文档库 最新最全的文档下载
当前位置:文档库 › 高中数学圆锥曲线经典题型

高中数学圆锥曲线经典题型

高中数学圆锥曲线经典题型
高中数学圆锥曲线经典题型

高中数学圆锥曲线经典题型

椭圆

一、选择题:

1.已知椭圆方程

22

1

43

x y

+=,双曲线

22

22

1(0,0)

x y

a b

a b

-=>>的焦点是椭圆的顶点, 顶点是椭圆的焦点,则双曲线的离心率为

A.2

B.3

C. 2

D. 3

2.双曲线

22

22

1(0,0)

x y

a b

a b

-=>>的左、右焦点分别为F1,F2,渐近线分别为

12

,l l,点P在第

一象限内且在

1

l上,若

2

l⊥PF1,

2

l//PF2,则双曲线的离心率是()

A.5B.2 C.3D.2

【答案】B

【解析】双曲线的左焦点

1

(,0)

F c-,右焦点

2

(,0)

F c,渐近线

1

:

b

l y x

a

=,

2

:

b

l y x

a

=-,因为点P在第

一象限内且在

1

l上,所以设

000

(,),0

P x y x>,因为

2

l⊥PF1,

2

l//PF2,所以

12

PF PF

⊥,即

12

1

2

OP F F c

==,

即222

00

x y c

+=,又

00

b

y x

a

=,代入得222

00

()

b

x x c

a

+=,解得

00

,

x a y b

==,即(,)

P a b。所以1

PF

b

k

a c

=

+

2

l的斜率为

b

a

-

,因为2

l

⊥PF1,所以

()1

b b

a c a

?-=-

+,即2222

()

b a a

c a ac c a

=+=+=-,所以22

20

c ac a

--=,所以220

e e

--=,解得2

e=,所以双曲线

的离心率2

e=,所以选B.

3.已知双曲线()0

,0

1

2

2

2

2

>

>

=

-b

a

b

y

a

x

的一条渐近线的斜率为2,且右焦点与抛物线x

y3

4

2=的焦点重合,则该双曲线的离心率等于

A.2B.3C.2 D.23

4.抛物线2

4y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是 A.

78

B.

1516

C.

34

D.0

5.抛物线2

12y x =-的准线与双曲线22

193

x y -=的两渐近线围成的三角形的面积为 A. 3 B. 23 C. 2 D.33 【答案】D

【解析】抛物线2

12y x =-的准线为3x =,双曲线

22

193

x y -=的两渐近线为3y x =和3y x =-,令3x =,分别解得123,3y y ==-,所以三角形的低为3(3)23--=,高为3,所以三角形的面积为

1

233332

??=,选D. 6.过抛物线x y 42

=的焦点作一条直线与抛物线相交于B A ,两点,它们到直线2-=x 的距离之和等于5,

则这样的直线

A .有且仅有一条

B .有且仅有两条

C .有无穷多条

D .不存在

7.已知双曲线22221(0,0)x y a b a b

-=>>的两条渐近线均与22

:650C x y x +-+=相切,则该双曲线离心

率等于

A .

355 B .

62

C .

32

D .

55

8.已知椭圆)0(122

22>>=+b a b

y a x 的左、右焦点分别为)0,(),0,21c F c F -(,若椭圆上存在点P 使

1221sin sin F PF c F PF a ∠=∠,则该椭圆的离心率的取值范围为( )

A.(0,)12-

B.(

122,) C.(0,2

2

) D.(12-,1)

9.过椭圆22

221x y a b +=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若

1260F PF ∠=o ,则椭圆的离心率为 ( )

A .

22 B .33 C .12 D .13

二、填空题:

10.若圆C 以抛物线2

4y x =的焦点为圆心,截此抛物线的准线所得弦长为6,则该圆的标准方程是 ;

11.设F 是抛物线C 1:2

4y x =的焦点,点A 是抛物线与双曲线C 2:22

221(0,0)x y a b a b

-=>>的一条渐近线

的一个公共点,且AF x ⊥轴,则双曲线的离心率为 【答案】5

【解析】抛物线的焦点为(1,0)F .双曲线的渐近线为b y x a =±

,不妨取b

y x a

=,因为AF x ⊥,所以1A x =,所以2A y =±,不妨取(1,2)A ,又因为点(1,2)A 也在b y x a

=上,所以2b

a =,即2

b a =,所以

22224b a c a ==-,即225c a =,所以25e =,即5e =,所以双曲线的离心率为5。 12.已知双曲线的方程为

22

1169

x y -=,则双曲线的离心率是 .

13.若焦点在x 轴上的椭圆

1222=+m y x 的离心率为2

1,则m = . 【答案】

2

3

【解析】因为焦点在x 轴上。所以02m <<,所以2

2

2

2

2

2,,2a b m c a b m ===-=-。椭圆的离心率为

12e =,所以22

21242c m e a -===,解得32

m =。

14.已知点P 是抛物线2

4y x =上的动点,点P 在y 轴上的射影是M ,点A 的坐标是(4,a ),则当||4

a >时,||||PA PM +的最小值是 。

三、解答题:

15. (本小题满分13分)

已知椭圆22

221(0)x y a b a b

+=>>过点()0,1,其长轴、焦距和短轴的长的平方依次成等差数列.直线l

与x 轴正半轴和y 轴分别交于点Q 、P ,与椭圆分别交于点M 、N ,各点均不重合且满足

12,PM MQ PN NQ λλ==u u u u r u u u u r u u u r u u u r

(1)求椭圆的标准方程;

(2)若123λλ+=-,试证明:直线l 过定点并求此定点.

(2) 由题意设),(),,(),0,(),,0(22110y x N y x M x Q m P ,设l 方程为)(m y t x -=, 由MQ PM 1λ=知),(),(110111y x x m y x --=-λ ∴111λy m y -=-,由题意01≠λ,∴11

1-=

y m

λ -----------------7分

同理由2PN NQ λ=u u u r u u u r 知22

1m

y λ=- ∵321-=+λλ,∴0)(2121=++y y m y y (*) ------8分

联立???-==+)

(3322m y t x y x 得032)3(2

2222=-+-+m t y mt y t

∴需0)3)(3(442

2

2

4

2>-+-=?m t t t m (**)

且有3

3

,32222212221+-=+=+t m t y y t mt y y (***)-------10分 (***)代入(*)得023222=?+-mt m m t ,∴1)(2

=mt ,

由题意0

已知椭圆2222:1(0)x y C a b a b +=>>的离心率为1

2,以原点为圆心,椭圆的短半轴为半径的圆与直线

60x y -+=相切,过点P (4,0)且不垂直于x 轴直线l 与椭圆C 相交于A 、B 两点。

(1)求椭圆C 的方程; (2)求OB OA ?的取值范围;

(3)若B 点在于x 轴的对称点是E ,证明:直线AE 与x 轴相交于定点。

(2)解:由题意知直线l 的斜率存在,设直线l 的方程为(4)y k x =-

由2

2

(4)

1

43

y k x

y

x

=-

?

?

?

+=

??

得:2222

(43)3264120

k x k x k

+-+-=4分

由2222

(32)4(43)(6412)0

k k k

?=--+->得:2

1

4

k<

设A(x1,y1),B (x2,y2),则

22

1212

22

326412

4343

k k

x x x x

k k

-

+==

++

,①6分

∴222

12121212

(4)(4)4()16

y y k x k x k x x k x x k

=--=-++

17.若椭圆

1

E:

22

22

11

1

x y

a b

+=和椭圆

2

E:

22

22

22

1

x y

a b

+=满足22

11

(0)

a b

m m

a b

==>,则称这两个椭圆相似,m是相似比.

(Ⅰ)求过(6)且与椭圆

22

1

42

x y

+=相似的椭圆的方程;

(Ⅱ)设过原点的一条射线l分别与(Ⅰ)中的两椭圆交于A、B点(点A在线段OB上).

①若P是线段AB上的一点,若OA,OP,OB成等比数列,求P点的轨迹方程;

②求OA OB

g的最大值和最小值.

(Ⅱ) ① 当射

线l 的斜率不存在时(0,2),(0,2)A B ±,

设点P 坐标P(0,0)y ,则2

04y =,02y =±.即P(0,2±). ………………5分

当射线l 的斜率存在时,设其方程y kx =,P(,)x y 由11(,)A x y ,22(,)B x y 则

112

211142y kx x y =???+

=?? 得2

122212412412x k k y k ?=??+??=?+?

22

21||12k OA k

+∴=

+ 同理22

41||12k OB k

+=

+ ………………………7分

又点P 在l 上,则y k x

=,且由2

2222222222

2

8(1)

8(1)8()12212y k x y x x y y k x y x

++++===+++, 即所求方程是22

184

x y +=. 又Q (0,2±)适合方程,

故所求椭圆的方程是22

184x y +=. ………………9分 ②由①可知,当l 的斜率不存在时,||||2224OA OB ==g

,当l 的斜率存在

时,222

8(1)4

||||41212k OA OB k k +==+++g ,

4||||8OA OB ∴<≤g , ………………11分

综上,||||OA OB g 的最大值是8,最小值是4. ………………12分

18.(本小题满分12分)已知长方形ABCD ,22=AB ,BC=1。以AB 的中点O 为原点建立如图所示的平面直角坐标系xoy.

(Ⅰ)求以A 、B 为焦点,且过C 、D 两点的椭圆的标准方程;

(Ⅱ)过点P (0,2)的直线l 交(Ⅰ)中椭圆于M ,N 两点,是否存在直线l ,使得弦MN 为直径的圆恰好过原点?若存在,求出直线l 的方程;若不存在,说明理由。

(Ⅱ)由题意直线的斜率存在,可设直线l 的方程为)0(2≠+=k kx y . 设M ,N 两点的坐标分别为),(),,(2211y x y x .

联立方程:???=++=4

222

2y x kx y 消去y 整理得,048)21(2

2=+++kx x k

有2

21221214

,218k

x x k k x x +=+-

=+ ………………7分

若以MN 为直径的圆恰好过原点,则ON OM ⊥,所以02121=+y y x x ,…………8分 所以,0)2)(2(2121=+++kx kx x x ,

04)(2)121212=++++x x k x x k ( 所以,04211621)1(42

2

22=++-++k

k k k 即021482

2

=+-k

k , ……………………9分 得2,22

±==k k . ……………………10分

所以直线l 的方程为22+=x y ,或22+-=x y .………………11分

所在存在过P (0,2)的直线l :22+±=x y 使得以弦MN 为直径的圆恰好过原点。 …12分

19.(本小题满分12分)

如图,直线l :y=x+b 与抛物线C :x 2

=4y 相切于点A 。

(1) 求实数b 的值;

(11) 求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.

【解析】(I )由24y x b x y

=+??=?得2

440x x b --= (*)

因为直线l 与抛物线C 相切,所以2

(4)4(4)0b ?=--?-=,解得1b =-………………4分

1.(2010·汕头一模)距离为2,则双曲线方程为

( )

A .x 2-y 2=1

B .x 2-y 2=2

C .x 2-y 2= 2

D .x 2-y 2=12

解析:由题意,设双曲线方程为x 2a 2-y 2

a 2=1(a >0),

则c =2a ,渐近线y =x ,∴|2a |

2=2,∴a 2=2.

∴双曲线方程为x 2-y 2=2. 答案:B

2.已知双曲线的两个焦点为F 1(-10,0)、F 2(10,0),M 是此双曲线上的一点,且满足1MF u u u u r ·2

MF u u u u r

=0,|1MF u u u u r |·|2MF u u u u r |=2,则该双曲线的方程是 ( )

A.x 29-y 2=1 B .x 2

-y 2

9=1 C.x 23-y 27=1 D.x 27-y 2

3

=1 解析:∵

1MF u u u u r ·2MF u u u u r =0,∴1MF u u u u r ⊥2MF u u u u r

,∴MF1⊥MF2,

∴|MF1|2+|MF2|2=40,

∴(|MF1|-|MF2|)2=|MF1|2-2|MF1|·|MF2|+|MF2|2=40-2×2=36, ∴||MF1|-|MF2||=6=2a ,a =3, 又c =10,∴b2=c2-a2=1, ∴双曲线方程为x2

9-y2=1.

答案:A

3.(2009·宁夏、海南高考)双曲线x 4-y 12=1的焦点到渐近线的距离为 ( )

A .23

B .2 C. 3 D .1

解析:双曲线x24-y2

12=1的焦点为(4,0)或(-4,0).渐近线方程为y =3x 或y =-3x.由双曲线的对

称性可知,任一焦点到任一渐近线的距离相等,d =|43+0|

3+1=2 3.

答案:A

4.(2010·普宁模拟)已知离心率为e 的曲线x 2a 2-y 2

7=1,其右焦点与抛物线y 2=16x 的焦点重合,则e 的

值为 ( ) A.34 B.42323 C.43 D.234 解析:抛物线焦点坐标为(4,0),则a2+7=16, ∴a2=9,∴e =c a =43.

答案:C

5.(2009·江西高考)设F 1和F 2为双曲线x 2a 2-y 2

b 2=1(a >0,b >0)的两个焦点,若F 1,F 2,P (0,2b )是正三

角形的三个顶点,则双曲线的离心率为 ( ) A.32 B .2 C.5

2 D .

3 解析:|PO||F1O|

=tan60°,

2b c =3?4b2=3c2?4(c2-a2)=3c2?c2=4a2?c2

a2=4?e =2. 答案:B

6.(2010·广州模拟)已知点F 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过

F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是 ( )

A .(1,+∞)

B .(1,2)

C .(1,1+2)

D .(2,1+2)

解析:如图,要使△ABE 为锐角三角形,只需∠AEB 为锐角,由双曲线对称性知△ABE 为等腰三角形,从而只需满足∠AEF<45°.

又当x =-c 时,y =b2

a

, ∴tan ∠AEF =

|AF||EF|=b2

a(a +c)

<1, ∴e2-e -2<0, 又e>1,∴1

题组三

直线与双曲线的位置关系

7.(2010·西安调研)过点P (4,4)且与双曲线x 216-y 2

9=1只有一个交点的直线有 ( )

A .1条

B .2条

C .3条

D .4条 解析:如图所示,满足条件的直线共有3条.

答案:C

8.设双曲线x 29-y 2

16=1的右顶点为A ,右焦点为F ,过点F 作平行双曲线的一条渐近线的直线与双曲

线交于点B ,则△AFB 的面积为________.

解析:由题意知,A(3,0),F(5,0),渐近线斜率k =±4

3,

则直线方程为y =4

3(x -5),

代入x29-y216=1,得x =175,

∴y =-3215,即B(175,-3215),

∴S △AFB =12×2×3215=32

15.

答案:32

15

题组四

双曲线的综合问题

9.(2010·德州模拟)P 为双曲线

x 2-

y 2

15

=1右支上一点,M 、N 分别是圆(x +4)2+y 2=4和(x -4)2+y 2=1上的点,则|PM |-|PN |的最大值为________.

解析:双曲线的两个焦点为F1(-4,0)、F2(4,0),为两个圆的圆心,半径分别为r1=2,r2=1,|PM|max =|PF1|+2,|PN|min =|PF2|-1,故|PM|-|PN|的最大值为(|PF1|+2)-(|PF2|-1)=|PF1|-|PF2|+3=5.

答案:5

10.(1)已知双曲线关于两坐标轴对称,且与圆x 2+y 2=10相交于点P (3,-1),若此圆过点P 的切线与双曲线的一条渐近线平行,求此双曲线的方程;

(2)已知双曲线的离心率e =52,且与椭圆x 213+y 2

3=1有共同的焦点,求该双曲线的 方程.

解:(1)切点为P(3,-1)的圆x2+y2=10的切线方程是3x -y =10. ∵双曲线的一条渐近线与此切线平行,且双曲线关于两坐标轴对称, ∴两渐近线方程为3x±y =0.

设所求双曲线方程为9x2-y2=λ(λ≠0).

∵点P(3,-1)在双曲线上,代入上式可得λ=80, ∴所求的双曲线方程为x2809-y2

80=1.

(2)在椭圆中,焦点坐标为(±10,0),

∴双曲线方程为x28-y2

2

=1.

11.已知双曲线C :x2

4

-y2=1,P 是C 上的任意点.

(1)求证:点P 到双曲线C 的两条渐近线的距离的乘积是一个常数; (2)设点A 的坐标为(3,0),求|PA|的最小值. 解:(1)证明:设P(x1,y1)是双曲线上任意一点, 该双曲线的两条渐近线方程分别是 x -2y =0和x +2y =0,

点P(x1,y1)到两条渐近线的距离分别是|x1-2y1|5和|x1+2y1|

5

.

它们的乘积是|x1-2y1|5·|x1+2y1|

5

22

11

45

x y =4

5

. ∴点P 到双曲线C 的两条渐近线的距离的乘积是一个常数. (2)设P 的坐标为(x ,y),则

|PA|2=(x -3)2+y2=(x -3)2+x2

4-1

=54(x -125)2+45

. ∵|x|≥2,∴当x =125时,|PA|2的最小值为45,

即|PA|的最小值为25

5

.

12.(文)已知椭圆C 1的方程为x 24+y 2

=1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而C 2的左、

右顶点分别是C 1的左、右焦点. (1)求双曲线C 2的方程;

(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA u u u r ·

OB u u u r

>2(其中O 为原点),求k 的取值范围.

解:(1)设双曲线C2的方程为x2a2-y2

b2=1,

则a2=4-1=3,c2=4, 由a2+b2=c2,得b2=1, 故C2的方程为x2

3

-y2=1.

(2)将y =kx +2代入x2

3

-y2=1,得

(1-3k2)x2-62kx -9=0.

由直线l 与双曲线C2交于不同的两点,得

??

?

1-3k2≠0,

Δ=(-62k)2+36(1-3k2)=36(1-k2)>0,

∴k2≠1

3

且k2<1.

设A(x1,y1),B(x2,y2),则 x 1+x2=62k

1-3k2,x1x2=-91-3k2

.

∴x1x2+y1y2=x1x2+(kx1+2)(kx2+2) =(k2+1)x1x2+2k(x1+x2)+2=3k2+7

3k2-1

.

又∵OA u u u r ·

OB u u u r

>2,得x1x2+y1y2>2, ∴3k2+7

3k2-1>2, 即

-3k2+93k2-1

>0,解得1

3<k2<3,

由①②得1

3<k2<1,

故k 的取值范围为(-1,-

33)∪(3

3

,1). (理)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;

(2)若直线:y =kx +m(k≠0,m≠0)与双曲线C 交于不同的两点M 、N ,且线段MN 的垂直平分线过点A(0,-1),求实数m 的取值范围.

解:(1)设双曲线方程为x2a2-y2

b2=1(a>0,b>0).

由已知得a =3,c =2. 又a2+b2=c2,得b2=1. 故双曲线C 的方程为x2

3-y2=1.

(2)联立????

?

y =kx +m x23-y2=1整理得

(1-3k2)x2-6kmx -3m2-3=0. ∵直线与双曲线有两个不同的交点,

∴????

?

1-3k2≠0Δ=12(m2+1-3k2)>0

可得m2>3k2-1且k2≠1

3. ①

设M(x1,y1),N(x2,y2),MN 的中点为B(x0,y0). 则x1+x2=6km 1-3k2,x0=x1+x22=3km

1-3k2,

y 0=kx0+m =m

1-3k2.

由题意,AB ⊥MN ,

∵kAB =m

1-3k2+13km 1-3k2

=-1

k (k≠0,m≠0).

整理得3k2=4m +1. ② 将②代入①,得m2-4m>0,∴m<0或m>4. 又3k2=4m +1>0(k≠0),即m>-1

4.

∴m 的取值范围是(-1

4,0)∪(4,+∞).

(完整版)高考圆锥曲线经典真题

高考圆锥曲线经典真题 知识整合: 直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能. 1.(江西卷15)过抛物线22(0)x py p =>的焦点F 作倾角为30o 的直线,与抛物线 分别交于A 、B 两点(A 在y 轴左侧),则 AF FB = .1 3 2 (2008年安徽卷)若过点A(4,0)的直线l 与曲线 22 (2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( ) A. [3,3] B. (3,3) C. 33[33- D. 33 (,33- 3(2008年海南---宁夏卷)设双曲线22 1916x y -=的右顶点为A,右焦点为F,过点F 平行双曲线的一条渐近线的直线与双曲线交于点B,则三角形AFB 的面积为-___________. 热点考点探究: 考点一:直线与曲线交点问题 例1.已知双曲线C :2x2-y2=2与点P(1,2) (1)求过P(1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点. 解:(1)当直线l 的斜率不存在时,l 的方程为x=1,与曲线C 有一个交点.当l

的斜率存在时,设直线l 的方程为y -2=k(x -1),代入C 的方程,并整理得 (2-k2)x2+2(k2-2k)x -k2+4k -6=0 (*) (ⅰ)当2-k2=0,即k=± 2 时,方程(*)有一个根,l 与C 有一个交点 (ⅱ)当2-k2≠0,即k ≠±2 时 Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k -6)=16(3-2k) ①当Δ=0,即 3-2k=0,k=23 时,方程(*)有一个实根,l 与C 有一个交点. ②当Δ>0,即k <23 ,又 k ≠± 2 ,故当k <- 2 或-2 <k < 2 或 2<k <2 3 时,方程(*)有两不等实根,l 与C 有两个交点. ③当Δ<0,即 k >23 时,方程(*)无解,l 与C 无交点. 综上知:当k=±2,或k=23 ,或 k 不存在时,l 与C 只有一个交点; 当2<k <23 ,或-2<k <2,或k <- 2 时,l 与C 有两个交点; 当 k >23 时,l 与C 没有交点. (2)假设以Q 为中点的弦存在,设为AB ,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2) 又∵x1+x2=2,y1+y2=2 ∴2(x1-x2)=y1-y1 即kAB= 2 121x x y y --=2 但渐近线斜率为±2,结合图形知直线 AB 与C 无交点,所以假设不正确,即以 Q 为中点的弦不存在.

高中数学经典题型50道(另附详细答案)讲解学习

高中数学经典题型50道(另附详细答案)

高中数学习题库(50道题另附答案) 1.求下列函数的值域: 解法2 令t=sin x,则f(t)=-t2+t+1,∵ |sin x|≤1, ∴|t|≤1.问题转化为求关于t的二次函数f(t)在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟

悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。 2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道 的焦点处,当此慧星离地球相距m 万千米和m 3 4万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32 π π和,求该慧星与 地球的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆 的方程为122 22=+b y a x (图见教材P132页例1)。 当过地球和彗星的直线与椭圆的长轴夹角为3 π 时,由椭圆的几何 意义可知,彗星A 只能满足)3 (3/π π=∠=∠xFA xFA 或。作 m FA FB Ox AB 3 2 21B ==⊥,则于 故由椭圆第二定义可知得???????+-=-=)32(34)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,3 2 31 c c c m c a m a c m =-==∴?=代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a +

高考圆锥曲线典型例题(必考)

椭 圆 典例精析 题型一 求椭圆的标准方程 【例1】已知点P 在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为45 3 和 25 3 ,过P 作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程. 【解析】故所求方程为x 25+3y 2 10=1或3x 210+y 2 5 =1. 【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx 2+ny 2=1(m >0,n >0且m ≠n );(2)在求椭圆中的a 、b 、c 时,经常用到椭圆的定义及解三角形的知识. 【变式训练1】已知椭圆C 1的中心在原点、焦点在x 轴上,抛物线C 2的顶点在原点、焦点在x 轴上.小明从曲线C 1,C 2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x ,y ).由于记录失误,使得其中恰有一个点既不在椭圆C 1上,也不在抛物线C 2上.小明的记录如下: 据此,可推断椭圆C 1的方程为 . x 212+y 2 6 =1.

题型二 椭圆的几何性质的运用 【例2】已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°. (1)求椭圆离心率的范围; (2)求证:△F 1PF 2的面积只与椭圆的短轴长有关. 【解析】(1)e 的取值范围是[12,1).(2)2 1 F PF S =12mn sin 60°=3 3 b 2, 【点拨】椭圆中△F 1PF 2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范围时,要特别注意椭圆定义(或性质)与不等式的联合使用,如|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2 ,|PF 1|≥a -c . 【变式训练2】 已知P 是椭圆x 225+y 2 9=1上的一点,Q ,R 分别是圆(x +4)2 +y 2 =1 4 和圆 (x -4)2+y 2=1 4上的点,则|PQ |+|PR |的最小值是 .【解析】最小值 为9. 题型三 有关椭圆的综合问题 【例3】(2010全国新课标)设F 1,F 2分别是椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的 左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (1)求E 的离心率;

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油! 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 1 1 c a <2 2 c a . 其中正确式子的序号是B

A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C .(0, 2 D .,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .92 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为 A B C D -

(完整word版)圆锥曲线经典练习题及答案

一、选择题 1. 圆锥曲线经典练习题及解答 大足二中 欧国绪 直线I 经过椭圆的一个顶点和一个焦点,若椭圆中心到 1 l 的距离为其短轴长的丄,则该椭圆 4 的离心率为 1 (A ) ( B ) 3 (C ) I (D ) 2. 设F 为抛物线 c : y 2=4x 的焦点, 曲线 k y= ( k>0)与C 交于点P , PF 丄x 轴,则k= x (B )1 3 (C)— 2 (D )2 3?双曲线 2 x C : T a 2 y_ 1(a 0,b 0)的离心率为2,焦点到渐近线的距离为 '、3,贝U C 的 焦距等于 A. 2 B. 2、2 C.4 D. 4?已知椭圆 C : 0)的左右焦点为 F i ,F 2,离心率为 丄3,过F 2的直线l 3 交C 与A 、 B 两点, 若厶AF i B 的周长为4、、3,则 C 的方程为() 2 A. x_ 3 B. 2 x 2彳 xr y 1 C. 2 x 12 D. 2 x 12 5. y 2 b 2 线的一个焦点在直线 2 A.— 5 6.已知 已知双曲线 2 x ~2 a 1( a 0, b 0)的一条渐近线平行于直线 I : y 2x 10,双曲 2 B — 20 2 为抛物线y 2 ' 1 20 F l 上, 2 y 5 则双曲线的方程为( 也 1 100 A , B 在该抛物线上且位于x 轴的两侧, c 3x 2 1 C.— 25 占 八、、 的焦点, uu uuu OA OB A 、2 (其中O 为坐标原点),则 - 1^/2 8 7.抛物线 =X 2的准线方程是 4 (A) y (B) 2 (C) ) D M 辽 .100 25 ABO 与 AFO 面积之和的最小值是( ) x 1 (D)

(完整版)高二数学归纳法经典例题

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

高二数学圆锥曲线测试题以及详细答案

圆锥曲线测试题及详细答案 一、选择题: 1、双曲线 22 1102x y -=的焦距为( ) 2.椭圆14 22 =+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( ) A . 2 3 B .3 C .27 D .4 3.已知动点M 的坐标满足方程|12512|132 2-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对 4.设P 是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( ) A. 1或5 B. 1或9 C. 1 D. 9 5、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三 角形,则椭圆的离心率是( ). A. B. C. 2 D. 1 6.双曲线)0(12 2≠=-mn n y m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( ) A . 163 B .83 C .316 D .3 8 7. 若双曲线22 21613x y p -=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( ) (A)2 (B)3 (C)4 8.如果椭圆 19 362 2=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x 9、无论θ为何值,方程1sin 22 2=?+y x θ所表示的曲线必不是( ) A. 双曲线 B.抛物线 C. 椭圆 D.以上都不对

圆锥曲线经典例题及总结(全面实用)

圆锥曲线经典例题及总结 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程2 2 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。

高中数学经典题型50道(另附详细答案)

高中数学习题库(50道题另附答案) 1.求下列函数的值域: 解法2 令t=sin x,则f(t)=-t2+t+1,∵|sin x|≤1, ∴|t|≤1.问题转化为求关于t的二次函数f(t)在闭区间[-1,1]上的最值. 本例题(2)解法2通过换元,将求三角函数的最值问题转化为求二次函数在闭区间上的最值问题,从而达到解决问题的目的,这就是转换的思想.善于从不同角度去观察问题,沟通数学各学科之间的内在联系,是实现转换的关键,转换的目的是将数学问题由陌生化熟悉,由复杂化简单,一句话:由难化易.可见化归是转换的目的,而转换是实现化归段手段。

2. 设有一颗慧星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道 的焦点处,当此慧星离地球相距m 万千米和m 3 4 万千米时,经过地球和慧星的直线与椭圆的长轴夹角分别为32 π π和,求该慧星与地球 的最近距离。 解:建立如下图所示直角坐标系,设地球位于焦点)0,(c F -处,椭圆的 方程为122 22=+b y a x (图见教材P132页例1)。 当过地球和彗星的直线与椭圆的长轴夹角为3π 时,由椭圆的几何 意义可知,彗星A 只能满足)3 (3/π π=∠=∠xFA xFA 或。作 m FA FB Ox AB 3 2 21B ==⊥,则于 故由椭圆第二定义可知得????? ??+-=-=)32(34)(2 2 m c c a a c m c c a a c m 两式相减得,2 3)4(21.2,3 2 31 c c c m c a m a c m =-==∴?=代入第一式得 .3 2.32m c c a m c ==-∴=∴ 答:彗星与地球的最近距离为m 3 2 万千米。 说明:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个焦点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是c a -,另一个是.c a + (2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想。另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22221x y a b -=(a>0,b>0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于 ( C ) (A)3 (B)2 (C)5 (D )6 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF = (A). 2 (B). 2 (C).3 (D ). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A.2 B.3 C.5 D .10 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直线 AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A . 3 B .22 C.13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D.直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 2 5 D.5 2

圆锥曲线经典例题及总结(全面实用,你值得拥有!)

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两 个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22 2 21x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 22 ,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);

10道经典高中数学题

1.设Sn是等差数列{An}的前n项和,又S6=36,Sn=324,S(n-6)=144,则n=? ①Sn是等差数列 S6=a1*6+6(6-1)/2*d=36,则2a1+5d=12......& 最后六项的和S=an*6-6(6-1)/2*d=6an-15d S(n-6)=Sn-S=324-(6an-15d)=144,则2an-5d=60......@ &+@:a1+an=36 Sn=(a1+an)/2*n n=18 ②解:Sn-S(n-6)=a(n-5)+a(n-4)+......an=324-144=180 而 S6=a1+a2+...a6=36 有 Sn-S(n-6)+S6= a1+a2+...a6+ a(n-5)+a(n-4)+....an =6(a1+an)=180+36=216 那么 (a1+an)=36 Sn=n(a1+an)/2=324 即 36n/2 =324 所以 n=18 2.已知f(x)=(x-1)^2,g(x)=4(x-1),f(an)和g(an)满足,a1=2,且(an+1-an)g(an)+f(an)=0

(1)是否存在常数C,使得数列{an+C}为等比数列?若存在,证明你的结论;若不存在,请说明理由。 (2)设bn=3f(an)-[g(an+1)]^2,求数列{bn}的前n项和Sn (1)存在 C=-1 证明如下 (an+1-an)g(an)+f(an)=0 将f(x)、g(x)带入并化简 得4an+1 - 3an -1 =0 变形为4(an+1 -1)=3(an -1) 所以an-1是以3/4为等比 1为首项的等比数列 (2)an-1=(3/4)^n bn=3f(an)-[g(an+1)]^2 将f(an) g(an+1)带入不要急着化简先将an+1 - 1换成 3/4 (an-1) 化简后bn=-6(an -1)^2=-6*(9/16)^n bn是首项为-27/8等比是9/16的等比数列 Sn=a1(1-q^n)/(1-q)=54/7(9/16)^n-54/7 已知函数f(x)=x^2+ax+b,当实数p,q满足p+q=1,试证明pf(x)+qf(y)>=f(px+qy) pf(x)+qf(y)>=f(px+qy) <=> px^2+pax+pb+qy^2+qay+qb>=(px+qy)^2+apx+aqy+b

高中数学必修一集合经典题型总结高分必备

慧诚教育2017年秋季高中数学讲义 必修一第一章复习 知识点一集合的概念 1.集合 一般地,把一些能够________________对象看成一个整体,就说这个整体是由这些对象________构成的集合(或集),通常用大写拉丁字母A,B,C,…来表示. 2.元素 构成集合的____________叫做这个集合的元素,通常用小写拉丁字母a,b,c,…来表示. 3.空集 不含任何元素的集合叫做空集,记为?.

知识点二 集合与元素的关系 1.属于 如果a 是集合A 的元素,就说a ________集合A ,记作a ________A . 2.不属于 如果a 不是集合A 中的元素,就说a ________集合A ,记作a ________A . 知识点三 集合的特性及分类 1.集合元素的特性 ________、________、________. 2.集合的分类 (1)有限集:含有________元素的集合. (2)无限集:含有________元素的集合. 3.常用数集及符号表示 知识点四 1.列举法 把集合的元素________________,并用花括号“{}”括起来表示集合的方法叫做列举法. 2.描述法 用集合所含元素的 ________表示集合的方法称为描述法. 知识点五 集合与集合的关系 1.子集与真子集

2.子集的性质 (1)规定:空集是____________的子集,也就是说,对任意集合A,都有________. (2)任何一个集合A都是它本身的子集,即________. (3)如果A?B,B?C,则________. (4)如果A?B,B?C,则________. 3.集合相等 4.集合相等的性质 如果A?B,B?A,则A=B;反之,________________________. 知识点六集合的运算 1.交集

全国卷高考数学圆锥曲线大题集大全

全国卷高考数学圆锥曲线大题集大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: (R); AG AD λλ=∈2; GE GF GH +=0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23 = e ,已知点)3,0(P 到 这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

高中数学典型题型与解析

高中数学典型题型与解析 一、选择题 1.设,21,a b R a b +∈+=、则2224ab a b --有( ) A .最大值 1 4 B .最小值14 C .最大值 212 - D .最小值54- 2. 某校有6间不同的电脑室,每天晚上至少开放2间,欲求不同安排方案的种数,现有四 位同学分别给出下列四个结果:①2 6C ;②6 65 64 63 62C C C C +++;③726 -;④2 6A .其中 正确的结论是( ) A .仅有① B .仅有② C .②和③ D .仅有③ 3. 将函数y =2x 的图像按向量a →平移后得到函数y =2x +6的图像,给出以下四个命题:① a →的坐标可以是(-3.0);②a →的坐标可以是(0,6);③a →的坐标可以是(-3,0)或(0, 6);④a →的坐标可以有无数种情况,其中真命题的个数是( ) A .1 B .2 C .3 D .4 4. 不等式组? ??>->-a x a x 2412,有解,则实数a 的取值范围是( ) A .(-1,3) B .(-3,1) C .(-∞,1) (3,+∞) D .(-∞,-3) (1,+∞) 5. 设a >0,c bx ax x f ++=2 )(,曲线y =f (x )在点P (0x ,f (0x ))处切线的倾斜角 的取值范围为[0,4π ],则P 到曲线y =f (x )对称轴距离的取值范围为( ) A .[0,]1a B .0[,]21a C .0[,|]2|a b D .0[,|]21 |a b - 6. 已知)(x f 奇函数且对任意正实数1x ,2x (1x ≠2x )恒有 0) ()(2 121>--x x x f x f 则一定正确的是( ) A .)5()3(->f f B .)5()3(-<-f f C .)3()5(f f >- D .)5()3(->-f f 7. 将半径为R 的球加热,若球的半径增加R ?,则球的体积增加≈?V ( ) A . R R ?3 π3 4 B .R R ?2π4 C .2π4R D .R R ?π4 8. 等边△ABC 的边长为a ,将它沿平行于BC 的线段PQ 折起,使平面APQ ⊥平面BPQC ,若折叠后AB 的长为d ,则d 的最小值为( ) A . a 43 B .a 45 C .4 3a D . a 410 9. 锐角α、β满足β α βα2424sin cos cos sin +=1,则下列结论中正确的是( ) A .2π≠ +βα B .2π<+βα C .2π>+βα D .2 π=+βα

高中数学四种命题经典例题

例命题“若=,则与成反比例关系”的否命题是1 y x y k x [ ] A y x y B y kx x y C x y y .若≠ ,则与成正比例关系.若≠,则与成反比例关系.若与不成反比例关系,则≠k x k x D y x y .若≠,则与不成反比例关系k x 分析 条件及结论同时否定,位置不变. 答 选D . 例2 设原命题为:“对顶角相等”,把它写成“若p 则q ”形式为________.它的逆命题为________,否命题为________,逆否命题为________. 分析 只要确定了“p ”和“q ”,则四种命题形式都好写了. 解 若两个角是对顶角,则两个角相等;若两个角相等,则这两个角是对顶角;若两个角不是对顶点,则这两个角不相等;若两个角不相等,则这两个角不是对顶角. 例3 “若P ={x |x|<1},则0∈P ”的等价命题是________. 分析 等价命题可以是多个,我们这里是确定命题的逆否命题. 解原命题的等价命题可以是其逆否命题,所以填“若,则 0P p ≠{x||x|<1}” 例4 分别写出命题“若x 2+y 2=0,则x 、y 全为0”的逆命题、否命题和逆否命题.

分析根据命题的四种形式的结构确定. 解逆命题:若x、y全为0,则x2+y2=0; 否命题:若x2+y2≠0,则x,y不全为0; 逆否命题:若x、y不全为0,则x2+y2≠0. 说明:“x、y全为0”的否定不要写成“x、y全不为0”,应当是“x,y不全为0”,这要特别小心. 例5有下列四个命题: ①“若xy=1,则x、y互为倒数”的逆命题; ②“相似三角形的周长相等”的否命题; ③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题; ④“若∪=,则”的逆否命题,其中真命题是 A B B A B [ ] A.①②B.②③ C.①③D.③④ 分析应用相应知识分别验证. 解写出相应命题并判定真假 ①“若x,y互为倒数,则xy=1”为真命题; ②“不相似三角形周长不相等”为假命题; ③“若方程x2-2bx+b2+b=0没有实根,则b>-1”为真命题;

(完整word版)2018年高考圆锥曲线大题

2018年高考圆锥曲线大题 一.解答题(共13小题) 1.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣; (2)设F为C的右焦点,P为C上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差. 2.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣; (2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.

3.双曲线﹣=1,F1、F2为其左右焦点,C是以F2为圆心且过原点的圆. (1)求C的轨迹方程; (2)动点P在C上运动,M满足=2,求M的轨迹方程. 4.设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程; (2)设O为坐标原点,证明:∠OMA=∠OMB.

5.已知椭圆M:+=1(a>b>0)的离心率为,焦距为2.斜率为k的直线l与椭圆M有 两个不同的交点A,B. (Ⅰ)求椭圆M的方程; (Ⅱ)若k=1,求|AB|的最大值; (Ⅲ)设P(﹣2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点Q(﹣,)共线,求k. 6.设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点. (1)用t表示点B到点F的距离; (2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积; (3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.

相关文档
相关文档 最新文档