文档库 最新最全的文档下载
当前位置:文档库 › 发电机短路故障的后备保护整定

发电机短路故障的后备保护整定

发电机短路故障的后备保护整定
发电机短路故障的后备保护整定

发电机短路故障的后备保护整定

李振豹发表于 2006-8-6 10:48:11

发电机短路故障后备保护一般有:复合电压闭锁过流保护、对称过负荷及过流保护、不对称过负荷及过流保护、转子过负荷及过流保护、发电机低阻抗保护。

理论分析及实践表明,低阻抗保护不适用于作主设备(发电机和变压器)短路故障的后备保护,而复合电压闭锁过流保护适用于中小机组。

此外,当由接在发电机端的励磁变作为发电机的励磁电源时,复合电压闭锁过流保护的过流元件应具有动作后短时记忆功能。

1、复合电压闭锁过流保护

(1)过电流元件:按躲过发电机的额定电流整定。即:

Idz=(Krel/Kr)IN

IN:发电机的额定电流(TA二次值)

Krel:可靠系数,取1.2~1.3。

Kr:返回系数,对于微机型保护装置,取0.95。

(2)复合电压元件

1)低电压元件整定:按躲过发电机失磁运行或大型电动机自启动时出现的低电压值来整定,可取(0.65~0.75)UN。UN为发电机额定电压,TV二次值。2)负序电压元件:按发电机变压器相邻线路末端故障时负序电压元件有灵敏度来整定;也可按躲过发电机长期运行允许的负序电压值来整定。若按后者来整定,则:U2dz=(8%~10%)UN。

(3)动作延时。发电机复合电压闭锁过流保护的动作时间,应按躲过相邻元件短路后备保护中的最长一级时间来整定。即t=tmax+t1

式中t为动作时间;tmax相邻元件短路后备保护中的最长一级时间;t1时间级差,一般取0.3~0.5s

另外,对于有电流元件动作记忆的复合电压闭锁过流保护,电流元件动作后的记忆时间,应考虑相邻线路重合闸时间,不应小于上式计算出的时间。

2、发电机对称过负荷及过流保护

在大型汽轮发电机变压器组上,通常采用对称过负荷及反时限动作特性的过电流保护。

实际上,该保护是有定时限过负荷和反时限过电流两部分组成。

(1)定时限过负荷保护。动作电流按发电机允许的长期运行负荷电流来整定,即:Idz=(Krel*IN)/Kr

式Krel可靠系数;取1.05。Kr返回系数,对微机保护取0.95。IN发电机额定电流(TA二次值)。

动作延时可取6~9S,动作后作用于信号或自动减负荷。

(2)反时限过流保护。动作时间与过电流的关系为:t=K1/(I1平方-K2)

K1发电机热容量系数;

I1发电机电流标幺值(TA二次值,以发电机额定电流为基准)

K2与发电机散热能力有关的常数;

t动作时间;

可以看出:对发电机反时限过电流保护的整定,就是要确定上式中的K1和K2之值。

上式中,要解出K1及K2,就需要一个二元一次方程。

在发电机的出厂说明书中,制造厂通常提供过电流倍数与允许时间的关系曲线。取中间部分的两个点,将两点的电流及时间分别代入,便得到一个二元一次方程组。求解得出K1及K2。

在外,为确保该类保护的可靠性,解出来的K1应在1.1~1.15之间较好。

目前,国内生产的微机型反时限过电流保护装置,考虑到与相邻设备保护的配合及确保发电机的安全运行,除了要求对反时限特性进行整定外,还要求对反时限的上限电流值Idzmax及上限动作时间、下限电流值Idzmin及下限动作时间进行整定。

对于发电机变压器组的反时限对称过流保护,上限电流值可按发电厂高压母线上发生的三相金属性短路时发电机所提供的短路电流的条件来整定。

Idzmax=(KrelIN)/(X’d+XT)

IN发电机额定电流(TA二次值)

X’d发电机暂态电抗(标幺值)

XT变压器电抗(标幺值)

Krel可靠系数,取1.05~1.1。

上限动作时间应按与主变压器高压侧母线上出线上短路保护的I段动作时间定值配合。即t上限=t1+三角t

t1高压母线所接出线上保护的I段动作时间(约为0.1S)

三角t时间级差,可取0.3~0.5S。

必须说明的是:反时限下限特性(即小电流长延时部分),对整个反时限特性有很大的影响。

另外,反时限下限电流值Idzmin=(Krel*IN)/Kr

Krel可靠系数,取1.1。

Kr返回系数,对于微机保护取0.95。

IN发电机额定电流(TA二次值)。

保护下限动作时间,可参照发电机制造厂家给出的过流倍数与允许时间曲线的延伸曲线来整定。

需要说明的是,实际整定出来的过流保护的反时限曲线,应在制造厂家提供的特性曲线之下。

3、发电机不对称过负荷及过电流保护

发电机不对称过负荷及过电流保护实际是保护发电机转子的,故又称为转子表层负序过电流保护。

该保护通常有定时限过负荷及反时限过电流两部分组成。而反时限过电流保护的整定值,通常有上限动作电流值及动作时间、反时限特性、下限动作电流值及动作时间组成。

(1)负序过负荷保护的整定计算。负序过负荷保护为定时限保护。

1)动作电流的整定。负序过负荷保护的动作时间I2dz,应按躲过发电机长期允许的负序电流I2来整定。

I2dz=Krel(I2’/Kr)*IN

Krel可靠系数,取1.05~1.1;

Kr返回系数,对于微机保护取0.95;

IN发电机额定电流(TA二次值);

I2’发电机长期允许的负序电流标幺值(以发电机额定电流为基准)。也可按照发电机额定电流的8%来整定。

2)动作延时的整定。动作延时可整定为6~9S,出口发信号。

(2)负序反时限过流保护

1)反时限部分的整定。负序反时限过流保护的反时限部分的动作时间t,应按发电机负序电流与允许持续时间的关系来整定。

t=A/(I2’平方-α)

A:与转子表层承受负序电流能力有关的常数。

I2’平方:负序电流标幺值(以发电机额定电流为基准)。

α:与发电机转子散热有关的常数,通常取0.01~0.02。

转子表层承受负序电流的能力,与发电机的容量、结构及冷却方式均有关系,对于容量为300MW级一下且转子为直冷式的发电机,A值可取8~10。

2)反时限上限的整定。对于发电机变压器组的负序反时限过流保护,其上限电流I2dzmax应按照变压器高压母线上两相短路的条件来计算及整定。

即:I2dzmax=(Krel×IN)/(Xd’+X2+2XT)

IN发电机额定电流(TA二次值)

Krel可靠系数,取1.05~1.1

X2发电机负序电抗(标幺值)

XT主变压器电抗(标幺值)

上限的动作延时t1,应按与高压母线出线短路保护的I段动作时间配合的原则整定。

即t1=tI+三角t

tI高压母线所接出线上保护的I段动作时间(约为0.1S)

三角t时间级差,可取0.3~0.5S

3)反时限下限的整定。反时限电流I2dzmin应按照与负序反时限过负荷保护的配合来整定,即:

I2dzmin=KCI2dz

KC配合系数,取1.1;

I2dz负序过负荷保护的动作电流。下限动作时间按上式计算,当计算时间大于1000S时,按1000S整定。

4、发电机转子绕组过负荷及过电流保护

转子绕组过负荷保护由定时限过负荷和反时限过电流组成。

(1)定时限过负荷保护。动作电流应按与发电机转子电流相对应的值来整定。Idz=Krel*(Ipn/Kr)

Idz:定时限过流保护的整定值

Krel:可靠系数,取1.05

Kr:返回系数,对于微机保护取0.95

Ipn:额定转子电流(折算到二次值)

对于大型发电机,转子绕组过负荷及过电流保护的接入电流,通常取自交流励磁机TA的二次电流。此时,应考虑有交流电流变换成直流电流的整流比系数。对于采用三相可控硅整流将交流变成直流电流时,过负荷保护的整定值应为

Idz=Krel*(Ipn/(Kr*Kb))

Kb:整流比系数,可取1.15~1.2。

动作延时取6~9S,作用于发信号或降低励磁电流。

(2)反时限过流保护。转子反时限过流保护的动作特性曲线,通常由上限定时限、反时限、下限定时限三部分构成。

1)上限定时限的整定。上限动作电流应按躲过强行励磁时的转子电流来整定,即Idzmax=Krel*Ipmax

Idzmax上限动作电流

Krel可靠系数,取1.05~1.1

Ipmax强行励磁时的转子电流

上限动作时间应这样来确定,使反时限特定曲线经电流等于强行励磁电流时所对应的动作延时,大于励磁系统强行励磁的时间。由于强行励磁时间一般为

8~10s,故当转子电流等于强励电流时,反时限保护的动作延时应大于10s。取10.5~11s。

2)反时限部分的整定。反时限过流倍数与相应允许持续时间t的关系为t=C/(Ifd’-K)

C:转子绕组过热常数。

K:与转子散热能力有关的常数,可取1.1~1.15

Ifd’:转子电流的标幺值(以转子额定电流为基准)

制造厂家通常给出1.5倍额定转子电流时的允许持续时间,将电流倍数、允许持续时间及K值代入,便可求出常数C值。

3)下限部分的整定。转子绕组反时限过流保护下限部分动作电流的整定,应与转子过负荷保护的定值相配合,即

Idzmin=Krel*Idz

Idzmin:反时限过流保护下限定值

Krel:可靠系数,取1.05~1.1

Idz:转子绕组过负荷保护的动作电流

下限动作时间可取300~600S。

6.3-同步发电机突然三相短路的物理过程及短路电流分析资料

6.3-同步发电机突然三相短路的物理过程及短路电流分析资料

6.3 同步发电机突然三相短路的物理过程及短路电流分析 6.3.1 同步发电机在空载情况下突然三相短路的物理过程 上一节讨论了无限大电源供电电路发生三相对称短路的情况。实际上电力系统发生短路故障时,大多数情况下作为电源的同步发电机不能看成无限大容量,其内部也存在暂态过程,因而不能保持其端电压和频率不变。所以一般在分析和计算电力系统短路时,必须计及同步发电机的暂态过程。由于发电机转子的惯量较大,在分析短路电流时可以近似地认为发电机转子保持同步转速,只考虑发电机的电磁暂态过程。 同步发电机稳态对称运行时,电枢磁势的大小不随时间而变化,在空间以同步速度旋转,由于它与转子没有相对运动,因而不会在转子绕组中感应出电流。但是在发电机端突然三相短路时,定子电流在数值上将急剧变化。由于电感回路的电流不能突变,定子绕组中必然有其它自由电流分量产生,从而引起电枢反应磁通变化。这个变化又影响到转子,在转子绕组中感生出电流,而这个电流又进一步影响定子电流的变化。定子和转子绕组电流的互相影响是同步电机突然短路暂态过程区别于稳态短路的显著特点,同时这种定、转子间的互相影响也使暂态过程变得相当复杂。 图6-6 凸极式同步发电机示意图 图6-6为凸极同步发电机的示意图。定子三相绕组分别用绕组,,表示,绕组的中心轴,,轴线彼此相差120o。转子极中心线用轴表示,称为纵轴或直轴;极间轴线用轴表示,称为横轴或交轴。转子逆时针旋转为正方向,轴超前轴90o。励磁绕组的轴线与轴重合。阻尼绕组用两个互相正交的短接绕组等效,轴线与轴重合的称为阻尼绕组,轴线与轴重合的称为阻尼绕组。 定子各相绕组轴线的正方向作为各绕组磁链的正方向,各相绕组中正方向电流产生的磁链的方向与绕组轴线的正方向相反,即定子绕组中正电流产生负磁通。励磁绕组及轴阻尼绕组磁链的正方向与轴正方向一致,轴阻尼绕组磁链的正方向与轴正方向一致,转子绕组中正向电流产生的磁链与轴线的正方向相同,即在转子方面,正电流产生正磁通。下面分析发电机空载突然短路的暂态过程。 1.定子回路短路电流 设短路前发电机处于空载状态,气隙中只有励磁电流产生的磁链,忽略漏磁链后,穿过主磁路为主磁链匝链定子三相绕组,又设为转子轴与A相绕组轴线的初始夹角。由于转子以同步转速旋转,主磁链匝链定子三相绕组的磁链随着的变化而变化,因此 (6-17)

基于MATLAB的同步发电机突然短路设计

第1章绪论 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,由于电力系统是个复杂的系统,运行方式也十分复杂,因此采用传统的方式进行仿真计算工作量大,也不直观。随着电力工业的发展,电力系统的规模越来越大。在这种情况下,许多大型的电力科研试验很难进行,一是实际的条件难以满足;二是从系统的安全角度来讲也是不允许进行实验的。因此,寻求一种最接近于电力系统实际运行状况的数字仿真工具必不可少。而在众多的仿真工具中,MATLAB 以其优越的运算能力、方便和完善的绘图功能脱颖而出。 1.1设计目的 让学生综合运用Matlab/Simulink仿真工具箱,建立电力系统仿真模型,对系统三相短路和单相短路等故障形式进行设计、仿真、分析,加深对供电和电力系统知识的了解,并进一步熟悉MATLAB电力系统这一仿真工具。 1.2设计任务 1.运用Simulink建立简单的单机-无穷大系统进行仿真,对系统运行出现短路情况时的仿真结果进行详细的分析。 2.建立带励磁系统的发电机系统,通过仿真结果分析带上励磁系统时电压和电流的变化情况。 1.3设计要求 1.要求每个学生独立完成设计任务。 2.针对每个仿真要给出详细的结果分析。 3.完成实训任务书。 4.要求提交成果:报告书一份。

第2章MATLAB语言的概述 2.1 MATLAB简介 MATLAB是将计算、可视化、程序设计融合在一起的功能强大的平台,所具有的程序设计灵活,直观,图形功能强大的优点使其已经发展成为多学科,多平台的强大的大型软件。MATLAB提供的Simulink工具箱是一个在MATLAB环境下用于对动态系统进行建模、仿真和分析的软件包。它提供了用方框图进行建模的接口,与传统的仿真建模相比,更加直观、灵活。Simulink的作用是在程序块间的互联基础上建立起一个系统。每个程序块由输入向量,输出向量以及表示状态变量的向量等3个要素组成。在计算前,需要初始化并赋初值,程序块按照需要更新的次序分类。然后用 ODE计算程序通过数值积分来模拟系统。MATLAN含有大量的 ODE计算程序,有固定步长的,有可变步长的为求解复杂的系统提供了方便。MATLAB在电力系统建模和仿真的应用主要由电力系统仿真模块SimPowerSystem 来完成的。 由于电力系统是个复杂的系统,运行方式也十分复杂,因此采用传统的方式进行仿真计算工作量大,也不直观。MATLAB 的出现给电力系统仿真带来了新的方法和手段。通过MATLAB 的 SimPowerSystem的模块对电力系统中的应用进行仿真,从而说明其在电力系统仿真中的运用电力系统的仿真可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,通过故障仿真得出了相关的电压稳定性方面的结论,从而证明了这种仿真的正确性和在分析应用中的可行性。 2.2 Simulink简介 Simulink是Matlab软件下的一个附加组件,是一个用来对动态系统进行建模、仿真和分析的MATLAB软件包。支持连续、离散以及两者混合的线性和非线性系统,同时它也支持具有不同部分拥有不同采样率的多种采样速率的仿真系统。 由于 Simulink可以很方便地创建和维护一个完整的模型,评估不同算法和结构并验证系统性能,另外Simulink还可以与MATLAB中的DSP工具箱、信号处理工具箱以及通讯工具箱等联合使用,进而实现软硬件的接口,从而成为实用的

发电机差动保护原理

5.1发电机比率制动式差动保护 比率制动式差动保护是发电机内部相间短路故障的主保护。 5.1.1保护原理 5.1.1.1比率差动原理。 差动动作方程如下: l op 3 I op.0 ( I res 兰 l res.0 时) l op > I op.O + S (l res — res.0) ( l res > l res.0 时) 式中:l op 为差动电流,l o P.O 为差动最小动作电流整定值,I res 为制动电流,I r es.O 为最小制动电流整定值,S 为比率制动特性的斜率。各侧电流的方向都以指向发 电机为正方向,见 图 (根据工程需要,也可将 5.1.1.2 TA 断线判别 当任一相差动电流大于0.15倍的额定电流时启动TA 断线判别程序,满足下 列条件认为 TA 断线: a. c. 5.2发电机匝间保护 发电机匝间保护作为发电机内部匝间短路的主保护。根据电厂一次设备情 况,可选择以下方案中的一种: 5.1.1。 差动电流: 1 op 制动电流: 1 res — 式中:I T ,I N 分别为机端、 见图5.1.1。 中性点电流互感器(TA )二次侧的电流,TA 的极性 _L 氓 € % 5 TA 极性端均定义为靠近发电机侧) 本侧三相电流中至少一相电流为零; b.本侧三相电流中至少一相电流不变; 最大相电流小于1.2倍的额定电流。 5.1.1电流极性接线示意图

5.2.1故障分量负序方向(△ P2)匝间保护 该方案不需引入发电机纵向零序电压。

故障分量负序方向(△ P2)保护应装在发电机端,不仅可作为发电机内部匝间短路的主保护,还可作为发电机内部相间短路及定子绕组开焊的保护。 5.2.1.1保护原理 当发电机三相定子绕组发生相间短路、匝间短路及分支开焊等不对称故障 时,在故障点出现负序源。故障分量负序方向元件的A U2和A I2分别取自机端TV、TA,其TA极性图见图5.2.1.1,则故障分量负序功率A P2为: △ P2 =3艮〔厶『2心?2心也21 2L J A ? 式中i I2为也I2的共轭相量,申sen。2为故障分量负序方向继电器的最大灵敏 角。一般取60。~80。(也|2滞后A U2的角度)。 故障分量负序方向保护的动作判据可表示为: > E-p △》2=血e^S n 实际应用动作判据综合为: A P2 = A U2r』I ' + A U2i ”也I ' > £P (S S i、年为动作门槛) 保护逻辑框图见图521.2。 枣力, “ r ‘ 1 1 Um: I 1卄TA 图521.1故障分量负序方向保护极性图

同步发电机短路实验

同步发电机突然短路的分析 一、实验目的 1.学会使用MATLAB软件对电力系统进行时域仿真分析,加深对电力系统短路时暂态过程的理解。 2.通过实验,进一步理解有限容量系统和无穷大系统短路时暂态过程的不同 二、实验原理 同步电机是电力系统中的重要元件,由多个有磁耦合关系的绕组构成,同步电机突然短路的暂态过程要比恒定电压源电路复杂很多,所产生的冲击电流可能达到额定电流的十几倍,对电机本身和相关的电气设备都可能产生严重的影响。 同步电机短路时,由于定子绕组中周期分量电流突变将对转子产生电枢反应,该反应产生交链励磁绕组的磁链。为了维持励磁绕组在短路瞬间总磁链不变,励磁绕组内将产生直流电流分量,其方向与原有的励磁电流方向相同,它产生的磁通也有一部分要穿过定子绕组,从而使定子绕组的周期分量电流增大。因此在有限容量系统突然发生三相短路时,短路电流的初值将大大超过稳态短路电流,最终衰减为稳态短路电流。 三、实验内容 电力系统时域分析实例(仿真) 范例:同步电机突然短路模型如图所示—使用简化的同步电机(Simplified Synchronous Machine),使用三相并联RLC负载并通过三相电路短路故障发生器元件实现同步电机的三相短路。 图1 同步电机突然短路电路模型

1、从电机元件库选择简化的同步电机(Simplified Synchronous Machine)元件,设置参数如下 2、从测量元件库中选择三相电压—电流测量元件,进行参数设置。电压测 量选项中选择测量相电压(phase-to-ground)用来测量同步发电机突然短路后三相电压的变化。 3.从线路元件库中选择三相短路故障发生器(3-phase-Fault),双击将三 相故障同时选中并设置转换时间。 4.从线路元件库中选择三相并联RLC负载元件,参数设置如下:

发电机纵差保护

发电机纵差保护 收藏此信息打印该信息添加:不详来源:未知 输入电流的不同分类 发电机差动保护由三个分相差动元件构成。若按由差动元件两侧输入电流的不同进行分类,可以分成完全纵差保护和不完全保护两类。其交流接入回路分别如图1(a)和图1(b)所示。

图1发电机纵差保护的交流接入回路 在图1中:Ja、Jb、Jc-分别为发电机A、B、C三相的差动元件; A、B、C-发电机三相输入端子。

由图1可以看出,发电机完全纵差保护与不完全纵差保护的区别是:对于完全纵差保护,在发电机中性点侧,输入到差动元件的电流为每相的全电流,而不完全差动保护,由中性点输入到差动元件的电流为每相定子绕组某一分支的电流。 1完全纵差保护 发电机完全纵差保护,是发电机相间故障的主保护。由于差动元件两侧TA的型号、变比完全相同,受其暂态特性的影响较小。其动作灵敏度也较高,但不能反应定子绕组的匝间短路及线棒开焊。 2不完全纵差保护 不完全纵差保护除保护定子绕组的相间短路之外,尚能反应定子线棒开焊及某些匝间短路。但是,由于在中性点侧只引入其一分支的电流,故在整定计算时,尚应考虑各分支电流不相等产生的差流。另外,当差动元件两侧TA型号不同及变比不同时,受系统暂态过程的影响较大。

全国继电保护技木竞赛考题与答案 收藏此信息打印该信息添加:用户发布来源:未知 一、判断题(20题,每题0.5分,要求将答案填在答题卡的相应位置) 1.二次回路中电缆芯线和导线截面的选择原则是:只需满足电气性能的要求;在电压和操作回路中,应按允许的压降选择电缆芯线或电缆芯线的截面。(×) 2.为使变压器差动保护在变压器过激磁时不误动,在确定保护的整定值时,应增大差动保护的5次谐波制动比。(×) 3.对于SF6断路器,当气压降低至不允许的程度时,断路器的跳闸回路断开,并发出“直流电源消失”信号。(√) 4.在双侧电源系统中,如忽略分布电容,当线路非全相运行时一定会出现零序电流和负序电流。(×) 5.在电压互感器二次回路通电试验时,为防止由二次侧向一次侧反充电,将二次回路断开即可。(×) 6.在正常工况下,发电机中性点无电压。因此,为防止强磁场通过大地对保护的干扰,可取消发电机中性点TV二次(或消弧线圈、配电变压器二次)的接地点。(×) 7.为提高保护动作的可靠性,不允许交、直流回路共用同一根电缆。(√) 8.比较母联电流相位式母差保护在母联断路器运行时发生区内故障,理论上不会拒动。(×)

省电力公司发电机保护整定计算课件

第一节概述 发电机的安全运行对保证电力系统的正常工作和电能质量起着决定性的作用,同时发电机本身也是一个十分贵重的电器元件,因此,应该针对各种不同的故障和不正常运行状态,装设性能完善的继电保护装置。 1故障类型及不正常运行状态: 1.1 故障类型 1)定子绕组相间短路:危害最大; 2)定子绕组一相的匝间短路:可能发展为单相接地短路和相间短路; 3)定子绕组单相接地:较常见,可造成铁芯烧伤或局部融化; 4)转子绕组一点接地或两点接地:一点接地时危害不严重;两点接地时, 因破坏了转子磁通的平衡,可能引起发电机的强烈震动或将转子绕组烧损; 5)转子励磁回路励磁电流急剧下降或消失,即发电机低励或失磁:从电 力系统吸收无功功率,从而引起系统电压下降,如果系统中无功功率储备不足,将使电力系统中邻近失磁发电机的某些电压低于允许值,破坏了负荷与各电源间的稳定运行,甚至可使系统因电压崩溃而瓦解。 6)发电机与系统失步:会出现发电机的机械量和电气量与系统之间的振 荡,这种持续的振荡对发电机组和电力系统产生有破坏力的影响;7)发电机过励磁故障:并非每次都造成设备明显破坏,但多次反复过励 磁,将因过热而使绝缘老化,降低设备的使用寿命。 1.2 不正常运行状态 1)由于外部短路引起的定子绕组过电流:温度升高,绝缘老化;

2)由于负荷等超过发电机额定容量而引起的三相对称过负荷,温度升 高,绝缘老化; 3)由于外部不对称短路或不对称负荷而引起的发电机负序过电流和过 负荷:在转子中感应出100hz的倍频电流,可使转子局部灼伤或使护环受热松脱,从而导致发电机重大事故。此外还会引起发电机100Hz的振动; 4)由于突然甩负荷引起的定子绕组过电压:调速系统惯性较大,在突 然甩负荷时,可能出现过电压,造成发电机绕组绝缘击穿; 5)由于励磁回路故障或强励时间过长而引起的转子绕组过负荷; 6)由于汽轮机主气门突然关闭而引起的发电机逆功率:当机炉保护动作或调速控制回路故障以及某些人为因素造成发电机转为电动机运行时,发电机将从系统吸收有功功率,即逆功率。危害:汽轮机尾部叶片有可能过热而造成事故。 2 汽轮发电机保护类型 1)发电机差动保护:定子绕组及其引出线的相间短路保护; 2)匝间保护:定子绕组一相匝间短路或开焊故障的保护; 3)单相接地保护:对发电机定子绕组单相接地短路的保护; 4)发电机的失磁保护:反应转子励磁回路励磁电流急剧下降或消失; 5)过电流保护:反应外部短路引起的过电流,同时兼作纵差动保护的后备保护; 6)阻抗保护:反应外部短路,同时兼作纵差动保护的后备保护; 7)转子表层负序电流保护:反应不对称短路或三相负荷不对称时发电机定子绕组中出现的负序电流;

同步发电机突然三相短路的仿真研究_高仕红

第26卷第1期 湖北民族学院学报(自然科学版) V o.l26 N o.1 2008年3月 J ourna l o fHubei Institute for N ati ona liti es(N at ural Science Editi on) M a r.2008同步发电机突然三相短路的仿真研究 高仕红 (湖北民族学院电气工程系,湖北恩施445000) 摘要:同步发电机的突然三相短路,是电力系统最严重的故障,对电机本身和相关的电气设备都可能产生严重的影响,研究它有着非常重要的意义.在d-p坐标系统下,构建了同步发电机的数学模型以及动态等效电路.利用M a tlab7.1/Si m uli nk6.3的强大功能,构建了同步发电机机端突然三相短路的仿真模型,并对同步发电机的各物理量在短路期间进行了仿真研究.通过理论和仿真对比分析,同步发电机的各物理量在突然短路的暂态过程中产生很大的冲击和振荡,最后稳定在短路前的状态,仿真结果与理论分析相吻合.此方法还可用来研究同步发电机某些动态过程,从而为电机的优化设计提供必要的理论依据. 关键词:同步发电机;突然三相短路;数学模型;动态等效电路;仿真模型 中图分类号:TM301文献标识码:A文章编号:1008-8423(2008)01-0036-05 Si m ul ati on Study of Synchronous G enerator on Sudden Three-phase Short C ircuit GAO Sh i-hong (Depart m ent o f E l ec trical Eng i neeri ng,H ube i Institute f o r N a ti ona li ties,Enshi445000,Chi na) Abst ract:Three-phase short circuit of synchr onous generator is a seri o us fau lt i n t h e electric po w er sys-te m,wh ich is like l y to i n fl u ence bad l y on the nou m enon of electr icm ach i n e and correlati v e electric equ i p-m en,t so it is i m portant to study i.t In the reference fra m e,m athe m atic m ode l and dyna m ic equivalent c ir-cu itw as bu il.t By m aking use of po w erful f u ncti o n ofM atlab7.1/S i m uli n k6.3,si m ulati o n mode l of syn-chronous generator on sudden three-phase short circu it w as buil,t vari o us physica l quantities were stud-ied by si m u lation duri n g t h e short c ircu i.t By co mpari n g theoretics w ith si m ulati o n,various physica l quan-tities o f synchronous generator produced tre m endous i m pact and surge duri n g the sudden circu it and they stabilized in the pr oceedi n g state of short c ircu i.t The e m u lational resu lts are consi s tent w ith theore tic a-nalysis.Th ism ethod is a lso for the use o f researching certa i n dyna m ic course of synchronous generator, w hich provided necessary theoreti c basis for opti m u m desi g n of e lectric m ach i n e. K ey w ords:synchronous generator;sudden three-phase short c ircu i;t m athe m atic m ode;l dyna m ic equ i v-alent circu i;t si m ulati o n m odel 同步发电机是电力系统中最重要和最复杂的元件,由多个具有电磁耦合关系的绕组构成.同步发电机突然短路的暂态过程所产生的冲击电流可能达到额定电流的十几倍,对电机本身和相关的电气设备都可能产生严重的影响,因此对同步发电机动态特性的研究历来是电力系统中的重要课题之一[1~3].而同步电机的突然三相短路,是电力系统的最严重的故障,它是人们最为关心、研究最多的过渡过程.虽然短路过程所经历的时间是极短的(通常约为0.1~0.3s),但对电枢短路电流和转子电流的分析计算,却有着非常重要的意 收稿日期:2007-12-12. 基金项目:湖北省教育厅科学研究计划项目(B20082908). 作者简介:高仕红(1971-),男,硕士,讲师,主要从事电机控制和同步电机励磁控制.

发电机保护装置主要定值整定原则

发电机保护装置主要定值整定原则 (仅供参考) DGP-11数字发电机差动保护装置 DGP-12数字发电机后备保护装置 DGP-13数字发电机接地保护装置 北京美兰尼尔电子技术有限公司

1 DGP-11 数字发电机差动保护主要定值整定原则 纵差保护 1.1.1 差动速断保护动作电流整定 差动速断保护动作电流一般按躲过机组非同期合闸产生的最大不平衡电流整定。一般可取3~4倍额定电流。 1.1.2 比率差动保护 1.1. 2.1 最小动作电流(I do)整定 I do为差动保护最小动作电流值,应按躲过正常发电机额定负载时的最大不平衡 )整定,即: 电流(I unb ·o 或I do=K k×2× I do =K k·I unb ·o 式中:K k—可靠系数,取; I unb·o—发电机额定负荷状态下,实测差动保护中的不平衡电流; I f2n—发电机二次额定电流。 一般可取I do=(~0.3 I n),通常整定为0.2 I n。如果实测I unb 较大,则 ·o 增大的原因,并予消除,避免因I do整定过大而掩盖一、二次应尽快查清I unb ·o 设备的缺陷或隐患。 发电机内部短路时,特别是靠近中性点经过渡电阻短路时,机端或中性点侧的三相电流可能不大,为保证内部短路时的灵敏度,最小动作电流I do不应无根据地增大。 1.1. 2.2 拐点电流定值(I ro)整定 定子电流等于或小于额定电流时,差动保护不必具有制动特性,因此,I ro 可整定为: I ro=(~)I f2n 1.1. 2.3 比率制动系数(K)整定 发电机差动保护比率制动系数按下式整定: K=K k·K ap·K cc·K er 式中:K k—可靠系数,取; K ap—非周期分量系数,取; K cc—电流互感器同型系数,取; K er—电流互感器比误差,取。 在工程实用中,通常为安全可靠取K=。 1.1. 2.4 灵敏度校验 按上述原则整定的比率制动特性的差动保护,当发电机机端两相金属性短路时,差动保护的灵敏度一定满足要求,不必进行灵敏度校验。 横差保护

同步发电机突然三相短路中的几个问题

第2章作业参考答案 2-1 为何要对同步发电机的基本电压方程组及磁链方程组进行派克变换? 答:由于同步发电机的定子、转子之间存在相对运动,定转子各个绕组的磁路会发生周期性的变化,故其电感系数(自感和互感)或为1倍或为2倍转子角θ的周期函数(θ本身是时间的三角周期函数),故磁链电压方程是一组变系数的微分方程,求解非常困难。因此,通过对同步发电机基本的电压及磁链方程组进行派克变换,可把变系数微分方程变换为常系数微分方程。 2-2 无阻尼绕组同步发电机突然三相短路时,定子和转子电流中出现了哪些分量?其中哪些部分是衰减的?各按什么时间常数衰减?试用磁链守恒原理说明它们是如何产生的? 答:无阻尼绕组同步发电机突然三相短路时,定子电流中出现的分量包含:a)基频交流分量(含强制分量和自由分量),基频自由分量的衰减时间常数为T d’。 b)直流分量(自由分量),其衰减时间常数为T a。 c)倍频交流分量(若d、q磁阻相等,无此量),其衰减时间常数为T a。 转子电流中出现的分量包含: a)直流分量(含强制分量和自由分量),自由分量的衰减时间常数为T d’。 b)基频分量(自由分量),其衰减时间常数为T a。 产生原因简要说明: 1)三相短路瞬间,由于定子回路阻抗减小,定子电流突然增大,电枢反应 使得转子f绕组中磁链突然增大,f绕组为保持磁链守恒,将增加一个自

由直流分量,并在定子回路中感应基频交流,最后定子基频分量与转子 直流分量达到相对平衡(其中的自由分量要衰减为0). 2)同样,定子绕组为保持磁链守恒,将产生一脉动直流分量(脉动是由于d、 q不对称),该脉动直流可分解为恒定直流以及倍频交流,并在转子中感 应出基频交流分量。这些量均为自由分量,最后衰减为0。 2-3 有阻尼绕组同步发电机突然三相短路时,定子和转子电流中出现了哪些分量?其中哪些部分是衰减的?各按什么时间常数衰减? 答:有阻尼绕组同步发电机突然三相短路时,定子电流和转子电流中出现的分量与无阻尼绕组的情况相同。衰减时间常数如下: a)定子基频自由分量的衰减时间常数有3个: ' d T 、 " d T 、 " q T ,分别对应于f 绕组、D绕组和Q绕组。 b)定子直流分量和倍频分量(自由分量),其衰减时间常数均为Ta。 c)转子自由直流分量的衰减时间常数为 " d T 、 ' d T 。 d)转子基频分量(自由分量),其衰减时间常数为T a。 产生原因说明:f绕组与无阻尼绕组的情况相同。另外增加了D绕组和Q绕组,这两个绕组中与f绕组类似,同样要产生直流分量和基频交流分量(f 绕组与D绕组间要相互感应自由直流分量),但全部为自由分量,最后衰减为0。定子绕组中也有相应分量与之对应。 2-4 为什么要引入暂态电势E q’、E q”、E d”、E”? 答:不计阻尼回路时,E q’为暂态电动势,它与励磁绕组磁链Ψf有关,故在扰动前后瞬间不变,可用来计算短路后瞬间的基频交流分量。当计及阻尼回路时,

发电机保护整定计算技术规范

发电机保护整定计算技术规范

定子绕组内部故障主保护 一、纵差保护 1 固定斜率的比率制动式纵差保护 1)、比率差动起动电流I op.0:I op.0= K rel K er I gn /n a 或 I op.0= K rel I unb.0 一般取I op.0=(0.1~0.3) I gn /n a ,推荐取I op.0=0.2 I gn /n a 。 2)、制动特性的拐点电流I res.0 拐点电流宜取I res.0=(0.8~1.0)I gn /n a ,一般取I res.0=0.8I gn /n a 。 3)、比率制动特性的斜率S : 0 .r max .r 0.op max .op I I I I S es es --= ① 计算最大不平衡电流I unb.max : I unb.max =K ap K cc K er I k.max / n a 式中:K a p ——非周期分量系数,取 1.5~2.0; K cc — —互感器同型系数,取0.5; K er ——互感器比误差系数,取0.1; I k.max ——最大外 部三相短路电流周期分量。 ② 差动保护的最大动作电流I op.max 按躲最大外部短路时产生的最大暂态不平衡电流计 算: I op.max =K rel I unb.max 式中:K rel ——可靠系数,取1.3~1.5。 ③ 比率制动特性的斜率S

一般I res.max =I k.max /n a ,则 0 .r a max .k 0.op unb.max rel 0 .r max .r 0.op max .op I n /I I I K I I I I S es es es --= --≥ 2、变斜率的比率制动式纵差保护 1)、比率差动起动电流I op.0:同4.1.1.1“比率差动起动电流”的 整定。 2)、制动特性的拐点电流I res.1: 对于发电机保护,装置固定取 I res.1=4I gn /n a 。 对于发电机变压器组保护,装置固定取 I res.1=6I gn /n a 。 3) 、比率制动特性的起始斜率S 1 S 1=K rel K cc K er 式中:K rel ——可靠系数,取1.5;K cc ——互感器的同型系数,取0.5; K er ——互感器比误差系数,取0.1; 一般取S 1=0.1 4) 、比率制动特性的最大斜率S 2: ① 计算最大不平衡电流I unb.max : I unb.max =K ap K cc K er I k.max /n a 式中:K a p ——非周期分量系数,取 1.5~2.0; K cc ——互 感器同型系数,取0.5; K er ——互感器比误差系数,取0.1; I k.max ——最大外部三 相短路电流周期分量, 若I k.max 小于I res.1(最大斜率时的拐点电流)时,取 I k.max =I res.1 。 ② 比率制动特性的斜率S : a gn a max .k a gn 10.op max .u 2n /I 2n /I n /I 2I I S ---≥ S nb

6.3 同步发电机突然三相短路的物理过程及短路电流分析

6.3 同步发电机突然三相短路的物理过程及短路电流分析 6.3.1 同步发电机在空载情况下突然三相短路的物理过程 上一节讨论了无限大电源供电电路发生三相对称短路的情况。实际上电力系统发生短路故障时,大多数情况下作为电源的同步发电机不能看成无限大容量,其内部也存在暂态过程,因而不能保持其端电压和频率不变。所以一般在分析和计算电力系统短路时,必须计及同步发电机的暂态过程。由于发电机转子的惯量较大,在分析短路电流时可以近似地认为发电机转子保持同步转速,只考虑发电机的电磁暂态过程。 同步发电机稳态对称运行时,电枢磁势的大小不随时间而变化,在空间以同步速度旋转,由于它与转子没有相对运动,因而不会在转子绕组中感应出电流。但是在发电机端突然三相短路时,定子电流在数值上将急剧变化。由于电感回路的电流不能突变,定子绕组中必然有其它自由电流分量产生,从而引起电枢反应磁通变化。这个变化又影响到转子,在转子绕组中感生出电流,而这个电流又进一步影响定子电流的变化。定子和转子绕组电流的互相影响是同步电机突然短路暂态过程区别于稳态短路的显著特点,同时这种定、转子间的互相影响也使暂态过程变得相当复杂。 图6-6 凸极式同步发电机示意图 图6-6为凸极同步发电机的示意图。定子三相绕组分别用绕组,,表示,绕组的中心轴,,轴线彼此相差120o。转子极中心线用轴表示,称为纵轴或直轴;极间轴线用轴表示,称为横轴或交轴。转子逆时针旋转为正方向,轴超前轴90o。励磁绕组的轴线与轴重合。阻尼绕组用两个互相正交的短接绕组等效,轴线与轴重合的称为阻尼绕组,轴线与轴重合的称为阻尼绕组。 定子各相绕组轴线的正方向作为各绕组磁链的正方向,各相绕组中正方向电流产生的磁链的方向与绕组轴线的正方向相反,即定子绕组中正电流产生负磁通。励磁绕组及轴阻尼绕组磁链的正方向与轴正方向一致,轴阻尼绕组磁链的正方向与轴正方向一致,转子绕组中正向电流产生的磁链与轴线的正方向相同,即在转子方面,正电流产生正磁通。下面分析发电机空载突然短路的暂态过程。 1.定子回路短路电流 设短路前发电机处于空载状态,气隙中只有励磁电流产生的磁链,忽略漏磁链后,穿过主磁路为主磁链匝链定子三相绕组,又设为转子轴与A相绕组轴线的初始夹角。由于转子以同步转速旋转,主磁链匝链定子三相绕组的磁链随着的变化而变化,因此 (6-17) 若在时,定子绕组突然三相短路,在这一瞬间匝链定子三相磁链的瞬时值为

基于MATLAB的同步发电机短路故障仿真研究

毕业设计(论文) 题目基于MATLAB的同步发电机短路故障仿真研究学院计算机与控制工程学院 专业班级电气xxx 学生姓名 指导教师 成绩 2014 年6 月26 日

摘要 众所周知,同步发电机在电力系统中发挥着至关重要的作用,现代社会中使用的电能几乎由同步发电机所产生,同步发电机在人类社会的生活生产中占据着非常重要的地位。为了更直观地了解同步发电机短路故障状态下的特性指标,尽量避免发生短路故障或及时对短路故障做出相应的正确措施,更合理选择保护装置,研究同步发电机的短路故障状态就成了当务之急的问题。随着科技进步与自动化水平的提高,人们要求能够快速分析故障和解决故障,在电力系统中,因运行环境、可操作性问题的限制,现场对同步发电机测试不太现实,因此,利用软件仿真的方法对同步发电机进行仿真研究就显得极其重要。本论文通过MATLAB软件建立同步发电机的仿真模型,对常见的短路故障进行仿真研究,以便更好地掌握同步发电机短路故障状态下的各特性,并设计了GUI 用户界面,更好的实现了人机交互。文中对各短路故障进行了仿真实验,从仿真结果可以看出,本文所设计的仿真系统满足对同步发电机短路故障的研究需求,实现论文设计的目标。 关键词:同步发电机;短路故障;MATLAB;GUI I

Abstract As is known to all, synchronous generator plays an important role in power system. Now the electric power used in our society almost produce by synchronous generators.Synchronous generator occupies a very important position in human society.In order to learning the characteristic parameters of synchronous generator more intuitive in fault condition, and trying to avoid short circuit fault or to make corresponding measures to correct vision in time or to protect device in the method of reasonable, studying the synchronous generator fault status has become an urgent problems. With the progress of science and technology and the improvement of automation level, people require to be able to quickly analyze fault and solve the problem in the electric power system. With the limitation of the environment in running a synchronous generator, doing a test of generators directly is unlikely.Therefore, with the aid of MATLAB software powerful computing and graphics processing simulation to study the synchronous generator is extremely important.In this paper, a simulation model of the synchronous generator is established by MATLAB software in order to better grasp the performance index of synchronous generator in fault condition.And we also design the Graphical User Interface(GUI) for better realizing the human-computer interaction. Each short circuit fault simulation experiments was carried out in this paper, as can be seen from the simulation results, the simulation system is designed to satisfy demands for synchronous generator short circuit fault research, realizing the target of this paper. Key words: Synchronous generator;Short circuit fault;MATLAB;GUI II

发电机变压器继电保护整定计算

发电机变压器继电保护整定计算 第一章一般规定 保护定值的整定计算是配置和设计电力系统继电保护装置的一项主要内容,定值的整定计算正确与否决定了保护装置动作是否具有选择性和灵敏性。中华人民共和国电力行业标准DL/T684-1999《大型发电机变压器继电保护整定计算导则》已经出版发行,它对发电机和变压器继电保护的定值整定工作必将起到规范化的作用。 发电机变压器继电保护整定计算的主要任务是:在工程设计阶段保护装置选型时,通过整定计算,确定保护装置的技术规范;对现场实际应用的保护装置,通过整定计算,确定其运行参数(给出定值)。从而使继电保护装置正确地发挥作用,保障电气设备的安全,维持电力系统的稳定运行。 为简化计算工作,可按下列假设条件计算短路电流: a.可不计发电机、调相机、变压器、架空线路、电缆线路等阻抗参数中的电阻分量;在很多情况下,可假设旋转电机的负序阻抗与正序阻抗相等。 b.发电机及调相机的正序阻抗,可采用次暂态电抗X″d的饱和值。 c.各发电机的等值电动势(标么值)可假设为1且相位一致。仅在对失磁、失步、非全相等保护装置进行计算分析时,才考虑电动势之间的相角差问题。 d.只计算短路暂态电流中的周期分量,但在纵联差动保护装置(以下简称纵差保护)的整定计算中以非周期分量系数K ap考虑非周期分量的影响。 e.发电机电压应采用额定电压值,系统侧电压可采用额定电压值或平均额定电压值,不考虑变压器电压分接头实际位置的变动。 f.不计故障点的相间和对地过渡电阻。

第二章 发电机保护的整定计算 发电机内部短路包括定子绕组不同相之间的相间短路、同相不同分支之间和同相同分支之间的匝间短路,定子绕组的分支开焊故障,以及各种接地故障。 1 差动保护 纵差保护是比较被保护设备各个引出端电气量(例如电流)大小和相位的一种保护,见图1。发电机纵差保护的保护范围,除发电机定子绕组外还应包括发电机出口至断路器的连接线。不同容量的发电机选用的差动保护装置不同,其整定计算方法也不尽相同。 图1 纵联差动保护原理图 1.1 电磁式BCH-2型纵差保护 1.1.1 动作电流的整定计算 发电机纵差保护的动作电流,按下面两个条件计算,并取其中较大者为整定值I dz.z 。 a. 躲过外部短路时的最大不平衡电流 发电机外部短路时,差动保护的最大不平衡电流由式(2-1)进行估算 a )3(max k er cc ap unb.max /n I K K K I = (2-1) 式中:K ap ——非周期分量系数,取1.5~2.0;K cc ——互感器同型系数,取0.5;K er ——互感器 比误差系数,取0.1;I k.max (3) ——最大外部三相短路电流周期分量。(0.375左右) unb.max k dz I K I = 式中:K k ——可靠系数,取1.2~1.3。 b. 为避免保护在TA (即CT )二次回路断线时误动,保护动作电流应大于发电机的最大负荷电流 e.f k dz I K I = 式中:K k ——可靠系数,取1.3,I e.f ——发电机的额定电流。 取二者之中较大值作为动作电流。 差动继电器的动作电流为 a dz jx j dz n I K I = . 式中:K jx ——接线系数;n a ——TA 变比。 1.1.2 差动线圈匝数W cd 的计算

发电机的差动保护整定计算.doc

百度文库- 让每个人平等地提升自我 1、发电机差动保护整定计算 (1)最小动作电流的选取 =~I gn/n a式中:I gn——发电机额定电流 n a——电流互感器变比 0.2 * 10190 取=(~) I gn/n a= = 12000/ 5 本保护选择 =1A (2)制动特性拐点的选择 当定子电流等于或小于额定电流时,差动保护不必具有制动特 性,因此,拐点 1 电流选择大于发电机额定电流,本保护选拐 点 1 为 5A。拐点 2 电流选择 CT开始饱和时的电流,本保护选 拐点 2 值为 40A。 (3)制动系数的选取 按照外部短路电流下,差动保护不误动来整定。 =K rel *K ap*K cc*K er 式中: K rel——可靠系数,取~ K ap——非周期分量系数,取~ 2 K cc——互感器同型系数,取 K er ——互感器变比误差系数,取 取各系数最大值,则 =*2**= 考虑到电流互感器的饱和或其暂态特性畸变的影响,为安全起 见,宜适当提高制动系数值,取K1=30%,根据厂家说明书K2推荐值为 80%-100%,本保护取 K2=80%。

原保护为单斜率,定值为K1=30%。 保护动作于全停,启动快切,启动断路器失灵。 2、主变差动及速断保护整定计算 (1)最小动作电流的选取 按躲过变压器额定负载时的不平衡电流来整定。 =K rel (K er +△U+△m)I n/n a式中: I n——变压器额定电流 n a——电流互感器变比 K rel——可靠系数,取~ K er——电流互感器的变比误差, 10P型取 *2 ,5P 型和 TP型取 *2 △U——变压器调压引起的误差,取调压范围中偏离额定值的最大值(百分值) △m——由于电流互感器变比未完全匹配产生的误差,初设时取 在工程实用整定计算中可选取 =(~)I n/n a,一般工程宜采用不 0.4 * 882.7 小于 I n/n a。取 =n a== 本保护选取 = (2)制动特性拐点的选择 拐点 1 定值要求大于强迫冷循环情况下的额定电流,小于紧急 情况下的过负荷电流,本保护取5A。拐点 2 电流选择 CT开始饱和时的电流,本保护选拐点 2 值为 40A。 (3)制动系数的选取 按区外短路故障,差动保护不误动来整定。

同步发电机突然三相短路分析.

2 同步发电机突然三相短路分析 2.1电磁场有关的几个概念 磁场:随着电荷或运动电荷而产生的特殊物质,不具有原子、分子的构成以及可见的形态,但具有可被检测的运动速度、能量和动量,占用空间,具有真实的客观存在,是物质存在的一种形式。 磁感应强度B:反映磁场中某点(运动电荷所受)的磁场力的大小和方向的量(矢量)。单位为T(特斯拉)或Gs(高斯)。1T=1(N.s)/(C.m)=104Gs。 磁通量:磁感应强度B在某曲面S上的面积分,称为该曲面所通过的磁通量。磁通量与线圈的匝数和电流的乘积成正比。多匝线圈所交链磁通量的总和称为磁链。 磁路、磁阻、磁动势:磁通量所通过的闭合环路称为磁路;与电路电阻类似,磁路可用磁阻表示。类似于电路欧姆定律的电压、电流、电阻关系,磁场中为磁动势、磁通量、磁阻。

自感L。自感磁链与通过线圈的电流之比称为自感系数(电感、自感)。单位H 互感M:线圈1对线圈2的互感定义为:由线圈1所产生的与线圈2交链的磁链与线圈1电流之比(可为正、负) 法拉第电磁感应定律:导线回路交链的磁通量随时间变化时,回路中将产生一感应电势。时变磁场能够产生电场,运动电荷(电流)能够产生磁场,电场和磁场相互作用,构成一个的统一电磁场。 楞次定律:感应电动势引起的电流总是倾向于反抗回路中磁通量的变化。?=?d? dt 2.2 同步发电机的基本方程

同步发电机是电力系统中最重要的元件,其运行特性对电力系统具有决定性的作用。 暂态过程中,其基本方程是理想同步发电机的各个绕组间电磁关系的一组数学方程,由各绕组磁链方程和电动势方程二部分组成。 发电机各个绕组:定子3个(a相、b相、c相),转子3个(励磁绕组f、直轴阻尼绕组D,交轴阻尼绕组Q)。(如图2-11示意图,包括定义的各个绕组磁链的正方向) 磁链方程:

相关文档
相关文档 最新文档