文档库 最新最全的文档下载
当前位置:文档库 › 蛋白质作业题

蛋白质作业题

蛋白质作业题
蛋白质作业题

一、填空练习题

1.构成蛋白质的氨基酸有种,一般可根据氨基酸侧链(R)的大小分为侧链氨基酸和侧链氨基酸两大类。其中前一类氨基酸侧链基团的共同特怔是具有性;而后一类氨基酸侧链(或基团)共有的特征是具有性。碱性氨基酸(pH6~7时荷正电)有两种,它们分别是氨基酸和氨基酸;酸性氨基酸也有两种,分别是氨基酸和氨基酸。

2.紫外吸收法(280nm)定量测定蛋白质时其主要依据是因为大多数可溶性蛋白质分子中含有氨基酸、氨基酸或氨基酸。

3.丝氨酸侧链特征基团是;半胱氨酸的侧链基团是;组氨酸的侧链基团是。这三种氨基酸三字母代表符号分别是、、。

4.氨基酸与水合印三酮反应的基团是,除脯氨酸以外反应产物的颜色是;因为脯氨酸是α—亚氨基酸,它与水合印三酮的反应则显示色。

5.蛋白质结构中主键称为键,次级键有、、、、;次级键中属于共价键的是键。

6..侧链含—OH的氨基酸有、和三种。侧链含—SH的氨基酸是氨基酸。

7.人体必需氨基酸是指人体自身不能合成的、必须靠食物提供的氨基酸。这些氨基酸包括、、、、

、、、等八种。

二、选择填空题

1.侧链含有咪唑基的氨基酸是()

A、甲硫氨酸

B、半胱氨酸

C、精氨酸

D、组氨酸

2.PH为8时,荷正电的氨基酸为()

A、Glu

B、Lys

C、Ser

D、Asn

3.精氨酸的Pk1=2.17、Pk2=9.04(α-NH3)Pk3=12.48(胍基)PI=()

A、1/2(2.17+9.04)

B、1/2(2.17+12.48)

C、1/2(9.04+12,48)

D、1/3(2.17+9。04+12。48)

4.谷氨酸的Pk1=2.19(α-COOH)、pk2=9.67(α-NH3)、pk3=4.25(γ-COOH) pl=()

A、1/2(2.19+9。67)

B、1/2(9.67+4.25)

C、1/2(2.19+4.25)

D、1/3(2.17+9.04+9.67)

5.氨基酸不具有的化学反应是()

A、肼反应

B、异硫氰酸苯酯反应

C、茚三酮反应

D、双缩脲反应

三、是非判断(用“对”、“错”表示,并填入括号中)

1.胰岛素分子中含有两条多肽链,所以每个胰岛素分子是由两个亚基构成()

2.蛋白质多肽链中氨基酸的种类数目、排列次序决定它的二级、三级结构,即一级结构含有高级结构的结构信息。()

3.肽键中相关的六个原子无论在二级或三级结构中,一般都处在一个刚性平面内。()4.构成天然蛋白质的氨基酸,其D-构型和L-型普遍存在。()

6.功能蛋白质分子中,只要个别氨基酸残基发生改变都会引起生物功能的丧失。()7.具有四级结构的蛋白质,当它的每个亚基单独存在时仍能保持蛋白质有的生物活性。(

8.胰岛素分子中含有A7-S-S-B7,A20-S-S-B19和A6-S-S-A11三个二硫键,这些属于二级结构的内容。()

16.利用蛋白质系数计算粗蛋白含量时对不同的生物样品都一样(即为6.25)。()17.胰蛋白酶作用时对肽键N-端氨基酸残基的要求是赖氨酸或精氨酸,这种专一性可称为基团专一性。()

五、问答题

1.组成蛋白质的20种氨基酸依据什么分类?各类氨基酸的共同特性是什么?这种分类在生物学上有何重要意义?

2.蛋白质的基本结构与高级结构之间存在的关系如何?

3.Edman反应所有的试剂和反应的特点如何?

4.何谓蛋白质等电点?等电点时蛋白质的存在特点是什么?

六、计算题

1.测得一种蛋白质分子中Trp残基占分子量的0.29%,计算该蛋白质的最低分子量(注:Trp的分子量为204Da)。

2.一种蛋白质按其重量含有1.65%亮氨酸和2.48%异亮氨酸,计算该蛋白质最低分子量。(注:两种氨基酸的分子量都是131Da)。

3.某种氨基酸α-COOHpK=2.4,α-N+H3pK=9.6,ω-N+H3pK=10.6,计算该种氨基酸的等电点(pI)。

蛋白质序列分析

蛋白质序列、性质、功能和结构分析 基于网络的蛋白质序列检索与核酸类似,从NCBI或利用SRS系统从EMBL 检索。 1、疏水性分析 ExPASy的ProtScale程序(https://www.wendangku.net/doc/8613006600.html,/cgi-bin/protscale.pl)可用来计算蛋白质的疏水性图谱。输入的数据可为蛋白质序列或SWISS-PROT数据库的序列接受号。也可用BioEdit、DNAMAN等软件进行分析。 2、跨膜区分析 蛋白质跨膜区域分析的网络资源有: TMPRED:https://www.wendangku.net/doc/8613006600.html,/software/TMPRED_form.html PHDhtm: http:www.embl-heidelberg.de/Services/sander/predictprotein/predictpro tein.html MEMSAT: ftp://https://www.wendangku.net/doc/8613006600.html, 3、前导肽和蛋白质定位 一般认为,蛋白质定位的信息存在于该蛋白自身结构中,并且通过与膜上特殊受体的相互作用得以表达。这就是信号肽假说的基础。这一假说认为,穿膜蛋白质是由mRNA编码的。在起始密码子后,有一段疏水性氨基酸序列的RNA片段,这个氨基酸序列就称为信号序列(signal sequence)。 蛋白质序列的信号肽分析可联网到http://genome.cbs.dtu.dk /services/SignalP/或其二版网址 http://genome.cbs.dtu.dk/services/SignalP-2.0/。该服务器也提供利用 e-mail进行批量蛋白质序列信号肽分析的方案 (http://genome.cbs.dtu.dk/services /SignalP/mailserver.html),e-mail 地址为signalp@ genome.cbs.dtu.dk。 蛋白质序列中含有的信号肽序列将有助于它们向细胞内特定区域的移动,如前导肽和面向特定细胞器的靶向肽。在线粒体蛋白质的跨膜运输过程中,通过线粒体膜的蛋白质在转运之前大多数以前体形式存在,它由成熟蛋白质和N端延伸出的一段前导肽或引肽(leader peptide)共同组成。迄今有40多种线粒体蛋白质前导肽的一级结构被阐明,它们约含有20~80个氨基酸残基,当前体蛋白跨膜时,前导肽被一种或两种多肽酶所水解转变成成熟蛋白质,同时失去继续跨膜能力。前导肽一般具有如下性质:①带正电荷的碱性氨基酸(特别是精氨酸)含量较丰富,它们分散于不带电荷的氨基酸序列中间;②缺失带负电荷的酸性

蛋白质结构解析的方法对比综述 (1)

蛋白质结构解析的方法对比综述 工程硕士李瑾 摘要:到目前为止,蛋白质结构解析的方法主要是两种,x射线衍射法和NMR法,这两种方法各有优点和不足。 关键词:x射线衍射法 NMR法 到目前为止,蛋白质结构解析的方法主要是两种,x射线衍射法和NMR法。其中X射线的方法产生的更早,也更加的成熟,解析的数量也更多,第一个解析的蛋白的结构,就是用x晶体衍射的方法解析的。而NMR方法则是在90年代才成熟并发展起来的。这两种方法各有优点和不足[1]。 首先是X射线晶体衍射法。该方法的前提是要得到蛋白质的晶体。通常是将表达目的蛋白的基因经PCR扩增后克隆到一种表达载体中,然后转入大肠杆菌中诱导表达,目的蛋白提纯之后摸索结晶条件,等拿到晶体之后,将晶体进行x射线衍射,收集衍射图谱,通过一系列的计算,得到蛋白质的原子结构[2]。 x射线晶体衍射法的优点是:速度快,通常只要拿到晶体,最快当天就能得出结构,另外不受肽链大小限制,无论是多大分子量的蛋白质或者RNA、DNA,甚至是结合多种小分子的复合体,只要能够结晶就能够得到其原子结构。所以x射线方法解析蛋白的关键是摸索蛋白结晶的条件。该方法得到的是蛋白质分子在晶体状态下的空间结构,这种结构与蛋白质分子在生物细胞内的本来结构有较大的差别。晶体中的蛋白质分子相互间是有规律地、紧密地排列在一起的,运动性较差;而自然界的生物细胞中的蛋白质分子则是处于一种溶液状态,周围是水分子和其他的生物分子,具有很好的运动性。而且,有些蛋白质只能稳定地存在于溶液状态,无法结晶[2]。 核磁共振NMR(nuclear magnetic resonance)现象很早就被科研人员观察到了,但将这种方法用来解析蛋白质结构,却是近一二十年的事情。NMR法具体原理是对水溶液中的蛋白质样品测定一系列不同的二维核磁共振图谱,然后根据已确定的蛋白质分子的一级结构,通过对各种二维核磁共振图谱的比较和解析,在图谱上找到各个序列号氨基酸上的各种氢原子所对应的峰。有了这些被指认的峰,就可以根据这些峰在核磁共振谱图上所呈现的相互之间的关系得到它们所对应的氢原子之间的距离。[3]可以想象,正是因为蛋白质分子具有空间结构,在序列上相差甚远的两个氨基酸有可能在空间距离上是很近的,它们所含的氢原子所对应的NMR峰之间就会有相关信号出现[4] 。通常,如果两个氢原子之间距离小于0.5纳米的话,它们之间就会有相关信号出现。一个由几十个氨基酸残基组成的蛋白质分子可以得到几百个甚至几千个这样与距离有关的信号,按照信号的强弱把它们转换成对应的氢原子之间的距离,然后运用计算机程序根据所得到的距离条件模拟出该蛋白质分子的空间结构。该结构既要满足从核磁共振图谱上得到的所有距离条件,还要满足化学上有关原子与原子结合的一些基本限制条件,如原子间的化学键长、键角和原子半径等[4]。 NMR解析蛋白结构常规步骤如下:首先通过基因工程的方法,得到提纯的目的蛋白,在蛋白质稳定的条件下,将未聚合,而且折叠良好的蛋白样品(通常是1mM-3mM,500ul,PH6-7的PBS)装入核磁管中,放入核磁谱仪中,然后由写好的程序控制谱仪,发出一系列的电磁波,激发蛋白中的H、13N、13C原子,等电磁波发射完毕,再收集受激发的原子所放出的“能量”,通过收集数据、谱图处理、电脑计算从而得到蛋白的原子结构[5] [6]。 用NMR研究蛋白质结构的方法,可以在溶液状态进行研究,得到的是蛋白质分子在溶液中的结构,这更接近于蛋白质在生物细胞中的自然状态[7]。此外,通过改变溶液的性质,还可以模拟出生物细胞内的各种生理条件,即蛋白质分子所处的各种环境,以观察这些周围环境的变化对蛋白质分子空间结构的影响。在溶液环境中,蛋白质分子具有与自然环境中类

【核心知识】蛋白质折叠的热力学和动力学

蛋白质折叠的热力学和动力学 药学院 10489629 苟宝迪 蛋白质是一种生物大分子,基本上是由20种氨基酸以肽键连接成肽链。肽链在空间卷曲折叠成为特定的三维空间结构。有的蛋白质由多条肽链组成,每条肽链称为亚基,亚基之间又有特定的空间关系,称为蛋白质的四级结构。所以蛋白质分子有非常特定的复杂的空间结构。诺贝尔奖得主Anfinsen认为每一种蛋白质分子都有自己特有的氨基酸的组成和排列顺序,由这种氨基酸排列顺序决定它的特定的空间结构。具有完整一级结构的多肽或蛋白质, 只有当其折叠形成正确的三维空间结构才可能具有正常的生物学功能. 如果这些生物大分子的折叠在体内发生了故障, 形成错误的空间结构, 不但将丧失其生物学功能, 甚至会引起疾病.蛋白质异常的三维空间结构可以引发疾病,疯牛病、老年性痴呆症、囊性纤维病变、家族性高胆固醇症、家族性淀粉样蛋白症、某些肿瘤、白内障等等都是“折叠病”。 蛋白质折叠的研究(图1[1]),是生命科学领域的前沿课题之一。不仅具有重大的科学意义,而且在医学和在生物工程领域具有极大的应用价值。 图1 蛋白质折叠的热力学研究 蛋白质折叠的研究,比较狭义的定义就是研究蛋白质特定三维空间结构形成的规律、稳定性和与其生物活性的关系。这里最根本的科学问题就是多肽链的一级结构到底如何决定它的空间结构?X-射线晶体衍射是至今为止研究蛋白质结构最有效的方法, 所能达到的精度是其它任何方法所不能比拟的. 但是, 蛋白质分离纯化技术要求高, 蛋白质晶体难以培养,

晶体结构测定的周期较长, 从而制约了蛋白质工程的进展. 随着近代物理学、数学和分子生物学的发展, 特别是计算机技术的进步, 人们开始用理论计算的方法, 利用计算机来预测蛋白质的结构. 同源模建方法是最常用、最有效的蛋白质结构预测方法. 但是, 利用同源模建方法预测蛋白质结构时, 需用同源蛋白质的已知结构作为模板. 当缺乏这种模板结构时, 预测则很难奏效. 这是该方法的天生缺陷. 是否能从蛋白质序列出发, 直接预测蛋白质的结构? 从理论上最直接地去解决蛋白质的折叠问题,就是根据测得的蛋白质的一级序列预测由Anfinsen原理决定的特定的空间结构。蛋白质氨基酸序列,特别是编码蛋白质的核苷酸序列的测定现在几乎已经成为常规技术,利用分子生物学技术可以从互补DNA(cDNA)序列可以推定氨基酸序列,大大加速了蛋白质一级结构的测定。目前蛋白质数据库中已经存有大约17万个蛋白的一级结构,但是测定了空间结构的蛋白大约只有1.2万个,这中间有许多是很相似的同源蛋白,已经有人根据基因组的数据用统计方法重新估计了蛋白质折叠类型数目大约为1000种。 “蛋白质结构预测”属于理论方面的热力学问题,蛋白质分子结构本身的复杂性决定了结构预测的复杂性。目前结构预测的方法大致可分为两大类。一类是假设蛋白质分子天然构象处于热力学最稳定,能量最低状态,考虑蛋白质分子中所有原子间的相互作用以及蛋白质分子与溶剂之间的相互作用,采用分子力学的能量极小化方法,计算出蛋白质分子的天然空间结构。第二类方法是利用存入蛋白质数据库的数据进行预测相比,基于同源性的重复循环技术非常可靠地灵敏地进行结构预测。找出数据库中已有的蛋白质的空间结构与其一级序列之间的联系总结出一定的规律,逐级从一级序列预测二级结构,再建立可能的三维模型,根据总结出的空间结构与其一级序列之间的规律,排除不合理的模型,再根据能量最低原理得到修正的结构。但是,第一类方法遇到在数学上难以解决的多重极小值问题,而逐级预测又受到二级结构预测精度的限制。 图2[2]为蛋白质折叠研究的漏斗模型。从能量的角度看,漏斗表面上的每一个点代表蛋白质的一种可能的构象,变性状态的蛋白质构象位于漏斗顶面,漏斗最底部的点表示用X-射线单晶衍射或NMR测定的蛋白质天然构象,而漏斗侧面的斜率用来说明蛋白质折叠路径(图3[1])。 图2

常见食物热量及蛋白质含量表全

常见食物热量及蛋白质含量表(全)食物名称(50克)热量(千卡)蛋白质(克) 蛋类: 鹌鹑蛋 80 鸡蛋(红皮) 78 鸡蛋白 30 鸡蛋黄 164 松花蛋(鸡蛋) 89 鸭蛋 90 松花蛋(鸭蛋) 鹅蛋 98 豆类: 豆腐 49 大豆(黄豆) 腐竹 豆腐脑 素鸡 96 绿豆 158 红小豆 豆沙 红豆馅 120

蚕豆 蚕豆(烤) 186 食物名称(50克)热量(千卡)蛋白质(克)谷类: 稻米 173 米饭 58 香大米 173 高粱米 挂面 173 花卷 馒头 烙饼 油饼 油条 193 面条 142 面条(富强粉切面) 面条(富强粉煮) 小米 179 小米面 178 大黄米 玉米(鲜) 53 2

玉米糁 酒类: 啤酒 16 黄酒 33 红葡萄酒 37 低度汉酒(37度) 108 0 曲酒(55度) 165 0 二锅头(58度) 0 特制汉酒(度) 182 0 食物名称(50克)热量(千卡)蛋白质(克)坚果、种子类: 松子仁 349 核桃(干) 葵花子仁 303 榛子(炒) 297 花生仁(炒) 腰果 276 榛子(干) 271 10 芝麻(黑) 银杏(干) 栗子(熟) 106

菌藻类: 蘑菇(干) 126 蘑菇(鲜蘑) 10 黑木耳(干) 黑木耳(水发) 香菇 银耳(干) 100 5榛蘑(干) 榛蘑(水发) 23 海带(干) 海带(浸) 7 紫菜(干) 禽肉类: 鸡 乌骨鸡 肯德鸡(炸鸡) 烤鸡 120 扒鸡 鹌鹑 55 鸽 鸭 120 盐水鸭(熟)

北京烤鸭 218 鹅 烧鹅 乳类: 全脂牛奶粉 239 全脂速溶奶粉 233 炼乳(甜,罐头) 116 4酸奶 36 牛乳 27 鲜羊乳 人乳 蔬菜类: 大葱 15 大蒜(蒜头) 63 韭菜 13 蒜薹 1 小葱 12 洋葱(白皮) 165 洋葱(紫皮) 162 洋葱(葱头) 红萝卜 10 胡萝卜(黄)

蛋白质分析解决方案蛋白质分析解决方案

蛋白质分析解决方案 https://www.wendangku.net/doc/8613006600.html, 蛋白质分析解决方案 https://www.wendangku.net/doc/8613006600.html, https://www.wendangku.net/doc/8613006600.html, info@https://www.wendangku.net/doc/8613006600.html,

目录 关于Advansta 关于Advansta 样品制备 Afyon 电泳与染色 AdvanStain Scarlet Visio 蛋白质转印 FLASHBlot Transfer Buffer AdvanStain Ponceau 检测 WesternBright ECL & Spray WesternBright Quantum WesternBright Sirius WesternBright MCF & MCF-IR ELISABright 其它 WesternBright ChemiPen Afyon TM Afyon SDS-PAGE样品制备试剂盒能够快速高效地浓缩蛋白质样品,去除缓冲液中可能干扰电泳的成分。只需不到10 min,样品即可用于SDS-PAGE或免疫印迹。Afyon的操作手册非常简单,可以作为最常用的蛋白质 电泳样品制备的工具。? 快速去除干扰电泳的缓冲液成分 (GuHCl, urea, Ammonium sulfate, etc)? 不到10 min,蛋白质样品即可上样? 安全,无毒性,无需DMSO ? 比超滤或透析等方法更加快捷 ? 兼容下游的SDS-PAGE和Western Blot 特点 Afyon 与Western Blotting能够很好地兼容。上图所示为两组Western Blotting实验,样本为A431细胞的抽提物。图a检测GAPDH,图b检测SRC,泳道2为A431细胞的抽提物,泳道3为稀释的细胞抽提物,泳道4为将稀释抽提物用Afyon浓缩后的样品。Western Blot采用荧光标记的二抗进行检测。可见,a和b中的泳道3均无信号,泳道2和4均可以检测 到靶蛋白的信号,信号强度用数字标出。 美国Advansta公司成立于2005年,总部位于加利福尼亚州,是专业的生命科学试剂制造商,致力于研发高效易用的蛋白质分析试剂。 Advansta的公司使命是:成为全球领先的蛋白质分析试剂的研发者与制造商。 其研发团队具有相当扎实的化学分析与蛋白质分析的应用背景,公司的旗舰产品之一为Western Blotting实验配套的相关试剂,其中 WesternBright化学发光底物产品线仅2014年一年就有超过200篇的文献引用量,并获得越来越多的全球使用者的青睐,被评为市场上最灵敏的化学发光底物。 订购信息高效样本制备试剂盒 货号描述 规格R-03018-B10Non-reducing protein sample loading buffer (2X) 1 mL K-02101-010Afyon SDS-PAGE Sample Preparation Kit 10 rxns K-02101-025 Afyon SDS-PAGE Sample Preparation kit 25 rxns 12233455677899101010 样品制 备

蛋白质结构分析原理及工具-文献综述

蛋白质结构分析原理及工具 (南京农业大学生命科学学院生命基地111班) 摘要:本文主要从相似性检测、一级结构、二级结构、三维结构、跨膜域等方面从原理到方法再到工具,系统地介绍了蛋白质结构分析的常用方法。文章侧重于工具的列举,并没有对原理和方法做详细的介绍。文章还列举了蛋白质分析中常用的数据库。 关键词:蛋白质;结构预测;跨膜域;保守结构域 1 蛋白质相似性检测 蛋白质数据库。由一个物种分化而来的不同序列倾向于有相似的结构和功能。物种分化后形成的同源序列称直系同源,它们通常具有相似的功能;由基因复制而来的序列称为旁系同源,它们通常有不同的功能[1]。因此,推测全新蛋白质功能的第一步是将它的序列与进化上相关的已知结构和功能的蛋白质序列比较。表一列出了常用的蛋白质序列数据库和它们的特点。 表一常用蛋白质数据库 网址可能有更新 氨基酸替代模型。进化过程中,一种氨基酸残基会有向另一种氨基酸残基变化的倾向。氨基酸替代模型可用来估计氨基酸替换的速率。目前常用的替代模型有Point Accepted Mutation (PAM)矩阵、BLOck SUbstitution Matrix (BLOSUM)矩阵[2]、JTT模型[3]。 序列相似性搜索工具。序列相似性搜索又分为成对序列相似性搜索和多序列相似性搜索。成对序列相似性搜索通过搜索序列数据库从而找到与查询序列相似的序列。分为局部联配和全局联配。常用的局部联配工具有BLAST和SSEARCH,它们使用了Smith-Waterman 算法。全局联配工具有FASTA和GGSEARCH,基于Needleman-Wunsch算法。多序列相似性搜索常用于构建系统发育树,这里不阐述。表二列举了常用的成对序列相似性比对搜索工具

蛋白质折叠机理的研究进展

蛋白质折叠机理的研究进展 凌发忠 (专业:生物化学与分子生物学学号:D201002034) 摘要:研究蛋白质的折叠,是生命科学领域的前沿课题之一。蛋白质是一种生物大分子,多是由20种氨基酸以肽键连接成肽链。肽链在进一步空间卷曲折叠成为特定的空间结构,包括二级结构和三级结构。有的蛋白质由多条肽链组成,每条肽链称为亚基,亚基之间又有特定的空间关系,称为蛋白质的四级结构。因此蛋白质分子往往具有特定的复杂的空间结构。但这并没有停止人类的探索,反而激励人们尝试寻找类似遗传密码子的蛋白质密码。本文将对蛋白质折叠的研究概况以及意义进行综述,并在此基础之上对今后蛋白质折叠的研究提出了一些自己的看法。 关键词:蛋白质折叠机理分子伴侣 1.引言 蛋白质折叠是生物学中心法则中至今尚未解决的一个重大生物学问题。[1]蛋白质像是一个微小而精密的机器。在蛋白质实现它的生物功能之前,它们会把自己装配起来。虽然蛋白质折叠是对所有的生物体系来说最重要的和最基本的过程,但这个过程对人类而言仍然是个未解之谜。此外,如果蛋白质没有正确的折叠会导致严重的后果,包括许多知名的疾病,比方阿兹海默症(Alzheimer's),疯牛病(Mad Cow, BSE),可传播性海绵状脑病(CJD),肌萎缩性脊髓侧索硬化症(ALS)和其他多种癌症及其相关的综合病症。这也成为近年来刺激人们探索蛋白质结构机理的一个重要原因之一。 2.蛋白质折叠研究概括 2.1分子生物学的中心法则 根据分子生物学中心法则,生物遗传信息的传递是由 DNA 到 RNA、RNA 到蛋白质多肽链、再由多肽链形成具有生物活性的蛋白质进行的。目前对前两者的过程已有相当深入和清晰的了解,但对后者尚不十分清楚。因此可以说蛋白质折叠是生物学中心法则中至今尚未解决的一个重大生物学问题。 通过蛋白质折叠的研究发现一级结构和空间结构之间存在某种确定的关系,那么是否像核苷酸通过“三联密码”决定氨基酸顺序那样有一套密码呢?有人把这设想的一级结构决定空间结构的密码叫作“第二遗传密码”。如果存在的话,那就可以直接从理论上去解决蛋白质的折叠问题,这是蛋白质研究最后几个尚未揭示的奥秘之一。现已经观察出 mRNA 的二级结构单元数与其编码的蛋白质二级结构(α-螺旋与β-折叠)单元数之间存在明显的相关性,二者的总符合率为 97.3%,相关系数达 0.99;其次,mRNA二级结构中5ˊ端至3ˊ端的每一发夹或复合发夹与PDB数据库所提供的蛋白质N端至C端的每一个α-螺旋或β-折叠之间存在几乎是一一对应的现象。通过上述数据可以看出,mRNA的三维结构和蛋白质的三维结构中确实存在某种相关。[2] 2.2蛋白质折叠的热力学和动力学 蛋白质折叠根本的科学问题是具有完整一级结构的多肽链又是如何折叠成为它特定的高级结构?这是一个折叠的动力学的问题,长期以来,主要用体外的实验方法研究,虽然已有四五十年,但至今尚未解决。 由 Anfinsen等[3]根据对 RNase 复性研究的经典实验提出的“热力学假说”认为一级结构决定高级结构。他们认为天然蛋白质多肽链所采取的构象是在一定环境条件下热力学上最

常见食物热量及蛋白质含量表(全)

常见食物热量及蛋白质含量表(全) 食物名称(50克)热量(千卡)蛋白质(克) 蛋类: 鹌鹑蛋80 6.4 鸡蛋(红皮)78 6.35 鸡蛋白30 5.8 鸡蛋黄164 7.6 松花蛋(鸡蛋)89 7.4 鸭蛋90 6.3 松花蛋(鸭蛋)85.5 7.1 鹅蛋98 5.55 豆类: 豆腐49 6.1 大豆(黄豆)179.5 17.5 腐竹229.5 22.3 豆腐脑7.5 0.95 素鸡96 8.25 绿豆158 10.8 红小豆154.5 10.1 豆沙121.5 2.75 红豆馅120 2.4 豌豆156.5 10.15 蚕豆167.5 10.8 蚕豆(烤)186 13.5 食物名称(50克)热量(千卡)蛋白质(克) 谷类: 稻米173 3.7 米饭58 1.3 香大米173 6.35 高粱米175.5 5.2 挂面173 5.15 花卷105.5 3.2 馒头110.5 3.5 烙饼127.5 3.75 油饼199.5 3.95 油条193 3.45 面条142 4.15 面条(富强粉切面)142.5 4.65 面条(富强粉煮)54.5 1.35 小米179 4.5 小米面178 3.6

大黄米174.5 6.8 玉米(鲜)53 2 玉米面170.5 4.05玉米糁173.5 3.95酒类: 啤酒16 0.2 黄酒33 0.8 红葡萄酒37 0.05低度汉酒(37度)108 0 曲酒(55度)165 0 二锅头(58度)175.5 0 特制汉酒(59.9度)182 0 食物名称(50克)热量(千卡)蛋白质(克)坚果、种子类: 松子仁349 6.7 核桃(干)313.5 7.45葵花子仁303 9.55榛子(炒)297 15.25花生仁(炒)290.5 11.95腰果276 8.65榛子(干)271 10 芝麻(黑)265.5 9.55银杏(干)177.5 6.6 栗子(熟)106 2.4 菌藻类: 蘑菇(干)126 10.5 蘑菇(鲜蘑)10 1.35黑木耳(干)102.5 6.05黑木耳(水发)10.5 0.75香菇9.5 1.1 银耳(干)100 5 榛蘑(干)78.5 4.75 榛蘑(水发)23 1.4 海带(干)38.5 0.9海带(浸)7 0.55紫菜(干)103.5 13.35禽肉类: 鸡83.5 9.65乌骨鸡55.5 11.15肯德鸡(炸鸡)139.5 10.15烤鸡120 11.2扒鸡108.5 14.8鹌鹑55 23.0鸽100.5 42.05

蛋白分析

Gi:40644130 allene oxide cyclase 【Niootiana tabacum】 丙二烯氧化环化酶(allene oxide cyclase, AOC) Gi:140083805 cytosolic class II small heatshock protein HSP17.5 【Rosa hybrid cultivar】 Gi:289487897 Lasoorbate peroxidasa 【Bruguiera gymnorhiza】 比如是核糖体16S, 18S,或ITS等DNA序列,一般在Blast n 中搜索,到底是用megablast,discontiguous megablast还是blastn要根据你的序列与数据库序列的相似性,一般首先用blastn,它对相似性要求较低,可发现大量相似序列,如果进一步要求,再选择megablast 等。但是注意blastn搜索数据库对核酸序列相似性要求较高,如果序列保守性不高,比如新的RNA病毒的基因组序列,可能很难得到结果,这时需要用blastp 或Blast x等。 如果是编码蛋白的基因序列,可先将其翻译成蛋白(注意,一条序列理论上有六种编码可能)然后分别去blastp搜索蛋白数据库,当然,你也可直接将其在Blast x中搜索,Blast x会自动将六种编码可能分别翻译后搜索蛋白数据库。 Blastp/PSI-Blast/PHI-BLAST都是蛋白序列与蛋白序列之间的Blast比对。 1,Blastp: 标准的蛋白序列与蛋白序列之间的比对 Standard protein BLAST is designed for protein searches. Blastp用于确定查询的氨基酸序列在蛋白数据库中找到相似的序列。跟其它的Blast程序一样,目的是要找到相似的区域。 2,PSI-BLAST : 敏感度更高的蛋白序列与蛋白序列之间的比对 PSI-BLAST is designed for more sensitive protein-protein similarity searches. Position-Specific Iterated (PSI)-BLAST,是一种更加高灵敏的Blastp程序,对于发现远亲物种的相似蛋白或某个蛋白家族的新成员非常有效。当你使用标准的Blastp比对失败时,或比对的结果仅仅是一些假基因或推测的基因序列时("hypothetical protein" or "similar to..."),你可以选择PSI-BLAST重新试试。 3,PHI-BLAST : 模式发现迭代BLAST PHI-BLAST can do a restricted protein pattern search. PHI-BLAST, 模式发现迭代BLAST, 用蛋白查询来搜索蛋白数据库的一个程序。仅仅找出那些查询序列中含有的特殊模式的对齐。 PHI的语法详细介绍看这里:https://www.wendangku.net/doc/8613006600.html,/blast/html/PHIsyntax.html The syntax for patterns in PHI-BLAST follows the conventions of PROSITE. When using the stand-alone program, it is permissible to have multiple patterns in a file separated by a blank line between patterns. When using the Web-page only one pattern is allowed per query.

蛋白质分析应用

蛋白质快速检测仪测定乳及乳制品中蛋白质 背景介绍: 蛋白质是生命现象中最基本的物质基础,具有调节生理功能,充当药物分子、维生素、矿物质与微量元素的载体等功能。食用乳及乳制品是人体摄入蛋白质的重要途径之一。但一些不法分子为了获取经济利益,向乳制品中添加含氮量高的无机物质(如三聚氰胺、尿素、硝酸铵等)以提高蛋白质的含量,严重影响乳制品的质量和人们的身体健康。凯氏定氮法是我国用于蛋白质测定的常规检测方法,它是通过样品消解将样品中所有氮元素转化为氨,通过H2SO4或HCL标准溶液进行滴定,实现样品中蛋白质的测定,完成一个样品的整个分析过程至少需要2 h。从其原理可知,样品消解后所有氮元素均转化为氨,故该法无法区分蛋白质氮与非蛋白质氮。杜马斯燃烧法是国际上常用于蛋白质含量测定的方法。样品燃烧后生成的氮氧化物在钨上还原为分子氮,分子氮由二氧化碳载气运送到TCD热导检测器,氮含量引发一种电子测量信号,经过标准物质独立校正被测样品中氮含量,然后转换为蛋白质的含量。从原理上看,如不对样品进行预处理,该方法与凯氏定氮法同样也无法区分蛋白质氮和非蛋白质氮。 蛋白质快速检测仪原理和结构: 将某些有机试剂适量加入到含有蛋白质的溶液中时,有机试剂与蛋白质相互作用生成不溶性化合物(这些有机试剂可称为蛋白质试剂),离心分离不溶性化合物,未与蛋白质反应的有机试剂仍存在溶液中。通过定量加入的有机试剂,借助蛋白质快速检测仪检测有机试剂吸光度的变化,可测定出样品中蛋白质的含量。因为溶液吸光度与有机试剂的浓度成正比,当蛋白质存在时,溶液中有机试剂浓度降低,其溶液吸光度也降低,降低程度与蛋白质浓度相关。 结果与讨论: 考察了不同温度对蛋白质含量测定的影响。在温度17~40℃范围内,温度对GDYN一200S蛋白质快速检测仪测定样品中蛋白质(标准值3.07%)无影响。考察了蛋白质试剂与蛋白质反应时间对测定结果的影响,结果表明,在室温条件下,搅拌l min样品中的蛋白质可与蛋白质试剂发生特异性反应;同时考察蛋白质试剂反应后上清液的稳定性,在2 h内测定的A和B两牛奶样品的蛋白质含量保持不变。整个蛋白质测定过程仅需5~10 min,与凯氏定氮法2~3 h相比,检测时间显著缩短。考察了GDYN一200S 蛋白质快速检测仪对样品测定结果的重复性。对A、B两牛奶样品蛋白质含量重复测定11次,其测定结果的精密度分别为O.9%和O.5%,表明GDYN一200S蛋白质快速检测仪测定结果具有良好的精密度。从蛋白质检测仪原理可知,检测信号为蛋白质试剂反应前后吸光度变化值。向蛋白质试剂中添加一定量的三聚氰胺、尿素、甘氨酸、硝酸铵等非蛋白氮物质,以验证非蛋白氮是否干扰蛋白质的测定,结果如表3所示。通过紫外一可见分光光度计扫描可知,三聚氰胺、尿素、甘氨酸、硝酸铵等添加物在483 nm处均无吸收,当加入蛋白质试剂时,未见不溶性化合物生成,蛋白质试剂溶液吸光度也未发生变化,表明三聚氰胺、尿素、甘氨酸、硝酸铵等未与蛋白质试剂反应,不影响蛋白质的测定。将研制的GDYN 一200S蛋白质快速检测仪应用到新鲜乳、市售纯牛奶、牛奶饮料(核桃、燕麦、红枣)、奶粉(包括牛初乳粉)、豆浆粉、豆奶粉和鸡蛋等500个样品中蛋白质的定量测定,并与凯氏定氮法进行比较,同时测定了3种奶粉中蛋白质标准物质,部分结果见表5所示。从检测数据可知,与凯氏定氮法测定结果(依据国家标准方法[1’7]分别测定样品中的总氮和非蛋白氮,二者差减后计算出样品中真实的蛋白质含量)与标准物质相比,其相对误差均小于5%。从实验结果可知,蛋白质试剂可快速定量与样品中蛋白质发生反应(1 min),且能稳定2 h,单一产品全程检测周期仅需5~10 rain;因蛋白质试剂仅与蛋白质氮特异性反应,避免了三聚氰胺、尿素、甘氨酸和硝酸铵等非蛋白氮的干扰;同时该仪器和方法操作简单,避免了传统检测方法消解、蒸馏和滴定等复杂步骤,适用于实际样品中的蛋白质定量检测。 参考文献:蛋白质快速检测仪测定乳及乳制品中蛋白质冯旭东安卫东丁毅于爱民刘静等

蛋白质含量表

膳食蛋白质符合人的需要时,可维持正常代谢,生成抗体,抵抗感染,有病也易恢复。相反,蛋白质供给不足时,会减轻体重,易患贫血,容易感染疾病;创伤、骨折不易愈合;严重缺乏时,血浆蛋白降低,可引起浮肿。此外癌症与蛋白质摄入量不足也有一定关系。但是,蛋白质摄入过多也可造成肾脏负担。食物蛋白质在体内代谢所生成的尿酸、氨、酮体等累积过多,可导致衰老;而氨还对机体有毒性,不仅会陡然增加肝脏负担,还会增加胃肠负荷,引起肝肾受累以及消化不良等症。所以,蛋白质的摄入量要适当。 从食物选择看,以大豆蛋白质最为理想,其次是蛋类、乳类、鱼类及瘦肉类,后者应适量; 除了讲究蛋白质的质量外,在食用时还要看该种食物的消化吸收率。如大豆蛋白质含量高,质量好,但其蛋白质消化率只有60%~65%。若将其制成豆腐及各种豆制品,则消化率可提高到92%~96%。如每日喝200毫升豆浆,就可得到8.8克消化率很高的蛋白质。再如,鸡肉不仅含蛋白质高,而且较柔软,脂肪分布均匀,所以鸡肉比畜肉更鲜嫩,味美且易消化。鱼肉肌纤维较短,水分较多,脂肪量少,故肉质细嫩,消化率高达95%~98%。因此,鸡、鱼更适合食用。 此外,粮食中蛋白质含量和质量虽然不高,但每日若吃300克,即可得到30克左右的蛋白质,也是供给蛋白质的主要来源。若以米、面、杂粮和豆类等混合食用,有利蛋白质互补,使植物蛋白质的营养价值提高到与动物蛋白质相接近的水平。 食物蛋白质含量表(克/100克)

每100克食物含蛋白质 燕麦15.6 莲子16.6 黄豆36.3 蚕豆28.2 猪肉(瘦) 16.7 猪心19.1 猪肝21.3 豆腐皮50.5 猪肾15.5 猪皮26.4

蛋白质生信分析

蛋白质生物信息分析 基本性质分析: https://www.wendangku.net/doc/8613006600.html,/protparam/ 参考文献:Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A.; Protein Identification and Analysis Tools on the ExP ASy Server; (In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press (2005). pp. 571-607 翻译后修饰: 信号肽预测http://www.cbs.dtu.dk/services/SignalP-3.0/ 残基磷酸化预测:http://www.cbs.dtu.dk/services/NetPhos/ 跨膜结构预测:http://www.cbs.dtu.dk/services/TMHMM-2.0/ http://bp.nuap.nagoya-u.ac.jp/sosui/ http://www.sbc.su.se/~miklos/DAS 亚细胞定位:http://www.cbs.dtu.dk/services/TargetP/ http://psort.hgc.jp/ 1一级结构分析:https://www.wendangku.net/doc/8613006600.html,/protscale/ 1二级结构分析:http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html Significant improvement in protein secondary structure prediction by consensus prediction from multiple alignments., Cabios (1995) 11, 681-684 Network Protein Sequence Analysis TIBS 2000 March V ol. 25, No 3 [291]:147-150 1二级结构预测:http://www.cbs.dtu.dk/services/CPHmodels/ CPHmodels-3.0 - Remote homology modeling using structure guided sequence profiles Nielsen M., Lundegaard C., Lund O., Petersen TN Nucleic Acids Research, 2010, Vol. 38, doi:10.1093/nar/gkq535 View the abstract. CPHmodels 2.0: X3M a Computer Program to Extract 3D Models. O. Lund, M. Nielsen, C. Lundegaard, P. Worning

常见食物蛋白含量表

《常见食物蛋白含量表》(存书) 食物名称每100克食物含蛋白质 燕麦15.6 莲子16.6 黄豆36.3 蚕豆28.2 猪肉(瘦) 16.7 猪心19.1 猪肝21.3 豆腐皮50.5 猪肾15.5 猪皮26.4 花生26.2 猪血18.9 核桃15.4 牛肉(瘦) 20.3 羊肉(瘦) 17.3 鲢鱼17.0 兔肉2l 2 鸡肉21.5 鸡肝18.2 鸭肉16.5 海参(干) 76.5 鸡蛋14.7 龙虾16.4 蛋白质是构成人体结构的主要成分,其含量仅次于水,约占人体重的五分之一。肌肉、神经

组织中蛋白质成分最多,其他脏器及腺体组织中次之,但含量亦相当丰富。 食物中以豆类、花生、肉类、乳类、蛋类、鱼虾类含蛋白质较高,而谷类含量较少,蔬菜水果中更少。人体对蛋白质的需要不仅取决于蛋白质的含量,而且还取决于蛋白质中所含必需氨基酸的种类及比例。由于动物蛋白质所含氨基酸的种类和比例较符合人体需要,所以动物性蛋白质比植物性蛋白质营养价值高。在植物性食物中,米、面粉所含蛋白质缺少赖氨酸,豆类蛋白质则缺少蛋氨酸和胱氨酸,故食混合性食物可互相取长补短,大大提高混合蛋白质的利用率,若再适量补充动物性蛋白质,可大大提高膳食中蛋白质的营养价值。 常见蛋白质的含量(每100克食物)如下: 大米7克、 面粉9克、 黄豆36克、 绿豆24克、 豆腐7.4克、 白菜2克、 茄子2.3克、 苹果0.4克、 人乳1.5克、 牛乳3.3克、 鲤鱼17克、 对虾21克。 虽然人乳、牛乳、鸡蛋中的蛋白质含量较低,但它们所含的必需氨基酸量基本上与人体相符,所以营养价值较高,是膳食中最好的食品。

蛋白质组分析word版

蛋白质组分析 蛋白质组(proteome)源于蛋白质(protein)与基因组(genome)两个词的杂合,其定义为proteins expressed by a genome,即一个基因组表达的全部蛋白质。目前认为蛋白质组的内涵是一个细胞、一类组织或一种生物的基因组所表达的全部蛋白质。 蛋白质组学(proteomics)是研究蛋白质组的一门新兴学科,旨在阐明生物体全部蛋白质的表达模式及功能模式。蛋白质化学着重于单一蛋白质结构、功能的研究,例如某一种蛋白质或蛋白质亚基的全序列分析,三维立体结构的确定,这样的结构如何执行功能、在生理上所扮演的角色,以及代谢的生化机制等。蛋白质组学则是研究多种蛋白质组成的复杂系統。Proteomics的字尾“-omics”的意思是“组学”,代表对生物、生命体系研究工作方式的重新定义,也就是说,蛋白质组学是对基因组所表达的整套蛋白质的分析,其研究对象是多蛋白质混合物的“系统”行为,而不是“单一组成”的行为。它通过对一个大系统中包含的所有蛋白质进行分离、鉴定、表征和定量,提供关于该系统准确和全面的数据和信息。 蛋白质组与基因组 通常,一个细胞中表达两类基因:①必须功能蛋白质的基因;②行使细胞专一性功能蛋白质的基因。因此,一种生物有一个基因组,但有许多蛋白质组。因此,蛋白质组与基因组在内涵上有很大的不同,主要表现在以下四个方面: (1)蛋白质组具有多样性 图11.1 基因以多种mRNA形式剪接的示意图 EXON:外显子,真核细胞基因DNA中的编码序列。这样的序列可转录为RNA并进而翻译为蛋白质。 P代表磷酸化,sugar代表糖基化,lipid代表脂肪酰化,Ub代表泛素化[3]。 (2)在蛋白质组的研究中,时间和空间的影响都不可忽视 (3)蛋白质间主要以相互作用的形式参与生命活动 (4)蛋白质组研究对技术的依赖性和要求远远超过基因组学 蛋白质组学研究对生物分析化学提出的挑战 表11.1 目前蛋白质组学分析中使用的分离与鉴定技术[6-12] 技术是否需要 标记 是否可 用于 可测定的蛋白质 分子量范围 动态范围 可分离的 蛋白点数 方法的适用范围

蛋白质预测分析 网址集锦

蛋白质预测分析网址集锦 2007/04/06 18:31 物理性质预测: Compute PI/MW http://expaxy.hcuge.ch/ch2d/pi-tool.html Peptidemass http://expaxy.hcuge.ch/sprot/peptide-mass.html TGREASE ftp://https://www.wendangku.net/doc/8613006600.html,/pub/fasta/ SAPS http://ulrec3.unil.ch/software/SAPS_form.html 基于组成的蛋白质识别预测 AACompIdent http://expaxy.hcuge.ch/ch2d/aacompi.html AACompSim http://expaxy.hcuge.ch/ch2d/aacsim.html PROPSEARCH http://www.embl-heidelberg.de/prs.html 二级结构和折叠类预测 nnpredict https://www.wendangku.net/doc/8613006600.html,/~nomi/nnpredictPredictprotein http://www.embl-heidelberg.de/predictprotein/SOPMA http://www.ibcp.fr/predict.htmlSSPRED http://www.embl-heidelberg.de/sspred/ssprd_info.html 特殊结构或结构预测 COILS http://ulrec3.unil.ch/software/COILS_form.htmlMacStripe https://www.wendangku.net/doc/8613006600.html,/matsudaira/macstripe.html 与核酸序列一样,蛋白质序列的检索往往是进行相关分析的第一步,由于数据库和网络技校术的发展,蛋白序列的检索是十分方便,将蛋白质序列数据库下载到本地检索和通过国际互联网进行检索均是可行的。 由NCBI检索蛋白质序列 可联网到: “https://www.wendangku.net/doc/8613006600.html,:80/entrz/query.fcgi?db=protein”进行检索。 利用SRS系统从EMBL检索蛋白质序列 联网到:https://www.wendangku.net/doc/8613006600.html,/”,可利用EMBL的SRS系统进行蛋白质序列的检索。 通过EMAIL进行序列检索 当网络不是很畅通时或并不急于得到较多数量的蛋白质序列时,可采用EMAIL 方式进行序列检索。 蛋白质基本性质分析 蛋白质序列的基本性质分析是蛋白质序列分析的基本方面,一般包括蛋白质的氨基酸组成,分子质量,等电点,亲水性,和疏水性、信号肽,跨膜区及结构功能域的分析等到。蛋白质的很多功能特征可直接由分析其序列而获得。例如,疏水

蛋白质分析技术(Western Blot、ELISA、免疫荧光与免疫组化技术)

1 原理: 将通过聚丙烯酰胺凝胶电泳分离的蛋白质转移到硝酸纤维素或PVDF膜上,然后与能特异性识别待检蛋白的抗体进行反应,洗涤去除没有结合的特异性抗体后,加入标记的、能识别特异性抗体的种属特异性抗体,反应一段时间后再次洗涤去除非特异性结合的标记抗体,加入适合标记物的检测试剂进行显色或发光等,观察有无特异性蛋白条带的出现,也可通过条带的密度大小来进行特异性蛋白的半定量。 2 操作过程 SDS-PAGE电泳→转膜(PVDF或硝酸纤维素膜) 封闭→一抗→洗涤→酶标二抗反应 洗涤→显色或化学发光显影 Western blot analysis of the cleavage of Caspase-3. IM9/Bcl-2 Cells were treated with 20mM of gossypol for 4, 8 and 16 h. After treatment, cells were harvested and lysed in lysis buffer. 50ug of protein was loaded in each lane and the expression of actin was detected as a loading control. Cytochrome c release from mitochondria to cytosol in gossypol-treated IM-9/Bcl-2 cells. Cells were treated with 10μM gossypol for different times, cytosol and mitochondrial protein were subject to SDS-PAGE followed by immunoblot with cytochrome c specific antibody. 3 注意的问题 (1)蛋白质电泳 常用SDS-PAGE:单一亚基组成的蛋白质 非变性PAGE:多个不同亚基组成的蛋白质 Tris-Tricine胶中电泳:用于分子量小于10kDa的多肽和蛋白的电泳,能够获得较好的分离效果。 (2)转膜 戴手套,避免用手接触滤纸、凝胶和膜,因为手上的油脂会阻断转印。滤纸和膜的尺寸与凝胶大小一致 以适量的转移Buffer室温平衡滤纸、凝胶和膜15-30min,如果是PVDF膜,必须先用甲醇激活后浸泡。 方向正确:凝胶在阴极,膜在阳极 排去滤纸、胶和膜间的气泡。 电转时间:100V 1-2h,可根据蛋白分子量的大小灵活选择转移结束后,凝胶用考马氏亮兰染色以确定转移效率膜用丽春红染色观察蛋白分子量标准的位置 (3)封闭 用5%脱脂奶粉或3%BSA (含0.1%Tween20 TBS或PBS配制) 时间:室温2h或4oC过夜 (4)显色或显影 显色 辣根过氧化物酶:底物为DAB 碱性磷酸酶:底物为BCIP/NBT 化学发光显影 最常用。辣根过氧化物酶和碱性磷酸酶有不同的发光底物(商品化产品) 注意:化学发光前将膜用不含Tween20的TBS或PBS洗涤一次曝光的时间和显影的时间根

相关文档