文档库 最新最全的文档下载
当前位置:文档库 › QCT743-2006电动汽车用锂离了蓄电池标准

QCT743-2006电动汽车用锂离了蓄电池标准

QCT743-2006电动汽车用锂离了蓄电池标准
QCT743-2006电动汽车用锂离了蓄电池标准

QC/T743-2006 电动汽车用锂离了蓄电池

QC/T 743-2006(2006-03-07发布,2006-08-01实施)

前言

本标准附录A和附录B为规范性附录。

本标准由全国汽车标准化技术委员会提出。

本标准由全国汽车标准化技术委员会归口。

本标准起草单位:国家高技术绿色材料发展中心、北方汽车质量监督检验鉴定试验所、中国电子科技集团公司第十八研究所。

本标准主要起草人:吴锋、汪继强、王子冬、肖成伟、毛立彩、赵淑红、李丽、陈人杰等。

QC/T 743-2006

电动汽车用锂离子蓄电池

Lithium-ion batteries for electric vehicles

1 范围

本标准规定了电动汽车用锂离子蓄电池(以下简称蓄电池)的要求、试验方法、检验规则、标志、包装、运输和储存。

本标准适用于电动汽车用标称电压单体3.6V和模块n×3.6V(n为蓄电池数量)的锂离子蓄电池。

2 规范性引用文件

下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不

适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标

准。

GB/T 2900.11 电工术语原电池和蓄电池[eqv IEC 60050(482):2003]

3 术语、定义和符号

3.1 术语和定义

GB/T 2900.11确立的以及下列术语和定义适用于本标准。

3.1.1

能量型蓄电池 high energy density battery

以高能量密度为特点,主要用于高能量输出的蓄电池。

3.1.2

功率型蓄电池 high power density battery

以高功率密度为特点,主要用于瞬间高功率输出、输人的蓄电池。

3.1.3

容量恢复能力 charge recovery

蓄电池在一定温度下,储存一定时间后再行充电,其后放电容量与额定容量之比。

3.1.4

充电终止电流 end-of-charge current

在指定恒压充电时,蓄电池终止充电时的电流。

3.1.5

爆炸 explosion

蓄电池外壳破裂,内部有固体物质从蓄电池中冲出,并发出声音。

3.1.6

起火 fire

蓄电池壳体中冒火。

3.1.7

I3放电能量 discharge energy at I3

蓄电池在20℃±5℃温度下,以1I3(A)电流放电,达到终止电压时所放出的能量(W·h)。此值可从电压一容量曲线的覆盖面积积分求得,要求至少50个等值时间间隔点,或用积分仪直接求得。

3.1.8

扫频循环 sweep cycle

在规定的频率范围内往返扫描一次,例如:10Hz~55Hz~10Hz。

3.2 符号

C3

——3h率额定容量(A·h)。

I3

——3h率放电电流,其数值等于C3/3(A)。

4 分类

电动汽车用锂离子蓄电池分为方形蓄电池和圆柱形蓄电池。

5 要求

5.1 单体蓄电池

5.1.1 外观

蓄电池按6.2.1检验时,外观不得有变形及裂纹,表面应平整、干燥、无外伤、无污物等,且标志清晰、正确。

5.1.2 极性

蓄电池按6.2.2检验时,端子极性应正确。并应有正负极的清晰标识。

5.1.3 外形尺寸及质量

蓄电池外形尺寸、质量应符合生产企业提供的技术条件。

5.1.4 20℃放电容量

蓄电池按6.2.5检验时,其容量不低于企业提供的技术条件中规定的额定值,同时容量不应高于企业提供的技术条件中规定的额定值的110%。

5.1.5 ―20℃放电容量

蓄电池按6.2.6试验时,其容量应不低于额定值的70%。

5.1.6 55℃放电容量

蓄电池按6.2.7试验时,其容量应不低于额定值的95%。

5.1.7 20℃倍率放电容量

对于能量型蓄电池按6.2.8.1试验时,其容量应不低于额定值的90%。

对于功率型蓄电池按6.2.8.2试验时,其容量应不低于额定值的80%。

5.1.8 常温与高温荷电保持与容量恢复能力

蓄电池按6.2.9试验时,其常温及高温荷电保持率应不低于额定值的80%,容量恢复能力应不低于额定值的90%。

5.1.9 储存

蓄电池按6.2.10试验时,其容量恢复应不低于额定值的95%。

5.1.10 循环寿命

蓄电池按6.2.11试验时,其循环寿命应不少于500次。

5.1.11 安全性

a) 蓄电池按6.2.12.1进行过放电试验时,应不爆炸、不起火、不漏液。

b) 蓄电池按6.2.12.2进行过充电试验时,应不爆炸、不起火。

c) 蓄电池按6.2.12.3进行短路试验时,应不爆炸、不起火。

d) 蓄电池按6.2.12.4进行跌落试验时,应不爆炸、不起火、不漏液。

e) 蓄电池按6.2.12.5进行加热试验时,应不爆炸、不起火。

f) 蓄电池按6.2.12.6进行挤压试验时,应不爆炸、不起火。

g) 蓄电池按6.2.12.7进行针刺试验时,应不爆炸、不起火。

5.2 蓄电池模块

5.2.1 外观

蓄电池模块按6.3.1检验时,外观不得有变形及裂纹,表面应平整干燥、无外伤,且排列整齐、连接可靠、标志清晰等。

5.2.2 极性

按6.3.2检验时,端子极性应正确。并应有正负极的清晰标识。

5.2.3 外形尺寸及质量

按生产企业提供的技术条件。

5.2.4 20℃放电容量

要求每个模块由5只或以上单体蓄电池串联组成。蓄电池模块按6.3.4检验时,其容量不低于企业提供的技术条件中规定的额定值,同时容量不应高于企业提供的额定值的110%。

5.2.5 简单模拟工况

要求每个模块由5只或以上单体蓄电池串联组成。蓄电池模块按6.3.6试验时承受脉冲数不低于4个。此项目只用作数据积累。根据数据进行蓄电池模块的一致性分析。蓄电池模块的一致性分析方法按附录A进行。

5.2.6 耐振动性

要求每个模块由5只或以上单体蓄电池串联组成。蓄电池模块按6.3.7试验时,不允许出现放电电流锐变、电压异常、蓄电池壳变形、电解液

溢出等现象,并保持连接可靠、结构完好,不允许装机松动。

5.2.7 安全性

要求每个模块由5只或以上单体蓄电池串联组成。

a) 蓄电池模块按6.3.8.1进行过放电试验时,应不爆炸、不起火、不漏液。

b) 蓄电池模块按6.3.8.2进行过充电试验时,应不爆炸、不起火。

c) 蓄电池模块按6.3.8.3进行短路试验时,应不爆炸、不起火。

d) 蓄电池模块按6.3.8.4进行加热试验时,应不爆炸、不起火。

e) 蓄电池模块按6.3.8.5进行挤压试验时,应不爆炸、不起火。

f) 蓄电池模块按6.3.8.6进行针刺试验时,应不爆炸、不起火。

6 试验方法

6.1 试验条件

6.1.1 环境条件

除另有规定外,试验应在温度为15℃~35℃、相对湿度为25%~85%,大气压力为86kPa~106kPa 的环境中进行。

6.1.2 测量仪器、仪表准确度

a) 电压表测量装置:准确度不低于0.5级,其内阻至少为1kΩ/V;

b) 电流测量装置:准确度不低于0.5级;

c) 温度测量装置:具有适当的量程,其分度值不大于1℃,标定准确度不低于0.5℃;

d) 计时器:按时、分、秒分度,准确度为土0.1%;

e) 测量尺寸的量具:分度值不大于1mm;

f) 称量质量的衡器:准确度为土0.05%以上。

6.2 单体蓄电池试验

6.2.1 外观

在良好的光线条件下,用目测法检查蓄电池的外观。

6.2.2 极性

用电压表检测蓄电池极性。

6.2.3 外形尺寸和质量

用量具和衡器测量蓄电池的外形尺寸及质量。

6.2.4 蓄电池充电

按厂家提供的专用规程进行充电。若厂家未提供充电器,在20℃土5℃条件下,蓄电池以1I3(A)电流放电,至蓄电池电压达到3.OV(或企业技

术条件中规定的放电终止电压)时停止放电,静置1h,然后在20℃土5℃条件下以1I3(A)恒流充电,至蓄电池电压达4.2V(或企业技术条件中规定

的充电终止电压)时转恒压充电,至充电电流降至0.1I3时停止充电。充电后静置1h。

6.2.5 20℃放电容量

a) 蓄电池按6.2.4方法充电。

b) 蓄电池在20℃土5℃下以1I3(A)电流放电,直到放电终止电压3.0V或企业技术条件中规定的放电终止电压。

c) 用1I3(A)的电流值和放电时间数据计算容量(以A·h计)。

d) 如果计算值低于规定值,则可以重复a)~c)步骤直至大于或等于规定值,允许5次。

6.2.6 ―20℃放电容量

a) 蓄电池按6.2.4方法充电。

b) 蓄电池在―20℃±2℃下储存20h。

c) 蓄电池在―20℃±2℃下以1I3(A)电流放电,直到放电终止电压2.8V或企业技术条件中规定的放电终止电压。

d) 用c)电流值和放电时间数据计算容量(以A·h计),并表达为额定容量的百分数。

6.2.7 55℃放电容量

a) 蓄电池按6.2.4方法充电。

b) 蓄电池在55℃±2℃下储存5h。

c) 蓄电池在55℃±2℃下以1I3(A)电流放电,直到放电终止电压3.OV或企业技术条件中规定的放电终止电压。

d) 用c)电流值和放电时间数据计算容量(以A·h计),并表达为额定容量的百分数。

6.2.8 20℃倍率放电容量

6.2.8.1 能量型蓄电池:

a) 蓄电池按6.2.4方法充电。

b) 蓄电池在20℃±5℃下以4.5I3(A)电流放电,直到放电终止电压3.OV或企业技术条件中规定的放电终止电压。

c) 用b)放电电流值和放电时间数据计算容量(以A·h计),并表达为额定容量的百分数。

6.2.8.2 功率型蓄电池:

a) 蓄电池按6.2.4方法充电。

b) 蓄电池在20℃±5℃下以12I3(A)电流放电,直到放电终止电压2.8V或企业技术条件中规定的放电终止电压。

c) 用b)放电电流值和放电时间数据计算容量(以A·h计),并表达为额定容量的百分数。

6.2.9 常温、高温荷电保持能力及容量恢复能力

6.2.9.1 常温荷电保持与容量恢复能力:

a) 蓄电池按6.2.4方法充电。

b) 蓄电池在20℃±5℃下储存28d。

c) 蓄电池在20℃±5℃下以1I3(A)电流放电,直到放电终止电压3.OV或企业技术条件中规定的放电终止电压。

d) 用c)的电流值和放电时间数据计算容量(以A·h计),荷电保持能力可以表达为额定容量的百分数。

e) 蓄电池再按6.2.4方法充电。

f) 蓄电池在20℃±5℃下以1I3(A)电流放电,直到放电终止电压3.OV或企业技术条件中规定的放电终止电压。

g) 用f)的电流值和放电时间数据计算容量(以A·h计),容量恢复能力可以表达为额定容量的百分数。

6.2.9.2 高温荷电保持与容量恢复能力:

a) 蓄电池按6.2.4方法充电。

b) 蓄电池在55℃土2℃下储存7d。

c) 蓄电池在20℃±5℃下恢复5h后,以1I3(A)电流放电,直到放电终止电压3.OV或企业技术条件中规定的放电终止电压。

d) 用c)的电流值和放电时间数据计算容量(以A·h计),荷电保持能力可以表达为额定容量的百分数。

e) 蓄电池再按6.2.4方法充电。

f) 蓄电池在20℃±5℃下以1I3(A)电流放电,直到放电终止电压3.OV或企业技术条件中规定的放电终止电压。

g) 用f)的电流值和放电时间数据计算容量(以A·h计),容量恢复能力可以表达为额定容量的百分数。

6.2.10 储存

a) 蓄电池按6.2.4方法充电。

b) 蓄电池在20℃±5℃下以1I3(A)电流放电2h。

c) 蓄电池在20℃±5℃下储存90d。

d) 蓄电池按6.2.4方法充电。

e) 蓄电池在20℃±5℃下以1I3(A)电流放电,直到放电终止电压3.OV或企业技术条件中规定的放电终止电压。

f) 用e)的电流值和放电时间数据计算容量(以A·h计),容量恢复能力可以表达为额定容量的百分数,如果容量低于5.1.9中的规定值,可重

复d)和e)两个步骤,最多可以重复5次。

6.2.11 循环寿命

a) 蓄电池按6.2.4方法充电。

b) 蓄电池在20℃±2℃下以1.5I3(A)电流放电,直到放电容量达到额定容量的80%。

c) 蓄电池按6.2.4方法充电。

d) 蓄电池按b)~c)步骤连续重复24次。

e) 按6.2.5方法检查容量。如果蓄电池容量小于额定容量的80%终止试验。

f) b)~e)步骤在规定条件下重复的次数为循环寿命数。

6.2.12 安全性

所有安全试验均在有充分环境保护的条件下进行。

6.2.12.1 过放电:

a) 蓄电池按6.2.4方法充电。

b) 蓄电池在20℃±5℃下以1I3(A)电流放电,直至蓄电池电压OV(如果有电子保护线路,应暂时除去放电电子保护线路)。蓄电池应符合

5.1.11a)规定。

6.2.12.2 过充电:

a) 蓄电池按6.2.4方法充电。

b) 可按两种充电方式进行试验:

1) 以3I3(A)电流充电,至蓄电池电压达到5V或充电时间达到90min(其中一个条件优先达到即停止试验);

2) 以9I3(A)电流充电,至蓄电池电压达到10V即停止试验。

蓄电池应符合5.1.11b)规定。

6.2.12.3 短路:

a) 蓄电池按6.2.4方法充电。

b) 将蓄电池经外部短路10min,外部线路电阻应小于5mΩ。蓄电池应符合5.1.11c)规定。

6.2.12.4 跌落:

a) 蓄电池按6.2.4方法充电。

b) 蓄电池在20℃±5℃下,从1.5m高度处自由跌落到厚度为20mm的硬木地板上,每个面1次。蓄电池应符合5.1.11d)规定。

6.2.12.5 加热:

a) 蓄电池按6.2.4方法充电。

b) 将蓄电池置于85℃土2℃恒温箱内,并保温120min。蓄电池应符合5.1.11e)规定

6.2.12.6 挤压:

a) 蓄电池按6.2.4方法充电。

b) 按下列条件进行试验。蓄电池应符合5.1.11f)规定。

1) 挤压方向:垂直于蓄电池极板方向施压。

2) 挤压头面积:不小于20cm2。

3) 挤压程度:直至蓄电池壳体破裂或内部短路(蓄电池电压变为0V)。

6.2.12.7 针刺:

a) 蓄电池按6.2.4方法充电。

b) 用φ3mm~φ8mm的耐高温钢针、以10mm/s~40mm/s的速度,从垂直于蓄电池极板的方向贯穿(钢针停留在蓄电池中)。蓄电池应符合

5.1.11g)规定。

6.3 蓄电池模块试验

6.3.1 外观

在良好的光线条件下,用目测法检查蓄电池模块的外观。

6.3.2 极性

用电压表检测蓄电池极性。

6.3.3 外形尺寸及质量

用量具和衡器测量蓄电池模块的外形尺寸及质量。

6.3.4 蓄电池模块充电

按厂家提供的专用规程进行充电。若厂家未提供充电器,在20℃±5℃条件下,蓄电池模块以1I3(A)电流放电,至蓄电池模块电压达到n×3.0V时或单体蓄电池电压低于2.5V时停止放电,然后在20℃±5℃条件下以1I3(A)恒流充电,至蓄电池模块电压达到n×4.2V时转恒压充电,充电电流降至0.1I3时停止充电,若充电过程中有单体蓄电池电压达到4.3V时则停止充电。充电后静置1h。

6.3.5 20℃放电容量

a) 蓄电池模块按6.3.4方法充电。

b) 蓄电池模块在20℃±5℃温度下,以1I3(A)电流放电,至蓄电池模块电压达到n×3.0V时或单体蓄电池电压低于2.5V时停止试验,计算放

电容量(以A·h计)。

c) 试验过程中记录单体蓄电池的电压、温度变化情况。

6.3.6 简单模拟工况

a) 蓄电池模块按6.3.4方法充电。

b) 按附录B进行试验。

6.3.7 耐振动

6.3.

7.1 蓄电池模块按6.3.4方法充电。

6.3.

7.2 将蓄电池模块紧固到振动试验台上,按下述条件进行线性扫频振动试验:

a) 放电电流:1I3(A);

b) 振动方向:上下单振动;

c) 振动频率:10Hz~55Hz;

d) 最大加速度:30m/s2;

e) 扫频循环:10次;

f) 振动时间:2h。

振动试验过程中,按6.3.5放电观察有无异常现象出现。

6.3.8 安全性

所有安全试验均在有充分环境保护的条件下进行。

6.3.8.1 过放电:

a) 蓄电池模块按6.3.4方法充电。

b) 蓄电池模块在20℃±5℃下以1I3(A)电流放电(如果有电子保护线路,应暂时除去放电电子保护线路),直至某一单体蓄电池电压达到0V结

束试验。蓄电池模块应符合5.2.7a)规定。

6.3.8.2 过充电:

a) 蓄电池模块按6.3.4方法充电。

b) 可按两种充电方式进行试验:

1) 以3I3(A)电流充电,至某一单体蓄电池电压达到5V或充电时间达到90min(其中一个条件优先达到即停止试验);

2) 以9I3(A)电流充电,至某一单体蓄电池电压达到10V即停止试验。

6.3.8.3 短路:

蓄电池模块按6.3.4方法充电。将蓄电池模块经外部短路10min,外部线路电阻应小于5mΩ。

蓄电池模块应符合5.2.7c)的规定。

6.3.8.4 加热:

a) 蓄电池模块按6.3.4方法充电。

b) 将蓄电池模块置于85℃土2℃恒温箱内,并保温120min。蓄电池模块应符合5.2.7d)的规定。

6.3.8.5 挤压:

6.2.12.6 挤压:

a) 蓄电池按6.2.4方法充电。

b) 按下列条件进行试验。蓄电池应符合5.1.11f)规定。

1) 挤压方向:垂直于蓄电池极板方向施压。

2) 挤压头面积:不小于20cm2。

3) 挤压程度:直至蓄电池壳体破裂或内部短路(蓄电池电压变为0V)。

6.2.12.7 针刺:

a) 蓄电池按6.2.4方法充电。

b) 用φ3mm~φ8mm的耐高温钢针、以10mm/s~40mm/s的速度,从垂直于蓄电池极板的方向贯穿(钢针停留在蓄电池中)。蓄电池应符合5.1.11g)规定。

6.3 蓄电池模块试验

6.3.1 外观

在良好的光线条件下,用目测法检查蓄电池模块的外观。

6.3.2 极性

用电压表检测蓄电池极性。

6.3.3 外形尺寸及质量

用量具和衡器测量蓄电池模块的外形尺寸及质量。

6.3.4 蓄电池模块充电

按厂家提供的专用规程进行充电。若厂家未提供充电器,在20℃±5℃条件下,蓄电池模块以1I3(A)电流放电,至蓄电池模块电压达到n×

3.0V时或单体蓄电池电压低于2.5V时停止放电,然后在20℃±5℃条件下以1I3(A)恒流充电,至蓄电池模块电压达到n×

4.2V时转恒压充电,充电

电流降至0.1I3时停止充电,若充电过程中有单体蓄电池电压达到4.3V时则停止充电。充电后静置1h。

6.3.5 20℃放电容量

a) 蓄电池模块按6.3.4方法充电。

b) 蓄电池模块在20℃±5℃温度下,以1I3(A)电流放电,至蓄电池模块电压达到n×3.0V时或单体蓄电池电压低于2.5V时停止试验,计算放

电容量(以A·h计)。

c) 试验过程中记录单体蓄电池的电压、温度变化情况。

6.3.6 简单模拟工况

a) 蓄电池模块按6.3.4方法充电。

b) 按附录B进行试验。

6.3.7 耐振动

6.3.

7.1 蓄电池模块按6.3.4方法充电。

6.3.

7.2 将蓄电池模块紧固到振动试验台上,按下述条件进行线性扫频振动试验:

a) 放电电流:1I3(A);

b) 振动方向:上下单振动;

c) 振动频率:10Hz~55Hz;

d) 最大加速度:30m/s2;

e) 扫频循环:10次;

f) 振动时间:2h。

振动试验过程中,按6.3.5放电观察有无异常现象出现。

6.3.8 安全性

所有安全试验均在有充分环境保护的条件下进行。

6.3.8.1 过放电:

a) 蓄电池模块按6.3.4方法充电。

b) 蓄电池模块在20℃±5℃下以1I3(A)电流放电(如果有电子保护线路,应暂时除去放电电子保护线路),直至某一单体蓄电池电压达到0V结

束试验。蓄电池模块应符合5.2.7a)规定。

6.3.8.2 过充电:

a) 蓄电池模块按6.3.4方法充电。

b) 可按两种充电方式进行试验:

1) 以3I3(A)电流充电,至某一单体蓄电池电压达到5V或充电时间达到90min(其中一个条件优先达到即停止试验);

2) 以9I3(A)电流充电,至某一单体蓄电池电压达到10V即停止试验。

6.3.8.3 短路:

蓄电池模块按6.3.4方法充电。将蓄电池模块经外部短路10min,外部线路电阻应小于5mΩ。

蓄电池模块应符合5.2.7c)的规定。

6.3.8.4 加热:

a) 蓄电池模块按6.3.4方法充电。

b) 将蓄电池模块置于85℃土2℃恒温箱内,并保温120min。蓄电池模块应符合5.2.7d)的规定。

6.3.8.5 挤压:

a) 蓄电池模块按6.3.4方法充电。

b) 按下列条件进行试验。蓄电池模块应符合5.2.7e)的规定。

挤压板形式见图1:一侧是平板,一侧是异形板。异形板的半圆柱形挤压头的典型直径为75mm,挤压头间的典型间距为30mm。挤压板外廓尺

寸300mm×l50mm。

1) 挤压方向:垂直于蓄电池单体排列方向施压。

2) 挤压程度:挤压至蓄电池模块原始尺寸的85%,保持5min后再挤压至蓄电池模块原始尺寸的50%。

6.3.8.6 针刺:

a) 蓄电池模块按6.3.4方法充电。

b) 用φ3mm~φ8mm的耐高温钢针、以lOmm/s~40mm/s的速度,从垂直于蓄电池极板的方向至少贯穿3个蓄电池单体(钢针停留在蓄电池中)。蓄

电池模块应符合5.2.7g)的规定。

6.4 试验程序

6.4.1 按本程序进行的试验应连续进行。

6.4.2 单体蓄电池试验程序见表1。

6.4.3 蓄电池模块试验程序见表2。

7.1 检验分类、检验项目、要求章条号、样品数量和检验周期见表3

7.2 出厂检验

7.2.1 每一批产品出厂前应在该批产品中随机抽样进行出厂检验,对出厂检验的20℃放电性能检验项目,所有蓄电池样品的1I3(A)放电容量差

应不小于±5%。

7.2.2 在出厂检验中,若有一项或一项以上不合格时,应将该产品退回生产部门返工普检,然后再次提交验收。若再次检验仍有一项或一项以

上不合格,则判定该产品为不合格。

7.3 型式检验

7.3.1 有下列情况之一必须进行型式检验:

a) 新产品投产和老产品转产;

b) 转厂;

c) 停产后复产;

d) 结构、工艺或材料有重大改变;

e) 合同规定。

7.3.2 判定规则

在型式检验中,若有一项不合格时,应判定为不合格。

8 标志、包装、运输和储存

8.1 标志

8.1.1 蓄电池产品上应有下列标志:

a) 制造厂名;

b) 产品型号或规格;

c) 制造日期;

d) 商标;

e) 极性符号;

f) 蓄电池安全注意事项及警示。

8.1.2 包装箱外壁应有下列标志:

a) 产品名称、型号规格、数量、制造厂名、厂址、邮编;

b) 产品标准编号;

c) 每箱的净重和毛重;

d) 标明防潮、不准倒置、轻放等标志。

8.2 包装

8.2.1 蓄电池的包装应符合防潮防振的要求。

8.2.2 包装箱内应装入随同产品提供的文件:

a) 装箱单(指多只包装);

b) 产品合格证;

c) 产品使用说明书。

8.3 运输

8.3.1 蓄电池运输荷电状态应低于40%,在运输中不得受剧烈机械冲撞、暴晒、雨淋,不得倒置。

8.3.2 蓄电池在装卸过程中,应轻搬轻放,严防摔掷、翻滚和重压。

8.4.1 蓄电池应储存在温度为5℃~40℃,干燥、清洁及通风良好的仓库内。

8.4.2 蓄电池应不受阳光直射,距离热源不得少于2m。

8.4.3 蓄电池不得倒置及卧放,并避免机械冲击或重压。

附录 A

(规范性附录)

一致性分析方法

A.1 单体蓄电池一致性分析方法

单体蓄电池放电容量的标准差系数计算如下:

式中:

Cn

——第n个蓄电池的容量;

——24个蓄电池的平均容量。

根据不同蓄电池的放电容量数据,可以分析单体蓄电池的一致性。

注:以24只单体蓄电池为例。

A.2 蓄电池模块一致性分析方法

根据附录B简单模拟工况试验数据分析蓄电池模块一致性。

蓄电池模块中的10只单体蓄电池放电电压的标准差系数计算如下:

式中:

Vn

——第n个蓄电池第m放电阶段的放电终止电压;

——10个蓄电池的第m放电阶段放电终止电压的平均值。

根据不同阶段的放电数据,可以分析不同阶段蓄电池模块的一致性。

注:以10只为一蓄电池模块为例。

附录 B

(规范性附录)

简单模拟工况试验步骤

B.1 范围

本附录描述了简单模拟工况试验,并且给出了所采用的试验曲线。

B.2 试验步骤

B.2.1 充电步骤

蓄电池按正文6.3.4方法充电。

B.2.2 放电步骤

B.2.2.1 能量型蓄电池

能量型蓄电池放电步骤在20℃±5℃条件下进行,由四个阶段组成(见图B.1、表B.1)。

放电过程中监测蓄电池模块及单体蓄电池电压,总计进行四个阶段的脉冲放电。放电过程中记录单体蓄电池电压。在某个脉冲放电阶段内若

有单体蓄电池电压低于2.5V则停止放电。同时进行蓄电池模块的一致性分析。

B.2.2.2 功率型蓄电池

功率型蓄电池放电步骤在20℃±5℃条件下进行,由两个阶段组成(见图B.2、表B.2)。

放电过程中监测蓄电池模块及单位蓄电池电压,总计进行两个阶段的脉冲放电。在某个脉冲放电阶段内若

有单体蓄电池电压低于2.5V则停止

放电。同时进行蓄电池模块的一致性分析。

电动汽车用锂离子动力蓄电池包和系统测试规程

电动汽车用锂离子动力电池包和系统测试规程 范围 本标准规定了电动汽车用锂离子动力电池包和系统基本性能、可靠性和安全性的测试方法。 本标准适用于高功率驱动用电动汽车锂离子动力电池包和电池系统。 规范性引用文件(其中的一部分) 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2423.4-2008 电工电子产品环境试验第2部分:试验方法试验Db 交变湿热(12h+12h循环)(IEC 60068-2-30:2005,IDT) GB/T 2423.43-2008 电工电子产品环境试验第2部分:试验方法振动、冲击和类似动力学试验样品的安装(IEC 60068-2-47:2005,IDT) GB/T 2423.56-2006 电工电子产品环境试验第2部分:试验方法试验Fh:宽带随机振动(数字控制)和导则(IEC 60068-2-64:1993,IDT) GB/T 18384.1-2001 电动汽车安全要求第1部分:车载储能装置(ISO/DIS 6469-1:2000,EQV)GB/T 18384.3-2001 电动汽车安全要求第3部分:人员触电防护(ISO/DIS 6469-3:2000,EQV)GB/T 19596-2004 电动汽车术语(ISO 8713:2002,NEQ) GB/T xxxx.1- xxxx 道路车辆电气及电子设备的环境条件和试验第1部分:一般规定(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 1: General,MOD) GB/T xxxx.3- xxxx 道路车辆电气及电子设备的环境条件和试验第3部分:机械负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 3: Mechanical loads,MOD) GB/T xxxx.4- xxxx 道路车辆电气及电子设备的环境条件和试验第4部分:气候负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 4: Climatic loads,MOD) 术语和定义 1.1 蓄电池电子部件 采集或者同时监测蓄电池单体或模块的电和热数据的电子装置,必要时可以包括用于蓄电池单体均衡的电子部件。 注:蓄电池电子部件可以包括单体控制器。单体电池间的均衡可以由蓄电池电子部件控制,或者通过蓄电池控制单元控制。 1.2 蓄电池控制单元 battery control unit (BCU) 控制、管理、检测或计算电池系统的电和热相关的参数,并提供电池系统和其他车辆控制器通讯的电子装置。 1.3 1 / 20

全世界最被看好的10大电动汽车锂电池厂家

全世界最被看好的10大电动汽车锂电池厂家 北极星智能电网在线 2012-8-28 14:11:48 关键词: 电动汽车锂离子电池锂电池 1、JohnsonControls-Saft(美国江森自控和和法国Saft的合资公司) JohnsonControls,Inc.(纽约证交所代码:JCI)和Saft(欧洲证交所代码:SAFT)已达成协议,关闭其合资公司JohnsonControls-Saft。该合资公司建于2006年,主营锂离子汽车电池的开发和制造。据协议条款,JohnsonControls将现金收购Saft所占$1.45亿美元的公司股份。协议包括JohnsonControls向Saft支付的一笔事前特许权使用费,用于展期JohnsonControls在所有市场使用某项Saft锂离子技术的许可。此交易有待监管机构的批准,最早可能于2011年9月30日达成。 JohnsonControlsPowerSolutions总裁AlexMolinaroli先生表示:“非常感谢与Saft这段时间的合作,很高兴能够以互利的方式解决这件事情。” Saft管理委员会主席JohnSearle先生认为:“很高兴此争议能得到快速积极的解决,这符合我们客户、员工和股东的利益。另一方面,Saft就此不再承担合资公司的现金与损益责任。Saft管理层现在全力以赴,在精心挑选的所有市场中,为我们的锂离子技术寻找发展良机。” 随着双方一致同意结束合作关系,两家公司之间的所有法律程序也告结束。 “对JohnsonControl s来说,此协议进一步反映出我们对高级电池行业的战略思 考。”Molinaroli先生认为,“我们将继续充分利用此领域的已有进展,此外,现在我们可以围绕技术、系统、应用和业务模型,扩展全部战略能力。” 合资公司的所有资产都将由JohnsonControls接管,只有法国夏朗德的一座工厂将于2012年底移交给Saft。 交易完成之后,JohnsonControls将经营该公司,履行公司的现有合同协议,相应地与客户和供应商开展合作。 关于JohnsonControls: JohnsonControls为全球150多个国家/地区的客户服务,是多种技术和行业的全球领跑者。公司的154,000名员工齐心协力,为优化建筑物的能源和运营效率提供优质的产品、服务和解决方案,为混合动力车和电动车提供铅酸汽车电池和高级电池,为汽车提供内饰系统。JohnsonControls对可持续发展的承诺可追溯到1885年公司成立之初发明的首台室内电动恒温器。通过公司的发展战略以及不断扩大市场份额,我们承诺为股东提供价值,助力于客户的成功。2011年,《企业责任杂志》在其年度“企业公民百强”名单中,将JohnsonControls 列为第一。 关于Saft:

电动汽车动力蓄电池尺寸相关标准

一、电动汽车用动力蓄电池标准尺寸 1.圆柱形电池单体 序号N1N2 118±2.0mm65±2.0mm 221±2.0mm70±2.0mm 326±2.0mm65±2.0mm/70±2.0mm 432±2.0mm70±2.0mm/134±5.0mm 2.方形电池单体

序号N1N2N3 120±2.0mm65±2.0mm138±5.0mm 2(20/27)±2.0mm70±2.0mm(107/120/130)±5.0mm 3(12/20)±2.0mm100±5.0mm(140/310)±5.0mm 4(12/20)±2.0mm120±5.0mm(80/85)±2.0mm 527±2.0mm135±5.0mm(192/214)±5.0mm 6(20/27/40/53/57/7 9/86)±2.0mm 148±5.0mm(91/95/98)±2.0mm/ (129/200/396)±5.0mm 7(12/20/32/40/45/4 8/53/71)±2.0mm 173±5.0mm85±2.0mm/ (110/125/137/149/166/184/ 200)±5.0mm 8(32/53)±2.0mm217±5.0mm98±2.0mm 注:考虑整车布置的需要,推荐方形电池极柱高度不超过10mm 3.电池模组 序号N1N2N3 1211~515mm141mm211/235mm 2252~590mm151mm108/119/130/141mm 3157mm159mm269mm 4285~793mm178mm130/163/177/200/216/240/255/265mm 5270~793mm190mm47/90/110/140/197/225/250mm 6191/590mm220mm108/294mm 7547mm226mm144mm 8269~319mm234mm85/297mm 9280mm325mm207mm

电动汽车用铅酸电池、镍氢电池和锂电池的对比分析(圣阳电源)

电动汽车用铅酸电池、镍氢电池和锂电池的对比分析 山东圣阳电源高海洋 随着科学技术的提高和制造水平的进步,电源技术也在新一代技术变革中不断提高,面对如今新能源电动汽车对动力电源的迫切需求,现阶段似乎哪一种动力电池都不能完全适合作为动力源用在电动汽车上。 目前来说,电动汽车上普遍采用的动力电池有三种:铅酸电池、锂电池以及镍氢电池。比较这三类动力性蓄电池就需要从两方面分析比对:一个是比能量,另一个是比功率,简单说,就是指电池的可持久性和力量大小。比能量高的蓄电池可以长时间工作,持续的能量较多,里程长;比功率高的蓄电池,速度快,力量大,可以保证汽车的加速性能。下面从这两方面对这三类动力蓄电池进行对比分析: 铅酸电池 作为目前电动汽车使用最广泛的蓄电池,在国内已经生产的电动汽车上,使用比例占到90%,这主要得益于其优点:技术较为成熟,比功率较大,循环寿命可达800~1000次,且成本低。不过,铅酸电池缺点也较明显,那就是比能量很低,仅为40W·h/kg左右,快速充电技术也尚未成熟(一般慢充都在8小时以上),而且污染严重,受到环保制约。 锂离子电池 相对来讲,其比能量和比功率都很高,可达150W·h/kg和1600W/kg,循环寿命长,约1200次,且充电时间较短,为2~4h,使用电压可达到4V,安全性相对较好。但锂离子电池缺点在于其价格较高、快速充放电性能差、过充和过放电保护性差,影响了其应用和发展的空间。 镍氢蓄电池 其的优点是比能量和比功率都相对中等,快速充电能力较好,15分钟可充满容量的40%~80%,适宜温度范围宽。但镍氢蓄电池循环使用寿命较短,为600次,价格昂贵,只有期待大批量生产,才有望降低成本。 结语 显而易见,比能量高、比功率大、价格便宜、易于维护的动力蓄电池才是电动汽车动力源的首选,从上面分析可以得知,每种蓄电池都存在这样或那样的问题。总体来看,现在的动力电池比能量都较低,以三种电池中性能最好的锂电池为例,在能量密度上,它与达到10000~12000W·h/kg的汽油相比还相差甚远,仔细计算,1L汽油约重0.742kg,按车载50L 计算,就是满载37.1kg的汽油,约相当于2968~3091kg锂电池所含有的电量,如果将汽油机较低的效率计算进去,两者之间也有约50倍的差距。所以现在电动汽车上安装的蓄电池数百公斤重,再加上高昂的价格,电动汽车形成高价格门槛便成为必然。 另外,不同类型电动汽车对电池的要求也不一样,纯电动汽车(PEV)由于只有电池驱动,所以需要较高的比能量,而在一般混合动力汽车(HEV)中,电池往往担任制动能量回收、辅助起步加速的作用,因而对电池的比功率要求苛刻,所以说要针对不同车型需求来设计作为动力源的动力蓄电池,现阶段还没有完美的设计方法。 2012.09.04

电动汽车用动力蓄电池技术要求及试验方法

《电动客车安全要求》 征求意见稿编制说明 一、工作简况 1、任务来源 为引导和规范我国电动客车产业健康可持续发展,提高电动客车安全技术水平,落实工业和信息化部建设符合电动客车特点的整车、电池、电机、高压线束等系统的安全条件及测试评价标准体系的要求,全国汽车标准化技术委员会于2016年8月启动了本强标的立项和编制工作。 2、主要工作过程 根据有关部门对电动客车安全标准制定工作的要求,全国汽车标准化技术委员会电动车辆分技术委员会组织成立“电动客车安全要求工作组”(以下简称工作组),系统开展电动客车安全要求标准的制定工作。 (1)GB《电动客车安全要求》于2016年底完成立项(计划号20160968-Q-339),2016年12月29日在南充电动汽车整车标准工作组会议上组建了标准制定的核心工作组,启动了强标制定工作,并由起草组代表介绍了标准的背景、编制思路、以及与相关标准的协调性关系。 (2) 2017年2月-3月,基于已开始执行的《电动客车安全技术条件》(工信部装[2016]377号,以下简称《条件》)的工作基础,工作组向电动客车行业主要企业、检测机构等16家单位征求《条件》的实施情况反馈与强制性国标制定建议。 (3) 2017年4月18日,工作组在重庆组织召开标准制定讨论会,会议对《条件》制定情况进行了回顾,对收集到的《条件》执行情况进行了分析讨论。根据讨论结果,针对共性问题形成了专项征求意见表。 (4) 2017年5月-6月,工作组根据重庆会议讨论结果向行业进行强标制定专项意见征求意见。 (5) 2017年6月6日,在株洲召开工作组会议,会议对专项征求意见期间收集的反馈意见进行研究讨论。 (6)2017年6月-10月,工作组依据意见反馈情况和会议讨论结果进行标

锂离子电池在电动汽车中的应用

锂离子电池在电动汽车中的应用 【摘要】:在环境污染日益严重、能源消耗日益加剧的今天,能源成为了我们迫切需要解决的问题之一。如今,新能源得到了人们的认同和推广,新能源汽车在汽车发展方向备受关注。近年来,锂离子电池已被研究人员用在电动车上作为动力能源,成为电动车发展的一个新趋势。相对以前的电池,锂离子电池中无镉、汞、铅三种元素,这与我们国家的可持续发展战略的要求相符合。本文介绍了锂离子电池在电动汽车中的应用、特点及原理。 【关键词】:新能源、锂离子、汽车、应用 近些年来,随着人们生活水平的提高及环境保护意识的的增强,人们都意识到能源是一个很值得关注的问题。出于能源和环境的考虑,电动汽车在各国政府和汽车制造商的推动下得到了快速的发展,其中,纯电动汽车以其能真正实现“零排放”而成为电动汽车的重要发展方向1。锂离子电池凭借其优良的性能成为新一代电动汽车的理想动力源,它具有重量轻、储能大、功率大、无污染、也无二次污染、寿命长、自放电系数小、温度适应范围宽泛,是电动自行车、电动摩托车、电动小轿车、电动大货车等较为理想的车用蓄电池2。缺点是价格较贵、安全性较差。现已有的一些新型材料有:钴酸锂,锰酸锂、磷酸铁锂、磷酸钒锂等,他们很大程度上提高了锂离子电池的安全性。 1、锂离子蓄电池: 1.1 锂离子蓄电池作为动力电池的简介: 锂离子蓄电池是通过涂在电极上的活性材料存储和释放锂离子,即通过锂离子在电极活性材料上的脱附来存储电能。锂离子动力蓄电池分为单体电池、模块和系统等三个层次,将若干个锂离子蓄电池的单体电池组合成带有监测电路、电气和通讯接口及通风散热功能的蓄电池管理系统。动力蓄电池模块可由上百个单体电池串联及并联而成。串联的目的是提高蓄电池模块总电压,并联的目的是提高蓄电池模块容量3,将这些锂离子电池用在车上作为动力源成为电动汽车的一个重要发展方向,目前已经有公司致力于这方面的研究和推广,成效显著。 1.2 锂离子蓄电池的特点4: 锂离子电池有许多优越特性,比如高能量,较高的安全性,工作温度范围宽,工作电压平稳、贮存寿命长(相对其他的蓄电池)。从安全性来讲,锂离子电池要比其他蓄电池安全的多。特别是采取了控制措施后,锂离子电池的安全性有了很大的保证,电池经过过充、短路、穿刺、冲击等滥用实验,均无危险发生。锂离子电池与Cd-Ni,MH-Ni电池一样,可以快速充电,且无记忆效应,远比Cd-Ni 电池优越;它的自放电率远比MH-Ni电池低。从环境保护的角度看,世界环境保护组织早已把Cd、Hg、Pb三种元素列为有害物质。因此含有这三种元素的电池的使用受到了限制,特别是在欧洲,有些政府大幅度提高了某些电池的环境税,与之相比,锂离子电池则不存这些问题。当然,锂离子电池也有一些缺点,比如低温放电率不高,电池的价格也比较高等。 1.3 锂离子蓄电池的组成及工作原理: 锂离子电池一般由正极、负极和高分子隔膜构成。

纯电动汽车及动力电池技术发展现状

纯电动汽车及动力电池发展现状调研 一、纯电动汽车发展现状 所谓纯电动汽车,是指完全由可充电电池作为动力源、以驱动电机及其控制系统驱动行驶的汽车。纯电动汽车(BatteryElectric Vehicle,BEV)与混合动力汽车(HybridElectric Vehicle,HEV)和燃料电池汽车(Fuel CellElectric Vehicle,FEV)是目前主要的新能源汽车类型。 1.1 发展纯电动汽车的必要性 (1)促进节能减排。与传统汽车相比,纯电动汽车具有更高的能源利用效率,同时也具有二氧化碳减排的潜力。机动车污染排放是城市空气污染的主要来源之一,2013年春季北京出现多次大面积雾霾天气,机动车尾气是主要原因之一。在上海,中心城区的主要大气污染物可吸入颗粒物、氮氧化物、挥发性有机物分别有66%、90%和26%来自机动车尾气。大力推广纯电动汽车是交通领域实现低碳的最佳方案,纯电动汽车行驶过程中不产生二氧化碳,即使考虑到中国目前电力生产过程中的二氧化碳排放,纯电动汽车仍然具有13%~68%的减排能力。随着我国能源结构和电力生产方式的转变,纯电动汽车必将在未来发挥更大的减排作用。 图1.1传统汽车与纯电动汽车综合能量效率比较(单位:%) (2)降低石油对外依存度。汽车保有量的迅速增加为我国能源安全带来严峻挑战。我国汽车保有量与原油对外依存度变化趋势见图1.2。最新数据显示,截止到2012年底,中国汽车保有量已达2.4亿辆,与此相对应的是2012年中国原油对外依存度达到56.4%,创下历史新高。如果不采取措施,“十二五”中将原油依存度控制在61%的计划将很难实现。在此背景下,如何满足未来汽车的能源需求,是关系到我国能源安全的关键问题。电动汽车由于其电力来源多样化,不仅更加适合中国以煤炭为主的资源禀赋,而且能够与中国大力发展可再生能源

电动汽车用动力电池

电动汽车用动力电池 摘要 能源危机和环境恶化已成为传统汽车发展的最大障碍,而发展电动汽车能够很好的解决这些问题.电动汽车不仅能够减少燃油消耗,提高经济性,而且还能降低尾气的排放,提高环境质量.电动汽车的关键技术之一是动力电池,动力电池的好坏一方面决定着电动汽车的成本,另一方面决定着电动汽车的动力性和续驶里程,这2个方面也是电动汽车与传统的燃油汽车竞争的关键所在.能否开发出性价比高的动力电池对电动汽车的未来发展具有至关重要的作用. 关键词:铅酸蓄电池,正负极板,电极,电解液,电子等等。 前言 电池是电动汽车的动力源,是能量的储存装置,也是目前制约电动汽车发展的关键因素。要使电动汽车能与燃油汽车相竞争,关键是开发比能高,比功率大,使用寿命长,成本低的电池...... 电动汽车使用的动力电池可以分为化学电池,物理电池和生物电池三大类。在三大电池当中化学电池又分为:原电池,蓄电池,燃料电池和储备电池,从化石燃料向可再生能源转换的能源革命中蓄电池所起的作用非常大,政府民间都在大力进行研发。物理电池是利用大自然的能量来吸附储存,有太阳能电池,超级电容器,飞轮电池等等。生物电池是利用生物化学反应发电的电池,如微生物电池,酶电池,生物太阳能电池等。 电动汽车用动力电池的性能指标主要是:电压,容量,内阻,能量,功率,输出功率,自放电率,使用寿命等,根据电池种类不同,其性能指标也有所不同。 电动汽车对动力电池的要求是:(1)比能量高:主要是为了提高电动汽车的继驶里程;(2)比功率大:为了能使电动汽车的加速行驶以及负载能力;(3)充放电效率高;(4)相对稳定性好;(5)使用成本低;(6)安全性好等等。 正文 在电池的发展史之中,铅酸蓄电池是最成熟的电动汽车蓄电池。我们常用的铅酸蓄电池主要分为三类,分别为普通蓄电池、干呵蓄电池和免维护蓄电池三种。铅酸蓄电池是蓄电池的一种,主要是采用稀硫酸做电解液,用二氧化铅和绒状铅分别作为电池的正极和负极的一种酸性蓄电池。 基本构造:铅酸蓄电池主要由以下部分构成:1.硬橡胶管 2.负极板 3.正极板4。隔板5.鞍子6.汇流排7.封口胶8.电池槽盖9.连接10.极柱11.排气栓

新能源汽车锂电池行业分析

新能源汽车锂电池行业分析报告 一、新能源汽车锂电池简介 目前,车用电池主要包括铅酸电池、镍氢电池、锂电池以及燃料电池。铅酸电池已非常成熟,在电动自行车领域得到了大范围运用,镍氢电池刚进入成熟期,锂电池现也已进入产业化阶段,由于锂电池性能更优越,更符合插电式混合动力汽车以及纯电动汽车的要求,从中长期来看,锂电池将逐步实现对铅酸电池和镍氢电池的取代。 锂离子电池包括正极、负极、隔膜及电解液等四大材料。正极材料是锂离子电池中最为关键的原材料,直接决定了电池的安全性能和电池能否大型化,约占锂离子电池电芯材料成本的 10%-20%左右。目前常用的正极材料主要有钴酸锂、锰酸锂和磷酸铁锂三种。 几种二次电池的综合性能对比 (4)燃料电池综合性能优异,是远期的发展方向。但技术尚不成熟,成本极高,大规模应用有待时日。由于燃料电池等下一代电池技术成熟为时尚早,镍氢电池和锂电池将长时间占据汽车动力电池的主流地位。

这几种二次电池的性能见下表: 二、中国电动汽车产业化概况 国内企业从事纯电动汽车研发、少量产业化生产与试运营的有东风、天津清源、北京理工科凌、比亚迪、万向等企业。2006 年,我国第一批纯电动轿车取得了产品准入公告,吸引更多企业加入蓄电池或纯动力汽车的研发或试运营,如咸阳威力克能源有限公司、博信电池(上海)有限公司、上海瑞华集团、深圳雷天绿色电动源有限公司、中信国安黄金有限公司、合肥工业大学等。东风公司是国内最早从事电动汽车研发的汽车企业之一,开发了游览车、多功能车、工业专用车和高尔夫球车等 4大系列、近 20 个品种的纯电动车,包括东风纯电动轿车(EQ7160EV)、纯电动富康轿车(EQ7140EV)、纯电动客车(EQ6690EV)等。2003 年东风纯电动车实现商品化销售以来,已累计销售 1000 余台,进入行业前三甲。截止到 2005年 11 月,参与示范运营的东风纯电动小巴有 93 台。到 2010 年,东风电动车公司计划实现纯电动场地车销售 5000 辆的年产销量。 “十五”期间,国家 863 计划电动汽车重大专项项目中纯电动轿车研制点之一在天津汽车。天津市电动车辆研究中心与天津一汽产品开发中心联合众多汽车技术研究中心与大学资源,组建天津清源电动车辆有限责任公司,承担 863 计划重点项目“XL-2 纯电动轿车”研发工作,各项技术指标达到了国际先进水平,全车总重 1600公斤,最高时速达到 140 千米/小时,续驶里程超过 260 千米,0 千米/小时~50 千米/小时的加速时间 6.8 秒,被认为是国内水平最高又

电动汽车动力电池的维护与检修

电动汽车动力电池的维护与检修 王楠 摘要:主要针对电动汽车动力电池运行检修管理, 研究了电池接收检验、运行管理、日常维护、运行检测与安全管理等关键环节, 结合电池运行的技术特点, 对电池的日常检测、维护与检修等进行了分析, 分析了电池受到电压,温度以及外界因数等典型故障的原因分析及维护方法, 同时提出了提高动力电池运行与检修水平以及电动电池保养的措施。 关键词:电动汽车动力电池检测与维护 目录: 摘要 1、动力电池的检修内容 (1)电压异常(2)温度异常(3)外观异常(4)检测振动对电池的影响 2、动力电池的检测系统总成 3、动力电池的维护 (1)充电不足与过充电 (2)大电流放电与过放电 (3)要及时充电 (4)短时充电 4、如何解决电池硫化与修复仪的使用 引言:在环境污染日益加剧,能源形势日益严峻的现代生活中,电动汽车无疑以其对排碳量减少无可非议的贡献受到全球的关注。当前与电动汽车有关的研究热点很多,但电池技术无疑就是其中重之又重的一块领域。现在应用于电动汽车的电池大多为电化学电池,在电池的发展史之中,铅酸蓄电池就是最成熟的电动汽车蓄电池,动力电池在能量、安全性、使用寿命等各个方面进行一代又一代的优化,才有了今天相对较为完备的电池体系。在今年4月21日至29日的北京国际车展当中备受人瞩目的典型车型都就是新出的纯电动汽车,不管就是国内还就是国外,许多汽车厂商都推出了自己的纯电动车型。由此可见在未来的汽车发展当中电动汽车将成为未来汽车发展的主要方向,然而由于受到电池技术的影响,纯电动汽车一直难以推广到市场。本文主要就是结合电池产业的厂商,引出当下比较主流的电池技术,从中了解电动汽车动力电池的结构,并结合各电池厂商分析可以怎样改正,以及探究了电动电池的检测与维护方法。 动力电池的结构 1、电池盖 2、正极--活性物质为氧化钴锂 3、隔膜--一种特殊的复合膜 4、负极--活性物质为碳 5、有机电解液 6、电池壳 动力电池的特点 1、高能量(EV)与高功率(HEV); 2、高能量密度;

电动汽车用先进电池的现状及发展

电动汽车用先进电池的现状及发展 前言 由氮氧化物生成的酸雨和CO2引发的全球变暖所造成的环境破坏以及如何使能源资源多样化已成为 现代社会亟待解决的课题。而CO2气体主要来自燃料燃烧排放气体,据估计,约20%的CO2气体来自汽车 排放。因此,环保的要求带动了电动汽车(EV)及电动汽车用电池的发展。1997年在东京举行的汽车展览和1998年在底特律举行的汽车展览均向人们展示了一些使用电池的技术。本文主要论述了EVs用先进电池的现状及其发展。 1 电动汽车业及所用电池的发展现状 1.1 美国 在美国,已有几个州要求汽车制造商发展和销售零排放汽车(ZEVs)。加利福尼亚航空资源委员会(CA RB)和7个主要汽车制造商(克莱斯勒、福特、通用、本田、马自达、尼桑和丰田) 在1996年签订协议,要求在这个州销售新的汽车和轻型卡车必须有2%为零排放,到2003年有10%为零排放。同样在马塞诸塞州和纽约及缅因州、马里兰州和新泽西州,也要求到1998年至少有2%汽车为零排放,到2003年有10%为零排放。因此,估计到1998年,美国将有2万辆EV s在路上行驶,而到2018年,EVs将超过700万辆。 由于ZEV法案的颁布和实施,美国几大主要汽车制造商已广泛深入地开展了EVs研究及开发。其中, 通用(GM)汽车公司一直是电动汽车行业的领导者,已开发了Saturn EVI两座铅酸电池电动汽车。1998年,GM-Ovonic公司与美国能源部合作,用MH/Ni电池取代铅酸电池,使电动车的一次充电行驶距离达到 160km,但价格为10000美元/只,是US ABC规定的2倍还多。GM公司希望能在2001年开始生产混合 电动车,在2004年开始生产燃料电池电动车,它们都将配备MH/Ni电池。福特汽车公司在1998年生产 的Ranger卡车,使用阀控式免维护908kg铅酸电池。公司将在1999年的Ranger EV模型中采用MH/N i 电池,并将使用Aero Vironment公司的快速充电技术为Ranger电动车的铅酸电池进行快速充电,使在 20min内再充电达80%。因为直到现在,Ranger行驶50km仍需4h充电时间。克莱斯勒公司在1998年的EPIC汽车上使用先进的铅酸电池。现克莱斯勒公司正与SAFT公司合作,为EPIC配备MH/Ni电池。据称,使用MH/Ni电池后,一次充电行驶距离从68km提高到90km。 1.2 日本 日本国际贸易与工业厅(MIZI)在东京发起一个大的工程-锂电池贮能及技术联合会(LIBES),发展电 动车用二次电池。日本电动车协会于1991年10月制定了2000年电动汽车普及计划,到2000年日本电 动汽车将达到20万辆为1991年的200倍。因而也大大推动了EVs用电池的发展[4]。由于加州ZEV法 案及世界各国对环保的要求,日本的几大主要汽车制造商开发研制电动汽车的活动均较为活跃。在发展电动车和混合车技术中,丰田汽车公司较为积极。其最新的RAV4LV-EV汽车使用MH/Ni电池,一次 充电行驶距离为130km,最大速度为80km/h,所用电池是与松下公司共同开发的,在展览会上展出的 PEM-FC型电动车,使用燃料电池和MH/Ni电池。而另一汽车公司尼桑公司,1998年在日本市场销售电动车,并将在美国销售Altra-EV。电动车采用索尼公司的锂离子电池,一次充电行驶距离为124km,充电 5h后,最大速度为75km/h。尼桑北美公司的Altra-EV于1998年1月在Los Angeles汽车展览上亮相, 并第一次在美国对锂离子电池电动车进行大规模的路上测试。使用索尼公司锂离子电池的四人汽车一次 充电行驶里程为120km,最大速度为75km/h。Altra-EV所用锂离子电池比能量达90Wh/kg,是传统铅酸 电池的 3倍,比MH/Ni电池高约50%,且循环寿命长,可达1200次,使用寿命约为10年。尼桑公司相 信当大规模生产时,锂离子电池价格可与铅酸电池竞争。 1.3 欧洲 据估计,到2000年,德国电动汽车总数将达到564万辆,法国每年销售电动车将达到10万辆,其[6] 它国家将会达到40万辆。欧洲电动汽车联合体,欧洲电池研究与发展联合会(BRADE)主要研究MH/Ni 电池和锂离子电池。欧洲第一辆锂离子电池电动汽车于 1997年10月在法国Poiton-Charentes地区进行测试,标致106是其中的一种。所用锂离子电池由SAFT公司提供,比能量为100Wh/kg,一次充电行驶距离可达124km。 1.4 亚太地区 在亚太地区,随着人们经济能力的增强,汽车的销售量正逐步上升。据预测,在1999年和2000年,亚洲汽车销售将会分别增长15%。因此,在东南亚,尤其是在中国,电池工业也因汽车工业的发展而得 到快速发展。1997年到2002年,亚太地区电动车用电池数列于表1中。 表1 亚太地区电动车用电池万只

现有电动汽车用动力电池及其发展趋势

电动汽车用动力电池分类及其发展趋势 / 、八 1 前言 上个世纪80 年代以来, 随着全球经济的稳步发展, 汽车的产量和保有量急剧增加。这些燃油汽车所排放的废气造成空气质量日趋恶化。环境问题, 特别是大气环境污染问题, 已引起世界各国, 尤其是发达国家的普遍关注。同时, 目前世界石油资源日趋紧张, 石油价格始终居高不下。因此, 各国政府和各大汽车企业都正在加紧开发无排放或低排放、低油耗的清洁汽车。 进入90 年代, 以美欧为主的一些西方国家开始制订并逐步执行严厉的汽车尾气排放标准, 低能耗、无污染的绿色汽车开始成为人们关注的热点。而电动汽车又是能达到这一目标的为数很少的环保型汽车。迫于形势的要求, 各种新材料和新技术在电动汽车上不断被开发应用, 电动汽车的发展异常迅猛。 2 电动汽车用动力电池分类 2.1 铅酸电池 铅酸电池是采用金属铅作为负极,二氧化铅作为正极,用硫酸作为电解液,放电时,铅和二氧化铅都与电解液反应生成硫酸铅。充电时反应过程正好相反。现在比较广泛的采用免维护的阀控式铅酸电池(VRLA)。总体上说,铅酸电池具有可靠性好、原材料易得、价格便宜等优点,比功率也基本上能满足电动汽车的动力性要求。但它有两大缺点;一是比能量低,所占的质量和体积太大,且一次充电行驶里程较短;另一个是使用寿命短,使用成本过高。由于铅酸电池的技术比较成熟,经过进一步改进后的铅酸电池仍将是近期电动汽车的主要电源。 2.2 镍金属电池 镍氢蓄电池正极活性物质采用氢氧化镍,负极活性物质为贮氢合金,电解液为氢氧化钾溶液,电池充电时,正极的氢进入负极贮氢合金中,放电时过程正好相反。在此过程中,正、负极的活性物质都伴随着结构、成分、体积的变化,电解液也发生变化。相对于其他电池,N 12MH 电池的优异特性表现在:高比 能量(衡量电动车一次充电行驶里程)已与锂离子电池水平相当;高比功率(赋予电

新能源电动车锂离子电池创业项目计划书

新能源电动车(锂离子电池)创业计划书

第一章执行总结 1.1 项目简介 在传统能源日趋紧张及环境危机的情况下,新型能源越来越成为人们关注和研究的热点。大容量锂离子电池是能够代替传统能源作为机械驱动的一种较成熟、可行的新型能源。本项目将同时生产制备工艺相近、市场关联度大、科技含量高、应用前景广阔的新能源器件:动力锂离子电池。拟建成日产3万Ah(年产900万Ah)动力锂离子电池生产线。 1.2 产品介绍 动力锂电池的特点是容量大、工作电压高、重量轻体积小、自放电率小、循环寿命长、环境友好、安全性能好等特点,其性价比高,在国内属领先水平。 1.3 市场分析 锂离子电池具有工作电压高、比能量高等其他二次电池所不具备的特点,使该产品几乎可以完全取代其他类型的二次电池而应用于包括民用、工业、交通、国防等各个领域,而具有广阔的国际国内市场 随着世界石油资源的日益枯竭,及对于环境造成的污染,汽车的动力源将不得不逐步摆脱石油资源的束缚而采用一些新的能源取代,这直接推动着汽车业的一次重大技术革命。该产品具有相当的技术优势,仍在市场孕育中。

1.4 营销策略 产品开始投入市场时,产品以高价格和高额的促销费用快速推向市场。定高价给消费者以质优价高的形象,高额的促销可以快速提高产品的知名度。 当产品成长到一定阶段: 1、提高产品的质量,增加产品规格。 2、进行品牌宣传推广。 3、适当降低价格,遏制竞争对手进入市场。 4、开发新产品。 5、拓展市场,对市场进一步进行细分,开发新的目标市场。 1.5 管理策略 我们的企业以创新求发展,同时不忽视夯实基础,建立一套高效完整科学的管理体系,用规则化、程序化、科学化来系统性的塑造和改变员工的行为,提高整体的组织能力,为创新提供孕育和发展的土壤。 第二章产品介绍 2.1 项目计划简介 2.1.1 项目建设意义 当今世界,石油资源日渐紧张,环境污染日趋严重,人们对以锂离子电池超级电容器等二次能源越来越重视。在大容

电动车用铅酸蓄电池充电方法

我的电池是用在电动车上的,我的电动车是今年过了春节才买的,用了没到一年就不耐要了。我以前充满电时可以跑50多公里,现在30公里都不到就没电了。储电量少了一半有没有人知道我这个问题可以修吗 铅酸蓄电池充放电的过程是电化学反应的过程,充电时,硫酸铅形成氧化铅,放电时氧化铅又还原为硫酸铅。而硫酸铅是一种非常容易结晶的物质,当电池中电解溶液的硫酸铅浓度过高或静态闲置时间过长时,就会“抱成”团,结成小晶体,这些小晶体再吸引周围的硫酸铅,就象滚雪球一样形成大的惰性结晶,结晶后的硫酸铅充电时不但不能再还原成氧化铅,还会沉淀附着在电极板上,造成了电极板工作面积下降,这一现象叫硫化,也就是常说的老化。这时电池容量会逐渐下降,直至无法使用。当硫酸铅大量堆集时还会吸引铅微粒形成铅枝,正负极板间的铅枝搭桥就造成电池短路。如果极板表面或密封塑壳有缝隙,硫酸铅结晶就会在这些缝隙内堆积,并产生膨胀张力,最终使极板断裂脱落或外壳破裂,造成电池不可修复性物理损坏。所以,导致铅酸蓄电池失效和损坏的主要机理就是电池本身无法避免的硫化 ! 这个说法对吗 ⑴ 维护: 及时充电,不要过放电。 ②也不要过充电,以电池不感觉很热为标志。 ③在时间允许的情况下,用小电流充电。 ④及时补足电解液。一般情况下,电解液不会损失,损失的是水(蒸发),请补蒸馏水!不可补电解液!! ⑵ 区别:①锂离子电池和铅酸电池的化学原理和材料不同,但都是以可逆的电化学过程为技术支持。 ②相对于铅酸电池,锂电具有重量轻,容量大,电流量大,无记忆效应等优点。但缺点是目前太贵。预计,锂电必将淘汰铅酸,镍镉,镍氢电池。 充电方法的研究: 常规充电制度是依据1940年前国际公认的经验法则设计的。其中最著名的就是“安培小时规则”:充电电流安培数,不应超过蓄电池待充电的安时数。实际上,常规充电的速度被蓄电池在充电过程中的温升和气体的产生所限制。这个现象对蓄电池充电所必须的最短时间具有重要意义。 1、恒流充电法 恒流充电法是用调整充电装置输出电压或改变与蓄电池串联电阻的方法,保持充电电流强度不变的充电方法。控制方法简单,但由于电池的可接受电流能力是随着充电过程的进行而逐渐下降的,到充电后期,充电电流多用于电解水,产生气体,使出气过甚,因此,常选用阶段充电法。 2、阶段充电法 此方法包括二阶段充电法和三阶段充电法 ①二阶段法采用恒电流和恒电压相结合的快速充电方法,首先,以恒电流充电至预定的电压值,然后,改为恒电压完成剩余的充电。一般两阶段之间的转换电压就是第二阶段的恒电压。 ②三阶段充电法在充电开始和结束时采用恒电流充电,中间用恒电压充电。当电流衰减到预定值时,由第二阶段转换到第三阶段。这种方法可以将出气量减到最少,但作为一种快速充电方法使用,受到一定的限制。 3、恒压充电法 充电电源的电压在全部充电时间里保持恒定的数值,随着蓄电池端电压的逐渐升高,电流逐渐减少。与恒流充电法相比,其充电过程更接近于最佳充电曲线。用恒定电压快速充电,由于充电初

电动汽车用阀控密封铅酸蓄电池设计方案

电动汽车用阀控密封铅酸蓄电池设计方案 目录 一、设计要求及电池参数 1.1设计要求 1.2电池参数 二、电池设计及计算 2.1 单体电池数目 2.2单体电池容量 2.3电极片数与隔膜片数的确定 2.4活性物质用量 2.5生产用铅粉需求量 2.6生产用铅膏需求量 三、板栅的设计及电池实际容量的计算 3.1板栅结构的选择 3.2板栅尺寸的确定 3.3板栅体积的计算 3.4电池实际容量的计算 四、隔板的选择与设计 五、电解液用量的计算 5.1硫酸用量计算 5.2硫酸用量核算 六、汇流排的设计与核算 7.1汇流排的设计 7.2汇流排的核算 七、限压阀的设计 八、电池槽设计和选择 参考文献

一、 设计要求及电池参数 1.1 设计要求 本设计欲设计一电动汽车用阀控密封铅酸蓄电池,要求能够使总质量为1t 的电动汽车在均速为50km/h 的条件下连续运行3小时,续航能力为150km 以上,且最高时速可以达到90km/h 。整个系统工作效率为80%。 1.2 电池参数 工作方式:间歇工作,并要求可以长时间中等电流放电,短时间大电流放电。 工作电压:288V 电池尺寸:单电池尺寸:150mm*40mm*200mm 电池组尺寸[1]:303mm*121mm*215mm 电池系统尺寸:1215mm*740mm*230mm 工作电流: 根据要求计算:时速90km/h 时, 汽车电机提供的最大功率可通过以下公式计算: kW V A C V Mgf P d e 16.7509761405.4157.14.0093600015.08.90010.8017614036001 33max max =??? ? ?????+???=???? ??+= η 车重M 1000kg ,行驶时空气阻力系数Cd 0.4,滚动阻力系数f 0.015, 电动机传动效率0.8 ,车宽1750mm ,车高1450mm ,最大时速 90km/h 平均时速50km/h ,续航150km 平均时速下电机功率为: kW V A C V Mgf P d e 4.6505761405.4157.14.0053600015.08.90010.801761403600133=??? ? ?????+???=??? ? ??+= η 因此最大电流为 16.75x1000/288=58.16A 平均电流为 4.65x1000/288=16.15A 工作时间:均速50km/h 可以连续工作3小时 循环寿命:500次以上 工作环境:温度-5-55℃,湿度5%-95%

电动汽车动力电池研究综述

目录 1引言 (2) 2电动汽车对动力电池的发展及要求3? 2.1动力电池的发展 (3) 2.2?电动汽车对动力电池的要求 ............................................................. 43?铅蓄电池?4 3.1铅蓄电池工作原理 (4) 3.2铅蓄电池性能特点 (5) 3.3铅蓄电池应用范围5? 4?镍氢电池........................................................................................................... 6 4.1?镍氢电池工作原理 (6) 4.2镍氢电池性能特点.......................................................................... 6 4.3?镍氢电池应用范围 (7) 5?锂离子电池7? 5.1?锂离子电池工作原理?错误!未定义书签。 5.2?锂离子电池性能特点7? 5.3锂离子电池应用范围8? 6?电动汽车动力电池发展趋势?8 6.1铅蓄电池发展趋势.......................................................................... 8 6.2?镍氢电池发展趋势 (9) 6.3?锂离子电池发展趋势 ......................................................................... 9 7?结论................................................................................................................. 10参考文献11? ? 电动汽车动力电池研究综述

特斯拉电动汽车动力电池管理系统解析

特斯拉电动汽车动力电池管理系统解析 1. Tesla目前推出了两款电动汽车,Roadster和Model S,目前我收集到的Roadster的资料较多,因此本回答重点分析的是Roadster的电池管理系统。 2. 电池管理系统(Battery Management System, BMS)的主要任务是保证电池组工作在安全区间内,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。BMS的主要功能有电池参数监测、电池状态估计、在线故障诊断、充电控制、自动均衡、热管理等。我的主要研究方向是电池的热管理系统,因此本回答分析的是电池热管理系统(Battery Thermal Management System, BTMS). 1. 热管理系统的重要性 电池的热相关问题是决定其使用性能、安全性、寿命及使用成本的关键因素。首先,锂离子电池的温度水平直接影响其使用中的能量与功率性能。温度较低时,电池的可用容量将迅速发生衰减,在过低温度下(如低于0°C)对电池进行充电,则可能引发瞬间的电压过充现象,造成内部析锂并进而引发短路。其次,锂离子电池的热相关问题直接影响电池的安全性。生产制造环节的缺陷或使用过程中的不当操作等可能造成电池局部过热,并进而引起连锁放热反应,最终造成冒烟、起火甚至爆炸等严重的热失控事件,威胁到车辆驾乘人员的生命安全。另外,锂离子电池的工作或存放温度影响其使用寿命。电池的适宜温度约在10~30°C之间,过高或过低的温度都将引起电池寿命的较快衰减。动力电池的大型化使得其表面积与体积之比相对减小,电池内部热量不易散出,更可能出现内部温度不均、局部温升过高等问题,从而进一步加速电池衰减,缩短电池寿命,增加用户的总拥有成本。 电池热管理系统是应对电池的热相关问题,保证动力电池使用性能、安全性和寿命的关键技术之一。热管理系统的主要功能包括:1)在电池温度较高时进行有效散热,防止产生热失控事故;2)在电池温度较低时进行预热,提升电池温度,确保低温下的充电、放电性能和安全性;3)减小电池组内的温度差异,抑制局部热区的形成,防止高温位置处电池过快衰减,降低电池组整体寿命。 2. Tesla Roadster的电池热管理系统 Tesla Motors公司的Roadster纯电动汽车采用了液冷式电池热管理系统。车载电池组由6831节18650型锂离子电池组成,其中每69节并联为一组(brick),再将9组串联为一层(sheet),最后串联堆叠11层构成。电池热管理系统的冷却液为50%水与50%乙二醇混合物。

相关文档
相关文档 最新文档