文档库 最新最全的文档下载
当前位置:文档库 › 支持向量机-音频信号

支持向量机-音频信号

支持向量机-音频信号
支持向量机-音频信号

ACOUSTIC FALL DETECTION

USING GAUSSIAN MIXTURE MODELS AND GMM SUPERVECTORS Xiaodan Zhuang1?,Jing Huang2,Gerasimos Potamianos2??,Mark Hasegawa-Johnson1 1Dept.of ECE,University of Illinois at Urbana-Champaign,Urbana,Illinois,USA 2IBM T.J.Watson Research Center,Yorktown Heights,New York,USA Emails:xzhuang2@https://www.wendangku.net/doc/8612757445.html,;jghg@https://www.wendangku.net/doc/8612757445.html,;gpotam@https://www.wendangku.net/doc/8612757445.html,;jhasegaw@https://www.wendangku.net/doc/8612757445.html,

ABSTRACT

We present a system that detects human falls in the home environ-ment,distinguishing them from competing noise,by using only the audio signal from a single far-?eld microphone.The proposed sys-tem models each fall or noise segment by means of a Gaussian mix-ture model(GMM)supervector,whose Euclidean distance measures the pairwise difference between audio segments.A support vector machine built on a kernel between GMM supervectors is employed to classify audio segments into falls and various types of noise.Ex-periments on a dataset of human falls,collected as part of the Netcar-ity project,show that the method improves fall classi?cation F-score to67%from59%of a baseline GMM classi?er.The approach also effectively addresses the more dif?cult fall detection problem,where audio segment boundaries are unknown.Speci?cally,we employ it to reclassify confusable segments produced by a dynamic program-ming scheme based on traditional GMMs.Such post-processing im-proves a fall detection accuracy metric by5%relative.

Index Terms—fall detection,Gaussian mixture model,GMM supervector,support vector machine

1.INTRODUCTION

Assistance to dependent people,particularly to the elderly living alone at home,has been attracting increasing attention in today’s aging societies[1].Speci?cally,one public health problem of in-terest relevant to the elderly is this of falls that often go undetected and may result in injury[2].Reliable and speedy detection of such potentially devastating events by automatic monitoring of the home is expected to be of bene?t to both elderly and caregivers.

Not surprisingly,the research community has started to explore automatic fall detection based on input from a variety of sensors in specially equipped smart home environments.Wearable accelerom-eters,cameras,and microphones have been the most commonly used such devices,giving rise to a number of initial approaches for detect-ing falls that range from single-sensory to multi-sensory and multi-modal algorithms[3]–[6].In our work,among these sensors,we are interested in far-?eld microphones due to their unobtrusiveness, easy deployment,and in general lower cost and data stream band-width compared to cameras.

Automatic detection of human falls based on far-?eld audio is of course a non-trivial problem:First,falls are inconsistent phenom-ena;for example,ten fall types are identi?ed in[3].In addition,the acoustic signature of falls is affected by human characteristics and ?Work performed during a Summer2008internship at IBM Research.

??Currently with the Institute of Informatics&Telecommunications (IIT),National Centre of Scienti?c Research“Demokritos”,Athens,Greece.the impact surface.Furthermore,falls happening in realistic envi-ronments are easily confusable with daily noise,such as dropping objects,moving chairs,closing doors,and walking steps,and may overlap with a large variety of background noise.

Initial efforts to the problem of far-?eld acoustic fall detection are reported in[4]–[6].These however mostly suffer from at least one of two shortcomings:They in general employ simple classi?-cation algorithms,thus achieving relatively low performance,or in-vestigate somewhat simple experimental setups lacking in data vari-ability with respect to the factors reported above.In this work,we attempt to address both these issues:On the algorithmic front,mo-tivated by progress in speaker identi?cation[7],we propose using a support vector machine(SVM)built on Gaussian mixture model (GMM)supervectors to distinguish falls from other competing noise. In our proposed approach,a universal background model learns the shared acoustic feature space for falls and other noise,and the super-vectors extracted from the GMMs adapted using each audio segment serve as robust summary of the acoustic signal.On the experimental front,we report results on a relatively large database of human falls, collected as part of the Netcarity Integrated Project[1].This set con-tains desirable variability of falls and other noise activity expected in realistic home environments[6].

The rest of the paper is organized as follows:Section2intro-duces the general framework for fall classi?cation and detection. Section3discusses the GMM supervectors for audio segments.Sec-tion4derives the distance between the GMM supervectors and the corresponding GMM supervector kernel used in an SVM.Experi-ments on the Netcarity fall dataset are presented in Section5,fol-lowed by a summary in Section6.

2.PROBLEM OVERVIEW

We are interested in detecting falls acoustically,pinpointing their temporal occurrence and effectively distinguishing them from other possible confusable or background noise.For this purpose,we em-ploy a dynamic programming algorithm that is based on standard GMMs of falls and of a number of noise types,resulting to a segmen-tation of the audio input.These segments can then be subsequently reclassi?ed–as done in this work–by a more complex scheme. In a simpler version of the above problem,the segments are known a-priori,in which case the problem reduces to that of classi?cation alone.The two problems are instances of the general acoustic event classi?cation and detection paradigm[8,9].

To better distinguish falls from competing noise,we choose to model falls and nine classes of noise in the home environment.These classes,depicted in Table1,are the result of a labor-intensive anno-tation effort on the Netcarity fall database(see Section5.1),taking

Table 1.Sound classes for fall classi?cation and detection.FA sound resulting from the subject falling

ST noise when the subject sits down on the chair,possibly

leading to a bit of chair movement CL noise of clapping hands

GU noise when the subject gets up from the ?oor MP noise of moving,placing,or catching an object DO noise of dropping an object on the ?oor DN noise of opening/closing doors WK noise of walking steps

MO other noise,including speech and non-speech human

voices,telephone rings and other acoustically salient noise BG background noise,usually not perceptually salient

three considerations into account:Each noise class should appear a suf?cient number of instants in the training data;should be relatively distinguishable from the others;and should help in the ultimate goal of discriminating falls from noise.

Central to this effort is the approach to audio segment modeling.Each audio segment is ?rst represented by a sequence of feature vec-tors,extracted from evenly sampled and partially overlapping time-domain Hamming windows.In particular,in this work,12percep-tual linear predictive (PLP)coef?cients of the windowed signal are extracted (over 25ms)and are augmented with the overall energy to give rise to 13-dimensional feature vectors.This process is repeated every 10ms,and it is followed by “utterance-level”cepstral mean subtraction,applied for feature normalization.

Two approaches are then used to model the distribution of these feature vectors,as schematically depicted in Figs.1and 2.The ?rst follows the traditional GMM paradigm that approximates the joint distribution of all feature vectors in each event class with a GMM.For a test audio segment,a maximum likelihood classi?er is used to obtain the hypothesized

event class.We propose to use a sec-ond approach to model audio segments,referred to as the SVM-GMM-supervector method,approximating the joint distribution of all feature vectors in each audio segment with a GMM,from which a GMM supervector is constructed as a summary of the segment.The pairwise Euclidean distances between these supervectors char-acterize the difference between the audio segments.Kernels derived from these distances are used in an SVM for classi?cation.

3.GAUSSIAN MIXTURE MODELS AND GMM

SUPERVECTORS A GMM approximates the distribution of the observed features with a Gaussian mixture density function g (z )= K k =1w k N (z ;μk ,Σk ),

Fig.1.The GMM approach to fall/noise modeling.where w k ,μk ,and Σk denote the weight,mean,and covariance ma-trix of the k th Gaussian component,and K is the total number of

such components.Covariance matrices Σk are restricted to be diag-onal for computational ef?ciency.Maximum likelihood parameters of a GMM can be obtained by using the well-known expectation-maximization (EM)algorithm.3.1.UBM-MAP

Instead of separately estimating parameters for each GMM,we can also train GMMs by adapting from a “global”GMM,known as the universal background model (UBM).The potential merits of adapt-ing GMMs from a UBM are two-fold:First,the parameters may be robustly estimated with a relatively small amount of training data.Second,there is correspondence between Gaussian components in different GMMs when these models are adapted from the same UBM.

More speci?cally,we obtain the GMMs by adapting the mean vectors of the global GMM using the maximum-a-posteriori (MAP)criterion.The mixture weights and covariance matrices are retained for simplicity and robustness of parameter estimation.MAP adapta-tion of GMMs can be implemented by applying the EM algorithm.In the E-step,we compute P r (k |z i ),namely the posterior probabil-ity of the unimodal Gaussian component k given observed feature vector z i ,as

P r (k |z i )=w k N (z i ;μk ,Σk )

K

j =1w j

N (z i ;μj ,Σj ),for i =1,...,H ,(1)

where w k ,μk ,Σk ,k ∈{1,...,K }are the UBM parameters,and

H denotes the total number of observed feature vectors.This step uses the UBM to assign each feature vector to the unimodal Gaus-sian components probabilistically.This mechanism establishes cor-respondence between the components of adapted GMMs,because the component parameters,i.e.,the means,are estimated from statis-tics obtained involving the same UBM.In the M-step,the mean of each Gaussian component is updated as

?μk =

N k N k +τE k (Z )+τ

N k +τ

μk ,

where

E k (Z )=

1k H

i =1

P r (k |z i )z i ,N k is the occupation likelihood of the observed data on the k th

Gaussian component (N k = H i =1P r (k |z i )),and τrepresents the weight placed on the prior knowledge,i.e.,the UBM means,com-pared to the observed data.In this work,τis adjusted empirically according to the amount of available training data.

Fig.2.SVM-GMM-supervector approach to fall/noise modeling.

Fig.3.GMMs(depicted as ovals)summarize audio segments using multiple unimodal Gaussians(illustrated as circles).

3.2.Summarizing Audio Segments

Feature vectors extracted from an audio segment may carry a lot of noise.We use a GMM adapted from the UBM to capture the inner structure of the ensemble of feature vectors in each audio segment, as shown in Fig.3.According to(1),the feature vectors are assigned to different unimodal Gaussian components probabilistically based on the UBM.We concatenate the adapted means of all the unimodal Gaussian components as a vector in a high dimensional space de-?ned by the UBM,each dimension roughly corresponding to one dimension in the mean vector of one particular Gaussian component in the UBM.This high-dimensional vector,called a GMM supervec-tor,serves as a summary of the audio segment.

4.GMM SUPERVECTOR SPACE

4.1.Approximating Kullback-Leibler Divergence

As detailed in Section3.2,we can summarize audio segments with supervectors constructed from GMMs adapted from the UBM.We denote two such segment GMMs as g a and g b.A natural similarity measure between these two GMMs is the Kullback-Leibler diver-

gence,

D(g a||g b)=

z

g a(z)log

g a(z)

g b(z)

dz.

The Kullback-Leibler divergence does not satisfy the conditions for a metric function,but there exists an upper bound using the log-sum inequality,

D(g a||g b)≤

K

k=1

w k D(N(z;μa k,Σk)||N(z;μb k,Σk)),

whereμa k andμb k denote the adapted means of the k th component from the segment GMMs g a and g b,respectively.Since the covari-ance matrices are shared across all adapted GMMs and the UBM, the right hand side is equal to

d(a,b)2=1

2

K

k=1

w k(μa k?μb k)TΣ?1k(μa k?μb k).

We can consider d(a,b)as the Euclidean distance between the normalized GMM supervectors in a high-dimensional feature space,

d(a,b)= φ(Z a)?φ(Z b) 2,(2)

where

φ(a)=[

w1

2

Σ?121μa1;···;

w K

2

Σ?12Kμa K].

(3)

Fig.4.Snapshot of the labeled Netcarity fall dataset(see also Table

1).Segment boundaries are omitted for simplicity.

4.2.Kernel for SVM

We use the GMM supervectors in an SVM for fall/noise classi?ca-

tion.Since there are multiple types of noise,we tackle the prob-

lem as multi-class classi?cation,implemented as binary classi?ca-

tion problems via the one-vs-one method using LibSVM[10].The

distance de?ned in(2)can be evaluated using kernel functions,as

d(a,b)=

K(a,a)?2K(a,b)+K(b,b).(4)

It is straightforward that kernel function K(a,b)=φ(a)?φ(b)

satis?es(4),whereφ(a)andφ(b)are de?ned as in(3).

5.EXPERIMENTS

5.1.The Netcarity Fall Database

Our experiments are carried out on the acoustic fall data collected as

part of European Integrated Project Netcarity[1,6].The dataset is

about7hours long,consisting of32sessions that involve13different

actors as subjects that may fall or perform other activities,as well as

additional subjects that produce noise in the background,simulating

relatively well an environment that elderly people may encounter at

home.Fig.4provides a snapshot of an acoustic signal from this

database,manually annotated.Note that we map the labels in the

Netcarity dataset to the ten classes detailed in Table1as the ground

truth.For our experiments,we split the dataset into20training,7

testing,and5held-out sessions,the latter for tuning system param-

eters.Note that the subjects in the training and held-out sessions do

not overlap with the test subjects.

5.2.Experimental Results

Our?rst experiment aims at the classi?cation of audio segments,

whose boundaries are provided by the manual database annotation.

Both the GMM baseline and the proposed SVM-GMM-supervector

approach are employed for this purpose,implemented using512

Gaussian components for each GMM.To compare their perfor-

mance,we report results based on two metrics:Classi?cation accu-

racy on all ten classes of Table1,re?ecting the overall performance

of the classi?ers,and the F-score of the fall segments,re?ecting

the capability to distinguish falls from all other noise.Results of

this experiment are illustrated in Fig.5.It is clear that both metrics

improve signi?cantly for the proposed approach over the GMM

baseline.In particular,the F-score improves by about12%relative.

The second experiment focuses on the detection of falls over en-

tire database sessions.To measure performance we use the acoustic

event detection accuracy metric(AED-ACC),de?ned in[9]as the

harmonic mean between precision and recall.In its calculation,cor-

rectness is de?ned as the temporal center of either a hypothesized

Fig.5.Fall classi?cation results on the Netcarity test dataset. fall segment or a reference fall segment located within the span of the other[8,9].In our experiment,we further require that all pro-posed fall segments do not exceed a duration of5seconds,so that the system output can be used for timely response to falls.Any fall segments that exceed5seconds are removed from the output before scoring.As already mentioned earlier,to perform detection we em-ploy a dynamic programming algorithm with GMM audio segment modeling.The output of this process can be further re?ned by apply-ing the SVM-GMM-supervector approach to reclassify the resulting audio segments.Here,we limit this post-processing to segments with perceptually confusable labels.These are chosen to be falls (FA),dropping objects(DO),getting up(GU),and walking(WK). Results of this experiment are illustrated in Fig.6.It is clear that the proposed reclassi?cation approach using SVM-GMM supervec-tors improves performance,resulting in a relative5%improvement in the AED-ACC metric.

6.SUMMARY

In this paper,we presented a classi?cation and detection system of human falls based on input from a single far-?eld microphone.We proposed modeling each fall or noise segment using a GMM super-vector and employing an SVM built on a GMM supervector kernel to classify audio segments into falls and various types of noise.We reported experiments on an appropriate dataset,containing falls per-formed by multiple subjects interspersed with other characteristic activities and noise expected in realistic home environments.Our ex-periments demonstrated that the proposed fall/noise modeling boosts classi?cation performance,compared to a standard event class GMM classi?er.The proposed approach also effectively improved fall de-tection accuracy,when applied as a post-processing stage to reclas-sify confusable labels at the output of dynamic programming using the GMM classi?er.

Recent work in speaker veri?cation applications has shown fur-ther improvement using new classi?ers based on GMM supervec-tors,compared to approaches similar to the SVM-GMM-supervector method presented in this paper[11].This suggests the possibility of further improvements in fall detection based on GMM supervectors.

7.ACKNOWLEDGEMENTS

This work was partially funded by the European Commission,as part of Integrated Project Netcarity.We would like to thank the authors of[6]from three Netcarity partner sites in Italy,at the University of Pavia,CNR-IMM,and FBK-irst,for the design and collection of the human fall dataset.In addition,IBM colleagues Vit Libal and Larry Sansone have assisted with database organization and

annotation.

Fig.6.Fall detection results on the Netcarity test dataset.

8.REFERENCES

[1]Netcarity–Ambient Technology to Support Older People at

Home.[Online]https://www.wendangku.net/doc/8612757445.html,

[2]S.Sadigh, A.Reimers,R.Andersson,and https://www.wendangku.net/doc/8612757445.html,?amme,

“Falls and fall-related injuries among the elderly:A survey of residential-care facilities in a Swedish municipality,”https://www.wendangku.net/doc/8612757445.html,-munity Health,29(2):129–140,2004.

[3]N.Noury,A.Fleury,P.Rumeau,A.K.Bourke,G.′https://www.wendangku.net/doc/8612757445.html,ighin,

V.Rialle,and J.E.Lundy,“Fall detection–principles and methods,”In Proc.Int.Conf.of the IEEE Engineering in Medicine and Biology Soc.,Lyon,France,pp.1663–1666, 2007.

[4] B.U.T¨o reyin,Y.Dedeo?g lu,and A.E.C?etin,“HMM based

falling person detection using both audio and video,”In Computer Vision in Human-Computer Interaction(HCI/ICCV 2005),N.Sebe,M.S.Lew,and T.S.Huang(Eds.),Springer-Verlag,LNCS3766,pp.211–220,2005.

[5] A.Fleury,M.Vacher,H.Glasson,J.-F.Serignat,and N.Noury,

“Data fusion in health smart home:Preliminary individual evaluation of two families of sensors,”In Proc.Int.Conf.of the Int.Soc.for Gerontechnology,Pisa,Italy,2008.

[6]M.Grassi,A.Lombardi,G.Rescio,P.Malcovati,A.Leone,

G.Diraco,C.Distante,P.Siciliano,M.Malfatti,L.Gonzo,

V.Libal,J.Huang,and G.Potamianos,“A hardware-software framework for high-reliability people fall detection,”In Proc.

IEEE Conf.on Sensors,Lecce,Italy,pp.1328–1331,2008. [7]W.M.Campbell,D.E.Sturim,and D.A.Reynolds,“Support

vector machines using GMM supervectors for speaker veri?-cation,”IEEE Signal Process.Letters,13(5):308–311,2006.

[8] A.Temko,R.Malkin,C.Zieger,D.Macho,C.Nadeu,and

M.Omologo,“CLEAR evaluation of acoustic event detection and classi?cation systems,”In Multimodal Technologies for Perception of Humans(CLEAR2006),R.Stiefelhagen and J.

Garofolo(Eds.),Springer-Verlag,LNCS4122,pp.311–322, 2007.

[9]R.Stiefelhagen,K.Bernardin,R.Bowers,R.Travis Rose,M.

Michel,and J.Garofolo,“The CLEAR2007evaluation,”In Multimodal Technologies for Perception of Humans(CLEAR 2007and RT2007),R.Stiefelhagen,R.Bowers,and J.Fiscus (Eds.),Springer-Verlag,LNCS4625,pp.3–34,2008. [10] C.-C.Chang and C.-J.Lin,LIBSVM:A Library for Support

Vector Machines.[Online]

https://www.wendangku.net/doc/8612757445.html,.tw/~cjlin/libsvm [11]R.Dehak,N.Dehak,P.Kenny,and P.Dumouchel,“Linear and

non linear kernel GMM supervector machines for speaker ver-i?cation,”In Proc.Interspeech,Antwerp,Belgium,pp.302–305,2007.

(完整word版)支持向量机(SVM)原理及应用概述分析

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

支持向量回归简介

支持向量回归简介 人类通过学习,从已知的事实中分析、总结出规律,并且根据规律对未来 的现象或无法观测的现象做出正确的预测和判断,即获得认知的推广能力。在对智能机器的研究当中,人们也希望能够利用机器(计算机)来模拟人的良好学习能力,这就是机器学习问题。基于数据的机器学习是现代智能技术中的重要方面,机器学习的目的是通过对已知数据的学习,找到数据内在的相互依赖关系,从而获得对未知数据的预测和判断能力,在过去的十几年里,人工神经网络以其强大的并行处理机制、任意函数的逼近能力,学习能力以及自组织和自适应能力等在模式识别、预测和决策等领域得到了广泛的应用。但是神经网络受到网络结构复杂性和样本复杂性的影响较大,容易出现“过学习”或低泛化能力。特别是神经网络学习算法缺乏定量的分析与完备的理论基础支持,没有在本质上推进学习过程本质的认识。 现有机器学习方法共同的重要理论基础之一是统计学。传统统计学研究的是样本数目趋于无穷大时的渐近理论,现有学习方法也多是基于此假设。但在实际问题中,样本数往往是有限的,因此一些理论上很优秀的学习方法实际中表现却可能不尽人意。 与传统统计学相比, 统计学习理论(Statistical Learning Theory 或SLT ) 是一种专门研究小样本情况下机器学习规律的理论Vladimir N. Vapnik 等人从六、七十年代开始致力于此方面研究,到九十年代中期,随着其理论的不断发展和成熟[17] ,也由于神经网络等学习方法在理论上缺乏实 质性进展, 统计学习理论开始受到越来越广泛的重视。 统计学习理论是建立在一套较坚实的理论基础之上的,为解决有限样本学习问题提供了一个统一的框架。它能将很多现有方法纳入其中,有望帮助解决许多原来难以解决的问题(比如神经网络结构选择问题、局部极小点问题)等;同时, 在这一理论基础上发展了一种新的通用学习方法—支持向量机(Support Vector Machine 或SVM ) ,它已初步表现出很多优于已有方法的性能。一些学者认为,SVM 正在成为继神经网络研究之后新的研究热点,并将有力地推动机 器学习理论和技术的发展。 支持向量机(SVM )是一种比较好的实现了结构风险最小化思想的方法。它的机器学习策略是结构风险最小化原则为了最小化期望风险,应同时最小化经验风险和置信范围) 支持向量机方法的基本思想: (1 )它是专门针对有限样本情况的学习机器,实现的是结构风险最小化:在对给定的数据逼近的精度与逼近函数的复杂性之间寻求折衷,以期获得最好的推广能力; (2 )它最终解决的是一个凸二次规划问题,从理论上说,得到的将是全局最优解,解决了在神经网络方法中无法避免的局部极值问题; (3 )它将实际问题通过非线性变换转换到高维的特征空间,在高维空间中构造线性决策函数来实现原空间中的非线性决策函数,巧妙地解决了维数问题,并保证了有较好的推广能力,而且算法复杂度与样本维数无关。 目前,SVM 算法在模式识别、回归估计、概率密度函数估计等方面都有应用,且算法在效率与精度上已经超过传统的学习算法或与之不相上下。

机器学习SVM(支持向量机)实验报告

实验报告 实验名称:机器学习:线性支持向量机算法实现 学员:张麻子学号: *********** 培养类型:硕士年级: 专业:所属学院:计算机学院 指导教员: ****** 职称:副教授 实验室:实验日期:

一、实验目的和要求 实验目的:验证SVM(支持向量机)机器学习算法学习情况 要求:自主完成。 二、实验内容和原理 支持向量机(Support V ector Machine, SVM)的基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大。SVM是用来解决二分类问题的有监督学习算法。通过引入了核方法之后SVM也可以用来解决非线性问题。 但本次实验只针对线性二分类问题。 SVM算法分割原则:最小间距最大化,即找距离分割超平面最近的有效点距离超平面距离和最大。 对于线性问题: 假设存在超平面可最优分割样本集为两类,则样本集到超平面距离为: 需压求取: 由于该问题为对偶问题,可变换为: 可用拉格朗日乘数法求解。 但由于本实验中的数据集不可以完美的分为两类,即存在躁点。可引入正则化参数C,用来调节模型的复杂度和训练误差。

作出对应的拉格朗日乘式: 对应的KKT条件为: 故得出需求解的对偶问题: 本次实验使用python 编译器,编写程序,数据集共有270个案例,挑选其中70%作为训练数据,剩下30%作为测试数据。进行了两个实验,一个是取C值为1,直接进行SVM训练;另外一个是利用交叉验证方法,求取在前面情况下的最优C值。 三、实验器材 实验环境:windows7操作系统+python 编译器。 四、实验数据(关键源码附后) 实验数据:来自UCI 机器学习数据库,以Heart Disease 数据集为例。 五、操作方法与实验步骤 1、选取C=1,训练比例7:3,利用python 库sklearn 下的SVM() 函数进

支持向量机的matlab代码

支持向量机的matlab代码 Matlab中关于evalin帮助: EVALIN(WS,'expression') evaluates 'expression' in the context of the workspace WS. WS can be 'caller' or 'base'. It is similar to EVAL except that you can control which workspace the expression is evaluated in. [X,Y,Z,...] = EVALIN(WS,'expression') returns output arguments from the expression. EVALIN(WS,'try','catch') tries to evaluate the 'try' expression and if that fails it evaluates the 'catch' expression (in the current workspace). 可知evalin('base', 'algo')是对工作空间base中的algo求值(返回其值)。 如果是7.0以上版本 >>edit svmtrain >>edit svmclassify >>edit svmpredict function [svm_struct, svIndex] = svmtrain(training, groupnames, varargin) %SVMTRAIN trains a support vector machine classifier % % SVMStruct = SVMTRAIN(TRAINING,GROUP) trains a support vector machine % classifier using data TRAINING taken from two groups given by GROUP. % SVMStruct contains information about the trained classifier that is % used by SVMCLASSIFY for classification. GROUP is a column vector of % values of the same length as TRAINING that defines two groups. Each % element of GROUP specifies the group the corresponding row of TRAINING % belongs to. GROUP can be a numeric vector, a string array, or a cell % array of strings. SVMTRAIN treats NaNs or empty strings in GROUP as % missing values and ignores the corresponding rows of TRAINING. % % SVMTRAIN(...,'KERNEL_FUNCTION',KFUN) allows you to specify the kernel % function KFUN used to map the training data into kernel space. The % default kernel function is the dot product. KFUN can be one of the % following strings or a function handle: % % 'linear' Linear kernel or dot product % 'quadratic' Quadratic kernel % 'polynomial' Polynomial kernel (default order 3) % 'rbf' Gaussian Radial Basis Function kernel % 'mlp' Multilayer Perceptron kernel (default scale 1) % function A kernel function specified using @,

支持向量机及支持向量回归简介

3.支持向量机(回归) 3.1.1 支持向量机 支持向量机(SVM )是美国Vapnik 教授于1990年代提出的,2000年代后成为了很受欢迎的机器学习方法。它将输入样本集合变换到高维空间使得其分离性状况得到改善。它的结构酷似三层感知器,是构造分类规则的通用方法。SVM 方法的贡献在于,它使得人们可以在非常高维的空间中构造出好的分类规则,为分类算法提供了统一的理论框架。作为副产品,SVM 从理论上解释了多层感知器的隐蔽层数目和隐节点数目的作用,因此,将神经网络的学习算法纳入了核技巧范畴。 所谓核技巧,就是找一个核函数(,)K x y 使其满足(,)((),())K x y x y φφ=,代 替在特征空间中内积(),())x y φφ(的计算。因为对于非线性分类,一般是先找一个非线性映射φ将输入数据映射到高维特征空间,使之分离性状况得到很大改观,此时在该特征空间中进行分类,然后再返会原空间,就得到了原输入空间的非线性分类。由于内积运算量相当大,核技巧就是为了降低计算量而生的。 特别, 对特征空间H 为Hilbert 空间的情形,设(,)K x y 是定义在输入空间 n R 上的二元函数,设H 中的规范正交基为12(),(),...,(), ...n x x x φφφ。如果 2 2 1 (,)((),()), {}k k k k k K x y a x y a l φφ∞ == ∈∑ , 那么取1 ()() k k k x a x φφ∞ ==∑ 即为所求的非线性嵌入映射。由于核函数(,)K x y 的定义 域是原来的输入空间,而不是高维的特征空间。因此,巧妙地避开了计算高维内 积 (),())x y φφ(所需付出的计算代价。实际计算中,我们只要选定一个(,)K x y ,

支持向量机非线性回归通用MATLAB源码

支持向量机非线性回归通用MA TLAB源码 支持向量机和BP神经网络都可以用来做非线性回归拟合,但它们的原理是不相同的,支持向量机基于结构风险最小化理论,普遍认为其泛化能力要比神经网络的强。大量仿真证实,支持向量机的泛化能力强于BP网络,而且能避免神经网络的固有缺陷——训练结果不稳定。本源码可以用于线性回归、非线性回归、非线性函数拟合、数据建模、预测、分类等多种应用场合,GreenSim团队推荐您使用。 function [Alpha1,Alpha2,Alpha,Flag,B]=SVMNR(X,Y,Epsilon,C,TKF,Para1,Para2) %% % SVMNR.m % Support Vector Machine for Nonlinear Regression % All rights reserved %% % 支持向量机非线性回归通用程序 % GreenSim团队原创作品,转载请注明 % GreenSim团队长期从事算法设计、代写程序等业务 % 欢迎访问GreenSim——算法仿真团队→https://www.wendangku.net/doc/8612757445.html,/greensim % 程序功能: % 使用支持向量机进行非线性回归,得到非线性函数y=f(x1,x2,…,xn)的支持向量解析式,% 求解二次规划时调用了优化工具箱的quadprog函数。本函数在程序入口处对数据进行了% [-1,1]的归一化处理,所以计算得到的回归解析式的系数是针对归一化数据的,仿真测 % 试需使用与本函数配套的Regression函数。 % 主要参考文献: % 朱国强,刘士荣等.支持向量机及其在函数逼近中的应用.华东理工大学学报 % 输入参数列表 % X 输入样本原始数据,n×l的矩阵,n为变量个数,l为样本个数 % Y 输出样本原始数据,1×l的矩阵,l为样本个数 % Epsilon ε不敏感损失函数的参数,Epsilon越大,支持向量越少 % C 惩罚系数,C过大或过小,泛化能力变差 % TKF Type of Kernel Function 核函数类型 % TKF=1 线性核函数,注意:使用线性核函数,将进行支持向量机的线性回归 % TKF=2 多项式核函数 % TKF=3 径向基核函数 % TKF=4 指数核函数 % TKF=5 Sigmoid核函数 % TKF=任意其它值,自定义核函数 % Para1 核函数中的第一个参数 % Para2 核函数中的第二个参数 % 注:关于核函数参数的定义请见Regression.m和SVMNR.m内部的定义 % 输出参数列表 % Alpha1 α系数 % Alpha2 α*系数 % Alpha 支持向量的加权系数(α-α*)向量

支持向量机的实现

模式识别课程大作业报告——支持向量机(SVM)的实现 姓名: 学号: 专业: 任课教师: 研究生导师: 内容摘要

支持向量机是一种十分经典的分类方法,它不仅是模式识别学科中的重要内容,而且在图像处理领域中得到了广泛应用。现在,很多图像检索、图像分类算法的实现都以支持向量机为基础。本次大作业的内容以开源计算机视觉库OpenCV为基础,编程实现支持向量机分类器,并对标准数据集进行测试,分别计算出训练样本的识别率和测试样本的识别率。 本报告的组织结构主要分为3大部分。第一部分简述了支持向量机的原理;第二部分介绍了如何利用OpenCV来实现支持向量机分类器;第三部分给出在标准数据集上的测试结果。 一、支持向量机原理概述

在高维空间中的分类问题实际上是寻找一个超平面,将两类样本分开,这个超平面就叫做分类面。两类样本中离分类面最近的样本到分类面的距离称为分类间隔。最优超平面指的是分类间隔最大的超平面。支持向量机实质上提供了一种利用最优超平面进行分类的方法。由最优分类面可以确定两个与其平行的边界超平面。通过拉格朗日法求解最优分类面,最终可以得出结论:实际决定最优分类面位置的只是那些离分类面最近的样本。这些样本就被称为支持向量,它们可能只是训练样本中很少的一部分。支持向量如图1所示。 图1 图1中,H是最优分类面,H1和H2别是两个边界超平面。实心样本就是支持向量。由于最优超平面完全是由这些支持向量决定的,所以这种方法被称作支持向量机(SVM)。 以上是线性可分的情况,对于线性不可分问题,可以在错分样本上增加一个惩罚因子来干预最优分类面的确定。这样一来,最优分类面不仅由离分类面最近的样本决定,还要由错分的样本决定。这种情况下的支持向量就由两部分组成:一部分是边界支持向量;另一部分是错分支持向量。 对于非线性的分类问题,可以通过特征变换将非线性问题转化为新空间中的线性问题。但是这样做的代价是会造成样本维数增加,进而导致计算量急剧增加,这就是所谓的“维度灾难”。为了避免高维空间中的计算,可以引入核函数的概念。这样一来,无论变换后空间的维数有多高,这个新空间中的线性支持向量机求解都可以在原空间通过核函数来进行。常用的核函数有多项式核、高斯核(径向基核)、Sigmoid函数。 二、支持向量机的实现 OpenCV是开源计算机视觉库,它在图像处理领域得到了广泛应用。OpenCV 中包含许多计算机视觉领域的经典算法,其中的机器学习代码部分就包含支持向量机的相关内容。OpenCV中比较经典的机器学习示例是“手写字母分类”。OpenCV 中给出了用支持向量机实现该示例的代码。本次大作业的任务是研究OpenCV中的支持向量机代码,然后将其改写为适用于所有数据库的通用程序,并用标准数据集对算法进行测试。本实验中使用的OpenCV版本是,实验平台为Visual

MATLAB-智能算法30个案例分析-终极版(带目录)

MATLAB 智能算法30个案例分析(终极版) 1 基于遗传算法的TSP算法(王辉) 2 基于遗传算法和非线性规划的函数寻优算法(史峰) 3 基于遗传算法的BP神经网络优化算法(王辉) 4 设菲尔德大学的MATLAB遗传算法工具箱(王辉) 5 基于遗传算法的LQR控制优化算法(胡斐) 6 遗传算法工具箱详解及应用(胡斐) 7 多种群遗传算法的函数优化算法(王辉) 8 基于量子遗传算法的函数寻优算法(王辉) 9 多目标Pareto最优解搜索算法(胡斐) 10 基于多目标Pareto的二维背包搜索算法(史峰) 11 基于免疫算法的柔性车间调度算法(史峰) 12 基于免疫算法的运输中心规划算法(史峰) 13 基于粒子群算法的函数寻优算法(史峰) 14 基于粒子群算法的PID控制优化算法(史峰) 15 基于混合粒子群算法的TSP寻优算法(史峰) 16 基于动态粒子群算法的动态环境寻优算法(史峰) 17 粒子群算法工具箱(史峰) 18 基于鱼群算法的函数寻优算法(王辉) 19 基于模拟退火算法的TSP算法(王辉) 20 基于遗传模拟退火算法的聚类算法(王辉) 21 基于模拟退火算法的HEV能量管理策略参数优化(胡斐)

22 蚁群算法的优化计算——旅行商问题(TSP)优化(郁磊) 23 基于蚁群算法的二维路径规划算法(史峰) 24 基于蚁群算法的三维路径规划算法(史峰) 25 有导师学习神经网络的回归拟合——基于近红外光谱的汽油辛烷值预测(郁磊) 26 有导师学习神经网络的分类——鸢尾花种类识别(郁磊) 27 无导师学习神经网络的分类——矿井突水水源判别(郁磊) 28 支持向量机的分类——基于乳腺组织电阻抗特性的乳腺癌诊断(郁磊) 29 支持向量机的回归拟合——混凝土抗压强度预测(郁磊) 30 极限学习机的回归拟合及分类——对比实验研究(郁磊) 智能算法是我们在学习中经常遇到的算法,主要包括遗传算法,免疫算法,粒子群算法,神经网络等,智能算法对于很多人来说,既爱又恨,爱是因为熟练的掌握几种智能算法,能够很方便的解决我们的论坛问题,恨是因为智能算法感觉比较“玄乎”,很难理解,更难用它来解决问题。 因此,我们组织了王辉,史峰,郁磊,胡斐四名高手共同写作MATLAB智能算法,该书包含了遗传算法,免疫算法,粒子群算法,鱼群算法,多目标pareto算法,模拟退火算法,蚁群算法,神经网络,SVM等,本书最大的特点在于以案例为导向,每个案例针对一

支持向量机原理及应用(DOC)

支持向量机简介 摘要:支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以求获得最好的推广能力 。我们通常希望分类的过程是一个机器学习的过程。这些数据点是n 维实空间中的点。我们希望能够把这些点通过一个n-1维的超平面分开。通常这个被称为线性分类器。有很多分类器都符合这个要求。但是我们还希望找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大间隔超平面。如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。 关键字:VC 理论 结构风险最小原则 学习能力 1、SVM 的产生与发展 自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面,但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解

(完整版)支持向量回归机

3.3 支持向量回归机 SVM 本身是针对经典的二分类问题提出的,支持向量回归机(Support Vector Regression ,SVR )是支持向量在函数回归领域的应用。SVR 与SVM 分类有以下不同:SVM 回归的样本点只有一类,所寻求的最优超平面不是使两类样本点分得“最开”,而是使所有样本点离超平面的“总偏差”最小。这时样本点都在两条边界线之间,求最优回归超平面同样等价于求最大间隔。 3.3.1 SVR 基本模型 对于线性情况,支持向量机函数拟合首先考虑用线性回归函数 b x x f +?=ω)(拟合n i y x i i ,...,2,1),,(=,n i R x ∈为输入量,R y i ∈为输出量,即 需要确定ω和b 。 图3-3a SVR 结构图 图3-3b ε不灵敏度函数 惩罚函数是学习模型在学习过程中对误差的一种度量,一般在模型学习前己经选定,不同的学习问题对应的损失函数一般也不同,同一学习问题选取不同的损失函数得到的模型也不一样。常用的惩罚函数形式及密度函数如表3-1。 表3-1 常用的损失函数和相应的密度函数 损失函数名称 损失函数表达式()i c ξ% 噪声密度 ()i p ξ ε -不敏感 i εξ 1 exp()2(1) i εξε-+ 拉普拉斯 i ξ 1 exp()2 i ξ- 高斯 212 i ξ 21 exp()22i ξπ -

标准支持向量机采用ε-不灵敏度函数,即假设所有训练数据在精度ε下用线性函数拟合如图(3-3a )所示, ** ()()1,2,...,,0 i i i i i i i i y f x f x y i n εξεξξξ-≤+??-≤+=??≥? (3.11) 式中,*,i i ξξ是松弛因子,当划分有误差时,ξ,*i ξ都大于0,误差不存在取0。这时,该问题转化为求优化目标函数最小化问题: ∑=++?=n i i i C R 1 ** )(21 ),,(ξξωωξξω (3.12) 式(3.12)中第一项使拟合函数更为平坦,从而提高泛化能力;第二项为减小误差;常数0>C 表示对超出误差ε的样本的惩罚程度。求解式(3.11)和式(3.12)可看出,这是一个凸二次优化问题,所以引入Lagrange 函数: * 11 ****1 1 1()[()] 2[()]() n n i i i i i i i i n n i i i i i i i i i i L C y f x y f x ωωξξαξεαξεξγξγ=====?++-+-+-+-+-+∑∑∑∑ (3.13) 式中,α,0*≥i α,i γ,0*≥i γ,为Lagrange 乘数,n i ,...,2,1=。求函数L 对ω, b ,i ξ,*i ξ的最小化,对i α,*i α,i γ,*i γ的最大化,代入Lagrange 函数得到对偶形式,最大化函数:

支持向量机matlab实现源代码知识讲解

支持向量机m a t l a b 实现源代码

edit svmtrain >>edit svmclassify >>edit svmpredict function [svm_struct, svIndex] = svmtrain(training, groupnames, varargin) %SVMTRAIN trains a support vector machine classifier % % SVMStruct = SVMTRAIN(TRAINING,GROUP) trains a support vector machine % classifier using data TRAINING taken from two groups given by GROUP. % SVMStruct contains information about the trained classifier that is % used by SVMCLASSIFY for classification. GROUP is a column vector of % values of the same length as TRAINING that defines two groups. Each % element of GROUP specifies the group the corresponding row of TRAINING % belongs to. GROUP can be a numeric vector, a string array, or a cell % array of strings. SVMTRAIN treats NaNs or empty strings in GROUP as % missing values and ignores the corresponding rows of TRAINING. % % SVMTRAIN(...,'KERNEL_FUNCTION',KFUN) allows you to specify the kernel % function KFUN used to map the training data into kernel space. The % default kernel function is the dot product. KFUN can be one of the % following strings or a function handle: % % 'linear' Linear kernel or dot product % 'quadratic' Quadratic kernel % 'polynomial' Polynomial kernel (default order 3) % 'rbf' Gaussian Radial Basis Function kernel % 'mlp' Multilayer Perceptron kernel (default scale 1) % function A kernel function specified using @, % for example @KFUN, or an anonymous function % % A kernel function must be of the form % % function K = KFUN(U, V) % % The returned value, K, is a matrix of size M-by-N, where U and V have M % and N rows respectively. If KFUN is parameterized, you can use % anonymous functions to capture the problem-dependent parameters. For % example, suppose that your kernel function is % % function k = kfun(u,v,p1,p2) % k = tanh(p1*(u*v')+p2); % % You can set values for p1 and p2 and then use an anonymous function: % @(u,v) kfun(u,v,p1,p2).

支持向量机理论与应用研究综述_张博洋

第19期2015年10月No.19October,2015 无线互联科技 Wireless Internet Technology 支持向量机(Support Vector Machine,SVM)是通过分析统计理论基础上形成的模式分类方法。上述方式在实际实施的时候,依据最小化风险的基本原则有效增加系统的泛化作用,也是一种为了得到最小误差实施的决策有限训练样中的独立测试集,能够适当分析和解决学习问题、选择模型问题、维数灾难问题等。研究SVM主要就是分析支持向量机自身性质,此外还分析提高应用支持向量机的广度和深度,在文本分类、模式分类、分析回归、基因分类、识别手写字符、处理图像等方面得到应用。1 支持向量机的原理分析1.1 结构风险最小化 依据能够应用的有限信息样本,不能合理计算分析期望风险,所以,传统方式应用主要是经验风险最小化(ERM)标准, 利用样本对风险进行定义: 基于统计学理论分析函数集以及实际经验风险的关系,也就是推广性的界。总结分析上述问题,能够得到实际风险 和经验风险之间概率1-符合以下条件关系: 其中l是训练集样本数,h为函数集VC维,体现高低复杂 性,从上述理论基础可以发现,通过两部分构成学习机实际风险:一是置信范围;二是经验风险也就是训练误差。机器学习的时候不仅需要经验风险,还要尽可能缩小VC维符合置信范围,保证能够获得实际比较小的风险,实际上就是结构风险最小化SRM (Structure Risk Minimization)原则[1]。1.2 支持向量机 支持向量机实际上从最优化线性分析分类超平面形成技术,分析情况的时候,最基本理念就是2类线性。支持向量机学习的主要目的就是能够发现最优超平面,不仅需要正确分开2类样本,还能够具备最大的分类间隔。分类间隔就是说距离超平面最近的2类分类样本,并且可以与2类分类平面间距平行。分析线性分类问题,假设T是训练集: {(x 1,y 2),...,(x l ,y l )}∈(X×Y)l ,其中x i ∈x=R n ,yi ∈y={-1,1},i=1,2,...,l。假设(ωx)+b=0是超平面,超平面和训练集之间的集合间距就是1/ω。可以通过以下方式找到最大间隔超平面问题中的原始优化问题: b w min )(ωτ=1/2ω2 , S.t. y i ((ωx i )+b)≥1,i=1,...,l 利用Wolfe对偶定理,能够等价原始最优化问题得到相 关对偶问题: α≥0,i=1,...,l, 此时能够得到最优解就是引入松弛变量以后能够得到等价对偶问 题: 其中,C (C>0)是惩罚因子。1.3 核函数 很多不可分线性问题,在某个高位特征空间中合理筛选符合分类样本情况的非线性变换映射,确保能够得到高维空间目标样本线性可分。依据上述方式进行计算的时候,仅仅只是计算训练样本内积,需要依据原空间来实现函数,不需要分析变换形式,依据泛函基本理论,一种核函数K (x,x /)需要充分符合Mercer ,与某空间变化内积对应。 假设对应变化核函数是K (x,x /),K (x,x /)=(φ(x),φ(x /)),依据之前分析的原始对偶问题,得到相应的决策函数就是: f (x)=sgn *) ),(*(1 b i x x i K y i l i +∑=α,有3种常见的核函数,一是径向有机函数(RBF) : 二是多项式核函数: 作者简介:张博洋(1990-),男,天津,硕士研究生;研究方向:数据挖掘。 支持向量机理论与应用研究综述 张博洋 (北京交通大学 计算机与信息技术学院,北京 100044) 摘 要:文章研究支持向量机技术,分析支持向量机的运行基本原理,研究支持向量机技术中的多类问题和选择核函数,并 且从人脸检测、文本分类、处理图像、识别手写字符等方面合理分析支持向量机,为进一步应用和发展支持向量机技术提供依据和保证。关键词:支持向量机;理论;应用;综述

matlab四种支持向量机工具箱

matlab四种支持向量机工具箱 [b]使用要点:[/b] 应研学论坛<<人工智能与模式识别>>版主magic_217之约,写一个关于针对初学者的<<四种支持向量机工具箱>>的详细使用说明。同时也不断有网友向我反映看不懂我的源代码,以及询问如何将该工具箱应用到实际数据分析等问题,其中有相当一部分网友并不了解模式识别的基本概念,就急于使用这个工具箱。本文从模式识别的基本概念谈起,过渡到神经网络模式识别,逐步引入到这四种支持向量机工具箱的使用。 本文适合没有模式识别基础,而又急于上手的初学者。作者水平有限,欢迎同行批评指正! [1]模式识别基本概念 模式识别的方法有很多,常用有:贝叶斯决策、神经网络、支持向量机等等。特别说明的是,本文所谈及的模式识别是指“有老师分类”,即事先知道训练样本所属的类别,然后设计分类器,再用该分类器对测试样本进行识别,比较测试样本的实际所属类别与分类器输出的类别,进而统计正确识别率。正确识别率是反映分类器性能的主要指标。 分类器的设计虽然是模式识别重要一环,但是样本的特征提取才是模式识别最关键的环节。试想如果特征矢量不能有效地描述原样本,那么即使分类设计得再好也无法实现正确分类。工程中我们所遇到的样本一般是一维矢量,如:语音信号,或者是二维矩阵,如:图片等。特征提取就是将一维矢量或二维矩阵转化成一个维数比较低的特征矢量,该特征矢量用于分类器的输入。关于特征提取,在各专业领域中也是一个重要的研究方向,如语音信号的谐振峰特征提取,图片的PCA特征提取等等。 [2]神经网络模式识别 神经网络模式识别的基本原理是,神经网络可以任意逼近一个多维输入输出函数。以三类分类:I、II、III为例,神经网络输入是样本的特征矢量,三类样本的神经网络输出可以是[1;0;0]、[0;1;0]、[0;0;1],也可以是[1;-1;-1]、[-1;1;-1]、[-1;-1;1]。将所有样本中一部分用来训练网络,另外一部分用于测试输出。通常情况下,正确分类的第I类样本的测试输出并不是[1;0;0]或是[1;-1;-1],而是如 [0.1;0;-0.2]的输出。也是就说,认为输出矢量中最大的一个分量是1,其它分量是0或是-1就可以了。 [3]支持向量机的多类分类 支持向量机的基本理论是从二类分类问题提出的。我想绝大部分网友仅着重于理解二类分类问题上了,我当初也是这样,认识事物都有一个过程。二类分类的基本原理固然重要,我在这里也不再赘述,很多文章和书籍都有提及。我觉得对于工具箱的使用而言,理解如何实现从二类分类到多类分类的过渡才是最核心的内容。下面我仅以1-a-r算法为例,解释如何由二类分类器构造多类分类器。二类支持向量机分类器的输出为[1,-1],当面对多类情况时,就需要把多类分类器分解成多个二类分类器。在第一种工具箱LS_SVMlab中,文件Classification_LS_SVMlab.m中实现了三类分类。训练与测试样本分别为n1、n2,它们是3 x 15的矩阵,即特征矢量是三维,训练与测试样本数目均是15;由于是三类分类,所以训练与测试目标x1、x2的每一分量可以是1、2或是3,

Matlab8个例子

1、囧 function happynewyear axis off; set(gcf,'menubar','none','toolbar','none'); for k=1:20 h=text(rand,rand,... ['\fontsize{',num2str(unifrnd(20,50)),'}\fontname {隶书} 新年快乐'],... 'color',rand(1,3),'Rotation',360 * rand); pause(0.5) End 2、小猫进洞 function t=cat_in_holl(n) t=zeros(1,n); for k=1:n c=unifdnd(3,1); while c~=1 if c==2 t(k)=t(k)+4; else t(k)=t(k)+6; end c=unifdnd(3,1); end t(k)=t(k)+2; End

3、 Slow function example2_3_6s tic;A=unidrnd(100,10,7); B=zeros(10,3); for m=1:10 a=A(m,:); b=[4,6,8]; for ii=1:3 dd=a(a==b(ii)); if isempty(dd)==0 b(ii)=0; end end B(m,:)=b; toc end A,B Fast function example2_3_6fast2 clear A = unidrnd(100,1000000,7); B = repmat([4,6,8],1000000,1); tic;C = [any(AA == 4,2) any(AA == 6,2) any(AA == 8,2)]; B(C) = 0; Toc 4、随机行走法 function [mx,minf]=randwalk(f,x,lamda,epsilon,N) %随机行走法求函数的极小值。输入f为所求函数的句柄, %x为初始值。lamda为步长。epsilon为控制lamda的减小的阈值,即lamda 减小到epsilon时 %迭代停止。

支持向量机(SVM)原理及应用概述

东北大学 研究生考试试卷 考试科目:信号处理的统计分析方法 课程编号: 09601513 阅卷人: 刘晓志 考试日期: 2012年11月07日 姓名:赵亚楠 学号: 1001236 注意事项 1.考前研究生将上述项目填写清楚.

2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交 研究生院培养办公室,专业课成绩单与试卷交各学院,各学院把成 绩单交研究生院培养办公室. 东北大学研究生院培养办公室 支持向量机(SVM)原理及应用 目录 一、SVM的产生与发展 (3) 二、支持向量机相关理论 (4) (一)统计学习理论基础 (4) (二)SVM原理 (4) 1.最优分类面和广义最优分类面 (5) 2.SVM的非线性映射 (7)

3.核函数 (8) 三、支持向量机的应用研究现状 (9) (一)人脸检测、验证和识别 (10) (二)说话人/语音识别 (10) (三)文字/手写体识别 (11) (四)图像处理 (11) (五)其他应用研究 (12) 四、结论和讨论 (12) 支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目 标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即

支持向量机matlab实例及理论_20131201

支持向量机matlab分类实例及理论 线性支持向量机可对线性可分的样本群进行分类,此时不需要借助于核函数就可较为理想地解决问题。非线性支持向量机将低维的非线性分类问题转化为高维的线性分类问题,然后采用线性支持向量机的求解方法求解。此时需要借助于核函数,避免线性分类问题转化为非线性分类问题时出现的维数爆炸难题,从而避免由于维数太多而无法进行求解。 第O层:Matlab的SVM函数求解分类问题实例 0.1 Linear classification %Two Dimension Linear-SVM Problem, Two Class and Separable Situation %Method from Christopher J. C. Burges: %"A Tutorial on Support Vector Machines for Pattern Recognition", page 9 %Optimizing ||W|| directly: % Objective: min "f(A)=||W||" , p8/line26 % Subject to: yi*(xi*W+b)-1>=0, function (12); clear all; close all clc; sp=[3,7; 6,6; 4,6;5,6.5] % positive sample points nsp=size(sp); sn=[1,2; 3,5;7,3;3,4;6,2.7] % negative sample points nsn=size(sn) sd=[sp;sn] lsd=[true true true true false false false false false] Y = nominal(lsd) figure(1); subplot(1,2,1) plot(sp(1:nsp,1),sp(1:nsp,2),'m+'); hold on plot(sn(1:nsn,1),sn(1:nsn,2),'c*'); subplot(1,2,2) svmStruct = svmtrain(sd,Y,'showplot',true);

相关文档
相关文档 最新文档