是通过改变阀芯与阀座的间隙(即开度),改变流体流经阀门的流通阻力,达到调节流量的目的。平衡阀相当于一个局部阻力可以改变的节流元件,对不可压缩流体,由流量方程式可得。 Kv为平衡阀的阀门系数。它的定义是:当平衡阀前后差压为1bar(约1kgf/cm2)时,流经平衡阀的流量值(m3/h)。平衡阀全开时的阀门系数相当于普通阀门的流通能力。如果平衡阀开度不变,则阀门系数Kv不变,也就是说阀门系数Kv由开度而定。通过实测获得不同开度下的阀门系数,平衡阀就可做为定量调节流量的节流元件。 在管网平衡调试时,用软管将被调试的平衡阀的测压小阀与专用智能仪表连接,仪表可显示出流经阀门的流量值(及压降值),经与仪表人机对话,向仪表输入该平衡阀处要求的流量值后,仪表通过计算、分析、得出管路系统达到水力平衡时该阀门的开度值。平衡阀属于调节阀范畴,它的工作原理是通过改变阀芯与阀座的间隙,改变流体流经阀门的流通阻力,达到调节流量的目的。 1.不应随意变动平衡阀开度管网系统安装完毕,并具备测试条件后,使用专用智能仪表对全部平衡阀进行调试整定,并将各阀门开度锁定,使管网实现水力工况平衡。在管网系统正常运行过程中,不应随意变动平衡阀的开度,特别是不应变动开度锁定装置。 2.不必再安装截止阀。在检修某一环路时,可将该环路上的平衡阀关闭,此时平衡阀起到截止阀截断水流的作用,检修完毕后再回复到原来锁定的位置。因此安装了平衡阀,就不必再安装截止阀。 3.系统增设(或取消)环路时应重新调试整定在管网系统中增设(或取消)环路时,除应增加(或关闭)相应的平衡阀之外,原则上所有新设的平衡阀及原有系统环路中的平衡阀均应重新调试整定(原环路中支管平衡阀不必重新调整)。在空调及采暖系统中,作为输配能量的水循环系统的水力平衡是非常重要的。一个平

死区时间设计

设计课题:PWM死区发生器设计与实现设计者: 姓名: 指导教师:

1、系统设计 (4) 1.1设计要求 (4) 1.2方案框图 (4) 2、单元电路的设计 (4) 2.1多谐振荡电路 (4) 2.1.1原理图 (4) 2.1.2工作原理 (5) 2.1.3参数选择 (5) 2.2死区产生电路 (5) 2.2.1原理图 (5) 2.2.2工作原理 (6) 2.2.3参数选择 (6) 3、系统测试结果 (6) 3.1 555引脚3波形 (6) 3.2死区波形 (7) 4、设计总结 (8) 5、参考文献 (8) 6、附录 (8) 元器件清单 (8) 总原理图 (9) PCB图 (9)

555定时器是一种多用途的数字——模拟混合集成电路,利用它能极方便地构成施密特触发器、单稳态触发器和多谐振荡器。由于使用灵活、方便,所以555定时器在波形的产生与变换、测量与控制、家用电器、电子玩具等许多领域中都得到了应用。CD4001是四2输入或非门。或非门的逻辑关系特点是只有当输入端全部为低电平时,输出端为高电平状态;在其余输入情况下,输出端为低电平状态。该电路是一种由555定时器和CD4001为核心器件组成的PWM 死区发生器电路,电路简单且易调试。 关键词:555;CD4001;PWM;死区

1、系统设计 1.1设计要求 ⑴用555及门电路为主芯片 ⑵555芯片<=1片 ,且门电路芯片数<=1片 ⑶开关频率10KHz ⑷输出高电平有效 ⑸占空比可调 ⑹死区时间3us 1.2方案框图 2、单元电路的设计 2.1多谐振荡电路 2.1.1原理图 TRIG 2 OUT 3 4 CVOLT 5 THOLD 6DISCHG 7 8 1 RESET VCC GND U? 555 D2IN4148 D1 IN4148C1103 R14K3 RW15K C2104 VCC R W 2 5K

动态压差平衡阀的工作原理及使用方法

动态压差平衡阀的工作原理及使用方法 发布时间:2010-5-27 编辑:wenjie 来源:直接进论坛 动态压差平衡阀,亦称自力式压差控制阀、差压控制器、压差平衡阀等,它是用压差作用来调节阀门的开度,利用阀芯的压降变化来弥补管路阻力的变化,从而使在工况变化时能保持压差基本不变,它的原理是在一定的流量范围内,可以有效地控制被控系统的压差恒定,即当系统的压差增大时,通过阀门的自动关小动作,它能保证被控系统压差增大反之,当压差减小时,阀门自动开大,压差仍保持恒定。 动态压差平衡阀的工作原理: 该阀由阀体,阀盖,阀芯弹簧,控制导管,调压器组成,阀门安装在供热管路的回水管上,阀门上的工作腔通过控制管与供水管连接。消除外网压力波动引起的流量偏差,当供水压力P1增大,则供水压差P1-P3增大,感压膜带动阀芯下移关小阀口,使P2增大,从而维持P1-P2的恒定。当供水压力P1减小则感压膜带动阀芯上移,P2减小,使P1-P2恒定不变。无论管路中压力怎样变化,动态压差平衡阀均可维持施加于被控对象压差和流量恒定。 动态压差平衡阀的使用方法: 1、介质流动方向应与阀体箭头方向一致; 2、该阀应安装在回水管上,阀上接导压管,导压管的另一端与供水管连接,建议在导压管供水端安装1/2"球阀,以便启动消除堵塞功能; 3、在导压管前的供水管上应安装过滤网,避免水质太差造成该阀失去自动调节功能; 4、供水管和该阀前的回水管应分别装设压力表,便于调节控制压差; 5、如发现该系统流量过大或过小,可能的原因是管道元件安装时的杂物卡阻在阀塞上,可将1/2"球阀关闭3—5分钟,这时如果是较轻堵塞,即可自动消除,如还不能消除,则要拆开阀门[1]检查消除堵塞物; 6、控制压差调节方法:逆时针方向调节调压阀杆,观察压差。

平衡阀和液压锁的作用

衡阀和双向液压锁的选用 液压辅助元件选用 2009-09-02 09:47 阅读67 评 论0 字号:大中小 平衡阀和双向液压锁的选用 双向液压锁和平衡阀在一定场合下都能作为闭锁元件使用,可以保证工作装置不会因自重等外部原因 出现下滑、超速或串动。 但在一些特定速度载荷的情况下,却不能互换使用,下面针对两种产品的结构形式,谈谈笔者的一些 看法。 双向液压锁的结构特点: 双向液压锁是两个液控单向阀并在一起使用的(见图1),通常使用在承重液压缸或马达油路中,用于防止液压缸或马达在重物作用下自行下滑,需要动作时,须向另一路供油,通过内部控制油路打开单向阀使油路接通,液压缸或马达才能动作。

由于该产品结构本身的原因,液压缸运动过程中,由于负载的自重,往往在主工作腔造成瞬间失压,产生真空,面使单向阀关闭,然后继续供油,使得工作腔压力上升再开启单向阀。由于频繁地发生打开关闭动作,而会使负载在下落的过程中产生较大的冲击和振动,因此,双向液压锁通常不推荐用于高速重载工况,而常用于支撑时间较长,运动速度不高的闭锁回 路。 1-堵头;2、4、8-O型密封圈;3-螺套;5-弹簧; 6-钢球;7-钢球座;9-控制活塞;10-阀体 图1 双向液压锁结构示意图 平衡阀的结构特点: 平衡阀也称限速锁(见图2),是一种外控内泄式单向顺序阀,由一个单向阀和一个顺序阀并在一起使用,液压回路中,可以闭锁液压缸或马达油路中的油

液,使液压缸或马达不会因负载自重下滑,此时起闭锁作用。当液压缸或马达需要运动时,通过向另一油路通液,同时通过平衡阀内部油路控制顺序阀打开使回路接通,实现其运动。由于顺序阀本身与双向液压锁的结构不同,在工作时通称在工作回路中建立一定的背压,不至于因自重超速下滑而使液压缸或马达的主工作产生负压,因此不会发生向双向液压锁那样的 冲击和振动。 因此,平衡阀一般应用于高速重载,且对速度稳定 性有一定要求的回路中。 1-端盖;2、6、7-弹簧座;3、4、8、21-弹簧; 5、9、13、1 6、1 7、20-密封圈10-锥阀;11-阀 芯; 12、14-阀套;15-控制活塞;18-控制口盖19-封头; 22-单向阀芯;23-阀体 图2 平衡阀结构示意图

死区时间

死区时间 死区时间是PWM输出时,为了使H桥或半H桥的上下管不会因为开关速度问题发生同时导通而设置的一个保护时段。 由于IGBT等功率器件都存在一定的结电容,所以会造成器件导通关断的延迟现象。一般在设计电路时已尽量降低该影响,比如尽量提高控制极驱动电压电流,设置结电容释放回路等。为了使igbt工作可靠,避免由于关断延迟效应造成上下桥臂直通,有必要设置死区时间,也就是上下桥臂同时关断时间。死区时间可有效地避免延迟效应所造成的一个桥臂未完全关断,而另一桥臂又处于导通状态,避免直通炸模块。 死区时间大,模块工作更加可靠,但会带来输出波形的失真及降低输出效率。死区时间小,输出波形要好一些,只是会降低可靠性,一般为us级。 IGBT在关断时的脉冲后沿因少数载流子的存储效应会产生一个较大的“拖尾”电流,因此所产生的关断能耗(Eoff)在早期产品中非常突出。 死区时间调整硬件解决方案 摘要:针对不同厂家IPM要求的死区时间参数的不同,本文从硬件电路角度出发,提出一种延时电路方案,解决了因参数调整而引起软件的不统一问题,进而为MCU的大批量mask降低成本提供可能。 关键词: IPM 死区时间 随着现代电力电子技术的飞速发展,以绝缘栅双晶体管(IGBT)为代表的功率器件在越来越多的场合得到广泛地应用。IGBT是VDMOS与双极晶体管的组合器件,集MOSFET与GTR的优点于一身,既具有输入阻抗高,开关速度快,热稳定性好和驱动电路简单的长处,又具有通态电压低,耐压高和承受大电流的优点,特别适合于电机控制。现代逐渐得到普遍推广的变频空调,其内部的压缩机控制单元就是采用以IGBT为主要功率器件的新型智能模块(IPM)。 IPM(智能功率模块)即Intelligent Power Module的缩写,它是将输出功率器件IGBT和驱动电路、多种保护电路集成在同一模块内,与普通IGBT相比,在系统性能和可靠性上均有进一步提高,而且由于IPM通态损耗和开关损耗都比较低,使散热器的尺寸减小,故整个系统的尺寸减小。下面是IPM内部的电路框图:

空调水系统平衡阀合理应用

空调水系统的阻力平衡是保证空调系统正常、有效运行的前提,以较低的能耗,获得舒适的室内环境,是暖通设计者比较关心重视的问题。为了达到水系统的阻力平衡,设计师一般尽可能采用同程式水系统,倘若条件不允许时则采用异程式水系统,此时系统可能存在水力平衡失调。当各分区环路采用同程式系统时,各系统环路间也可能存在严重的阻力不平衡而导致水力平衡失调。因此必须通过各种调节手段使系统达到平衡。近年来,平衡阀因其较为完备的功能和良好的调节性能,正在越受重视和欢迎。许多设计师在设计水系统时倾向于使用平衡阀来进行水力平衡,但笔者发现,在很多工程中,平衡阀的设置不尽合理,设计人员对各种平衡阀的应用场合考虑不周。本文从平衡阀的原理入手介绍在工程实践中如何合理地选择平衡阀及相应的系统形式。 1平衡阀的工作原理 水力平衡设备可分为静态水力平衡设备和动态水力平衡设备。静态水力平衡设备主要有静态平衡阀,动态水力平衡设备主要有动态流量平衡阀、动态压差控制阀、动态平衡电动二通开关阀、组合式或一体式动态平衡电动调节阀等。 静态平衡阀在水系统中的作用主要是消除静态水力失调、使系统实现静态水力平衡。动态水力平衡设备在水系统中的作用主要是消除动态水力失调,使系统实现动态水力平衡。 1.1 静态平衡阀 静态平衡阀亦称为手动平衡阀或手动调节阀,是可进行流量测定和调节的阀门,其操作方式是人工手动调节。该平衡阀原理为可变流量的孔板,并带有关断功能。通过测量阀门前后测量孔的压降,结合阀门开度的读数,便能换算出阀门调节后的流量。静态平衡阀实质上是一个具有明确的“流量-压差-开度”关系、清晰可调的开度指示以及良好调节特性的阻尼调节元件。 1.2 动态流量平衡阀 动态流量平衡阀亦称自力式流量控制阀、定流量平衡阀等,是一种在阀体前后一定的压差范围内能自动保持管道的流量始终不变的阀门。 其工作原理:q=k √△p。通过改变平衡阀的阀芯的过流面积来适应阀门前后压 v 差(如图1所示)的变化,从而达到控制流量的目的。即在一定压差范围内无论阀门入口流量如何变化均可保证其出口流量恒定。它相当于一个局部阻力可变的节流元件,该元件由可变过流面积的阀胆和高精度(±5%)的弹簧及支撑装置构成。弹簧受压差的作用自动控制阀胆上过流面积的大小,从而使通过阀门的流量恒定。流量值的大小可以根据系统要求进行定制。

平衡阀调试方法

平衡阀调试手册欧文托普阀门系统(北京)有限公司

欧文托普静态平衡阀介绍 静态平衡阀亦称手动平衡阀,数字锁定平衡阀,它的作用对象是系统的阻力,能够将新的水量按照设计计算的比例平衡分配,各支路同时按比例增减,仍然满足当前气候需要下的部分负荷的流量需求,起到平衡输配的作用。 手动平衡阀的作用对象是系统的阻力,基本功能:消除环路剩余压头限定环路 水流量。 门的实际流量。

平衡阀测量流量原理:从流体力学观点看,平衡阀相当于一个局部阻力可以改变的节流元件,以压缩液体为例,由流量方程式可得: Q=K v·△P?(1-1) Q—流经平衡阀的流量(m3/h) K v—阀门系数 △P?—阀前、阀后压差(kg./cm2) 式(1-1 际流量。

欧文托普静态平衡阀调试方法 为保证暖通空调系统的最佳运行,必须在初调试时对系统进行静态水力平衡联调,保证在系统调试合格后各个末端设备的流量同时达到设计流量,即系统能均衡 地输送足够的水量到各个末端设备。 通过欧文托普公司的专用流量测量仪表“OV-DMC2”,并采取一定的步骤,可以在所有的静态水力平衡阀只调节一次的情况下实现系统的静态水力平衡,欧文托普 端 时 具

欧文托普“OV-DMC2”测量仪表使用说明 1、欧文托普“OV-DMC2”测量仪表为整 套仪表和测量工具的总称。平时可装在 专用的工具箱里,保护仪表,同时也方 便携带。 2、打开工 所以, 最多的组件单独列了出来,如左图。 绝大多数静态平衡阀的调试工作都 可以依靠这些组件的正常工作来完 成的。

下面我们来认识一下这些组件到底是干什么用的。 测试 仪 器, 整套 仪表 的核 心组件 压力传 感器 双色导 压管及 压力探 接,将压 力探针与 压力导管 的另一头 注意红管对应高压端“+”,连接,带黑色开关的一般连于蓝

不同工况下选择平衡阀需注意的问题

1引言 在供热系统中,二次管网的情况千差万别。有流量恒定的二次管网,也有进行了节能改造的随季节温度变化可调节流量的二次管网;有进行了热计量改造的用户,也有没有改造的用户;有不断增加用户的管网,也有供热饱和、用户数恒定的管网。对于不同的工况,平衡阀种类的选择非常重要,只有选择了正确的平衡阀,才能达到水力平衡、增加热效率、节约能源的效果。 本文针对上述不同管网的工况,通过工程实例,分析平衡阀选择中需注意的问题,以 使用户达到最佳的供热效果。 2水力工况平衡的原理 水力工况指各管段的压力、流量及压差。 由公式⊿P=SG2 ⊿P—— —压差(阻力损失); S—— —管段或系统的阻力系数; G—— —管段或系统流量。 可知,流量和压力是相关参数。见图1。流量和压力的调控互为手段和目的。对于外网特性曲线⊿P=SG2,由于并联的近端支路S值都会小于设计值,造成总S值远小于设计值,即实际阻力低于设计阻力,循环水泵的工作点处于水泵特性曲线的右下侧,使实际水量偏大。水泵长期在小扬程大流量工况下运行,水泵在大轴功率、低效率点运行则电机经常超额定电流,这样就造成电能的浪费,严重时会发生烧毁电机的事故。 采暖系统的平衡调节就是用适当的平衡阀,增加近端阻力,使近端支路S值增大至设计值,总S值增大至设计值。使近端流量分配均匀合理,循环水泵的扬程和流量在设计工 不同工况下选择平衡阀需注意的问题 北京特泽热力工程设计有限责任公司康金松 【摘要】本文从理论上阐述了各种平衡阀适应的水力工况,明确了选择平衡阀的原则,并结合工程实例,通过对不同热力工况的深入分析,总结了安装平衡阀后,达到的节能和增效的效果。 【关键词】水力工况平衡阀节能 图1

如何计算示波器的死区时间

如何计算示波器的死区时间 数字示波器的原理决定了波形观测必然存在死区时间,而死区时间的长短直接影响示波器捕获异常信号的能力。你当前用的示波器的死区时间具体是多少,怎么去计算呢,答案就在此文揭晓。 1、采样时间、死区时间和捕获时间 数字示波器捕获信号的过程是典型的“采集-处理-采集-处理”过程,如图1所示为数字示波器的采集原理,一个捕获周期由采样时间和(处理时间)死区时间组成,如图2所示。 图1 示波器采集原理图 采样时间:是信号采样存储的过程。 死区时间(处理时间):是示波器对采样存储回来的数字信号进行测量运算,显示等处理的过程。死区时间内示波器不进行采集。 图2 采样时间与死区时间 所以:捕获时间=采样时间+死区时间,而捕获时间又等于波形刷新率的倒数。 波形刷新率即波形捕获率,指的是每秒捕获波形的次数,表示为波形每秒(wfms/s)。 2、死区时间的计算 死区时间的大小影响着遗漏信号的多少,也决定了捕获异常信号概率的大小,那么如何去计算示波器死区时间的大小呢?本次以ZDS2024 Plus示波器为例,ZDS2024 Plus的波形刷新率为330Kwfm/s,将时基档位调制50ns/div,可以看到异常信号闪现在示波器的屏幕上,如图3所示。 图3 ZDS2024 Plus示波器捕获异常信号

根据捕获到的波形进行死区时间的计算,在50ns/div的时基档位下以下为计算的过程: 图4 死区时间计算公式 3、死区时间对捕获信号的影响 上图4和表1为ZDS2024 Plus示波器与普通示波器的死区时间对比,在相同的时基档位下,ZDS2024 Plus有效采样时间为23.1%,普通示波器有效采样时间为0.2%,相当于在1s 内ZDS2024 Plus采集231ms,而普通示波器仅仅采集了20ms,相差20倍以上,如图5所示。 图5 不同示波器死区时间对比 从图5可看出波形刷新率越高,死区时间就越短,捕获异常信号的概率就越高;波形刷新率越低,死区时间就越长,捕获异常信号的概率就越小。

STM32高级定时器死区控制

STM32高级定时器都带有死区控制功能,一般来说死区控制主要用于马达、变频器等控制。 一、死区时间概念 BLDC控制换相电路如下 死区时间是两路互补PWM输出时,为了使桥式换相电路上管T1和下管T2、上管T3和下管T4、上管T5和下管T6不会因为开关速度问题发生同时导通(同时导通电源会短路)而设置的一个保护时段。 假设STM32高级定时器OCX和OCXN输出互补通道PWM,极性都是高电平有效,则下图中标注“延迟”那段时间就是死区时间,此时间段上管和下管都没有导通。 二、STM32高级定时器死区时间计算 1. 配置寄存器

2. 死区时间计算示例 假设STM32F407的高级定时器TIM1的时钟为168MHz,设置tDTS=1/168us。 死区时间设置2us,经过估算该死区时间落在DTG[7:5]=110段。 (32+DTG[4:0]) /21 us= 2us,计算出DTG[4:0]=10=01010B, 再与DTG[7:5]拼接,最后算得DTG[7:0]=10=11001010B=0xCA。 死区时间设置4us,经过估算该死区时间落在DTG[7:5]=111段。 2*(32+DTG[4:0]) /21 us= 4us,计算出DTG[4:0]=10=01010B, 再与DTG[7:5]拼接,最后算得DTG[7:0]=10=11101010B=0xEA。 需注意死区时间计算是分段计算,每段公式不一样。

三、配置死区时间过程可能出现的问题 问题:发现插入死区时间后,没有互补脉冲输出了。一般是死区参数设置不合适导致出现了以下两种情况。 如果延迟时间大于有效输出(OCx 或OCxN)的宽度,则不会产生相应的脉冲。 注意:插入死区是为了保证桥式驱动电路中上下桥臂的开关管不会同时导通,提高控制安全性,但不是死区时间越长越好,死区是以牺牲开关管有效驱动脉冲时间为代价的,死区时间长短是由开关管硬件开关的速度决定。

IGBT模块IPM死区时间设计方法

IGBT模块/IPM死区时间设计方法 死区时间是PWM输出时,为了使H桥或半H桥的上下IGBT管不会因为开关速度问题发生同时导通而设置的一个保护时段。通常也指pwm响应时间。下图是变频空调室外压缩机控制驱动主电路的原理图。 220V交流电压经过由D1~D4和电解电容C1组成的桥式整流和阻容滤波电路后成为给IPM供电的直流电压,六个开关管按照一定规律通断,分别在U、V、W三相输出一系列的矩形信号,通过调整矩形波的频率与占空比达到调节输出电压频率和幅度的目的,即现在应用最广泛的PWM(PULSE WIDTH MODULATE 脉冲宽度调制)控制技术,PWM控制技术从控制思想上可以分成四类:等脉宽PWM法、正弦波PWM法、磁链追踪PWM法和电流追踪型PWM法。不管采用何种控制方式,都必须注意U、V、W任意一相上下两个桥臂不能同时导通,否则直流电源将在IPM内部形成短路,这是绝对不允许的。为了避免电源元件的切换反应不及时可能造成的短路,一定要在控制信号之间设定互锁时间,这个时间又叫换流时间,或者叫死区时间。转载请注明出处:https://www.wendangku.net/doc/8d12502440.html,/ 由于IGBT(绝缘栅极型功率管)等功率器件都存在一定的结电容,所以会造成器件导通关断的延迟现象。一般在设计电路时已尽量降低该影响,比如尽量提高控制极驱动电压电流,设置结电容释放回路等。为了使igbt工作可靠,避免由于关断延迟效应造成上下桥臂直通,

有必要设置死区时间,也就是上下桥臂同时关断时间。死区时间可有效地避免延迟效应所造成的一个桥臂未完全关断,而另一桥臂又处于导通状态,避免直通炸模块。 死区时间大,模块工作更加可靠,但会带来输出波形的失真及降低输出效率。死区时间小,输出波形要好一些,只是会降低可靠性,一般为us级。一般来说死区时间是不可以改变的,只取决于功率元件制作工艺! 死区时间是指控制不到的时间域。在变频器里一般是指功率器件输出电压、电流的“0”区,在传动控制里一般是指电机正反向转换电压、电流的过零时间。死区时间当然越小越好。但是所以设置死区时间,是为了安全。因此又不可没有。最佳的设置是:在保证安全的前提下,越小越好。以不炸功率管、输出不短路为目的。 1 基本原理推导 ①IGBT及光耦开关时间的定义 IGBT开关时间定义

平衡阀使用简要

平衡阀使用简要 我司强烈建议平衡阀在装入系统之前按系统需要设定好压力,且最好由我司在产品出厂前根据客户要求设定压力。一方面装入系统的平衡阀难以精确设定压力,给操作带来困难;另一方面装入系统的平衡阀①口常会伴有负载存在,过大的负载压力会给调压人员的操作带来困难,甚至会造成调压零件的损坏。平衡阀调压方法:内六角一端正对视线,顺时针旋转为右旋,右旋调压杆降低负载设定压力;逆时针旋转为左旋,左旋调压杆增加负载设定压力。 1 出厂前平衡阀压力设定标准(以LCBEA-LHN 平衡阀为例): 平衡阀出厂时设定压力为①口负载开启压力(以负载开启压力为210bar 为例)。 1.1 安装测试油路,以标准扭矩将平衡阀装入系统,初始设定将调压杆右旋到底,使设定压力达到最小值,负载低压通油测试; 1.2 无负载情况下,左旋调压杆至433圈,锁紧调压螺母,然后缓慢增加负载,此时设定压力应为210bar (如果设定压力有偏差,应在无负载情况下以相同操作微调至标准设定压力); 1.3 注意事项: 1.3.1 组装工作台测试所需液压系统回路时要确保安全后再装阀测试; 1.3.2 调压前必须松开调压锁紧螺母,旋转调节杆设定压力必须在无负载情况下进行; 1.3.3 调压杆右旋为减压,左旋为增压; 1.3.4 高压调试之前最好低压通油一次; 1.3.5 锁紧调压螺母后请勿再转动调压杆; 1.3.6 调压设定参照平衡阀压力设定附表(见附表),如有偏差以实际设定为准; 1.3.7 平衡阀安装扭矩必须符合标准规范(详见技术资料); 1.3.8 平衡阀的最大设定压力应为最大负载感应压力的1.3倍。设定压力不能过高,否则会增加液控口的背压,产生节流使油缸下降缓慢。 2 强行装入系统调定压力 如若在特别情况下,不得不在装入系统后再次设定,以下为建议方法: 2.1 强行装入系统调压 2.1.1 必须遵守系统操作的相关要求,确保整个设备系统在控制之内,不会因设备运动造成任何的毁坏或伤害; 2.1.2 应特别注意因压力重新设定后引起的设备运动位置的变化;特别注意增加设定 压力的旋转方向为左旋; 2.1.3 系统中如若没有压力显示设备,请于方便处安装以便调试和观测记录;

平衡阀介绍及其工作原理

暖通空调系统 一、暖通空调系统常见得几种水力平衡设备:?暖通空调系统常见得水力平衡设备主要有用于消除静态水力失调、实现静态水力平衡得静态水力平衡阀与用于消除动态水力失调、实现动态水力平衡得动态压差平衡阀、动态流量平衡阀、动态平衡电动开关阀、“动态压差平衡阀与电动调节阀组合"以及一体式动态平衡电动调节阀等。?1、静态平衡阀: 静态平衡阀就是消除暖通空调水系统静态水力失调、实现静态水力平衡得主要设备、?静态平衡阀实质上就是一个具有明确得“流量—压差-开度”关系、清晰可调得开度指示以及良好调节特性得阻尼调节元件。?在暖通空调水系统中,静态平衡阀保证得不就是系统中单个管道得流量值,它要维持得就是在系统初调试时,通过静态平衡阀得调节作用,使系统中各个管路得流量比值与设计流量得比值一致,这样当系统得总流量等于设计总流量时,各个末端设备及管道得流量也同时达到设计流量、?静态平衡阀主要应用于系统分集水器、分支管道以及末端设备处。 2、动态压差平衡阀:?动态压差平衡阀就是消除暖通空调系统动态水力失调、实现动态平衡得主要设备之一、?动态压差平衡阀具有关键点定压差功能,它通过阀门内部得自力式机构,能自动地将系统两个关键点之间得压差恒定在设定压差值。?基于全面水力平衡系统对分系统定压、分级定压以及设备定压得要求,动态压差平衡阀广泛地应用在系统主管、分支管道以及各种末端设备处。? 3、动态流量平衡阀: 动态流量平衡阀就是消除系统动态水力失调得设备之一。 动态流量平衡阀实质就是在一定得压差范围内维持管道得流量始终不变,流量值得大小可以根据系统要求进行定制,因此它又叫做“定流量平衡阀”。?动态流量平衡阀主要应用于水力系统中要求保持流量不变得管道,如冷水机组冷冻、冷却水管以及采用变风量调节系统制冷供热量得末端设备管道处、?4、动态平衡电动开关阀: 动态平衡电动开关阀就是暖通空调水系统消除动态水力失调、实现动态平衡得主要设备之一、?动态平衡电动开关阀具有动态平衡与电动开关功能,当阀门开启时,它能动态地将管道得实际流量恒定在设计流量值,并不受系统压力波动得影响。?动态平衡电动开关阀主要应用于风机盘管处,一方面,它具有传统电动开关阀得电动开关功能;另一方面,它又能在阀门开启时将流量始终恒定在风机盘管得设计流量、 5、“动态压差平衡阀与电动调节阀”组合:?动态压差平衡阀与电动调节阀组合就是暖通空调水系统消除动态水力失调、实现动态平衡得主要设备之一。 动态压差平衡阀与电动调节阀组合既具有动态平衡功能,即能动态地平衡系统得压力波动,使流经管道得流量不受系统压力波动得影响,又具有电动调节功能,即能根据目标区域得负荷变化自动地调节开度从而调节流量值,保证目标区域得温度始终恒定在设定温度。 动态压差平衡阀与电动调节阀组合主要应用于空调箱、空气处理机组与新风机组等处。?6、一体式动态平衡电动调节阀:

相关文档
相关文档 最新文档