文档库 最新最全的文档下载
当前位置:文档库 › 城市轨道交通供电系统中压网络

城市轨道交通供电系统中压网络

城市轨道交通供电系统中压网络
城市轨道交通供电系统中压网络

城市轨道交通供电系统的中压网络研究一、供电系统的简介及中压网络的概念

1、城市轨道交通供电系统的功能

城市轨道交通供电系统,担负着运行所需的一切电能的供应与传输,是城市轨道交通安全可靠运行的重要保证。

城市轨道交通的用电负荷按其功能不同可分为两大用电群体。一是电动客车运行所需要的牵引负荷,二是车站、区间、车辆段、控制中心等其他建筑物所需要的动力照明用电,诸如:通风机、空调、自动扶梯、电梯、水泵、照明、AFC 系统、FAS、BAS、通信系统、信号系统等。

在上述用电群体中,有不同电压等级直流负荷、不同电压等级交流负荷;有固定负荷、有时刻在变化的运动负荷。每种用电设备都有自己的用电要求和技术标准,而且这种要求和标准又相差甚远。城市轨道交通供电系统就是要满足这些不同用户对电能的不同需求,以使其发挥各自的功能与作用。保证电动客车畅行,安全、可靠、迅捷、舒适地运送乘客,是供电系统的根本目的。

2、供电系统的构成

根据功能的不同,对于集中式供电,城市轨道交通供电系统可分成以下几部分:外部电源、主变电所、牵引供电系统、动力照明配电系统、电力监控(SCADA)系统。对于分散式供电,城市轨道交通供电系统则可分成以下几部分:外部电源、(电源开闭所)、牵引供电系统、动力照明配电系统、电力监控(SCADA)系统。牵引供电系统,又可分成牵引变电所与牵引网系统。动力照明配电系统,又可分成降压变电所与动力照明。

但在进行初步设计与施工设计时,为便于设计管理,供电系统往往被划分成:系统设计;主变电所设计;牵引变电所(或牵引降压混合变电所)及降压变电所设计;牵引网设计;电力监控系统设计;杂散电流腐蚀防护设计(注:动力照明随同土建一起设计)。

3、外部电源方案

城市轨道交通系统的外部电源方案,根据城市电网构成的不同特点,可采用集中式、分散式、混合式等不同形式。

(1) 确定外部电源方案的原则

城市轨道交通作为城市电网的特殊用户,一般用电围多在10km~30km之间。城市轨道交通系统的外部电源方案,主要有集中式、分散式、混合式等不同形式。究竟采用何种方式,应通过计算确定需要负荷之后,根据城市轨道交通路网规划、城市电网构成特点、工程实际情况综合分析确定。

(2) 集中式供电

在城市轨道交通沿线,根据用电容量和线路长短,建设专用的主变电所,这

种由主变电所构成的供电方案,称为集中式供电。主变电所进线电压一般为

110kV,经降压后变成35kV或10kV,供牵引变电所与降压变电所。主变电所应有两路独立的进线电源。集中式供电,有利于城市轨道交通供电形成独立体系,便于管理和运营。、、、香港、德黑兰地铁等即为集中式供电方案。

(3) 分散式供电

根据城市轨道交通供电的需要,在地铁沿线直接由城市电网引入多路电源,构成供电系统,称为分散式供电。这种供电方式一般为10kV电压级。分散式供电要保证每座牵引变电所和降压变电所均获得双路电源,要求城市轨道交通沿线有足够的电源引入点及备用容量。建设中的地铁、轻轨、轻轨、城铁、八通线、地铁5号线等即为分散式供电方案。

(4) 混合式供电

将前两种供电方式结合起来,一般以集中式供电为主,个别地段引入城市电网电源作为集中式供电的补充,使供电系统更加完善和可靠。这种方式称为混合式供电。地铁一线和环线、建设中的轨道交通工程、地铁南北线工程等即为混合式供电方案。

4、中压网络概念的引入

通过中压电缆,纵向把上级主变电所和下级牵引变电所、降压变电所连接起来,横向把全线的各个牵引变电所、降压变电所连接起来,便形成了中压网络。

根据网络功能的不同,把为牵引变电所供电的中压网络,称为牵引网络;同样,把为降压变电所供电的中压网络称为动力照明网络。

中压网络有两大属性:一是电压等级,二是构成形式。

中压网络不是供电系统中独立的子系统,但是它却是供电系统设计的核心容。它的设计牵扯到外部电源方案、主变电所的位置及数量、牵引变电所及降压变电所的位置与数量、牵引变电所与降压变电所的主接线等。

二、中压网络的电压等级

1、国家中压配电现状及发展趋向

我国现行中压配电标准电压等级有:66kV、35kV、10kV。随着城乡电气化事业的发展,只有一种10kV作为中低电压的分界,显然已不能满足城乡配电网发展要求。

我国第一个20kV一次配电的供电区,已经于1996年5月在工业园区投入运行。从前一段运行情况来看,其线损率大大低于10kV系统。

对于农村电网,从电源电压直接送到中压一次配电层,形成高压电源层──中压一次配电层──低压户三级配电,可以简化电网、降低造价、减少线损、利于发展。采用20kV作为中压一次配电层,功能上可以替代35kV与10kV两个配电层,而造价上则与10kV设备差异不大。由此可见,20kV电压等级的这种特点,也适合于高密度负荷地区的城市电网。例如:早在1999年中电联供电分会发表

的“电网实施城网建设和改造的规划原则”中表明:市区电压等级按500 kV、220 kV、110 kV、10 kV (20kV)设计,其中新建开发区可选20kV电压等级。2、国城市轨道交通中压网络现状及发展思路

以往,因国家城乡电网中没有采用20kV这一电压等级,相应的开关柜等20kV 设备,也没有跟上发展。在这样的大环境下,要在城市轨道交通工程中使用20kV 电压级,是比较困难和不现实的。因而,国既有城市轨道交通的中压网络电压等级采用了35 kV(若采用国外设备则是33kV)或10 kV。地铁、天津地铁、轨道交通环线一期工程、快速轨道交通3号线的中压网络为10 kV;地铁1、2号线的牵引网络采用了33kV,动力照明网络采用了10kV;地铁明珠线的牵引网络采用了35kV,动力照明网络采用了10kV;地铁1、2号线采用了33kV的牵引动力照明混合网络;地铁南北线一期工程、地铁采用了35kV的牵引动力照明混合网络;轨道交通一期工程、轨道交通较新线工程采用了10kV的牵引动力照明混合网络。

然而,随着城乡电力消费的增长,发展城乡20kV配电网已提到议事日程上来。20kV是目前公认的具有发展前景的优选电压级。20kV开关柜、变压器、电力电缆等一系列设备,也完全实现了国产化。

近年已颁布的国家标准GB156—93中表明,20kV也是可使用的电压级。另外,已经完成送审稿的《地铁设计规》中规定:地铁中压网络的电压等级可采用35kV(33kV)、20kV、10kV。因此,在我国城乡电网及20kV设备这个大环境,已经发生变化的情况下,在城市轨道交通中压网络的电压等级选用上,也应该拓宽思路,认真比较,优化选用。换言之,不能仅局限于以往的35kV(33kV)和10kV 框框,应该认识到,20kV也是可用的,并已成为一个备选电压级。这是因为:城市轨道交通供电系统,尤其是集中式供电系统,与其他公用用户相比,相对独立,自成系统。无论从施工建设,还是运营管理、养护维修等均相对独立。从这个角度来说,城市轨道交通中压网络的电压等级不一定与外部电网电压等级相一致。实际上,地铁、地铁,已采用了国外的33kV设备,而我国电压等级是35kV,并非33kV。另外,象地铁、地铁采用的35kV,也是这两座城市市区电网所要取消的电压级。换言之,在城市轨道交通中压网络电压等级与外部市网电压等级的关系上,是采用35kV还是采用33kV或者20kV,其性质和概念上是一样的。

3、不同电压等级的中压网络的特点

(1) 35kV中压网络,国家标准电压级。输电容量较大、距离较长;设备来源国;设备体积较大,占用变电所面积较大,不利于减小车站体量;设备价格适中;国没有环网开关,因而不能用(相对于断路器柜)价格较便宜的环网开关,构成接线与保护简单、操作灵活的环网系统;地铁、地铁已经采用。

(2) 33kV中压网络,国际标准电压级。输电容量较大、距离较长,基本与35kV 一致;设备来源国外,不利于国产化;国外开关设备体积较小、价格较高,、地铁已经采用;国外C-GIS产品有环网单元。

(3) 20kV中压网络,国际标准电压级。输电容量及距离适中,比10kV系统大。设备完全实现国产化;引进MG、ALSTHOM等技术的开关设备,体积较小,占用变电所面积远小于国产35kV设备,有利减小车站体量,节省土建投资;价格适中;有环网单元,能构成接线与保护简单、操作灵活的环网系统;国地铁尚没有采用,但国外地铁多有采用。

(4) 10kV中压网络,国家标准电压级。输电容量较小、距离较短;设备来源国;设备体积适中;设备价格较低;环网开关技术成熟、运营经验丰厚,可用其构成保护简单、操作灵活的环网系统;国外地铁广为采用。

4、不同电压等级的中压网络的综合比较

三、中压网络的构成

1、概述

对于集中式外部电源方案,牵引网络和动力照明网络,可以采用相对独立的形式,即牵引动力照明独立网络,也可以共用同一个中压网络,即牵引动力照明混合网络。对于分散式外部电源方案,采用牵引动力照明混合网络。

牵引动力照明独立网络的特点:牵引网络与动力照明网络,两者相对独立、相互影响较小;35(33)kV较高的电压级与较重的牵引负载相适用,而10kV较低的电压级则与较小的动力照明负荷相适用。

牵引动力照明混合网络的特点:供电系统的整体性比较好,设备布置可以统筹考虑。

牵引网络与动力照明网络,可以采用同一个电压级,也可以采用两个不同电压级。

目前,我国城市轨道交通工程有的采用了牵引动力照明混合网络,有的则采用了牵引动力照明独立网络;国外有的地铁采用了牵引动力照明独立网络。

2、中压网络的构成原则

(1) 满足安全可靠的供电要求;

(2) 满足潮流计算要求,即设备容量及电压降要满足要求;

(3) 满足负荷分配平衡的要求;

(4) 满足继电保护的要求;

(5) 满足运行管理、倒闸操作的要求;

(6) 每一个牵引变电所、降压变电所均应有两路电源;

(7) 系统接线方式尽量简单;

(8) 供电分区应就近引入电源,必要时可从负荷中心处引入电源,尽量避免返送电;

(9) 全线牵引变电所、降压变电所的主接线尽量一致;

(10) 满足设备选型要求。

3、集中式外部电源方案下的中压网络构成

(1) 独立35(33)kV牵引网络+独立10kV动力照明网络的接线方式

1) 35(33)kV牵引网络的接线方式

当中压网络为两个不同电压级时,35(33)kV牵引网络的常用接线方式,如插图一所示。这些基本接线方式可以分成A、B、C、D四种类型。

l A型:牵引变电所主接线为单母线;牵引变电所的进线与出线,均采用断路器;牵引变电所的两路电源,来自于同一个主变电所的不同母线;该类型接线适用于位于线路起始部分、线路终端部分、主变电所附近的牵引变电所电源引入。

l B型:牵引变电所主接线为单母线;牵引变电所的进线与出线,均采用断路器;两个牵引变电所为一组;这一组牵引变电所的两路电源,来自于同一个主变电所的不同母线,每个牵引变电所均从主变电所接入一路主电源,两个牵引变电所通过联络电缆实现电源互为备用;该类型接线适用于位于线路起始部分、线路终端部分的牵引变电所电源引入。

l C型:牵引变电所主接线为单母线;牵引变电所的进线与出线,均采用断路器;两个牵引变电所为一组;这一组牵引变电所的两路电源,来自于不同的主变电所,

左侧牵引变电所从左侧主变电所接入一路主电源,右侧牵引变电所从右侧主变电所接入一路主电源,两个牵引变电所通过联络电缆实现电源互为备用;该类型接线适用于位于两个主变电所之间的牵引变电所电源引入。

l D型:牵引变电所主接线为单母线;牵引变电所的进线与出线,均采用断路器;牵引变电所的两路电源,来自于左右两侧不同的主变电所;该类型接线适用于位于两个主变电所之间的牵引变电所电源引入。

2) 10kV动力照明网络的接线方式

当中压网络为两个不同电压级时,10kV动力照明网络的基本接线方式,如插图二所示。

全线的降压变电所被分成若干个供电分区,每个供电分区一般不超过3个地下站;每一个供电分区均从主变电所(或中心降压变电所)的35(33)/10kV主变压器,就近引入两路10kV电源;中压网络采用双线双环网接线方式;相邻供电分区间通过环网电缆联络;降压变电所主接线采用分段单母线形式;降压变电所进线开关采用断路器。该接线方式运行灵活。

(2) 35(33)kV牵引动力照明混合网络的接线方式

当中压网络采用一个电压级时,35(33)kV牵引动力照明混合网络的基本接线方式,如插图三所示。

城市轨道交通中压网络保护方案的选择

城市轨道交通中压网络保护方案的选择 发表时间:2018-09-12T14:52:05.310Z 来源:《基层建设》2018年第20期作者:朱万方1 周晋2 [导读] 摘要:城市轨道交通采用集中供电方式时,中压环网投资巨大。 1.中国铁路设计集团有限公司电化电信院天津 30025; 2.中国铁路设计集团有限公司电化电信院天津 300251 摘要:城市轨道交通采用集中供电方式时,中压环网投资巨大。本文结合中压环网保护方案对中压环网采用不同的接线方式进行经济技术比较,提出了适合不同城市的环网接线方案,并提出了一种新型保护配合方案。 关键词:城市轨道交通;中压环网;中压环网保护 目前我国城市轨道交通供电系统通常采用主变电所集中供电方式,根据各地电网电压等级的不同,主变电所进线电压有110kV和66kV 两种形式,中压环网电压等级一般采用35kV。中压环网多采用“分区环供”方式,全线变电所划分成若干个供电分区,每个供电分区由相应的主变电站提供两路电源,分区内的各变电所(牵引降压混合变电所、降压变电所及跟随式降压变电所)采用双环网供电方式供电。如图-1 所示为典型中压网络接线方案。 图-1典型中压网络接线示意图 由于轨道交通中压环网投资巨大,在供电系统中所占比例甚高,因此如何降低中压环网投资也成为目前各资金紧张的轨道交通项目亟待解决的问题。中压环网分区数量的多少直接关系到环网电缆数量的多少,而降低环网分区的数量势必会增加每个分区所带变电所的数量,分区内变电所数量的增加会对供电可靠性及中压网络保护的时限配合带来一些问题。本文将对目前国内的中压网络保护方案优缺点进行分析,结合中压环网的投资提出适合各城市的中压环网接线方案及相应的保护方案,并提出新型保护配合方案供各位设计同仁参考。 1、轨道交通供电系统中压网络保护方案 当前,我国城市轨道交通供电系统中压网络的保护主要有两种解决方案:一种是目前市场主流的光纤纵差保护+后备过流保护;一种是电流选跳保护+后备过流保护。 1.1光纤纵差与电流选跳的性能比较 1.1.1保护性能 若光纤纵差保护与电流选跳保护作为中压网络的主保护,由于保护原理的差别,两种方案的动作时间差别比较大:光差保护动作时间小于 12ms;而选跳保护受过流保护原理的限制,最快跳闸出口时间为30ms。 光纤纵差保护使用分相差动加零流差动的原理,与负荷电流大小无关,其灵敏度很高;电流选跳保护必须躲开负荷电流,过流元件的启动值必须设的较高,因此对故障灵敏度较低,无法清除高阻故障,且级联的区间越多、离电源端越近问题越严重,灵敏度越低。 1.1.2对故障的选择性和可靠性 光纤纵差保护是专门针对35kV及以上电压等级的输配电线路设计,国家对其有严格的动模考核指标,光纤电流纵差保护对区内外单相和多相永久故障、转换性故障均能正确可靠动作。而电流选跳方案只能识别单一故障,对区内外同相多点故障是无法区分的,可靠性低,电流选跳方案无法通过电力系统的动模试验,提供入网许可报告,这给轨道交通系统的运行带来风险和隐患。 1.1.3对于供电系统运行方式适应性,两种方案存在很大的差别。 光纤纵差保护方案中差动保护的设置仅与被保护线路有关,不受系统运行方式的改变和未来扩建的影响,保护装置内部逻辑不用作出相应的变动。但电流选跳方案由于受选跳原理的限制,必须根据前后保护装置中过流元件动作的信号来判断故障点位置从而有选择性的切除故障线路。因此对于已经使用光纤纵差解决方案的轨道交通前期已投运的项目,在后期建设中用户可根据前期的运行情况自由选择不同品牌的供货商;但对于电流选跳方案则用户必须接受同一品牌的解决方案。 1.1.4比选结论 与光差保护相比电流选跳保护动作迟缓,故障切除时间长,对一次设备的使用寿命影响较大,灵敏度低,识别故障单一,兼容性差,其技术性能远不如光差保护。 1.2后备保护的时限配合分析 当主保护(光纤纵差保护或电流选跳保护)由于各种原因(如:装置通讯口故障、光纤通道故障等)退出运行时,主保护被闭锁,同时投入后备过流保护。这时,两种保护方案的选择性都只能依靠过流保护的时限来完成。在这种情况下,由于各供电区间(如图-2)均采用梯级供电方式,区间内的线路后备过流保护在时限上的级差配合是需要着重思考的问题,下面以图-2说明后备过流保护时限配合

城市轨道交通的强弱电系统-四电工程

城市轨道交通的强弱电系统-四电工程

13. 供电系统 13.1 供电系统构成与功能 13.1.1 系统构成 城市轨道交通供电系统由以下几部分组成:主变电所、中压供电网络、牵引变电所及降压变电所、牵引网系统、动力照明配电系统、电力监控系统(SCADA)及杂散电流防护系统。 13.1.2 系统功能 1. 主变电所 将来自于城市电网的高压110kV变换为中压35kV电源。 2. 中压供电网络 将主变电所的中压电源经中压供电网络分配到各牵引变电所及降压变电所。 3. 牵引变电所及降压变电所 牵引变电所将中压电源降压整流后变成供轨道交通列车使用的直流1500V 电源;降压变电所将中压电源降为低压0.4/0.23kV后,供轨道交通动力、照明设备使用。 4. 牵引网系统 来自于牵引变电所的DC1500V电源通过牵引网(接触网和回流轨)为轨道交通列车提供电能。 5. 动力照明配电系统 来自于降压变电所的低压0.4/0.23kV电源通过低压配电系统供给动力照明设备电能。 6. 电力监控系统(SCADA) 在轨道交通控制中心,通过调度端(控制中心)、通道、执行端,对整个供电系统主要电气设备进行控制、监视、测量、调节。 7. 杂散电流腐蚀防护系统 减少因直流牵引供电引起的经回流轨泄漏的电流(杂散电流)及减少杂散电流的扩散,避免杂散电流对附近结构钢筋、金属管件的电腐蚀,并对杂散电流进行监测。

12. 通信系统设备应适应轨道交通(地面、地下)及地区的环境,应采用体积小、重量轻、能耗低、防雷击、防尘、防锈、防震、防潮、防霉的设备和材料,并不得侵入限界。 14.2 系统构成与功能 通信系统由专用通信系统、民用通信系统、公安通信系统三部分组成。 13. 专用通信系统由传输系统、无线通信系统、公务电话系统、专用电话系统、闭路电视监控系统、广播系统、时钟系统、办公自动化系统、电源及接地和集中告警等10个子系统组成; 14. 民用通信系统包括由传输系统、无线覆盖系统、集中监测告警系统、电源及接地系统、配套等子系统组成; 15. 公安通信系统包括由无线覆盖系统、计算机网络系统、公安视频监视系统、公安专用电话系统、电源及接地等子系统组成; 三套通信系统构成传送语音、文字、数据和图像等各种信息的综合业务通信网。该通信网应满足2号线运营、管理的要求。 通信组网的技术原则如下: 1. 能满足地铁各种信息内容及其传输容量的要求。 2. 骨干传输网应采用光纤数字通信设备,符合相应的国际标准。光系统具有手动/自动切换功能,切换时,不影响传输质量。 3. 专用通信、民用通信、公安通信各自分别独立组建传输网络及其传输媒介,并分别设置在各自的机房内。 4. 为提高可靠性和信道利用率,各通信传输节点之间的重要信息应进行环路保护。 5. 所有通信子系统的告警信号均应输出至所属集中监测告警系统。 6. 通信系统应具有集中告警维护、统一管理的网络管理功能,能接受汇总各个通信子系统的告警系统。

城市轨道交通的发展及其网络化运营管理

城市轨道交通的发展及其网络化运营管理 发表时间:2017-07-14T11:03:30.167Z 来源:《基层建设》2017年第7期作者:孙晔 [导读] 摘要:城市轨道交通建设规模的不断扩大,网络化运营成为城市轨道交通运营组织发展的必然趋势。 深圳地铁集团有限公司运营总部客运三分公司深圳 518000 摘要:城市轨道交通建设规模的不断扩大,网络化运营成为城市轨道交通运营组织发展的必然趋势。网络化运营提高了乘客网络出行的可达性,但乘客在线路间的多次换乘使得网络上的客流分布规律难以准确把握,这大大増加了运营管理的难度,使得运营管理者在进行以拥堵客流特性为决策基础的拥堵控制时面临更大的挑战。本文主要介绍了我国城市轨道交通的发展以及网络化的运营管理,以期为后续相关应用提供参考。 关键词:城市轨道交通;发展;网络化运营管理 1 我国城市轨道交通的发展现状 北京作为发展轨道交通的先锋,于二十世纪五十年代开始规划地铁一号线的建设,并于 1965 年正式开工,1969年 10 月正式通车。北京地铁一号线是我国城市轨道交通建设的起点,自此,发展轨道交通成为一些一线城市的基本需求,我国轨道交通的建设也进入了快速发展的阶段。上个世纪八十年代,随着城市化进程加快,改革开放使得社会经济飞速发展,公路及城市道路的建设进入黄金时期。居民可支配收入有了明显的增加,同时也伴随着机动车数量的急剧增长。为了解决一些大城市市中心区域愈发明显的交通拥堵问题,上海、广州分别开始建设地铁;九十年代,深圳、重庆、武汉等多个城市开始修建城市轨道交通;1998 年,政府开始实行城市轨道交通车辆及机电设备国产化政策,并分别将深圳、广州的地铁建设(一期)及地铁二号线的修建和上海东方明珠地铁线确立为国产化依托项目批复立项。此后,随着另外十多个城市上报申请的二十多个轨道交通建设工程项目得到批准,我国城市轨道交通建设进入高速、高效的发展阶段。步入二十一世纪以来,已建成的地铁、轻轨等轨道交通为城市带来的蓬勃发展有目共睹,使得各地政府大力支持轨道交通系统的建设。放眼全国,轨道交通的建设规模及速度都在飞速发展。截至 2016 年末,我国城市轨道交通路运营总里程达到 3687 公里。根据目前已获准修建的待建项目及发展速度,预计到 2020 年末“十三五”结束时,50 个城市将开通城市轨道交通系统,运营总里程将突破 6000 公里。 据已建成的城市轨道交通的运营经验,如要使得轨道交通系统充分发挥其交通功能,显示出相比于与其他公共交通方式的优越性,达到缓解城市道路的交通拥堵的目的,则需要以网络式的布局规划建设轨道交通路线。这种科学合理的布局方式不仅能够为城市居民的日常出行和换乘提供很大的便捷,也因为避免了不科学、不必要的投资而为城市节省了资源。 2 城市轨道交通的网络化运营管理 城市轨道交通网络化运营是指从网络而非单线角度建立包括“构架运营体制架构、配置运营维护资源、确定线网联动职责、制定应急联动机制以及运营管理措施”为主要内容的网络化运营管理体系,以确保轨道交通网络安全、可靠、高效的运营即将轨道交通系统作为一个整体,从网络层面采取组织措施以实现各线路间的运营协调。相比于单线运营,网络化运营条件下的城市轨道交通系统具有下特点:(1)区域结构差异性 区域结构差异性是指城市轨道交通网络按区域划分后,各区域内网络拓扑结构存在一定的差异性,例如市中心区域线路密度较大,区域拓扑结构较复杂,而郊区线路密度较小,区域拓扑结构较单一。区域拓扑结构的差异性,使得网络中一些车站节点或者是一些区域成为影响轨道交通路网的关键节点或关键区域。当这些关键节点或区域出现功能失效、运营瘫痪时,会严重影响轨道交通整体运营。 (2)客流分布失衡性 城市轨道交通网络客流分布失衡性是,指客流分布的不均衡性,从网络整体的角度来看客流分布的不均匀性主要表现为时间分布不均匀性和空间分布不均衡性。客流时间分布不均衡性表现为平日和节假日客流量的差异性,其中平日又分为工作日和双休日。在一日之内,客流时间分布的不均匀性又表现早、晚高峰与平峰时段客流量的差异。客流空间分布不均匀性是指在路网中不同的空间单元(车站、区间、线路等)在同一时间所承担的客流量存在差异。 (3)路网状态动态性 城市轨道交通系统是客流、列车、基础设施、纪织策略等多个子系统相结合的综合体,各子系统动态特性相互作用决定了轨道交通路网状态的动态性,最终体现在客流分布随列车运巧和组织措施的动态性发生变化。 (4)风险危害关联性 城市轨道交通网络化运营实现了站一站,站一线和线一线之间的互连互通,但同时也为风险危害的传播创造了条件。当某线路因客流与运输能力匹配度较低或突发状况出现路网拥堵时,拥堵状态可能通过换乘站传播至邻线,并通过进一步的传播影响其他线路的运营,由此出现“牵一发而动全身”的级联失效现象。 (5)运营管理协调性 城市轨道交通系统是一个复杂而多变的系统,要安全、高效、高质量的完成运输任务,应从协调性的角度实施运营管理措施。城市轨道交通系统网络化运营协调是对系统既有资源统筹安排,各线路间运力配置能充分满足客流衍变规律和乘客出行需求,使客流在网络上的流动趋于平衡,确保各线路列车安全、准点运行,确保高水平的乘客服务质量,最终实现轨道交通网络化运营的社会效益和经济效益的最大化。 (6)风险因素多样化 城市轨道交通网络化运营条件下,影响安全运营的风险因素呈现多样化的特点,主要体现在以下几个方面: 运力运量矛盾突出:随着城市轨道交通路网密度增加,客流量也大大增加,部分线路的折返能力、通过能力和车辆使用率已经达到极限,从而造成运力和运量矛盾突出。例如:2012年4月28日,北京城市轨道交通中4条线路客流量均突破百万,其中1号线突破了160万人次,其承受能力已达到极限;2013年3月8日,北京城市轨道交通全网客运量再创历史新高,首次突破1000万人次。②车站的基础设施能力难以满足城市不同区域的客流需求,部分换乘车站早晚高峰期间的客流量大大超过其设计通行能力,造成安全隐患。 设备设施安全隐患问题突出:城市轨道交通网络化运营条件下,各条线路建设时期不一样,设备设施安全隐患问题突出,体现在以下几个方面,①由于物理和化学因素(如磨损、腐蚀、疲劳、老化等),随着使用时间增加,部分线路设备设施开始老化,造成安全隐患; ②部分线路列车车辆属于长期“超负荷”运行状态,其可靠性和安全性逐渐降低;③刚刚投入运营线路的大量新设备未经充分调试和磨合就投

城市轨道交通供电系统中压网络

城市轨道交通供电系统的中压网络研究一、供电系统的简介及中压网络的概念 1、城市轨道交通供电系统的功能城市轨道交通供电系统,担负着运行所需的一切电 能的供应与传输,是城市轨道交通安全可靠运行的重要保证。 城市轨道交通的用电负荷按其功能不同可分为两大用电群体。一是电动客车运 行所需要的牵引负荷,二是车站、区间、车辆段、控制中心等其他建筑物所需要的动 力照明用电,诸如:通风机、空调、自动扶梯、电梯、水泵、照明、 AFC 系统、FAS BAS通信系统、信号系统等。 在上述用电群体中,有不同电压等级直流负荷、不同电压等级交流负荷;有 固定负荷、有时刻在变化的运动负荷。每种用电设备都有自己的用电要求和技术标准,而且这种要求和标准又相差甚远。城市轨道交通供电系统就是要满足这些不同 用户对电能的不同需求,以使其发挥各自的功能与作用。保证电动客车畅行,安 全、可靠、迅捷、舒适地运送乘客,是供电系统的根本目的。 2、供电系统的构成 根据功能的不同,对于集中式供电,城市轨道交通供电系统可分成以下几部 分:外部电源、主变电所、牵引供电系统、动力照明配电系统、电力监控 (SCADA) 系统。对于分散式供电,城市轨道交通供电系统则可分成以下几部分:外部电源、(电源开闭所)、牵引供电系统、动力照明配电系统、电力监控(SCADA系统。牵引供 电系统,又可分成牵引变电所与牵引网系统。动力照明配电系统,又可分成降压 变电所与动力照明。 但在进行初步设计与施工设计时,为便于设计管理,供电系统往往被划分成: 系统设计;主变电所设计;牵引变电所(或牵引降压混合变电所 )及降压变电所设 计;牵引网设计;电力监控系统设计;杂散电流腐蚀防护设计 (注:动力照明随同土 建一起设计 )。 3、外部电源方案 城市轨道交通系统的外部电源方案,根据城市电网构成的不同特点,可采用集 中式、分散式、混合式等不同形式。 (1) 确定外部电源方案的原则 城市轨道交通作为城市电网的特殊用户,一般用电范围多在 10km~30km之间。 城市轨道交通系统的外部电源方案,主要有集中式、分散式、混合式等不同形式。究 竟采用何种方式,应通过计算确定需要负荷之后,根据城市轨道交通路网规划、城 市电网构成特点、工程实际情况综合分析确定。 (2) 集中式供电 在城市轨道交通沿线,根据用电容量和线路长短,建设专用的主变电所,这

城市轨道交通供电技术课后习题答案

第一章 1、城市轨道交通的特点是什么? 安全,快捷,准时,舒适,运量大,无污染,占地少且不破坏地面景观。 2、城市轨道交通有哪些类型,各有什么特点?(特点只列举了突出点) (1)地铁:单向运量3-7万人次/h,建设成本最高 (2)轻轨:单向运量2-4万人次/h (3)市郊铁路:单向运量6-8万人次/h,建设成本最低,站间距大,速度最快。 (4)独轨:单向运量1.2万人次/h。无法与其他三种接轨 3、城轨供电系统的功能及要求是什么? 功能:全方位的服务,故障自救,系统的自我保护,防止误操作,方便灵活的调度,完善的控制、显示和计量,电磁兼容。 要求:安全,可靠,调度方便,技术先进,功能齐全。 4、城轨供电系统有哪些部分组成?各组成部分的作用是什么? (1)外部供电系统(中压环网供电系统) (2)牵引供电系统 (3)动力照明供电系统 5、城轨供电系统采用何种供电制式? (1)直流制式 (2)低频单相(少用) (3)工频单相 (4)交流制式(淘汰) 6、迷流腐蚀形成的原因是什么,如何防护? 原因:钢轨和隧道或道床等结构之间绝缘电阻不是很大。牵引电流泄漏到隧道或道床等结构钢上,再流回牵引变变电的负极。 危害:(1)引起过高的接地电位,使某些含有电气接地装置的设备无法正常运行。 (2)引起牵引变电所的框架保护动作,进而使得牵引变电所的断路器跳闸,造成大范围停电事故。 (3)电腐蚀使得地下钢结构的寿命缩短 防护原则:堵,排,监测 防护措施: (1)降低走行轨的对地电位 (2)增加走行轨对地的过渡电阻 (3)敷设迷流收集网

第二章 1、城轨交通供电系统对电源有哪些要求? (1)2路电源来自不同的变电所或同一变电所的不同母线。 (2)每个进线电源的容量应满足变电所全部以、二级负荷的要求 (3)2路电源分别运行,互为备用,一路故障,另一路恢复供电 (4)电源点尽量靠近城轨交通路线,减少电缆通道的长度 (5)要求应急电源系统能够满足一定的牵引负荷,保证正常运输的动力照明负荷。 2、城轨交通供电系统的电源电压等级有哪几种? 集中式一般为10KV,东北地区沈阳,哈尔滨为66KV 分散式为35KV或10KV 3、城轨交通供电系统为什么会产生谐波?如何治理? 因为城轨交通中广泛使用各种交直流换流装置以及双向晶闸管可控开关设备,这些设备均为谐波源。 治理:(1)增加牵引整流机组的脉波数 (2)安装滤波装置或谐波补偿装置 4、外部供电系统对城轨交通供电系统是供电方式有哪几种?各有什么特点? (1)集中式供电,采用专用主变电所构成的供电方案,有利于城轨公司的运营和管理,各牵引变电所和降压变电所由环网电缆供电,具有很高的可靠性。 (2)分散式供电,在地铁沿线直接由城市电网引入多路地铁所需要的电源。 (3)混合式供电,以集中式供电为主,个别地段直接引入城市电网电源作为补充,供电系统更加完善可靠。 5、城轨交通主动变电所的位置应如何选择? (1)应尽量靠近城市轨道交通路线,接近负荷中心 (2)各主变电所的负荷平衡,两侧的供电距离基本相同 (3)靠近城市轨道交通车站 (4)考虑路网规划与其他城市交通路线资源共享,并预留电缆通道和容量 6、什么是中压网络? 通过中压电缆,纵向把上级主变电所和下级牵引变电所,降压变电所连接起来,横向把各个牵引变电所,降压变电所连接起来,便构成了中压网络。 7、中压网络有哪些电压等级? 35,20,10,6,3KV 8、中压网络有哪些结构形式? (1)树形(针对集中式供电) (2)点对点式(针对分散式供电)

城市轨道交通网络化运营特征分析

城市轨道交通网络化运营特征分析 【摘要】随着社会的进步和发展,城市的轨道交通得到了很好的发展和管理,结合城市轨道交通网络化运营的发展趋势,了解城市的轨道交通现状,分析城市轨道交通网络化运营的诸多特征,通过对不同时期的客流量、行车组织等的分析,发现现存的问题,探讨城市轨道交通网络化运营的积极影响。 【关键词】轨道交通;网络化;运营 0.引言 现今社会,对城市建设的步伐越来越紧密,城市的经济指数在翻倍上升。在综合因素的推动下,城市轨道交通的运营向着网络化方向发展,也取得了很好的成就。城市轨道交通网络化运营的需求越来越明显,就需要城市交通规划部门能够积极规划建设城市的交通,另一方面还是快速提高经济。 1.城市轨道交通运营现状及发展 1.1城市轨道交通运营现状分析 在现代化高科技的推动下,城市中涌现出了大量的新兴交通工具,为城市居民的出行带来了便捷和高效,也带动了其他行业的发展。当今,在一些大城市中,轨道交通都得到了很好的发展,并在快速的拓展进程中。我国北京、上海、广州等大城市中的轨道交通已经逐渐从单线运营过渡到网络化运营阶段。截至2010年6月,北京已建成9条轨道交通运营线路,交通路网客运量持续上涨,1月到6月日均客运量在480万人次左右,同比前一年增长30%;上海作为中国一线城市,与北京的发展相协调,一同快速增长中。 1.2城市轨道交通的管理 目前,一些城市轨道交通的运营管理都会采取“分线管理”的模式,就是将各条路线分别委托相应地现代轨道交通运营公司管理负责,互不影响,互不干涉。城市轨道交通的分线管理,为轨道交通的管理提供了一种良好的管理模式,能够减轻各个管理公司的工作量和压力,提出更好的管理理念,为城市轨道交通的管理献上自己一份微薄的力量。 以上海为例,5条线路总共有150列/900节车辆在投入使用中,假如1条线路设置1个维修厂,1个车辆段设置1个大维修厂的维修管理模式,那么上海就需要大量的维修厂来确保车辆的正常使用状况,因此,就需要采取一定的模式:专业保障、分线设点、委外维修与自主维修相结合、核心技术自主维修。 2.网络化行车组织特征

城市轨道交通供电分析论文

论文 题目城市轨道交通供电技术 专业城市轨道交通车辆 班级13级车辆1班 学号1313172135 学生林焕 指导教师齐群 广东交通职业技术学院 2015年 一、供电系统的简介及中压网络的概念 1、城市轨道交通供电系统的功能 城市轨道交通供电系统,担负着运行所需的一切电能的供给与传输,是城市轨道交通安 全可靠运行的重要保证。 城市轨道交通的用电负荷按其功能不同可分为两大用电群体。一是电动客车运行所需要的牵引负荷,二是车站、区间、车辆段、控制中心等其他建筑物所需要的动力照明用电,诸如:透风机、空调、自动扶梯、电梯、水泵、照明、AFC系统、FAS、BAS、通讯系统、信 号系统等。 在上述用电群体中,有不同电压等级直流负荷、不同电压等级交流负荷;有固定负荷、有时刻在变化的运动负荷。每种用电设备都有自己的用电要求和技术标准,而且这种要求和标准又相差甚远。城市轨道交通供电系统就是要满足这些不同用户对电能的不同需求,以使 其发挥各自的功能与作用。 保证电动客车畅行,安全、可靠、迅捷、舒适地运送乘客,是供电系统的根本目的。 2、供电系统的构成 根据功能的不同,对于集中式供电,城市轨道交通供电系统可分成以下几部分:外部电源、主变电所、牵引供电系统、动力照明配电系统、电力监控(SCADA)系统。对于分散式供电,城市轨道交通供电系统则可分成以下几部分:外部电源、(电源开闭所)、牵引供电系统、动力照明配电系统、电力监控(SCADA)系统。牵引供电系统,又可分成牵引变电所与牵引网系统。动力照明配电系统,又可分成降压变电所与动力照明。 但在进行初步设计与施工设计时,为便于设计治理,供电系统往往被划分成:系统设计;主变电所设计;牵引变电所(或牵引降压混合变电所)及降压变电所设计;牵引网设计;电力

轨道交通 供电系统

毕业设计文件 设计题目: 城市轨道交通供电系统概述与分析————专业: 指导教师:

设 计 任 务 城市轨道交通供电系统概述及分析 设计要求分析地铁供电系统;绘制电路图; 分析特殊案例 设计成果 设计进程 指导教师评语 评阅人评语 成绩设计成绩指导教师评阅成绩评阅教师答辩成绩答辩负责人总评负责人

摘要: 近几年来,随着我国大城市交通压力的逐渐增大,城市轨道交通系统的发展步伐亦逐日加快。本文主要介绍了城市轨道交通供电系统的构成以及详细介绍了各部分的功能及分类,总结了国内外各城市地铁供电系统的应用方式。 因本人专业偏向于弱电,所以本文在全面总结城市轨道供电系统的前提下,着重介绍了变电所内的二次设备,从设备的种类、分类、用途以及构造方面加以了解。同时以沈阳地铁为案例介绍、分析了此轨道交通供电系统方案。 关键词:轨道交通供电系统二次设备 Abstract: In recent years, with the city traffic pressure increase gradually, the development of urban rail transit system is accelerated pace of daily. This paper mainly introduces the power supply system of urban rail transit are introduced in detail the composition and function of each part and classification, summarizes the domestic and international every city metro power system application. Because I am in favour of professional, so this weak in comprehensive summary of urban rail power supply system, emphatically introduces the condition of equipment, within the substation equipment types, from classification, applications and structural aspects. In case of shenyang subway is introduced and analyzed the rail traffic system. Key words:Rail transit Power supply system Second equipment

城市轨道交通供电技术课后习题与答案

第一章 1、城市轨道交通的特点是什么?安全,快捷,准时,舒适,运量大,无污染,占地少且不破坏地面 景观。 2、城市轨道交通有哪些类型,各有什么特点?(特点只列举了突出点) (1)地铁:单向运量3-7万人次/h,建设成本最高 (2)轻轨:单向运量2-4万人次/h (3)市郊铁路:单向运量6-8万人次/h,建设成本最低,站间距大,速度最快。 (4)独轨:单向运量1.2万人次/h。无法与其他三种接轨 3、城轨供电系统的功能及要求是什么?功能:全方位的服务,故障自救,系统的自我保护,防止误 操作,方便灵活的调度, 完善的控制、显示和计量,电磁兼容。 要求:安全,可靠,调度方便,技术先进,功能齐全。 4、城轨供电系统有哪些部分组成?各组成部分的作用是什么? ( 1 )外部供电系统(中压环网供电系统) ( 2)牵引供电系统 ( 3)动力照明供电系统 5、城轨供电系统采用何种供电制式? ( 1 )直流制式 ( 2)低频单相(少用) ( 3)工频单相 ( 4)交流制式(淘汰) 6、迷流腐蚀形成的原因是什么,如何防护?原因:钢轨和隧道或道床等结构之间绝缘电阻不是很 大。牵引电流泄漏到隧道或道 床等结构钢上,再流回牵引变变电的负极。 危害:( 1 )引起过高的接地电位,使某些含有电气接地装置的设备无法正常运行。 ( 2)引起牵引变电所的框架保护动作,进而使得牵引变电所的断路器跳闸,造成大范围停电事故。 ( 3)电腐蚀使得地下钢结构的寿命缩短 防护原则:堵,排,监测 防护措施: ( 1 )降低走行轨的对地电位 ( 2)增加走行轨对地的过渡电阻 ( 3)敷设迷流收集网

第二章 1、城轨交通供电系统对电源有哪些要求? (1)2 路电源来自不同的变电所或同一变电所的不同母线。 (2)每个进线电源的容量应满足变电所全部以、二级负荷的要求 (3)2 路电源分别运行,互为备用,一路故障,另一路恢复供电 (4)电源点尽量靠近城轨交通路线,减少电缆通道的长度 (5)要求应急电源系统能够满足一定的牵引负荷,保证正常运输的动力照明负荷。 2、城轨交通供电系统的电源电压等级有哪几种?集中式一般为10KV ,东北地区沈阳,哈尔滨为 66KV 分散式为35KV 或10KV 3、城轨交通供电系统为什么会产生谐波?如何治理?因为城轨交通中广泛使用各种交直流换流装置以及双向晶闸管可控开关设备,这些设备均为谐波源。 治理:(1)增加牵引整流机组的脉波数 (2)安装滤波装置或谐波补偿装置 4、外部供电系统对城轨交通供电系统是供电方式有哪几种?各有什么特点? (1)集中式供电,采用专用主变电所构成的供电方案,有利于城轨公司的运营和管理,各牵引变电所和降压变电所由环网电缆供电,具有很高的可靠性。 (2)分散式供电,在地铁沿线直接由城市电网引入多路地铁所需要的电源。 (3)混合式供电,以集中式供电为主,个别地段直接引入城市电网电源作为补充,供电系统更加完善可靠。 5、城轨交通主动变电所的位置应如何选择? (1)应尽量靠近城市轨道交通路线,接近负荷中心 (2)各主变电所的负荷平衡,两侧的供电距离基本相同 (3)靠近城市轨道交通车站 (4)考虑路网规划与其他城市交通路线资源共享,并预留电缆通道和容量6、什么是中压网络?通过中压电缆,纵向把上级主变电所和下级牵引变电所,降压变电所连接起来,横向把各个牵引变电所,降压变电所连接起来,便构成了中压网络。 7、中压网络有哪些电压等级?35,20,10,6,3KV 8、中压网络有哪些结构形式? (1)树形(针对集中式供电) (2)点对点式(针对分散式供电)

城市轨道交通中压双环网运行方式和联锁、联跳关系分析研究

摘要:阐述城市轨道交通的正常、故障和应急运行方式以及进线开关、母线分段开关;进线开关、联络开关;进线开关、环网馈线开关的联锁关系。 关键词:供电分区、分界点开关、联络开关、分界点、备自投装置 1.中压供电网络系统概述 中压供电网络是城市轨道交通供电系统的重要组成内容,由中压电缆构成,将主变电所或电源开闭所和牵引、降压变电所联系起来,用于输送和分配电能,在供电系统起着桥梁和纽带的作用。中压供电网络的设计涉及到外部电源方案、主变电所或电源开闭所的位置与数量、牵引、降压变电所的数量与主接线、中压供电网络系统运行方式和变电所开关的联锁关系。 中压供电网络系统有两种属性,其一为电压等级,其二为构成形式。 我国中压电压等级基本为三种,即66kV、35kV和10kV,不同电压等级构成的中压供电网络均存在多种形式,如开式结线和闭式结线等。对于城市轨道交通两种中压等级在供电网络中同时存在时,又可形成牵引供电网络和动力照明供电网络,如上海地铁一号线工程。供电网络中为一种电压等级时,一般为牵引动力照明混合供电网络,如北京地铁工程。 2.双环网供电网络 环网供电方式属于闭式结线,可分为开环和闭环方式。由于闭环方式继电保护整定困难,因此环网供电方式基本为开环方式运行。在开环方式中,又可分为“单线单环”、“双线单环”和“双线双环”的形式。城市轨道交通中“双线双环”即双环网的一种接线形式见图1。 图中K1~K4为电源开闭所供电分区间分界点开关,在运行方式分析中也称为联络开关。

双环网相对于开式结线的放射式供电能使供电线路简化、减少线路走廊、运行方式灵活,但联锁关系和继电保护整定复杂。 3.轨道交通双环网的运行方式 由于供电系统在轨道交通运行中的重要性,中压供电网络的设计需要满足故障自救功能和防止误操作的功能等要求。采用双环网接线,在故障运行方式下通过改变分界点开关的状态,保障故障区段供电的连续性。在应急运行方式时,通过调整分界点开关的位置,可改变主变电所或电源开闭所供电区的划分,可满足轨道交通继续运行的要求。双环网接线可灵活实现各种运行方式的转换。 通过设置各种联锁关系,可防止各种运行方式下的误操作,使系统安全可靠运行。 3.1变电所主接线形式 城市轨道交通一般有以下几种变电所类型:主变电所或电源开闭所、牵引变电所或牵引降压混合变电所、降压变电所或跟随式降压变电所等。在下文中以电源开闭所、牵引变电所、降压变电所为分析对象。 各变电所主接线形式如下: 电源开闭所为单母线分段接线形式,设母线分段开关,母线分段开关设有备用电源自动投入装置,具有“失压自投、过流闭锁”功能。 牵引变电所为单母线分段接线形式,设母线分段开关,母线分段开关设有“失压自投、过流闭锁”功能。也可不设母线分段开关,下文将分别讨论。牵引变压器集中设于一段母线上。 降压变电所为单母线分段接线方式,不设母线分段开关。配电变压器分别设于两段母线上。 变电所各进线开关、馈线开关、联络开关、母线分段开关均采用断路器。变电所低压配电系统均为单母线分段接线,设母线分段开关,并具有“失压自投、过流闭锁”功能,此功能可采用PLC装置实现。 3.2中压系统备用电源自动投入装置的工作原理 中压系统保护采用微机保护装置,母线PT、线路PT或配电变压器二次侧的电压信号均引入备自投装置,共同作为判别电源线路是否有电的条件,当两路引入线电源发生任一单电源故障,变电所进线线路失压,经备自投装置判别,确定非过流、零序等故障状态后,由备自投装置对进线开关和母线分段开关实施“失压自投、过流闭锁”的控制过程,由另一路中压电源供给变电所全部一、二级负荷。由正常运行方式转为故障运行方式。 当单电源故障发生在开闭所时,通过对开闭所和下级变电所的母线分段开关自投时间的适当整定,保证只有开闭所的分段开关将进行“失压自投、过流闭锁”的控制过程,由另一路中压电源供给供电区内全部负荷。 备自投装置的状态可分为启动状态、投入状态和退出<闭锁)状态。当两个电源电压正常,且进线开关均处于合闸状态时,备自投装置处于启动状态。当具备备自投装置投入条件时,备自投装置进入投入状态,完成开关的转换过程后,备自投装置为退出状态。当进线开关非失压跳闸,如故障跳闸或手动操作分闸,装置被闭锁,处于退出状态。 3.3运行方式分类 轨道交通中压供电网络的运行方式分为三种:正常运行方式、故障运行方式和应急运行方式。

城市轨道交通供电技术课后习题答案

第一章 1、城市轨道交通的特点是什么 安全,快捷,准时,舒适,运量大,无污染,占地少且不破坏地面景观。 2、城市轨道交通有哪些类型,各有什么特点(特点只列举了突出点) (1)地铁:单向运量3-7万人次/h,建设成本最高 (2)轻轨:单向运量2-4万人次/h (3)市郊铁路:单向运量6-8万人次/h,建设成本最低,站间距大,速度最快。 (4)独轨:单向运量1.2万人次/h。无法与其他三种接轨 3、城轨供电系统的功能及要求是什么 功能:全方位的服务,故障自救,系统的自我保护,防止误操作,方便灵活的调度,完善的控制、显示和计量,电磁兼容。 要求:安全,可靠,调度方便,技术先进,功能齐全。 4、城轨供电系统有哪些部分组成各组成部分的作用是什么 (1)外部供电系统(中压环网供电系统) (2)牵引供电系统 (3)动力照明供电系统 5、城轨供电系统采用何种供电制式 (1)直流制式 (2)低频单相(少用) (3)工频单相 (4)交流制式(淘汰) 6、迷流腐蚀形成的原因是什么,如何防护 原因:钢轨和隧道或道床等结构之间绝缘电阻不是很大。牵引电流泄漏到隧道或道床等结构钢上,再流回牵引变变电的负极。 危害:(1)引起过高的接地电位,使某些含有电气接地装置的设备无法正常运行。 (2)引起牵引变电所的框架保护动作,进而使得牵引变电所的断路器跳闸,造成大范围停电事故。 (3)电腐蚀使得地下钢结构的寿命缩短 防护原则:堵,排,监测 防护措施: (1)降低走行轨的对地电位 (2)增加走行轨对地的过渡电阻 (3)敷设迷流收集网 第二章 1、城轨交通供电系统对电源有哪些要求 (1)2路电源来自不同的变电所或同一变电所的不同母线。 (2)每个进线电源的容量应满足变电所全部以、二级负荷的要求 (3)2路电源分别运行,互为备用,一路故障,另一路恢复供电 (4)电源点尽量靠近城轨交通路线,减少电缆通道的长度 (5)要求应急电源系统能够满足一定的牵引负荷,保证正常运输的动力照明负荷。 2、城轨交通供电系统的电源电压等级有哪几种 集中式一般为10KV,东北地区沈阳,哈尔滨为66KV

城市轨道交通网络化运营的管理模式分析

龙源期刊网 https://www.wendangku.net/doc/8b18000414.html, 城市轨道交通网络化运营的管理模式分析 作者:赵汉鲲 来源:《数码设计》2019年第04期 摘要:现如今,随着社会的不断发展和进步,国家对城市轨道交通运营的管理模式越来越重视,并且根据现阶段城市轨道交通发展的现状,对其管理部门提出了新的管理要求。在对城市轨道交通进行管理时,要与时俱进,将网络技术应用其中,不仅能够使城市轨道交通运营的管理模式实现现代化和网络化,还能够对其今后的发展起到一定的促进作用。本文对城市轨道交通网络化运营的管理模式进行深入的分析和研究。 关键词:城市轨道交通;网络化运营;管理模式 中图分类号:U239.5 文献标识码:A 文章编号:1672-9129(2019)04-0075-02 Abstract: Nowadays, with the continuous development and progress of the society, the state pays more and more attention to the management mode of urban rail transit operation, and according to the current situation of urban rail transit development, it puts forward new management requirements for its management department. When managing urban rail transit, it is necessary to keep pace with the times and apply network technology, which not only enables the modern rail transit management model to be modernized and networked, but also promotes its future development. . This paper makes an in-depth analysis and research on the management mode of urban rail transit network operation. Keywords: urban rail transit; networked operation; management mode 引言: 实现城市轨道交通网络化运营的管理模式,不仅能够提升管理人员的工作质量和工作效率,还能够增加城市建设和发展的步伐,使其能够持续稳定的发展下去。因此,在今后的网络化运营管理中,相关人员要根据人们对轨道交通的需求和自身的发展情况,进行合理的规划,充分发挥网络化运营的重要作用,最终实现管理目标。 1 城市轨道交通运营的现状和相应的管理模式 1.1 城市轨道交通运营的现状 随着社会的不断发展和进步,一些大城市为了能够紧随国家发展的步伐,纷纷将传统的单线城市轨道交通运营管理模式进行改善,并且将网络化运营管理模式应用其中,从而有效的推动了城市轨道交通网络化运营管理模式的进程。

城市轨道交通供电系统的中压网络研究样本

都市轨道交通供电系统中压网络研究 摘要:本文从都市轨道交通供电系统功能、构成、以及系统外部电源方案等方面对都市轨道交通供电系统进行了简述。在此基本上引入了都市轨道交通供电系统中压网络概念,中压网络有两大属性:一是电压级别,二是构成形式。同步结合国家中压配电现状及发展趋向、国内都市轨道交通中压网络现状及发展思路、以及不同电压级别中压网络特点,对中压网络电压级别特点进行了综合比较,并对其构成进行了系统分析。最后提出了一种新型接线方式-20kV牵引动力照明混合网络。 核心词:牵引动力照明混合网络都市轨道交通供电系统中压网络 一、供电系统简介及中压网络概念 1、都市轨道交通供电系统功能 都市轨道交通供电系统,肩负着运营所需一切电能供应与传播,是都市轨道交通安全可靠运营重要保证。 都市轨道交通用电负荷按其功能不同可分为两大用电群体。一是电动客车运营所需要牵引负荷,二是车站、区间、车辆段、控制中心等其她建筑物所需要动力照明用电,诸如:通风机、空调、自动扶梯、电梯、水泵、照明、AFC系统、FAS、BAS、通信系统、信号系统等。 在上述用电群体中,有不同电压级别直流负荷、不同电压级别交流负荷;有

固定负荷、有时刻在变化运动负荷。每种用电设备均有自己用电规定和技术原则,并且这种规定和原则又相差甚远。都市轨道交通供电系统就是要满足这些不同顾客对电能不同需求,以使其发挥各自功能与作用。 保证电动客车畅行,安全、可靠、迅捷、舒服地运送乘客,是供电系统主线目。 2、供电系统构成 依照功能不同,对于集中式供电,都市轨道交通供电系统可提成如下几某些:外部电源、主变电所、牵引供电系统、动力照明配电系统、电力监控(SCADA)系统。对于分散式供电,都市轨道交通供电系统则可提成如下几某些:外部电源、(电源开闭所)、牵引供电系统、动力照明配电系统、电力监控(SCADA)系统。牵引供电系统,又可提成牵引变电所与牵引网系统。动力照明配电系统,又可提成降压变电所与动力照明。 但在进行初步设计与施工设计时,为便于设计管理,供电系统往往被划提成:系统设计;主变电所设计;牵引变电所(或牵引降压混合变电所)及降压变电所设计;牵引网设计;电力监控系统设计;杂散电流腐蚀防护设计(注:动力照明随同土建一起设计)。 3、外部电源方案 都市轨道交通系统外部电源方案,依照都市电网构成不同特点,可采用集中式、分散式、混合式等不同形式。 (1)拟定外部电源方案原则 都市轨道交通作为都市电网特殊顾客,普通用电范畴多在10km~30km之间。

城市轨道交通的强弱电系统-四电工程

13. 供电系统 13.1 供电系统构成与功能 13.1.1 系统构成 城市轨道交通供电系统由以下几部分组成:主变电所、中压供电网络、牵引变电所及降压变电所、牵引网系统、动力照明配电系统、电力监控系统(SCADA)及杂散电流防护系统。 13.1.2 系统功能 1. 主变电所 将来自于城市电网的高压110kV变换为中压35kV电源。 2. 中压供电网络 将主变电所的中压电源经中压供电网络分配到各牵引变电所及降压变电所。 3. 牵引变电所及降压变电所 牵引变电所将中压电源降压整流后变成供轨道交通列车使用的直流1500V 电源;降压变电所将中压电源降为低压0.4/0.23kV后,供轨道交通动力、照明设备使用。 4. 牵引网系统 来自于牵引变电所的DC1500V电源通过牵引网(接触网和回流轨)为轨道交通列车提供电能。 5. 动力照明配电系统 来自于降压变电所的低压0.4/0.23kV电源通过低压配电系统供给动力照明设备电能。 6. 电力监控系统(SCADA) 在轨道交通控制中心,通过调度端(控制中心)、通道、执行端,对整个供电系统主要电气设备进行控制、监视、测量、调节。 7. 杂散电流腐蚀防护系统 减少因直流牵引供电引起的经回流轨泄漏的电流(杂散电流)及减少杂散电流的扩散,避免杂散电流对附近结构钢筋、金属管件的电腐蚀,并对杂散电流进行监测。

14. 通信系统 通信系统是轨道交通运营指挥、企业管理、公共安全治理、服务乘客的网络平台,它是轨道交通正常运转的神经系统,为列车运行的快捷、安全、准点提供了基本保障。通信系统在正常情况下应保证列车安全高效运营、为乘客出行提供高质量的服务保证;在异常情况下能迅速转变为供防灾救援和事故处理的指挥通信系统。 14.1 设计原则及主要设计标准 14.1.1 设计原则 1. 通信系统应建成一个高可靠、易扩充、组网灵活和相对独立的专用综合数字通信网,并能方便地与XX市其它轨道交通线路通信系统互连互通。 2. 在满足实际使用要求的基础上,通信系统各种设备应采用成熟设备,以保证安全可靠、维护方便和具备良好性能价格比。 3. 通信系统应能满足轨道交通运营管理部门传送宽带语音、数据和图像等信息的需求。系统应充分考虑外部的各种强电干扰影响,采取必要的防护措施。 4. 通信系统必须在保证运营需求的前提下,具备足够的系统后续扩展能力,同时争取降低系统的复杂性以提高投资性价比。 5. 通信系统应满足其他各专业系统所需通信通道要求。如信号、AFC系统等。 6. 本系统所有设备均应满足不间断连续工作的要求。 7. 本次通信系统的设备选型,应在满足功能的前提下优先选用国产设备。对于国内尚不能满足功能要求的设备,应在进行充分比较后,选择引进。 8. 系统设计应满足国际、国内轨道交通建设及市公安局相关规范和标准。 9. 系统接口应标准,能够与其它相关系统或业务部门实现可靠的互联,系统设计应具有一定的前瞻性,能够最大限度保护现有投资。 10. 以网络化、信息化、维修管理智能化为方案设计的方向。 11. 在充分满足地铁各专业对通信系统需求的基础上,开阔思路、务实、合理优化方案,尽量做到资源共享以降低建设投资、减少运营维护成本是方案设计的目标。

相关文档
相关文档 最新文档