文档库 最新最全的文档下载
当前位置:文档库 › 地面粗糙类别

地面粗糙类别

地面粗糙类别

地面粗糙度可分为A、B、C、D四类:

一A类指近海海面和海岛、海岸、湖岸及沙漠地区;

一B类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;

一C类指有密集建筑群的城市市区;

―D类指有密集建筑群且房屋较高的城市市区

指风在到达结构物以前吹越2km范围内的地面时,描述该地面上不规则障碍物分布状况的等级。分四类A类:指近海海面和海岛、海岸、湖岸及沙漠地区;B类:指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;C类:指有密集建筑群的城市市区;D类:指有密集建筑群且房屋较高的城市市区

地表粗糙度的常用计算方法及其在风蚀研究中的应用

地表粗糙度的常用计算方法及其在风蚀研究中的应用 2.1 粗糙度概念的推导 牛顿摩擦定律描述流体层流运动,粘性应力τ与垂直速度梯度成正比,即: dy du μτ= (2.1) 式中μ为动力黏性系数。流动方式为湍流时,包括粘性力以及由于界面粗糙元的阻碍作用而产生的切应力,称为湍流剪应力;湍流剪应力通常比粘性应力大几个量级,因而对于湍流常忽略粘性应力而只考虑占主导的湍流应力的作用,湍流应力为: 2*u ρτ= (2.2) 对于固体表面的流体流动,Prandtl 通过量纲分析原理,给出另一种表达式,(2.1)式积分可得c y/u +=μτ。代入(2.2)并利用边界条件 0=y 、0=u 得 0=c ,于是有: ??? ??=v yu f u u ** (2.3) 其中,v 由v ρμ=定义,表示运动粘性系数;f 为v yu /*的普适函数。在流体运动的粘性底层(11/*≤v yu )上式满足νν/yu =)/yu (f **即层流运动的式(2.3);在距界面较远或摩阻速度较大处(80) /v yu (f *>),流体为充分发展的湍流时运动决定于摩阻速度*u 和高度y ,于是可得: y u C dy du *= (2.4) C 写作κ/1,并积分上式得到: c y u u +=ln 1*κ (2.5) 自然对数符号里的数值应是无量纲的,从量纲分析原理认为y 可由无量纲量或雷诺数来替代,例如用湍流雷诺数v yu /*代替,就成为满足层流运动的对数速度分布关系式:

1**ln 1c v yu u u +=νκ (2.6) 对于湍流,用粗糙元高度0y 、附面层厚度δ或管半径R 与高度y 之比来表示,就可得到如下关系式: 4*3*20 *ln 1ln 1ln 1c R y u u c y u u c y y u u +=+=+=κδ κκ (2.7) 基于这些发展了应用到各种植被覆盖地表和草方格等防沙工程及城市地表等粗糙面的关系式: )(,ln 1u u 50*H y c y d y ≥+-=κ (2.8) H 为植株或建筑群冠层高度。 粗糙度概念由Nikuradse J.(1932)的粗糙管流实验进行了验证:均匀沙粒按直径分级粘于管子内壁,然后通水测定内部流体的流速随高度的分布。实验结果显示,在湍流时(雷诺数e R 从40/*≈νyu 时开始)满足对数分布律。根据曲线分布和公式(6)可得4.0=κ或5.51=c 。从而可得常见的普适速度分布公式: )5.5lg 75.5(**+=u y u u (2.9) 2.2 空气动力学粗糙度主要的几种计算方法 在空气动力学粗糙度的计算方法有很多种,针对不同的条件选择适合的计算方法是十分重要的,常用的计算方法中有对数廓线法、质量守恒法、无因次化风速法、阻力法等等。 2.2.1 对数廓线拟合法 在计算空气动力学粗糙度的诸多方法中,尤其是在许多实际应用的计算中,最常用的是实测风速对数廓线的最小二乘拟合法,简称为对数廓线法,风速廓线方程为式(1.1),通过测得3个或3个以上高度的风速后,用最小二乘回归的拟合方式处理所测得风速数据,可得: z b a U z ln += (2.10)

表面粗糙度等级对照表

表面特征表而粗糙度(Ra)数值加工方法举例 明显可见刀痕RaIOOX Ra50、Ra25、粗车、粗刨、粗铳、钻孔 微见刀痕Ral2. 5x Ra6? 3、Ra3?2?精车、精刨、精铳、粗铁、粗磨看不见加工痕迹,微辩加工方向Ral. 6. RaO. 8X RaO. 4、精车、精磨、精绞、研惟Jr 暗光泽而RaO. 2 X RaO. 1X RaO. 研熔、瑜磨、超精磨. 05、

镜面0.006微米 雾状镜面0.012 镜状光泽面0.025 亮光泽面0.05 暗光泽面0.1 不可见加工痕迹的方向0.2 可见加工痕迹方向0.8 微见加工痕迹方向0.4 看不清加工痕迹方向 1.6 微见加工痕迹方向 3.2 可见加工痕迹方向 6.3 微见刀痕12.5 1级 Ra 值不大f?μm=100 表面状况二明显可见的刀痕 加工方法:=粗车、铿、刨、钻使用举例二粗加工的表面,如粗车、粗刨、切断等表面,用粗锐刀和粗砂轮等加工的表面,般很少采用 2级 Ra 值不大T^?μm=2 5、50 表面状况二明显可见的刀痕 加工方法=粗车、锂、刨、钻 使用举例二粗加工后的表面,焊接前的焊缝、粗钻孔壁等 3级 Ra值不大于?μm=12.5 表面状况二可见刀痕 加工方法=:粗车、刨、诜、钻 使用举例二一般非结合表面,如轴的端面、倒角、齿轮及皮带轮的侧面、键槽的非工作表面,减重孔眼表面

表面状况二可见加工痕迹 加工方法=车、铿、刨、钻、铳、锂、磨、粗狡、铳齿 使用举例二不重要零件的配合表面,如支柱、支架、外壳、衬套、轴、盖等的端面。紧固件的口由表面,紧固件通孔的表而,内、外花键的非定心表面,不作为计量基准的齿轮顶圈圆表面等 5级 Ra 值不大]?μm=3.2 表面状况=微见加工痕迹 加工方法:=车、锂、刨、铳、刮1?2点∕cmT?拉、磨、锂、滚压、铳齿 使用举例二和其他零件连接不形成配合的表面,如箱体、外壳、端盖等零件的端面。要求有定心及配合特性的固定支承面如定心的轴间,键和键槽的工作表面。不重要的紧固螺纹的表面。需要滚花或氧化处理的表面 6级 Ra 值不大J ?μm=1.6 表面状况二看不清加工痕迹 加工方法二车、锂、刨、铳、饺、拉、磨、滚压、刮1?2点∕cn22铳齿 使用举例二安装直径超过80m∏1的G级轴承的外壳孔,普通精度齿轮的齿面,定位销孔,V 型带轮的表面,外径定心的内花键外径,轴承盖的定中心凸肩表面 7级 Ra 值不大]?μm=O. 8 表面状况二可辨加工痕迹的方向 加工方法二车、铿、拉、磨、立铢、舌∣J 3-10点/ciM2、滚压 使用举例二要求保证定心及配合特性的表面,如锥销和圆柱销的表面,和G级精度滚动轴承相配合的轴径和外壳孔,中速转动的轴径,直径超过80mm的E、D级滚动轴承配合的轴径及外壳孔,内、外花键的定心内径,外花键键侧及定心外径,过盈配合IT7级的孔(H7),间隙配合IT8?ΓΓ9级的孔(H8, H9),磨削的齿轮表面等 8级 Ra值不大于?μm=0.4 表面状况=微辨加工痕迹的方向 加工方法==狡、磨、铿、拉、刮3?10点∕cm^2.滚压 使用举例二要求长期保持配合性质稳定的配合表面,IT7级的轴、孔配合表面,精度较高的齿轮表面,受变应力作用的重要零件,和直径小于80mm的E、D级轴承配合的轴径表面、和橡胶密封件接触的轴的表面,尺寸大于120Inm的IT13?IT16级孔和轴用量规的测量表面9级 Ra值不大于?μm=0.2 表面状况=不可辨加工痕迹的方向 加工方法二布轮磨、磨、研磨、超级加工 使用举例二工作时受变应力作用的重要零件的表面。保证零件的疲劳强度、防腐性和耐久性,并在工作时不破坏配合性质的表面,如轴径表面、耍求气密的表面和支承表面,圆锥定心表而等。IT5、 IT6级配合表面、高精度齿轮的表面,和G级滚动轴承配合的轴径表面,尺寸大T 315mm的IT7?IT9级级孔和轴用量规级尺寸大]■ 120?315mm的ITIO-IT12级扎和轴用量规的测量表面等

表面粗糙度定义与检测

第五章表面粗糙度及其检测 学时:4 课次:2 目的要求: 1.了解表面粗糙度的实质及对零件使用性能的影响。 2.掌握表面粗糙度的评定参数(重点是轮廓的幅度参数)的含义及应用场合。 3.掌握表面粗糙度的标注方法。 4.初步掌握表面粗糙度的选用方法。 5.了解表面粗糙度的测量方法的原理。 重点内容: 1.表面粗糙度的定义及对零件使用性能的影响。 2.表面粗糙度的评定参数(重点是轮廓的幅度参数)的含义及应用场合。 3.表面粗糙度的标注方法。 4.表面粗糙度的选用方法。 5.表面粗糙度的测量方法 难点内容: 表面粗糙度的选用方法。 教学方法:讲+实验 教学内容:(祥见教案) 一、基本概念 1.零件表面的几何形状误差分为三类: (1)表面粗糙度:零件表面峰谷波距<1mm。属微观误差。 (2)表面波纹度:零件表面峰谷波距在1~10mm。 (3)形状公差:零件表面峰谷波距>10mm。属宏观误差。 图5-1 零件的截面轮廓形状 2.表面粗糙度对零件质量的影响: (1)影响零件的耐磨性、强度和抗腐蚀性等。 (2)影响零件的配合稳定性。 (3)影响零件的接触刚度、密封性、产品外观及表面反射能力等。 二.表面粗糙度的基本术语

1、取样长度lr : 取样长度是在测量表面粗糙度时所取的一段与轮廓总的走向一致的长度。 规定:取样长度范围内至少包含五个以上的轮廓峰和谷如图5-2所示。 图5-2 取样长度、评定长度和轮廓中线 1.评定长度ln : 评定长度是指评定表面粗糙度所需的一段长度。 规定:国家标准推荐ln = 5lr ,对均匀性好的表面,可选ln > 5lr, 对均匀性较差的表面,可选ln < 5lr 。 2.中线: 中线是指用以评定表面粗糙度参数的一条基准线。有以列两种: (1)轮廓的最小二乘中线 在取样长度内,使轮廓线上各点的纵坐标值Z (x )的平方和 为最小,如图5-2 a 所示。 (2)轮廓的算术平均中线 在取样长度内,将实际轮廓划分为上下两部分,且使上下面 积相等的直线。如图5-2 b 所示。 三.表面粗糙度的评定参数 国家标准GB/T3505—2000规定的评定表面粗糙度的参数有:幅度参数2个,间距参数1个,曲线和相关参数1个,其中幅度参数是主要的。 1、轮廓的幅度参数 (1) 轮廓的算术平均偏差Ra 在一个取样长度内,纵坐标Z (x )绝对值的算术平均值,如图5-3a 所示。 Ra 的数学表达式为: Ra = lr 1 lr x Z 0)(dx 测得的Ra 值越大,则表面越粗糙。一般用电动轮廓仪进行测量。

表面粗糙度的选用

第3章表面粗糙度

3.1 表面粗糙度标注识读 任务6 识读齿轮表面粗糙度标注 表面粗糙度是一种微观几何形状误差,是零件的几何参数的精度指标之一。 以如图3-1所示的零件图为例,识读表面粗糙度的标注。 图3-1 表面粗糙度标注实例 3.1.1 表面粗糙度概念 任何零件的表面都不是绝对的光滑的,零件表面总会存在着由较小间距的峰谷组成的微观高低不平的痕迹,表面粗糙度是一种微观几何形状误差,也称为微观不平度。 表面误差通常按(波距)的大小划分为三类误差:表面粗糙度、表面波度和表面上宏观形状误差。波距小于1mm 的属于表面粗糙度(微观几何形状误差),波距在l ~10 mm 的属于表面波度(中间几何形状误差),波距大于10 mm 的属于形状误差(宏观几何形状误差),如图3-2

所示。 图3-2 零件表面的几何形状误差 3.1.2 表面粗糙度对零件的影响 表面粗糙度的大小对零件的实用性能和使用寿命有很大的影响: 1.对摩擦和磨损的影响 表面越粗糙,摩擦系数就越大,两相对运动的表面磨损也越快,表面过于光滑,由于润滑油被挤出和分子见的吸附作用等原因,也会使摩擦阻力增大和加剧磨损。 2.对配合性能的影响 对于间隙配合,相对运动的表面因其粗糙不平而迅速磨损,致使间隙增大;对于过盈配合,表面轮廓峰顶在装配时容易被挤平,使实际有效过盈量减小,致使联接强度降低。 3.对抗腐蚀性的影响 粗糙的表面,易使腐蚀性物质存积在表面的微观凹谷处,并渗入到金属内部,致使腐蚀加剧。 4.对疲劳强度的影响 零件表面越粗糙,凹痕就越深,当零件承受交变荷载时,对应力集中很敏感。使疲劳强度降低,导致零件表面产生裂纹而损坏。 5.对接触刚度的影响 接触刚度影响零件的工作精度和抗振性。这是由于表面粗糙度使表面间只有一部分面积接触。一般情况下,实际接触面积只有公称接触面积的百分之几。因此,表面越粗糙受力后局部变形越大,接触刚度也越低。 6.对结合面密封性的影响 粗糙的表面结合时,两表面只在局部点上接触,中间有缝隙,影响密封性。因此,降低表面粗糙度,可提高其密封性。 7.对零件其他性能的影响 表面粗糙度对零件其他性能,如对测量精度、流体流动的阻力及零件外形的美观等都有

粗糙集基本概念

一种对集合A的划分就对应着关于A中元素的一个知识 面对日益增长的数据库,人们将如何从这些浩瀚的数据中找出有用的知识?我们如何将所学到的知识去粗取精?什么是对事物的粗线条描述什么是细线条描述? 粗糙集合论回答了上面的这些问题。要想了解粗糙集合论的思想,我们先要了解一下什么叫做知识?假设有8个积木构成了一个集合A,我们记: A={x1,x2,x3,x4,x5,x6,x7,x8},每个积木块都有颜色属性,按照颜色的不同,我们能够把这堆积木分成 R1={红,黄,兰}三个大类,那么所有 红颜色的积木构成集合X1={x1,x2,x6}, 黄颜色的积木构成集合X2={x3,x4}, 兰颜色的积木构成集合X3={x5,x7,x8}。 按照颜色这个属性我们就把积木集合A进行了一个划分(所谓A的划分就是指对于A中的任意一个元素必然属于且仅属于一个分类),那么我们就说颜色属性就是一种知识。在这个例子中我们不难看到,一种对集合A的划分就对应着关于A中元素的一个知识,假如还有其他的属性,比如还有形状R2={三角,方块,圆形},大小R3={大,中,小},这样加上R1属性对A构成的划分分别为:

A/R1={X1,X2,X3}={{x1,x2,x6},{x3,x4},{x5,x7,x8}}(颜色分类) A/R2={Y1,Y2,Y3}={{x1,x2},{x5,x8},{x3,x4,x6,x7}}(形状分类) A/R3={Z1,Z2,Z3}={{x1,x2,x5},{x6,x8},{x3,x4,x7}}(大小分类) 上面这些所有的分类合在一起就形成了一个基本的知识库。那么这个基本知识库能表示什么概念呢?除了红的{x1,x2,x6}、大的{x1,x2,x5}、三角形的{x1,x2}这样的概念以外还可以表达例如 大的且是三角形的{x1,x2,x5}∩{x1,x2}={x1,x2}, 大三角{x1,x2,x5}∩{x1,x2}={x1,x2}, 兰色的小的圆形({x5,x7,x8}∩{x3,x4,x7}∩ {x3,x4,x6,x7}={x7}, 兰色的或者中的积木{x5,x7,x8}∪ {x6,x8}={x5,x6,x7,x8}。 而类似这样的概念可以通过求交运算得到,比如X1与Y1的交就表示红色的三角形。所有的这些能够用交、并表示的概念以及加上上面的三个基本知识(A/R1,A/R2.A/R3)一

表面处理等级

粗糙度等级区分 钢材在防腐前需要除锈,达到一定的除锈等级和表面粗糙度才能进行防腐。除锈等级和表面粗糙度等级是两个不同的概念。 钢材表面的锈蚀按GB8923分为四个等级: A 全面地覆盖着氧化皮而几乎没有铁锈的钢材表面; B已发生锈蚀,并且部分氧化皮已经脱落的钢材表面; C氧化皮已经因锈蚀而剥落,或者可以刮厨,并且与少量点蚀的钢材表面; D氧化皮已经因锈蚀而全面剥离,并且已普遍发生点蚀的钢材表面。 除锈等级,也有时候成为表面清洁度 钢材表面的除锈等级以采用的除锈方法用字母Sa、St或FI表示。如果字母后面有阿拉伯数字,则表示其清除氧化皮、铁锈和尤其涂层等附着物的程度等级。 喷射或抛射除锈用字母sa表示。其有4个等级。Sa1,轻度的喷射或抛射除锈;Sa2,侧底的喷射或抛射除锈;Sa2.5,非常侧底的喷射或抛射除锈;Sa3,使钢材表面洁净的喷射或抛射除锈。 手动工具除锈用St表示,有两个等级。St2为彻底的手工或动力工具除锈;St3为非常彻底的手工或动力工具除锈。 火焰除锈以FI表示。 Sa1级——相当于美国SSPC—SP7级。采用一般简单的手工刷除、砂布打磨方法,这是四种清洁度中度最低的一级,对涂层的保护仅仅略好于未采用处理的工件。Sa1级处理的技术标准:工件表面应不可见油污、油脂、残留氧化皮、锈斑、和残留油漆等污物。Sa1级也叫做手工刷除清理级。(或清扫级) Sa2级——相当于美国SSPC—SP6级。采用喷砂清理方法,这是喷砂处理中最低的一级,即一般的要求,但对于涂层的保护要比手工刷除清理要提高许多。Sa2级处理的技术标准:工件表面应不可见油腻、污垢、氧化皮、锈皮、油漆、氧化物、腐蚀物、和其它外来物质(疵点除外),但疵点限定为不超过每平方米表面的33%,可包括轻微阴影;少量因疵点、锈蚀引起的轻微脱色;氧化皮及油漆疵点。如果工件原表面有凹痕,则轻微的锈蚀和油漆还会残留在凹痕底部。Sa2级也叫商品清理级(或工业级)。 Sa2.5级——是工业上普遍使用的并可以作为验收技术要求及标准的级别。 Sa2.5级也叫近白清理级(近白级或出白级)。Sa2.5级处理的技术标准:同Sa2要求前半部一样,但疵点限定为不超过每平方米表面的5%,可包括轻微暗影;少量因疵点、锈蚀引起的轻微脱色;氧化皮及油漆疵点。

各种加工方式对应的粗糙度等级

各种加工方式对应的粗糙度等级 1级 Ra值不大于\μm=100 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工的表面,如粗车、粗刨、切断等表面,用粗镗刀和粗砂轮等加工的表面,一般很少采用 2级 Ra值不大于\μm=25、50 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工后的表面,焊接前的焊缝、粗钻孔壁等 3级 Ra值不大于\μm=12.5 表面状况=可见刀痕 加工方法=粗车、刨、铣、钻 应用举例=一般非结合表面,如轴的端面、倒角、齿轮及皮带轮的侧面、键槽的非工作表面,减重孔眼表面 4级 Ra值不大于\μm=6.3 表面状况=可见加工痕迹

加工方法=车、镗、刨、钻、铣、锉、磨、粗铰、铣齿 应用举例=不重要零件的配合表面,如支柱、支架、外壳、衬套、轴、盖等的端面。紧固件的自由表面,紧固件通孔的表面,内、外花键的非定心表面,不作为计量基准的齿轮顶圈圆表面等 5级 Ra值不大于\μm=3.2 表面状况=微见加工痕迹 加工方法=车、镗、刨、铣、刮1~2点/cm^2、拉、磨、锉、滚压、铣齿 应用举例=和其他零件连接不形成配合的表面,如箱体、外壳、端盖等零件的端面。要求有定心及配合特性的固定支承面如定心的轴间,键和键槽的工作表面。不重要的紧固螺纹的表面。需要滚花或氧化处理的表面 6级 Ra值不大于\μm=1.6 表面状况=看不清加工痕迹 加工方法=车、镗、刨、铣、铰、拉、磨、滚压、刮1~2点/cm^2铣齿 应用举例=安装直径超过80mm的G级轴承的外壳孔,普通精度齿轮的齿面,定位销孔,V型带轮的表面,外径定心的内花键外径,轴承盖的定中心凸肩表面 7级

机械零件表面粗糙度的选择

机械零件表面粗糙度的选择 表面粗糙度是反映零件表面微观几何形状误差的一个重要技术指标,是检验零件表面质量的主要依据。通常,机械零件表面粗糙度的大小与加工方法和加工精度有关,它直接影响静配合的坚固程度、摩擦消耗功多少、零件的疲劳强度及耐蚀性能。它选择的合理与否,直接关系到产品的质量、使用寿命和生产成本。 1、零件表面粗糙度的选择原则 ⑴在满足表面工作要求的情况下,尽量选大值。 ⑵同一零件上,工作表面粗糙度值低于非工作表面粗糙度值。 ⑶摩擦表面粗糙度值低于非摩擦表面粗糙度值。 ⑷受循环负荷的表面及易引起应力集中的表面粗糙度值要小。 ⑸配合性质稳定性要求高的结合表面,粗糙度值要小。对动配合,配合间隙小的表面,粗糙度值要小;对静配合,要求连接牢固可靠,承受载荷大时粗糙度值要小。 ⑹配合性质相同,零件尺寸越小则粗糙度值越小;同一公差等级,小尺寸比大尺寸的粗糙度值要小,轴比孔的粗糙度值要小。 2、常用的选择零件表面粗糙度的方法及弊病 在机械零件设计工作中粗糙度的选择方法有3 种,即计算法、试验法和类比法。应用最普遍的是类比法,此法虽简便、迅速、有效,但需要有充足的参考资料。目前,设计中最常用的是与公差等级相适应的表面粗糙度,即计算法。通常情况下,机械零件尺寸公差要求越小,机械零件的表面粗糙度值也越小,但它们之间又不存在固定的函数关系。如一些机器、仪器上的手柄、手轮以及卫生设备、食品机械上的某些机械零件的修饰表面,它们的表面要求加工得很光滑(即表面粗糙度要求很高),但其尺寸公差要求却很低。 一般情况下,有尺寸公差要求的零件,其公差等级与表面粗糙度数值之间还是有一定的对应关系的。虽然机械零件表面粗糙度与尺寸公差之间关系的经验计算公式在相关工具书中都有很多介绍,并列表供读者选用。但只要细心阅来就会发现,虽然采取完全相同的经验计算公式,但所列表中的数值也不尽相同,有的还有很大的差异。这就给不熟悉这方面情况的人带来了困惑,同时也增加了他们在机械零件设计工作中选择表面粗糙度的困难。 3、按零件类型及公差等级选择零件表面粗糙度 在实际工作中,对于不同类型的机器,其零件在相同尺寸公差的条件下,对表面粗糙度的要求是有差别的,原因是在机械零件的设计和制造过程中,对于不同类型的机器,其零件的配合稳定性和互换性的要求是不同的。因此,我们把粗糙度的选择同零件类型联系起来更趋于合理。机械零件设计手册中把零件分为精密机械零件、普通精密机械零件及通用机械零件3 种类型。在此我们通过对机械设计手册中的相关数值进行统计分析,将旧的表面粗糙度国标(GB1031—68)转换为参照采用国际标准ISO 颁布的新国标(GB1031—83),采用优先选用的评定参数,即轮廓算术平均偏差值Ra= (1)/ (1) !10 y dx。并采用Ra 优先选用的第一系列数值,推导出表面粗糙度Ra 与尺寸公差IT 之间的有关关系式为: 第1 类:Ra≥1.6 时,Ra≤0.008×IT;Ra≤0.8 时,Ra≤0.010×IT。 第2 类:Ra≥1.6 时,Ra≤0.021×IT;Ra≤0.8 时,Ra≤0.018×IT。 第3 类:Ra≤0.042×IT。 并将上述3 种关系式列表,如表1、表2、表3 所示。

粗糙集理论介绍(对于初学者来说,很经典的滴)

粗糙集理论介绍面对日益增长的数据库,人们将如何从这些浩瀚的数据中找出有用的知识?我们如何将所学到的知识去粗取精?什么是对事物的粗线条描述什么是细线条描述?粗糙集合论回答了上面的这些问题。要想了解粗糙集合论的思想,我们先要了解一下什么叫做知识?假设有8个积木构成了一个集合A,我们记:A={x1,x2,x3,x4,x5,x6,x7,x8},每个积木块都有颜色属性,按照颜色的不同,我们能够把这堆积木分成R1={红,黄,兰}三个大类,那么所有红颜色的积木构成集合X1={x1,x2,x6},黄颜色的积木构成集合X2={x3,x4},兰颜色的积木是:X3={x5,x7,x8}。 按照颜色这个属性我们就把积木集合A进行了一个划分(所谓A的划分就是指对于A中的任意一个元素必然属于且仅属于一个分类),那么我们就说颜色属性就是一种知识。在这个例子中我们不难看到,一种对集合A的划分就对应着关于A中元素的一个知识,假如还有其他的属性,比如还有形状R2={三角,方块,圆形},大小R3={大,中,小},这样加上R1属性对A构成的划分分别为:A/R1={X1,X2,X3}={{x1,x2,x6},{x3,x4},{x5,x7,x8}} (颜色分类)A/R2={Y1,Y2,Y3}={{x1,x2},{x5,x8},{x3,x4,x6,x7}} (形状分类)A/R3={Z1,Z2,Z3}={{x1,x2,x5},{x6,x8},{x3,x4,x7}} (大小分类) 上面这些所有的分类合在一起就形成了一个基本的知识库。那么这个基本知识库能表示什么概念呢?除了红的{x1,x2,x6}、大的{x1,x2,x5}、三角形的{x1,x2}这样的概念以外还可以表达例如大的且是三角形的{x1,x2,x5}∩{x1,x2}={x1,x2},大三角{x1,x2,x5}∩{x1,x2}={x1,x2},兰色的小的圆形({x5,x7,x8}∩{x3,x4,x7}∩{x3,x4,x6,x7}={x7},兰色的或者中的积木{x5,x7,x8}∪{x6,x8}={x5,x6,x7,x8}。而类似这样的概念可以通过求交运算得到,比如X1与Y1的交就表示红色的三角。所有的这些能够用交、并表示的概念以及加上上面的三个基本知识(A/R1,A/R2.A/R3)一起就构成了一个知识系统记为R=R1∩R2∩R3,它所决定的所有知识是A/R={{x1,x2},{x3},{x4},{x5},{x6},{x7},{x8}}以及A/R中集合的并。 下面考虑近似这个概念。假设给定了一个A上的子集合X={x2,x5,x7},那么用我们的知识库中的知识应该怎样描述它呢?红色的三角?****的大圆?都不是,无论是单属性知识还是由几个知识进行交、并运算合成的知识,都不能得到这个新的集合X,于是我们只好用我们已有的知识去近似它。也就是在所有的现有知识里面找出跟他最像的两个一个作为下近似,一个作为上近似。于是我们选择了“兰色的大方块或者兰色的小圆形”这个概念:{x5,x7}作为X的下近似。选择“三角形或者兰色的”{x1,x2,x5,x7,x8}作为它的上近似,值得注意的是,下近似集是在那些所有的包含于X的知识库中的集合中求并得到的,而上近似则是将那些包含X的知识库中的集合求并得到的。一般的,我们可以用下面的图来表示上、下近似的概念。这其中曲线围的区域是X的区域,蓝色的内部方框是内部参考消息,是下近似,绿的是边界加上蓝色的部分就是上近似集。其中各个小方块可以被看成是论域上的知识系统所构成的所有划分。整个粗集理论的核心就是上面说的有关知识、集合的划分、近似集合等等概念。 下面我们讨论一下关于粗糙集在数据库中数据挖掘的应用问题。考虑一个数据库中的二维表如下:元素颜色形状大小稳定性 x1 红三角大稳定 x2 红三角大稳定 x3 黄圆小不稳定 x4 黄圆小不稳定 x5 兰方块大稳定 x6 红圆中不稳定 x7 兰圆小不稳定 x8 兰方块中不稳定 可以看出,这个表就是上面的那个例子的二维表格体现,而最后一列是我们的决策属性,也就是说评价什么样的积木稳定。这个表中的每一行表示了类似这样的信息:红色的大三角积木稳定,****的小圆形不稳定等等。我们可以把所有的记录看成是论域A={x1,x2,x3,x4,x5,x6,x7,x8},任意一个列表示一个属性构成了对论域的元素上的一个划分,在划分的每一个类中都具有相同的属性。而属性可以分成两大类,一类叫做条件属性:颜色、形状、大小都是,另一类叫做决策属性:最后一列的是否稳定? 下面我们考虑,对于决策属性来说是否所有的条件属性都是有用的呢?考虑所有决策属性是“稳定”的集合

表面粗糙度等级对照表[整理]

表面粗糙度等级对照表[整理] 表面粗糙度级别对照及应用 国际标注 Rz Ra 表面形状特征加工方法举例 N12 200 50 明显可见刀痕锯断、粗车、粗铣、粗刨、 N11 100 25 粗糙面可见刀痕钻孔以及用粗纹锉刀、粗砂 轮等加工 N10 50 12.5 微见刀痕 N9 25 6.3 可见加工痕迹 冷拉、精车、精绞、粗绞、粗N8 12.5 3.2 半光面微见加工痕迹 磨、刮削、粗拉刀加工等 N7 6.3 1.6 看不见加工痕迹 N6 6.3 0.8 光面可辨加工痕迹的方向研磨、金刚石车刀的精车、精 N5 3.2 0.4 微辨加工痕迹的方向绞、冷拉、拉刀加工、抛光等 N4 1.6 0.2 不可辨加工痕迹的方向 N3 0.8 0.1 暗光泽面 N2 0.4 0.05 亮光泽面 精磨、研磨、抛光、超精磨、 N1 0.2 0.025 最光面镜状光泽面 镜面磨削等 0.1 0.012 雾状镜面 0.05 镜面 表面特征表面粗糙度(Ra)数值加工方法举例明显可见刀痕 Ra100、Ra50、Ra25、粗车、粗刨、粗铣、钻孔微见刀痕 Ra12.5、Ra6.3、Ra3.2、精车、精刨、精铣、粗铰、粗磨看不见加工痕迹,微辩加工方向 Ra1.6、Ra0.8、Ra0.4、

精车、精磨、精铰、研磨暗光泽面 Ra0.2、Ra0.1、Ra0.05、研磨、珩磨、超精磨、抛光 镜面 0.006微米 雾状镜面 0.012 镜状光泽面 0.025 亮光泽面 0.05 暗光泽面 0.1 不可见加工痕迹的方向 0.2 可见加工痕迹方向 0.8 微见加工痕迹方向 0.4 看不清加工痕迹方向 1.6 微见加工痕迹方向 3.2 可见加工痕迹方向 6.3 微见刀痕 12.5 1级 Ra值不大于\μm=100 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工的表面,如粗车、粗刨、切断等表面,用粗镗刀和粗砂轮等加工的表面,一般很少采用 2级 Ra值不大于\μm=25、50 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工后的表面,焊接前的焊缝、粗钻孔壁等 3级 Ra值不大于\μm=12.5 表面状况=可见刀痕 加工方法=粗车、刨、铣、钻 应用举例=一般非结合表面,如轴的端面、倒角、齿轮及皮带轮的侧面、键槽的非工作表面,减重孔眼表面

表面粗糙度选用标准

表面粗糙度选用 ----------------------------------------------------------- 序号=1 Ra值不大于\μm=100 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工的表面,如粗车、粗刨、切断等表面,用粗镗刀和粗砂轮等加工的表面,一般很少采用 ----------------------------------------------------------- 序号=2 Ra值不大于\μm=25、50 表面状况=明显可见的刀痕 加工方法=粗车、镗、刨、钻 应用举例=粗加工后的表面,焊接前的焊缝、粗钻孔壁等 ----------------------------------------------------------- 序号=3 Ra值不大于\μm=12.5 表面状况=可见刀痕 加工方法=粗车、刨、铣、钻 应用举例=一般非结合表面,如轴的端面、倒角、齿轮及皮带轮的侧面、键槽的非工作表面,减重孔眼表面 ----------------------------------------------------------- 序号=4 Ra值不大于\μm=6.3 表面状况=可见加工痕迹 加工方法=车、镗、刨、钻、铣、锉、磨、粗铰、铣齿 应用举例=不重要零件的配合表面,如支柱、支架、外壳、衬套、轴、盖等的端面。紧固件的自由表面,紧固件通孔的表面,内、外花键的非定心表面,不作为计量基准的齿轮顶圈圆表面等 ----------------------------------------------------------- 序号=5 Ra值不大于\μm=3.2 表面状况=微见加工痕迹 加工方法=车、镗、刨、铣、刮1~2点/cm^2、拉、磨、锉、滚压、铣齿 应用举例=和其他零件连接不形成配合的表面,如箱体、外壳、端盖等零件的端面。要求有定心及配合特性的固定支承面如定心的轴间,键和键槽的工作表面。不重要的紧固螺纹的表面。需要滚花或氧化处理的表面 ----------------------------------------------------------- 序号=6 Ra值不大于\μm=1.6 表面状况=看不清加工痕迹 加工方法=车、镗、刨、铣、铰、拉、磨、滚压、刮1~2点/cm^2铣齿

粗糙集考试资料整理

粗糙集:等价关系和分类;精确集和粗糙集;属性间的依赖程度。(一张表,互信息和依赖程度都计算) 1、粗糙集基本概念: 粗糙集(Rough Set)理论是波兰数学家Z.Pawlak于1982年提出的,是一种新的处理含糊性和不确定性问题的数学工具。相对于概率统计、模糊集等处理含糊性和不确定性的数学工具而言,粗糙集理论有这些理论不具备的优越性。统计学需要概率分布,模糊集理论需要隶属函数,而粗糙集理论的主要优势就在于它不需要关于数据的任何预备的或额外的信息。 1982 年, 波兰学者Z. Paw lak 提出了粗糙集理论, 它是一种刻划不完整性和不确定性的数学工具, 能有效地分析不精确,不一致( incon sisten t),不完整( incomp lete) 等各种不完备的信息, 还可以对数据进行分析和推理, 从中发现隐含的知识, 揭示潜在的规律. 粗糙集理论是建立在分类机制的基础上的, 它将分类理解为在特定空间上的等价关系, 而等价关系构成了对该空间的划分.粗糙集理论将知识理解为对数据的划分, 每一被划分的集合称为概念.粗糙集理论的主要思想是利用已知的知识库, 将不精确或不确定的知识用已知的知识库中的知识来(近似) 刻画.该理论与其他处理不确定和不精确问题理论的最显著的区别是它无需提供问题所需处理的数据集合之外的任何先验信息, 所以对问题的不确定性的描述或处理可以说是比较客观的, 由于这个理论未能包含处理不精确或不确定原始数据的机制, 所以这个理论与概率论, 模糊数学和证据理论等其他处理不确定或不精确问题的理论有很强的互补性. 在粗糙集理论中,"知识"被认为是一种分类能力.人们的行为是基于分辨现实的或抽象的对象的能力, 根据事物的特征差别将其分门别类的能力均可以看作是某种"知识". 2、关系、等价关系和分类 关系R:设U是一个非空集合,R是U上的一个关系,如果R是U×U的一个子集。例如,实数集中的“>”关系就是2维平面中的子集{(x, y):x >y};整数集中的“整除”关系就是Z×Z中的子集{(a, b):存在q∈Z,使得b = ra};等等。 等价关系:满足反身性,对称性和传递性的关系。例如,相等关系,三角形的相似关系。 等价关系与集合分类:一个等价关系可以给集合一个分类(等价类);集合的一个分类也对应一个等价关系。等价类。最细的分类和最粗的分类。 由等价关系R产生的关于集合U的分类(等价类)就是这个集合包含的知识。 分类过程中, 相差不大的个体被归于同一类, 它们的关系就是不可分辨关系( indiscernability relation). 假定只用两种黑白颜色把空间中的物体分割两类, {黑色物体},{白色物体},那么同为黑色的两个物体就是不可分辨的, 因为描述它们特征属性的信息相同, 都是黑色. 如果再引入方,圆的属性, 又可以将物体进一步分割为四类: {黑色方物体},{黑色圆物体},{白色方物体},{白色圆物体}. 这时, 如果两个同为黑色方物体, 则它们还是不可分辨的. 不可分辨关系也称为一个等效关系(equivalence relationship ), 两个白色圆物体间的不可分辨关系可以理解为它们在白,圆两种属性下存在等效关系.

工程名称结构型式层数总高度

附表 多层、高层钢筋砼结构计算一览表(试用) 工程名称结构型式层数总高度 抗震设防分类抗震设防烈度场地类别 设计基本地震加速度设计地震分组特征周期 水平地震影响系数最大值 修正后基本风压KN/㎡,地面粗糙度 框架抗震等级级,抗震墙抗震等级 结构重要性系数 上部结构计算软件三维空间分析法:SATWE□ TAT□ TBSA□平面结构空间协同法名称: 楼梯参与整体计算是□否□ 结构规则性信息平面规则□;不规则□竖向规则□不规则□ 所有楼层采用刚性楼板假定是□否□弹性假定是□否□ 柱配筋计算按单偏压计算□;按双偏压计算□ 考虑偶然偏心是□,否□;考虑双向地震作用是□,否□ 周期折减系数结构阻尼比活荷质量折减系数楼层 基础 多遇地震影响系数最大值罕遇地震影响系数最大值 斜交抗侧力构件角度,是否须进行斜交抗侧力构件方向抗震验算 是□否□ 梁端负弯矩调幅系数连梁刚度折减系数 梁扭矩折减系数中梁刚度放大系数 计算振型数,振型参与质量与总质量比值 结构扭转为主的第一自振周期Tt= 结构平动为主的第一自振周期T1= 周期比Tt/T1= X方向最大值层间位移角 Y方向最大值层间位移角 弹性层间位移角限值 柱计算最大轴压比,柱最大轴压比限值 抗震墙计算最大轴压比,抗震墙最大轴压比限值 框架柱地震倾复弯矩总和占比 墙地震倾复弯矩总和占比 楼层计算最小地震剪力系数值λ= ,规范规定值λ= 结构是否须进行在罕遇地震作用下薄弱层的弹塑性变形验算是□否□ 薄弱层所在楼层为层 薄弱层抗侧力结构的受剪承载力为 薄弱层相邻上一楼层抗侧力结构受剪承载力为 结构薄弱层(部位)弹塑性层间位移角△ue= ,规范规定限值[Q]= 基础设计等级基础类型抗浮水位

地面粗糙度等级及其对风速的影响

地面粗糙度等级及其对风速的影响 空气在流动的过程中不仅受到气压梯度力和地转偏向力的作用,而且在离地面公里的近地面大气层里,它还受到地面障碍物的影响,气象学上将公里以下的气层称为摩擦层。 在摩擦层里,空气经过粗糙不平的地表面,受到摩擦力的作用,空气流动的速度,也就是风速会越来越小。由于地表粗糙程度不一,作用于空气的摩擦力的大小也就不同,风速减小的程度也就不同,地面粗糙度越大,作用于空气的摩擦力也就越大,相应的风速减小的也就越多。 在风力发电机以及建筑学等领域对地面粗糙度进行了分类,总共分为A、B、C、D四类,各类对应的地表状况如下: A类指近海海面、海岛、海岸、湖岸及沙漠地区; B类指田野、乡村、丛林、丘陵以及房屋比较稀疏的中小城市郊区; C类指有密集建筑群的中等城市市区; D类指有密集建筑群但房屋较高的大城市市区。 图1 A类图2 B类 图3 C类图4 D类 为了能对地面粗糙度进行量化分析,通常使用粗糙度长度(表征完全湍流中表面粗糙程度所用的特征长度参数,单位为:m)Z0对地面粗糙度进行度

量,其值分布于0-2m之间。表1中列出了地面粗糙度等级值对应的粗糙度长度值,以及能源指数和地表特征。 表1:地面粗糙度等级及粗糙度长度(来源于德国风能协会) 在确定某地区的地面粗糙度类别时,若无实测资料,建筑学上可按下述原则近似,该原则同样适用于风力发电机领域。 1. 以拟建房屋为中心、2km为半径的迎风半圆影响范围内的房屋高度和密集度来区分粗糙度类别,风向原则上应以该地区最大风的风向为准,但也可取其主导风向;

2. 以半圆影响范围内建筑物的平均高度来划分地面粗糙类别。当平均高度不大于9m时为B类;当平均高度大于9m但不大于18m时为C类;当平均高度大于18m时为D类; 3. 影响范围内不同高度的面域可按下述原则确定,即每座建筑物向外延伸距离等于其高度的面域内均为该高度,当不同高度的面域相交时,交叠部分的高度取大者; 4. 平均高度取各面域面积为权数计算。 地面粗糙度对风速的影响范围如下图所示。 图5 地面粗糙度对风速的影响范围 图片版权声明:图片来源于互联网,版权归原作者所有。 参考文献: ; ; 50009—2001。

山东省抗震设防烈度建筑场地类型 地面粗糙度

山东省抗震设防烈度 1 抗震设防烈度为8度,设计基本地震加速度值为0.20g: 第一组:郯城,临沐,莒南,莒县,沂水,安丘,阳谷,临沂(河东)。 2 抗震设防烈度为7度,设计基本地震加速度值为0.15g: 第一组:临沂(兰山、罗庄),青州,临朐,菏泽,东明,聊城,莘县,鄄城; 第二组:潍坊(奎文、潍城、寒亭、坊子),苍山,沂南,昌邑,昌乐,诸城,五莲,长岛,蓬莱,龙口,枣庄(台儿庄),淄博(临淄),寿光。 3 抗震设防烈度为7度,设计基本地震加速度值为0.10g: 第一组:烟台(莱山、芝罘、牟平),威海,文登,高唐,茌平,定陶,成武; 第二组:烟台(福山),枣庄(薛城、市中、峄城、山亭),淄博(张店、淄川、周村),平原,东阿,平阴,梁山,郓城,巨野,曹县,广饶,博兴,高青,桓台,蒙阴,费县,微山,禹城,冠县,单县,夏津,莱芜<莱城、钢城); 第三组:东营(东营、河口),日照(东港、岚山),沂源,招远,新泰,栖霞,莱州,平度,高密,垦利,淄博(博山),滨州,平邑。 4 抗震设防烈度为6度,设计基本地震加速度值为0.05g: 第一组:荣成; 第二组:德州,宁阳,曲阜,邹城,鱼台,乳山,兖州; 第三组:济南(市中、历下、槐荫、天桥、历城、长清),青岛(市南、市北、四方、黄岛、崂山、城阳、李沧),泰安(泰山、岱岳),济宁(市中、任城),乐陵,庆云,

无棣,阳信,宁津,沾化,利津,武城,惠民,商河,临邑,济阳,齐河,章丘,泗水,莱阳,海阳,金乡,滕州,莱西,即墨,胶南,胶州,东平,汶上,嘉祥,临清,肥城,陵县,邹平。 建筑场地类别 Ⅰ类场地土:岩石,紧密的碎石土。 Ⅱ类场地土:中密、松散的碎石土,密实、中密的砾、粗、中砂;地基土容许承载力[σ0]〉250kPa的粘性土。 Ⅲ类场地土:松散的砾、粗、中砂,密实、中密的细、粉砂,地基土容许承载力[σ0] ≤250kPa的粘性土和[σ0]≥130kPa的填土。 Ⅳ类场地土:淤泥质土,松散的细、粉砂,新近沉积的粘性土;地基土容许承载力[σ0]<130kPa的填土。 地面粗糙度可分为A、B、C、D四类: 一A类指近海海面和海岛、海岸、湖岸及沙漠地区; 一B类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区; 一C类指有密集建筑群的城市市区; —D类指有密集建筑群且房屋较高的城市市区

表面粗糙度等级

本人从事机械行业多年,为大家提供一些简单的数据: 【表面粗糙度等级】 粗糙等级 (mm ) (μm ) 基本尺寸 IT6 IT7 IT8 IT9 IT10 IT11 IT12 >0~10 0.2 0.8 0.8 1.6 1.6 1.6 3.2 >10~18 3.2 >18~30 1.6 >30~50 0.4 3.2 >50~80 1.6 >80~120 3.2 6.3 >120~180 6.3 >180~250 0.8 6.3 【表面粗糙度Ra 特征】 Ra max/μm 表面特征 加工方法 常用类型 0.0063 雾状表面 块规的工作表面,高精度测量仪器的测量面,高精度仪器摩擦机构的支承表面。 0.012 雾状镜面 仪器的测量表面和配合表面,尺寸超过 100mm 的块规工作面。 0.025 镜面光泽面 高压柱塞泵中柱塞和柱塞套的配合表面,中等精度仪器零件配合表面,尺寸大于120mm 的IT6级孔用量规、小于120mm 的IT7~IT9级轴用和孔用量规测量表面。 0.05 亮光泽面 保证高气密性的接合表面,如活塞、柱塞和汽缸内表面。摩擦离合器的摩擦表面。对同轴度有精确要求的轴和孔。滚动导轨中的钢球或滚子和高速摩擦的工作表面。 0.1 暗光泽面 超级加工 工作时承受较大变应力作用的重要零件的表面。保证精确定心的锥体表面。液压传动用的孔表面。汽缸套的内表面,活塞销的外表面,仪器导轨面,阀的工作面。尺寸小于120mm 的IT10~IT12级孔和轴 用量规测量面等。 0.2 不可辩加工痕 迹方向 布轮磨、磨、研磨、 超级加工 工作时承受变应力的重要零件表面,保证零件的疲劳强度、防蚀性及耐久性,并在工作时不破坏配合性质的表面,如轴颈表 面、要求气密的表面和支承表面、圆锥定 心表面等。IT5、IT6级配合表面、高精度齿轮的齿面,与C 级滚动轴承配合的轴颈 表面,尺寸大于315mm 的IT7~IT9级孔

中山基本风压及粗糙度

中山市基本风压及地面粗糙度 主送:结构总工及专业主要负责人 抄送:建筑总工及专业主要负责人 事由:确定中山市基本风压及确定地面粗糙度的方法 一.依据广东省标准《建筑结构荷载规定》DBJ15-2-90,中山市30年一遇基本风压变换为50年一遇基本风压: 1.依据广东省标准《建筑结构荷载规定》DBJ15-2-90,中山市30年 一遇基本风压为W0=0.60KN/㎡; 2.参考比对国家标准《建筑结构荷载规范》GB50009-2001(2006年 版),两套规范比较,同时有列出的城市50年一遇基本风压比30 年一遇基本风压增加0.05 KN/㎡(如广州市由0.45KN/㎡增加到 0.50KN/㎡、深圳市由0.70KN/㎡增加到0.75KN/㎡、汕头市由 0.75KN/㎡增加到0.80KN/㎡、阳江市由0.65KN/㎡增加到 0.70KN/㎡等等); 3.依据张相庭著《结构风工程》介绍:中山市大部分地区50年一遇 基本风压按陆地很少出现的11级暴风最大风速117km/h(32.5m/s)换算W0=v2/1630=32.5x32.5/1630=0.648KN/㎡(取0.648KN/ ㎡)。 4.建议参考上述依据中山市大部分地区50年一遇基本风压取 W0=0.65KN/㎡,南部及沿海镇区(如坦洲镇、神湾镇、板芙镇、三乡镇、南朗镇、中山港区)50年一遇基本风压取W0=0.70KN/ ㎡.

二、国家标准《建筑结构荷载规范》GB50009-2001(2006年版)规定:风荷载地面粗糙度可分为A、B、C、D四类: ——A 类指近海海面和海岛、海岸、湖岸及沙漠地区; ——B 类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;(周围房屋平均高度h≤9m) ——C 类指有密集建筑群的城市市区;(9m<h≤18m) ——D 类指有密集建筑群且房屋较高的城市市区(h>18m)。 平均高度具体意义详见规范条文说明 中山市建筑设计院有限公司 2009年3月

相关文档