文档库 最新最全的文档下载
当前位置:文档库 › 城市车路协同系统的通信及定位技术研究

城市车路协同系统的通信及定位技术研究

城市车路协同系统的通信及定位技术研究
城市车路协同系统的通信及定位技术研究

车路协同资料讲解

智能车路协同系统 1基本概念 智能车路协同系统即IVICS(Intelligent Vehicle Infrastructure Cooperative Systems),简称车路协同系统,是智能交通系统(ITS)的最新发展方向。 车路协同是采用先进的无线通信和新一代互联网等技术,全方位实施车车、车路动态实时信息交互,并在全时空动态交通信息采集与融合的基础上开展车辆主动安全控制和道路协同管理,充分实现人车路的有效协同,保证交通安全,提高通行效率,从而形成的安全、高效和环保的道路交通系统。 车路协同系统(CVIS),主要是通过多学科交叉与融合,采用无线通信、传感探测等先进技术手段,实现对人、车、路的信息的全面感知和车辆与基础设施之间、车辆与车辆之间的智能协同和配合,从而达到优化并利用系统资源、提高 道路交通安全和效率、缓解道路交通拥挤的目标,从而推动交叉学科新理论、新技术、新应用等的产生与发展。简言之,车路协同的实质就是将控制指挥方案与道路交通条件的需求相匹配,从而实现交通的安全、环保、高效。车路协同系统作为ITS的重要子系统备受国内外科研人员的关注,同时也是世界上交通发达国家研究、发展和应用的热点 2技术架构 随着智能交通技术和车联网的发展,为车路协同技术带来了很多重要的发展机遇,例如云计算、大数据、移动互联等技术,使我们在高精度定位、精细化信息服务和新一代传感网络构建等方面,都有了更加可靠的技术保证。发达国家基 本建立了车路协同系统的体系框架,定义了一系列应用场景,开展了一些试验和应用,但车路协同系统的某些核心技术仍处于研究和试验阶段,制约了系统的应用。目前车路协同技术发展具有如下趋势: ①车路协同系统体系框架的构建:车路协同系统的发展方向是由特例实验走向场景应用和制定通信协议标准。 ②车路通信平台的开放性:将从单一通信模式向多种通信手段的互补与融合方向发展。可用于车路通信的方式包括:DSRCWiFi、DSR GSM/GPRS3G RFID WLAN BlueTooth 等,由于通信技术各有优缺点,单一通信的方式很难满足车路通信需求,需建立一种多方式兼容的通信平台。 ③车载单元的多功能一体化集成:由单项服务向集成服务转变,从单目标控制向多目标控制集成转换。例如,把ETC和北斗导航系统集成到一个系统里,形成多功能一体化的车载单元,即集成的车载终端装置能够提供路桥收费、信息发布、信息采集等多种服务。

C-V2X与智能车路协同技术的深度融合

C-V2X与智能车路协同技术的深度融合 摘要:智慧交通已经发展到车路协同(i-VICS)阶段,车用无线通信(V2X)是i-VICS的重要支撑技术,可以支撑车路间的实时信息交互。不同交通场景下车路协 同需要解决的问题不同,因此采用的部署方案也有差异。本文中,我们给出了高 速公路、城市街道、自动驾驶园区3种典型场景下C-V2X车路协同方案的部署建议,为车路协同的落地实施提供了建设性的参考方案。 关键词:C-V2X;智能网联汽车 中图分类号:F289文献标识码:A 1.车路协同下一步演进方向及对通信技术的要求 1.1路侧感知时延与V2X通信时延需要同步优化 随着基于车路协同的自动驾驶技术成为热点,研究人员开始研发低时延摄像机、77GHz毫米波雷达、雷视一体机、激光雷达等处理时延更低、检测精度更高、分类能力更强的传感器。这些传感器的处理时延可以达到几十毫秒量级,检测精 度可以达到分米级。为了保证信息的有效性,车路间通信技术的时延要求相应升高,保证从目标出现到通知到车内的综合时延在100ms以内,与目前自动驾驶车 辆自身传感器的检测时延相当。目前LTE-V2X的平均时延在几十毫秒,刚刚可以 满足要求。考虑到错过已分配的SPS资源、信道质量较差导致需要重传等极端情况,综合时延可能超过100ms;因此还需要研究可进一步降低V2X通信时延的技术,例如R16的短传输时间间隔(TTI)技术、R17的终端协作技术等。从另一个 维度看,面向自动驾驶的车路协同部署不能采用传统交通摄像头和雷达,否则的 话即使采用5G的极限时延1ms的通信技术也无法满足自动驾驶要求。 1.2目标跟踪范围、路径规划算法、V2X通信技术、算力分布需要联合优化 交叉口俯视感知是公认的车路协同重点应用。城市大型交叉口人流车流密集,需要跟踪的运动目标众多,对V2X承载能力和车侧的路径规划算力带来巨大挑战。一种解决思路是路侧感知从全部跟踪目标中圈定特定车辆周边限定区域内的物体。这就要求路侧边缘计算能够对目标车辆的运动轨迹进行预测,进而筛选出前进方 向上的感知结果,这一方案还要求路侧单元(RSU)具有R16将引入的单播能力。还有一种解决思路是将交叉口的车辆路径规划全部汇集到路侧边缘计算处理,这 就要求车辆能够将感知到的近场环境数据上传到边缘计算设备;因此要求V2X的 上行传输速率大大提升,而且也要求边缘计算设备具有较高的算力。 1.3交通优化需要车云信息快速交换和云控快速仿真推演作为支撑 交通优化需要交通起止点(OD)调查信息。过去的OD调查往往需要结合 问卷调查、公交线网乘客分布统计、运营商数据、导航软件数据获得,数据获取 周期长,无法体现动态信息和局部微观信息。随着C-V2X的推广,云端获取每台 车辆的动态信息成为可能。有了全局的动态数据,再辅以云控平台的强大计算能力,可以实现交通调度的全局决策,并可以通过仿真推演的方法对决策方案进行 快速验证。 随着导航软件的普及,越来越多的司机会遵循导航软件的路径规划建议;但 是导航软件对道路的动态信息掌握的很不充分,而且在做路径规划建议时并没有 充分考虑到大量车辆按建议出行对未来交通状况的影响。这就导致当使用导航软 件的司机数量变多时,交通状况会恶化。采用C-V2X技术后,云端可以统筹进行 全局性的最优策略决策,并直接为每个交通个体分配路径规划,从而避免交通无 政府状态的出现[1]。

车路协同服务云平台概要

车路协同服务云平台 1概述 智能网联汽车是指搭载先进的车载传感器、控制器、执行器等装置,并融合现代通信与网络技术,实现车与X(人、车、路、云端等)智能信息交换、共享,具备复杂环境感知、智能决策、协同控制等功能,可实现“安全、高效、舒适、节能”行驶,并最终可实现替代人来操作的新一代汽车。 车路协同平台综合感知、通信、计算、控制等技术,基于标准化通信协议,实现物理空间与信息空间中包括“车、交通、环境”等要素的相互映射,标准化交互与高效协同、利用云计算大数据能力,解决系统性的资源优化与配置问题。 平台为智能汽车及其用户、管理及服务机构等提供车辆运行、基础设施、交通环境、交通管理等动态基础数据,具有高性能信息共享、高实时性云计算、大数据分析、信息安全等基础服务机制,支持智能网联汽车实际应用需求的基础支撑平台。主要包含标准化互联互通和共性基础支持两方面。其中标准化互联互通包括统一交互标准化语言,减少多领域协同时在理解和认识上的差异化;针对车辆与各类资源互联互通的实际应用需求,设计标准化基础设施体系部署与分段实施路径。共性技术支持包括提供针对智能网联具体应用需求的基础、共性技术服务,包括数据的安全性管理,存储,运维,大数据计算、仿真与测试评价技术等;为解决异构集成、互操作等实际业务需求提供一系列标准化开发接口与工具集。 平台包含了面向效率和面向安全两个方面。其中面向效率包括基于车路协同信息的交叉口智能控制技术、基于车路协同信息的集群诱导技术、交通控制与交通诱导协同优化技术、动态协同专用车道技术、精准停车控制技术。面向安全包括智能车速预警与控制,弯道测速/侧翻事故预警、无分隔带玩到安全会车、车间距离预警与控制、临时性障碍预警。 平台面向产业链应用,面向全行业提供体系化的安全,高效,节能等在内的汽车智能网联驾驶应用,以及包括共享汽车,电子支付等一系列新型汽车应

欧洲车路协同技术发展与展望

欧洲车路协同技术发展与展望 车路协同技术是基于车车通信与车路通信技术的智能交通技术。车辆之间和车辆与路侧系统能实时交换车辆传感器与事故信息,从而增强驾驶员对前方路况的了解,及时采取有效措施。路侧系统和交通管理中心也可以通过车路通信及时提供实时路况信息,因此车路协同技术能有效提高道路安全和交通效率。欧洲的车路协同技术经过了大约10年的技术研发,随着技术标准的制定与完善,已经进入了大规模路测和市场部署的准备阶段。欧盟,欧洲车厂,系统提供商和相关产业正在积极推动协同系统的发展,计划从2015年开始进入市场。日立一直积极参与车路协同技术的研发,测试与技术标准制定工作。是欧洲大型车路协同系统路测项目的主要技术提供商。 本文介绍车路协同技术在欧洲的开发与前景,包括2012年世界智能交通大会展示的车路协同项目,欧洲大规模路测项目与采用的关键技术,技术标准的制定以及开发部署计划。 1、2012智能交通世界大会展示的车路协同项目 ·车路协同项目是2012年智能交通世界大会的重点展示项目。欧洲车车通信联盟(car to car communication consortium C2C CC)[1]联同奥地利路侧系统供应商联盟Test Field Telematics组织了为期一周的实地道路展示。展示的主要目标为: ·"车载系统,路侧系统与交通管理中心的通信互通性(communication interoper ability). ·"车辆,路侧与交通管理中心的数据融合(Information harmonization)

·"车辆协同通信标准的适应性展示 ·"道路安全,交通效率等应用的实地演示 本次展示包括的主要应用有: ·"基于车车通信的道路安全应用,如前车紧急刹车风险警报(Electronic brake light warning),摩托车接近风险警报(Motorcycle approaching warning),紧急救援车辆让路信息等等(emergency vehicle approaching warning)。 ·"基于车路通信的交通管理应用,如信号灯路口车速控制(Green light optimal speed),路侧动态信息的车载显示(Invehicle signage). 本次展示由欧洲大型车路协同道路运行测试项目(Field Operational Tests,FOTs)DRIVEC2X[2]参与并提供技术支持。日立作为DRIVEC2X项目的技术规格的负责单位,担任了本次展示的技术协调主管,成功演示了车路协同技术由不同车厂和系统供应商的系统集成成果,是C2C-CC首次协同交通管理中心和路侧系统的大型展示。相对于C2C-CC于2008年举行的车车通信大型展示,该展示突出体现了欧洲针对车路协同系统以车载与路侧系统同步开发为目标的开发部署模式(deployment scenario)。 另外,基于近年欧洲与美国国际标准融合合作,C2CCC和美国车辆协同测试项目CAMP联合进行了车车协同通信共通性演示。该展示实现了欧洲与美国的主要道路安全应用中心数据包的交换(coreroad safety message),是车路协同项目的通信标准国际融合的主要成果。 另外,参与DRIVEC2X项目的法国国家车路协同FoT项目SCORE@F也在本次大会中进行了静止模拟演示。

地铁车地无线通信技术比较

地铁车地无线通信技术比较 摘要:本文从目前宽带无线技术的角度出发,探讨城市轨道交通CBTC信号系统及PIS系统所采用的车地通信实现方式。 关键词:地铁车地通信宽带无线技术信号系统 目前国内基于通信的移动闭塞系统(CBTC制式的信号系统)运用的工程实施项目越来越多,但实际开通运营的工程项目较少。信号系统是关系行车安全的系统,采用什么样的车—地通信方式,保证车—地通信的可靠性、安全性、实时性显得尤为重要。 地铁业务中信号系统的车—地通信大量采用无线通信技术。目前从业务需求的角度看CBTC 信号系统带宽需求为数百Kbps,PIS系统中的下行流的带宽需求为10Mbps级,针对车载监控业务的上行带宽为Mbps级。从轨道交通技术通信技术发展的角度出发,主要呈现了平台化、宽带化方向的发展趋势。 1、简介 无线国际标准组织主要通过不断改进调制解调方式、改进开线技术等方式以达到不丢失功能的前提下提高频率利用率,即提高带宽能力,以达到真正的宽带无线网络。从目前宽带无线技术的角度出发,主要具有3G、WiMAX、WLAN等三种技术,加之从传统2.5G网络演变并在大铁中成熟实施的GSM-R 技术。 l 3G 第三代移动通信系统(3G)的标准由ITU-R提出,因为其主要工作频段在2000MHz左右,并具有最高速率为2000Kbps的业务能力,一般被称为IMT-2000。3G系统能够满足高速率传输以支持多媒体业务,它在室内静止环境可达2Mbps、在室内外步行环境可达384Kbps、在室外快速移动环境可达144Kbps。全球主流的3G制式有三种,分别为WCDMA、CDMA2000、TD-SCDMA。目前在运营商针对3G业务测试情况来看,用于车—地通信方式的宽带业务尚不理想。 l WiMAX WiMAX 的全名是微波存取全球互通(Worldwide Interoperability for Microwave Access),WiMAX即为IEEE802.16标准,或广带无线接入(Broadband Wireless Access,BWA标准),是一项无线城域网(WMAN)技术。针对WiMAX的技术来看,轨道交通通信系统目前全球的使用频率主要侧重于2.5G与3.5G频段,也都是拍卖频段,技术原理也主要划分为二大类802.16d 与802.16e,802.16e从功能的角度出发可以替换802.16d,目前,从产品成熟度的角度出发,

地铁车地无线通信实施方案探讨

地铁车地无线通信实施方案探讨 发表时间:2019-09-11T15:49:08.923Z 来源:《基层建设》2019年第17期作者:董招[导读] 摘要:目前国内轨道交通行业高速发展,地铁车地无线通信一直是地铁通信专业关注的焦点。 中建五局安装工程有限公司湖南省 410000摘要:目前国内轨道交通行业高速发展,地铁车地无线通信一直是地铁通信专业关注的焦点。本文通过分析频段2.4G传输时钟同步车地无线通信方案、频段1.8G近远端机同步车地无线通信方案和频段5.8G-GSU同步车地无线通信方案,提出更适合的频段5.8G分组传输网时钟同步车地无线通信方案,以及未来车地无线通信发展的前景。 关键词:地铁通信;车地无线通信;方案 引言 车地无线通信系统是城市轨道交通的重要基础设施,是地铁安全运营所必须的信息交互系统,系统的通信质量和可靠性直接决定地铁的运营状况,与人们的出行体验息息相关,是城市进行地铁建设时需要重点考虑的问题。近些年,随着车地无线通信技术的发展,形成多种无线通信技术,如何选择合适的车地无线通信技术,满足地铁运营的需要成为设计、施工人员需要重点思考的问题。 1地铁车地无线通信概述 车地无线通信网络是乘客信息系统(简称PIS系统)主干网络的延伸,PIS系统能通过组播方式实现线路播控中心到列车的信息下发,并能实现广播和寻址功能,将特定的信息发送给指定的一列或者几列列车;视频监控系统(简称CCTV系统)也能通过该网络实现将车辆客室监视信息实时上传至中心CCTV服务器,列车驾驶室显示终端能调看对应车站站台屏蔽门侧的监控图像。车地无线网络提供的双向传输有效带宽应能满足列车与中心之间的实时双向数据传输的带宽要求,保证所传图像顺畅清晰,不出现画面中断或者跳播等现象,且系统具有QoS分级控制功能。车地无线网络确保沿轨道线安装的无线接入点和在移动列车上的移动单元之间建立稳定、安全且能避免冲突的连接。在列车高速运行时,不应丢失连接和引起画面质量降低,无线设备应遵循完善的切换机制无缝切换至最合适的接入点。 2地铁车地无线通信整体规划 2.1通信信号各自独立建设LTE单网 通信信号专业各自建设一套LTE硬件传输网络,通信专业单网承载无线调度业务和列车运行紧急数据业务。考虑到信号CBTC系统对无线数据的可靠性、安全性要求更高,必须采用双网冗余的设置方式,则由通信专业为信号专业配置冗余无线数据传输通道,以满足信号系统冗余需求。优点:该方案同样整体降低本工程LTE车地无线信息传输网络的造价,实现资源的整合和充分利用,技术上满足信号系统对车地无线数据传输的要求,节约频带资源的使用宽度。缺点:信号系统与通信系统在无线数据传输系统增加了接口,同时信号系统的冗余通道的可靠性和安全性需要由通信系统保障。 2.2通信独立建设单网,信号专业独立建设冗余双网 通信专业独立建设一套LTE硬件传输网络设备,承载无线调度业务和列车运行紧急数据业务。考虑到信号CBTC系统对无线数据的可靠性、安全性要求更高,必须采用双网冗余的设置方式,信号专业独立建设一套冗余无线数据传输网络设备。优点:该方案通信信号两个系统在无线信息传输系统上完全独立,工程安装、调试,后期的设备维护都相对独立,降低了专业之间的依赖,管理上更为便利。缺点:增加了工程建设的成本,增加了无线频带资源的使用宽度。 3地铁车地无线通信实施方案解析 3.1频段1.8G近远端机同步车地无线通信方案 该方案车地无线通信采用1.8G频段,通过地面无线发射网关+车站近端机+区间光远端发射机的组合模式,地面有线网络中心交换机通过光缆与各站地面无线网管相连,这样能保证无线发射信号的频率一致,基本不存在延时。为解决列车高速在区间行驶时,列车基站信号接收器频繁切换信号源,出现不断跟信号源通讯握手的死循环模式,导致无法正常进行通信状态。区间基站采用无线接收基站和光远端发射机,在对应列车内配置车载无线接收网关、车载无线发射网关和车载通信控制器。该方案无线接收和发射通道分开,但能很好的解决高速行驶时无线信号越区切换通信故障问题。该方案带宽仍然有限,一般为30M左右,其中控制中心设备可调看单列车6路监控图像(带宽需求在12M左右),而列车播控系统能播放直播信号(带宽需求在6M左右)。但通过地面无线发射网关+车站近端机+区间光远端发射机的模式,控制中心能够实时调看低码流列车监控图像。该方案,区间光远端发射机一般800m左右安装一个,天线覆盖范围较远,但是为保持同步并解决信号越区切换问题,各站无线发射网关需敷设光缆与地面有线网络中心交换机相连,光缆数量非常大,施工成本较高。 3.2频段2.4G传输时钟同步网车地无线通信方案 该方案车地无线通信采用2.4G频段,轨旁基站与车载基站之间无线使用IEEE802.11n用于覆盖列车运行沿线,无线骨干连接带宽可达到15Mbps,而区间基站与车站交换机有线信息传输网之间的连接有效带宽为100Mbps。传输系统采用数字同步多业务传送平台(简称MSTP)和时钟同步网络(简称BITS),即MSTP+BITS同步传输方案。车站车地无线系统通过传输系统分配的1000M光通道传输至控制中心,关键在于该传输系统能提供严格的时钟同步功能,保证区间基站发射信号的同步,以至于列车行驶跨越无线覆盖区间时,基站发射信号保持同步。区间无线基站与无线管理交换机无线控制器模块之间通过有线网络进行互联,采用CAPWAP标准隧道协议,同时,在保证802.11安全的前提下采用集中控制分布式转发。 4城市轨道交通中常见的车地无线通信技术 4.1TRainCom-MT技术 该技术是由德国公司研发的城市轨道交通专用通信系统,能够在高速移动环境下保持良好的通信效率和质量,车地最大通信传输速度可达16Mb/s。但是,该系统受到保密性协议的限制,其系统升级和开发只能依靠德国公司实现,市场维护和选择方面相对教差,在国内中的应用相对较少。 4.2LTE无线传输技术 LTE无线传输技术是当前应用最为广泛的车地无线通信技术,是在3G的基础上发展而来的,通过对空中接入技术的改进和增强,在保有3G原有技术优势的同时,实现无线传输的低延迟、高传输速度、分组传输、向下兼容和光域覆盖。因其技术优势,LTE无线传输技术在郑州、深圳等多个城市轨道交通中有所应用。

浅析车地无线通信传输系统构成及原理

浅析车地无线通信传输系统构成及原理 发表时间:2019-09-03T17:03:18.493Z 来源:《科学与技术》2019年第07期作者:沈斌 [导读] 接下来本文对地铁的车地无线通信传输系统构成及原理做具体阐述,希望给行业内人士以借鉴和启发。 深圳市傲硕科技有限公司广东深圳 518028 摘要:随着无线通信技术的发展。基于自由空间传输的无线传输技术在CBTC系统中得到了应用。无线的频点一般采用共用的2. 4GHZ或5.8GHZ频段,采用接入点(AP)天线作为和列车进行通信的手段。接下来本文对地铁的车地无线通信传输系统构成及原理做具体阐述,希望给行业内人士以借鉴和启发。 关键词:CBTC;AP;DCS;TRE 引言 早期的地铁车地无线传输系统存在的最大问题就是抗干扰能力较差,信号传输的质量较弱,在一定程度上会制约地铁运输的安全性。为了提高地铁车地无线传输系统的通信能力,需要加强技术设计。 1车地无线通信传输系统构成及原理 1.1无线网络的构成 DCS无线网络用于承载车载和轨旁CBTC系统间信号数据流的通信,它由位于轨旁的无线接入点(AP)、功分器、轨旁定向天线,及车载无线天线、车载无线调制解调器组成。 1.2无线网络系统原理 1)车地双向通信网络。每个TRE(轨旁无线设备)由红网、蓝网接入点组成,此红、蓝接入点与其各自的无线网络相连接。无线网采用802.11gq协议,采用带宽为6MHz的窄带技术,红网采用中心频率为2.472GHz,蓝网采用频点2.417GHz。2)轨旁无线网络。TRE是配置于轨旁的无线传输设备,用于与车载无线设备之间进行无线通信。TRE箱内主要有2个无线调制解调器、2个电源转换器、2个光电转换器。红色、蓝色无线调制解调器分别连接到各自的功分器上,功分器连接到定向天线上用于传输射频(RF)信号。3)车载无线网络。每辆列 车安装2个无线调制解调器,用于CBTC业务传输,每个无线调制解调器连接2个位于车体上方的天线,用于与轨旁天线进行无线信息传输。为满足列车双向行驶以及在岔区和车辆段等处保持通信,列车每端必须配置两个车载天线。车载无线调制解调器在无线覆盖区域能与无线网络快速完成握手及授权并接入,保证列车正常投入运营及故障恢复满足系统功能、性能及运营效率要求。 1.3DCS无线系统冗余结构 DCS无线网络采用冗余结构,由红网和蓝网组成。无线系统的冗余结构能保证当任一轨旁或车载无线设备故障时包括单个接入点的故障、单个轨旁设备电源的故障、单个光交换设备的故障均不影响系统的正常工作。2TD-LTE无线通信传输TD-LTE技术是3GPP标准的4G通信技术,它采用OFDM(OrthogonalFrequencyDivisionMultiple,正交频分多址)和MIMO(MultipleInputMultipleOutput,多入多出)技术作为其无线网络演进的标准,系统采用全IP网络架构,支持良好的移动性,移动速率达到120km/h~350km/h时移动终端能与网络保持连接,确保其不掉线。TD-LTE宽带集群是在TD-LTE技术上,承载数字集群业务,实现了无线数字集群宽带化,实现了语音、数据、视频功能,不仅使调度通信“听得到”,还实现了调度通信“看得见”,实现了现场图像上传、视频通话、视频回传、视频监控等。系统具有上下行工作带宽可灵活配比,系统支持工作在400MHz、1400MHz、1800MHz等多个频段。TD-LTE宽带无线数字集群主要技术指标如下:呼叫建立时间:小于300ms;话权抢占时间:小于200ms;单基站覆盖半径:市区1-3Km,郊区3-10Km;带宽:支持可变带宽,1.4~20MHz;频谱利用率:上行2.5bps/Hz,下行5bps/Hz;峰值传输速率:在20MHz带宽下,下行峰值传输速率100Mbps,上行峰值传输速率50Mbps。 2视频编码技术 地铁的监控摄像头获取的数据量庞大,给主控制器带来较大的存储压力,如果仅仅依靠主控制器进行视频视距的传输将会造成主控制器的系统瘫痪,因此需要考虑在传输的过程中对视频进行压缩处理,减少视频存储的空间。MPEG-4、H.264两种视频压缩编码在近几年的发展中得到了广泛的使用,但是考虑到地铁无线网络传输的情况,采用H.264视频编码技术较为合适。在同等的传输码率下,H.264比MPEG-4信噪比高,H.264中的分离视频编码层具有良好的兼容性,能够适应不同的网络协议。H.264还可以改善传输的性能,通过高效率的压缩降低能耗,适用于列车无线视频传输系统。 3车-地无线通信系统 车地无线通信技术比选城市轨道交通信号CBTC系统车地通信方式主要采用WLAN技术,其发展较为成熟,应用较为广泛。但LTE技术较新,其在市域快线信号系统车地无线传输领域较WLAN有如下优势:1)可靠性:WLAN使用公共频段,干扰源多,尤其公共干扰源,无法彻底清除;且区间有源设备众多,造成整体可靠性下降。LTE与之相比,使用专有频段,可通过清频去除周边干扰源;可采用漏缆覆盖,覆盖距离广,区间设备少,整体可靠性高。从可靠性看,LTE明显优于WLAN。2)可用性:WLAN采用的IEEE802.11g协议信道利用率低,标称54?Mbit/s实际可用带宽为15~20?Mbit/s左右;LTE在5?M、10?M、20?M的峰值速率分别为:43?Mbit/s、87?Mbit/s、150? Mbit/s。从带宽的可用性考虑,LTE明显优于IEEE802.11g。3)可维护性:LTE覆盖距离远,覆盖在1.2?km左右,维护简单。可以减轻运维人员工作量,减少运维成本,可维护性优于WLAN。4)抗干扰能力:LTE专用频段,避免外部系统干扰;小区间干扰协调(ICIC)、干扰合并(IRC),解决系统内干扰问题。高速移动传输LTE支持超高速移动,如450?km/h,能提供高速的接入服务。WLAN最高支持140?km/h 以下的低速环境,随着速度提高,切换失败率升高。高速下数据传输的有效性和可靠性是衡量通信系统无线链路最为重要的指标之一。有效性的测试指标为吞吐量,系统吞吐量是指单位时间内系统从信源到信宿成功传输的数据量。可靠性的测试指标为误块率,误块率(BLER)是数据传输中数据块经过CRC校验后得到错误的概率,用于反映无线链路控制层对差错重传的要求。5)技术发展趋势和政策支持:作为新一代无线移动通信技术,LTE在厂家技术支持与研发力度上远远大于WLAN,并且国家针对LTE在轨道交通的应用,在产业政策、标准建设、行业建设等方面都给予了明确的技术支持,制定一系列标准和规范,为其应用打下了坚实的基础。 结语 移动闭塞是基于通信技术的列车控制(简称CBTC)ATC系统,利用通信技术实现车地通信并实时地传递列车定位信息。通过车载设备、轨旁通信设备实现列车与车站或控制中心之间的信息交换,完成速度控制。系统通过建立车地之间连续、双向、高速的通信,使列车命令

车路协同

智能车路协同系统 1 基本概念Infrastructure Vehicle 即同系统IVICS(Intelligent 智能车路协)的最新发(ITSCooperative Systems),简称车路协同系统,是智能交通系统展方向。车路协同是采用先进的无线通信和新一代互联网等技术,全方位实施车车、并在全时空动态交通信息采集与融合的基础上开展车辆车路动态实时信息交互,提充分实现人车路的有效协同,保证交通安全,主动安全控制和道路协同管理,高通行效率,从而形成的安全、高效和环保的道路交通系统。,主要是通过多学科交叉与融合,采用无线通信、传车路协同系统(CVIS)路的信息的全面感知和车辆与基础设施感探测等先进技术手段,实现对人、车、提高车辆与车辆之间的智能协同和配合,从而达到优化并利用系统资源、之间、新缓解道路交通拥挤的目标,从而推动交叉学科新理论、道路交通安全和效率、车路协同的实质就是将控制指挥方案与新应用等的产生与发展。简言之,技术、道路交通条件的需求相匹配,从而实现交通的安全、环保、高效。车路协同系统的重要子系统备受国内外科研人员的关注,同时也是世界上交通发达 ITS 作为国家研究、发展和应用的热点 2 技术架构为车路协同技术带来了很多重要的发展随着智能交通技术和车联网的发展,机遇,例如云计算、大数据、移动互联等技术,使我们在高精度定位、精细化信发达国家基息服务和新一代传感网络构建等方面,都有了更加可靠的技术保证。开展了一些试验和本建立了车路协同系统的体系框架,定义了一系列应用场景,制约了系统的应但车路协同系统的某些核心技术仍处于研究和试验阶段,应用,用。目前车路协同技术发展具有如下趋势:车路协同系统的发展方向是由特例实验走①车路协同系统体系框架的构建:向场景应用和制定通信协议标准。将从单一通信模式向多种通信手段的互补与融合②车路通信平台的开放性:、RFID、GSM/GPRS3G、、可用于车路通信的方式包括:方向发展。DSRC、WiFiDSR、单一通信的方式很难满足车等,由于通信技术各有优缺点, WLAN、BlueTooth 路通信需求,需建立一种多方式兼容的通信平台。从单目标控由单项服务向集成服务转变,③车载单元的多功能一体化集成:和北斗导航系统集成到一个系统里, ETC 制向多目标控制集成转换。例如,把6 / 1 信息即集成的车载终端装置能够提供路桥收费、形成多功能一体化的车载单元,发布、信息采集等多种服务。在高速公通过车车、车路信息交互,④高速公路的安全管理信息服务走廊:车辆进入主线以例如,在高速公路汇流区,路沿线构建一个安全信息服务走廊。从而避免在交汇区发生交通前,将主线交通运行状况和安全信息发布给驾驶员,事故。 ⑤多通道信息采集技术:单一传感器无法满足信息实时采集的需求,因此,从而提高路网交通状态通过多种信息的融合,必须结合多传感器信息采集技术,实时检测精度。 公交实时路径诱导、⑥大范围内实现交通协调控制:如交通信号协调控制、优先控制等。车路协同需要通过对车路协同技术国内外研究现状以及其发展趋势的分析,通过多途径获取数据信息,包括车辆自身状态、周围行车环境、路面状态、

车路协同

. 智能车路协同系统 1 基本概念 智能车路协同系统即IVICS(Intelligent Vehicle Infrastructure Cooperative Systems),简称车路协同系统,是智能交通系统(ITS)的最新发展方向。 车路协同是采用先进的无线通信和新一代互联网等技术,全方位实施车车、车路动态实时信息交互,并在全时空动态交通信息采集与融合的基础上开展车辆主动安全控制和道路协同管理,充分实现人车路的有效协同,保证交通安全,提高通行效率,从而形成的安全、高效和环保的道路交通系统。 车路协同系统(CVIS),主要是通过多学科交叉与融合,采用无线通信、传感探测等先进技术手段,实现对人、车、路的信息的全面感知和车辆与基础设施之间、车辆与车辆之间的智能协同和配合,从而达到优化并利用系统资源、提高道路交通安全和效率、缓解道路交通拥挤的目标,从而推动交叉学科新理论、新技术、新应用等的产生与发展。简言之,车路协同的实质就是将控制指挥方案与道路交通条件的需求相匹配,从而实现交通的安全、环保、高效。车路协同系统作为 ITS 的重要子系统备受国内外科研人员的关注,同时也是世界上交通发达国家研究、发展和应用的热点 2 技术架构 随着智能交通技术和车联网的发展,为车路协同技术带来了很多重要的发展机遇,例如云计算、大数据、移动互联等技术,使我们在高精度定位、精细化信息服务和新一代传感网络构建等方面,都有了更加可靠的技术保证。发达国家基本建立了车路协同系统的体系框架,定义了一系列应用场景,开展了一些试验和应用,但车路协同系统的某些核心技术仍处于研究和试验阶段,制约了系统的应用。目前车路协同技术发展具有如下趋势: ①车路协同系统体系框架的构建:车路协同系统的发展方向是由特例实验走向场景应用和制定通信协议标准。 ②车路通信平台的开放性:将从单一通信模式向多种通信手段的互补与融合方向发展。可用于车路通信的方式包括:DSRC、WiFi、DSR、GSM/GPRS、3G、RFID、WLAN、BlueTooth 等,由于通信技术各有优缺点,单一通信的方式很难满足车路通信需求,需建立一种多方式兼容的通信平台。 ③车载单元的多功能一体化集成:由单项服务向集成服务转变,从单目标控制向多目标控制集成转换。例如,把 ETC 和北斗导航系统集成到一个系统里,

下一代车地通信技术

用于列控系统的下一代车地移动通信技术综述 学院:电子信息工程学院 专业: 学生姓名: 学号: 指导教师: 2015 年11 月日

用于列控系统的下一代车地移动通信技术综述 一、我国铁路无线通信 1.1 我国铁路无线通信技术发展历程 我国铁路无线通信系统主要实现无线列车调度、铁路站场调车通信、铁路区间移动通信等话音通信功能,以及列车运行控制、车次号传输、列车尾部风压数据传输、道口预(报)警等数据的无线传输功能。具体包括: ①无线列车调度电话:主要有A、B、C三种制式,频率为450MHz或150MHz的单工或双工通信系统。 ②站场无线通信:在铁路的区段站、编组站使用平面调车等站场无线通信系统。③各种独立的单工通信系统:在站场内及铁路沿线由公务、公安、电力、电务维修、列检、施工等部门或单位自行投资建设的各种独立的单工通信系统。 ④集群移动通信系统:早期为模拟集群系统,目前数字集群系统,如iDEN、TETRA、FHMA 等系统。 ⑤GSM-R:欧洲铁路综合调度移动通信系统,GSM for Railway。 二、下一代移动通信技术 2.1 下一代移动通信技术概述 下一代移动通信技术涉及宽带接入和分布网络,具有非对称的超过2 Mbit/s的数据传输能力;包括宽带无线固定接入、宽带无线局域网、移动宽带系统和交互式广播网络。与传统通信技术相比,下一代移动通信技术的优势在于通话质量好、数据通信速度高以及通信费用更加便宜,可以在不同的固定、无线平台和跨越不同频带的网络中提供无线服务,可以在任何地方用宽带接入互联网(包括卫星通信和平流层通信),能够提供定位定时、数据采集、远程控制等综合功能。下一代移动通信系统是集成多功能的宽带移动通信系统、宽带接入IP系统。 2.2 下一代移动通信技术的需求 (1)更快的通信速度 速度达到10 Mbit/s~20 Mbit/s,最高可以达到100 Mbit/s。 (2)更宽的网络频谱 每个信道将占有100 MHz的频谱,相当于WCDMA网络的20倍。 (3)更灵活的通信方式 终端从功能到式样将有更惊人的突破。 (4)更高的智能化 智能性更高,不仅表现在终端设备的设计和操作具有智能化,更重要的是可以实现许多难以想象的功能。(5)更平滑的兼容性能 终端将具备全球漫游、接口开放、网络互连、终端多样化,以及能从2G、2.5G/3G平稳过渡等特点。 (6)更高质量的多媒体通信 提供的无线多媒体通信服务将包括语音、数据、影像等,大量信息将透过宽频的信道传送出去,因此也可称为“多媒体移动通信”。

基于LTE技术的车地无线通信组网方案研究

收稿日期:20131204 作者简介:孙寰宇(1975 ),男,工程师,2006年毕业于武汉大学,工学硕士,E-mail:sunhuanyu@https://www.wendangku.net/doc/8812802380.html,三 第58卷 第8期2014年8月 铁道标准设计 RAILWAY STANDARD DESIGN Vol.58 No.8Aug.2014 文章编号:10042954(2014)08015904 基于LTE 技术的车地无线通信组网方案研究 孙寰宇1,顾向锋2 (1.郑州市轨道交通有限公司,郑州 450002; 2.中国通信建设集团设计院有限公司第四分公司,郑州 450002) 摘 要:基于轨道交通车地无线通信技术应用现状分析,结合轨道交通现场条件和乘客信息系统对车地无线通信的需求,提出适用于轨道交通的TD-LTE 技术组网方案,并进一步在郑州市轨道交通1号线一期工程实验验证三该方案能够解决现有地铁行业车地通信的瓶颈,能够达到净化隧道区间二减少隧道设备二降低维护工作量的目的,有利于其他系统接入三 关键词:轨道交通;TD-LTE ;乘客信息系统;车地无线通信;无线局域网 中图分类号:U239.5;U285.2 文献标识码:A DOl:10.13238/j.issn.1004-2954.2014.08.039 Research on Networking Plan for Train-Ground Wireless Communication System Based on LTE Technology SUN Huan-yu 1,GU Xiang-feng 2 (1.Zhengzhou Metro Co.,Ltd.,Zhengzhou 450002,China;2.The 4th Branch,China International Telecommunication Construction Group Design Institute Co.,Ltd.,Zhengzhou 450002,China) Abstract :Based on analysis of present application status of train-ground wireless communication technology in rail transit,considering the field condition of rail transit,and in combination with the wireless communication requirement of passenger information system,this paper proposed the networking plan suitable for rail transit based on TD-LTE technology.And then the experimental validation of this networking plan was carried out with the first-phase project of Zhengzhou urban rail transit Line 1.Finally this paper come to the conclusion that this networking plan can solve the bottleneck problem of train-ground communication of rail transit at present,can achieve the goals of purifying the tunnels,reducing tunnel equipment and decreasing maintenance work,and can be good for the access of other systems.Key words :rail transit;TD-LTE;passenger information system;train-ground wireless communication; wireless local area network 随着城市轨道交通系统的不断发展,其安全性二 舒适性和高效性得到社会的普遍关注三车地无线通信系统担负着轨道交通运行中车厢内与外界信息交互的 桥梁 作用三除了承载传统的语音业务,还需要承载 乘客出行信息二视频监视信息二宽带集群二多媒体广告信息二电视信息以及CBTC 等业务,在提高地铁运营效率二公共安全管理以及改善乘客出行体验方面都起着重要的作用三 目前国内建设的城市轨道交通车地无线通信系统 采用的技术基本为802.11系列无线局域网技术(WLAN)[1],WLAN 作为一种宽带无线接入网技术,其网络化二宽带化等特点具有相当的优势三但目前采用 的WLAN 技术方案具有很大的局限性:WLAN 网络在固定情况下能提供高达54Mbps 的数据带宽,但在支持步速移动情况下提供11~13Mbps 的数据带宽,仅能实现标清信号的传输,暂不能满足高清的要求[2];WLAN 天线覆盖范围较小,轨旁AP 在直线隧道一般每间隔200m 布设1个,系统越区切换频繁,导致系统易丢包,造成视频画面停滞或马赛克系统工作[3];WLAN 工作在2.4G 频段,干扰源多,对运营安全要求较高的无线传输系统会导致系统传输中断,进而影响

国内外车路协同系统发展现状综述

国内外车路协同系统发展现状综述 付姗姗,吕植勇,陈超,彭琪 (武汉理工大学智能交通系统研究中心水路公路交通安全控制与装备教育部 工程研究中心武汉430063) 摘要:智能交通运输系统(ITS)是目前世界交通运输领域的前沿领域,在美国、日本及欧盟等众多先进国家中尤其受到重视。车路协同系统(CVIS)作为ITS 的重要子系统,近年来也备受国内外科研人员关注,是世界交通发达国家的研究、发展与应用热点。本文介绍了CVIS的概念以及内涵,介绍了美国IntelliDriveSM、欧洲eSafety、日本Smartway以及我国车路协同的发展情况,并对我国车路协同未来的发展进行了展望。 关键词:智能交通运输系统(ITS);车路协同系统(CVIS);IntelliDrive SM 中图分类号:U492.25 Overview of the Developments about Cooperative Vehicle-Infrastructure Overseas and Inside Fu Shanshan,Lv Zhiyong,Chen Chao,Peng Qi (Intelligent Transport Systems Research Center, Engineering Research Center for Transportation Safety(Ministry of Education)Wuhan University of Technology, Wuhan, 430063, P. R. China) Abstract:Intelligent Transport Systems (ITS) is the frontier areas of tran-sportation and transportation all over the world, which in the United Stat es, Japan, the European Union and many other advanced countries attra ct more attention particularly.Cooperative Vehicle-Infrastructure System (C VIS) as a major ITS subsystems, has also been oncerned about domesti c an d foreign in recent years,which is th e hot spot o f overseas develope d countries in research, development and application. This paper introduces the concept and connotation of CVIS, introduces the United States' IntelliDrive SM, the European Union' eSafety, Japanese Smartway and our collaborative development of the carriageway. And the same time, it makes the future development of the CVIS in our coubtry. Key words:Intelligent Transportation Systems; Cooperative Vehicle nfrast-ructure System; IntelliDrive SM 引言 智能交通运输系统(Intelligent Transportation Systems,ITS)是目前世界交通运输领域的前沿领域,已成为世界各国极力投注资源推动的重点之一,在美国、日本及欧盟等众多先进国家尤其受到重视,被认为是提高道路交通的可靠性、安全性和减少环境污染的有效手段之一。 车路协同系统(Cooperative Vehicle-Infrastructure System,CVIS)是基于无线通信、传感探测等技术进行车路信息获取,通过车车、车路信息交互和共享,实现车辆和基础设施之间智能协同与配合,达到优化利用系统资源、提高道路交

相关文档