文档库 最新最全的文档下载
当前位置:文档库 › 一种伺服驱动系统检测平台

一种伺服驱动系统检测平台

一种伺服驱动系统检测平台
一种伺服驱动系统检测平台

伺服驱动系统设计方案教学总结

伺服驱动系统设计方案 伺服电机的原理: 伺服的基本概念是准确、精确、快速定位。与普通电机一样,交流伺服电机也由定子和转子构成。定子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间相差90°电角度。伺服电机内部的转子是永磁铁,驱动控制的u/V/W三相电形成电磁场转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度{线数)。 伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降作用:伺服电机,可使控制速度,位置精度非常准确。 交流伺服电机的工作原理和单相感应电动机无本质上的差异。但是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓“自转”现象,即无控制信号时,它不应转动,特别是当它已在转动时,如果控制信号消失,它应能立即停止转动。而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 图3 伺服电动机的转矩特性

伺服系统概要

衡量伺服系统性能的主要指标有频带宽度和精度。 频带宽度简称带宽,由系统频率响应特性来规定,反映伺服系统的跟踪的快速性。带宽越大,快速性越好。伺服系统的带宽主要受控制对象和执行机构的惯性的限制。惯性越大,带宽越窄。一般伺服系统的带宽小于15HZ,大型设备伺服系统的带宽则在1~2HZ以下。自20世纪70年代以来,由于发展了力矩电机及高灵敏度测速机,使伺服系统实现了直接驱动,革除或减小了齿隙和弹性变形等非线性因素,使带宽达到50HZ,并成功应用在远程导弹、人造卫星、精密指挥仪等场所。 伺服系统的精度主要决定于所用的测量元件的精度。因此,在伺服系统中必须采用高精度的测量元件,如精密电位器、自整角机、旋转变压器、光电编码器、光栅、磁栅和球栅等。此外,也可采取附加措施来提高系统的精度,例如将测量元件(如自整角机)的测量轴通过减速器与转轴相连,使转轴的转角得到放大,来提高相对测量精度。采用这种方案的伺服系统称为精测粗测系统或双通道系统。通过减速器与转轴啮合的测角线路称精读数通道,直接取自转轴的测角线路称粗读数通道。 伺服系统按所用驱动元件的类型可分为机电伺服系统、液压伺服系统和气动伺服系统。 最基本的伺服系统包括伺服执行元件(电机、液压缸等)、反馈元件和伺服驱动器,但是要让这个系统运转起来还需要一个上位机构:PLC、专门的运动控制卡、工控机+PCI卡、以便于给伺服驱动器发送指令。 在一个运动控制系统中“上位控制”和“执行机构”是系统中举足轻重的两个组成部分。“执行机构”部分一般不外乎:步进电机,伺服电机,以及直流电机等。它们作为执行机构,带动刀具或工件动作,我们称之为“四肢”;“上位控制”单元的方案主要有四种:单片机系统,专业运动控制PLC,PC+运动控制卡,专用控制系统。“上位控制”是“指挥”执行机构动作的,我们也称之为“大脑”。随着PC(Personal Computer)的发展和普及,采用PC+运动控制卡作为上位控制将是运动控制系统的一个主要发展趋势。这种方案可充分利用计算机资源,用于运动过程、运动轨迹都比较复杂,且柔性比较强的机器和设备。从用户使用的角度来看,基于PC机的运动控制卡主要是功能上的差别:硬件接口(输入/输出信号的种类、性能)和软件接口(运动控制函数库的功能函数)。按信号类型一般分为:数字卡和模拟卡。数字卡一般用于控制步进电机和伺服电机,模拟卡用于控制模拟式的伺服电机;数字卡可分为步进卡和伺服卡,步进卡的脉冲输出频率一般较低(几百K左右的频率),适用于控制步进电机;伺服卡的脉冲输出频率较高(可达几兆的频率),能够满足对伺服电机的控制。目前随着数字式伺服电机的发展和普及,数字卡逐渐成为运动控制卡的主流。 伺服驱动器是用来控制伺服电机的一种控制器,属于伺服系统的一部分,其作用类似于变频器作用于普通交流马达。目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法、数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。功率驱动单元首先通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。经过整流好的三相电或市电,再通过三相正弦PWM电压型逆变器变频来驱动三相永磁式同步交流伺服电机。功率驱动单元的整个过程可以简单的说就是AC-DC-AC 的过程。整流单元(AC-DC)主要的拓扑电路是三相全桥不控整流电路。伺服驱动器一般可以采用位置、速度和力矩三种控制方式,主要应用于高精度的定位系统,目前是传动技术的

交流伺服驱动器用户手册2

1.SA系列交流伺服简介 SA系列数字式交流永磁同步电机伺服驱动器(以下简称伺服驱动器)采用了国际上先进的DSP 芯片(数字信号处理器)对电机的位置、转速、转矩进行数字化智能控制。该伺服驱动器不仅可靠性高、性能优异,而且可以通过设定用户参数,对系统进行任意组态。例如:可以组成位置控制系统、速度控制系统、转矩控制系统等。 1.1SA系列交流伺服的使用方法 1.1.1 速度控制方式 速度控制方式的伺服驱动器标准使用方法,如下图所示: 如上图所示,在上位机侧组成位置控制环。在上位机中,进行位置指令和位置反馈的比较操作,即进行位置环调节的计算,输出模拟速度指令给伺服驱动器。 伺服驱动器接收上位机的模拟速度指令,进行速度环控制。 在这种控制方式下,上位机的位置反馈可以是伺服驱动器输出的电机编码器信号,也可以是安装在机械上的直线位置测量信号(例如光栅尺、磁栅尺、感应同步器等),即可以组成位置全闭环系统。 1.1.2 位置控制方式 位置控制方式的伺服驱动器标准使用方法,如下图所示: 1

上位机进行完定位及插补计算后,将位置指令以脉冲串的形式传送给伺服驱动器,由伺服驱动器进行位置指令和位置反馈的比较操作,即进行位置环调节的计算。这种形式的伺服驱动器包含了位置控制环。 作为位置指令的脉冲串,可以是下面的任一种,在伺服驱动器侧可以通过设定用户常数进行选择: 1)符号位+脉冲列 2)具有90°相位差的两相脉冲序列 3)正转脉冲序列+ 反转脉冲序列 1.2 SA系列交流伺服驱动器的内置功能 SA系列伺服控制器的内置功能说明如下: 1)控制方式转换 通过数字操作器设定用户常数,可以使伺服驱动器工作于位置控制方式或速度控制方式。为了防止误操作,在伺服电机运行时(伺服使能状态),不能改变控制方式。2)再生能量处理功能 伺服驱动器内置再生能量处理电路和再生制动电阻。当伺服电机起制动频繁或负载惯量过大时,则必须使用外置再生制动电阻。 3)能耗制动功能 在伺服驱动器断电、伺服驱动器故障时,电机处于不受控状态。能耗制动功能可以使电机处于能耗制动状态,使电机马上停止,避免机械部件受损。 4)双电子齿轮功能 为满足机械加工的需要,伺服驱动器内置有双电子齿轮功能,即通过外部触点信号来切换第一电子齿轮比和第二电子齿轮比。 5)位置信号输出功能 伺服驱动器将光电编码器信号经长线驱动器输出,可以用作上位机的位置反馈信号。 6)内部速度指令功能 伺服驱动器可以通过外部接点选择内部预置的四种速度。

交流伺服电机及驱动系统地发展与应用

Abstract 简要介绍交流伺服电机及驱动系统的发展与应用。目前对同步伺服电动机的控制方法 多采用自适应控制和磁场定向矢量控制。随着应用场合与控制对象的不同采用不同的 控制策略。DSP控制技术的应用使现代控制理论中先进的、复杂的算法得以实现。现今,随着电机、功率器件、传感器、微电子器件及控制理论控制算法的不断发展,经历了 几代的应用结合,伺服驱动装置正朝着交流化、数字化、大功率方向 关键词:交流伺服电机;驱动系统;特点;发展;应用 引言 近年来随着物流仓储设备的快速发展,有很多物流仓储设备都选用多功能工业门机作 为大宗货物进出仓库的阀门。工业门机具有快速、全自动、安全、可靠、多功能等多 种优点,可以高效便捷的使货物进出仓库,保证仓库内的环境清洁和安全,成为先进物 流仓储设备的重要组成部分。伺服驱动控制系统是80年代国际上崛起的高性能产品, 具有良好的控制性能和较高的动态品质,并以调速范围广、稳速精度高、动态响应性 能好、使用简便等优越性能,迅速成为伺服系统发展的必然趋势.因此研究具有必要性. 前言 伺服驱动技术作为数控机床、工业机器人及其它产业机械控制的关键技术之一,在国 内外普遍受到关注。在20世纪最后10年间,微处理器(特别是数字信号处理器——DSP)技术、电力电子技术、网络技术、控制技术的发展为伺服驱动技术的进一步发展 奠定了良好的基础。如果说20世纪80年代是交流伺服驱动技术取代直流伺服驱动技 术的话,那么,20世纪90年代则是伺服驱动系统实现全数字化、智能化、网络化的 10年。这一点在一些工业发达国家尤为明显。 1交流伺服电机及驱动系统概述

1.1伺服驱动系统的概述 伺服驱动系统是CNC装置和机床的联系环节。CNC装置发出的控制信息,通过伺服驱动系统,转换成坐标轴的运动,完成程序所规定的操作。伺服驱动系统是数控机床的重要组成部分。伺服驱动系统的作用归纳如下: 1.1.1伺服驱动系统能放大控制信号,具有输出功率的能力; 1.1.2伺服驱动系统根据CNC装置发出的控制信息对机床移动部件的位置和速度进行控制。 1.2交流伺服电机及驱动系统的特点 1.2.1交流伺服电机特点 a精度:实现了位置,速度和力矩的闭环控制;克服了步进电机失步的问题; b、转速:高速性能好,一般额定转速能达到2000~3000转; c、适应性:抗过载能力强,能承受三倍于额定转矩的负载,对有瞬间负载波动和要求快速起动的场合特别适用; d、稳定:低速运行平稳,低速运行时不会产生类似于步进电机的步进运行现象。适用于有高速响应要求的场合; f、及时性:电机加减速的动态相应时间短,一般在几十毫秒之内; e、舒适性:发热和噪音明显降低。 简单点说就是:我们平常看到的那种普通的电机,断电后它还会因为自身的惯性再转一会儿,然后停下。

伺服调试步骤及注意点

伺服调试步骤和注意点 用途:介绍FANUC系统伺服调试的方法及步骤

文件使用的限制以及注意事项等 文件版本更新的纪录 修订日期版本号文件名称修订内容修订人2009年11月 1.0 伺服调试步骤和注意点首次发布徐少华

目录 1、伺服调试概述 (2) 1.1伺服优化的对象 (2) 1.2伺服优化的方法 (2) 2、手动一键设定one shot (3) 2.1、one shot功能介绍 (3) 2.2、参数设定支持画面的调用 (3) 2.3手动加入滤波器的方法 (5) 2.4伺服增益的自动调整 (5) 2.5典型加工形状的测试 (7) 3、伺服软件自动调整导航器 (8) 3.1自动调整导航器介绍 (8) 3.2导航器调整具体步骤: (9) 4、servo guide手动调整 (14) 4.1伺服三个环(电流环、速度环、位置环)调整 (14) 4.1.1、电流环的调整:设定HRV控制模式 (14) 4.1.2、速度环的调整:合理提高速度环增益(100%~600%) (16) 4.1.3、位置环的调整:一步到位设定位置环增益为4000~8000 (27) 4.2加减速时间常数的调整 (28) 4.2.1加减速时间常数的分类 (28) 4.2.2一般控制(不使用高速高精度功能)加减速时间常数的调整 (30) 4.2.3高速高精度模式下时间常数的确认 (34) 5、典型加工形状调整、检测 (38) 5.1圆的调整 (38) 5.1.1圆度的调整 (38) 5.1.2圆大小调整 (39) 5.1.3圆象限的调整 (39) 5.2方的调整 (50) 5.3、1/4圆弧的调整 (52)

伺服电机的调试步骤

伺服电机的调试步骤 1、初始化参数 在接线之前,先初始化参数。在控制卡上:选好控制方式;将PID参数清零;让控制卡上电时默认使能信号关闭;将此状态保存,确保控制卡再次上电时即为此状态。在伺服电机上:设置控制方式;设置使能由外部控制;编码器信号输出的齿轮比;设置控制信号与电机转速的比例关系。一般来说,建议使伺服工作中的最大设计转速对应9V的控制电压。比如,松下是设置1V电压对应的转速,出厂值为500,如果你只准备让电机在1000转以下工作,那么,将这个参数设置为111。 2、接线 将控制卡断电,连接控制卡与伺服之间的信号线。以下的线是必须要接的:控制卡的模拟量输出线、使能信号线、伺服输出的编码器信号线。复查接线没有错误后,电机和控制卡(以及PC)上电。此时电机应该不动,而且可以用外力轻松转动,如果不是这样,检查使能信号的设置与接线。用外力转动电机,检查控制卡是否可以正确检测到电机位置的变化,否则检查编码器信号的接线和设置3、试方向 对于一个闭环控制系统,如果反馈信号的方向不正确,后果肯定是灾难性的。通过控制卡打开伺服的使能信号。这是伺服应该以一个较低的速度转动,这就是传说中的“零漂”。一般控制卡上都会有抑制零漂的指令或参数。使用这个指令或参数,看电机的转速和方向是否可以通过这个指令(参数)控制。如果不能控制,检查模拟量接线及控制方式的参数设置。确认给出正数,电机正转,编码器计数增加;给出负数,电机反转转,编码器计数减小。如果电机带有负载,行程有限,不要采用这种方式。测试不要给过大的电压,建议在1V以下。如果方向不一致,可以修改控制卡或电机上的参数,使其一致。 4、抑制零漂 在闭环控制过程中,零漂的存在会对控制效果有一定的影响,最好将其抑制住。使用控制卡或伺服上抑制零飘的参数,仔细调整,使电机的转速趋近于零。由于零漂本身也有一定的随机性,所以,不必要求电机转速绝对为零。 5、建立闭环控制 再次通过控制卡将伺服使能信号放开,在控制卡上输入一个较小的比例增益,至于多大算较小,这只能凭感觉了,如果实在不放心,就输入控制卡能允许的最小值。将控制卡和伺服的使能信号打开。这时,电机应该已经能够按照运动指令大致做出动作了。 6、调整闭环参数 细调控制参数,确保电机按照控制卡的指令运动,这是必须要做的工作,而这部分工作,更多的是经验,这里只能从略了。

伺服驱动系统的原理与种类

机电一体化系统设计基础课程教学辅导 第四章:伺服驱动系统的原理与种类 一、教学建议 ●通过文字教材掌握伺服驱动的基本原理,了解机电一体化伺服驱动系统的种类及其 特性。 ●流媒体课件第15讲介绍了机电一体化系统伺服驱动的基本原理、种类及其特性; ●在学习的过程中,如果有学习的心得和体会,请在课程论坛上和大家分享;如果有 什么疑惑,也可以在课程论坛寻找帮助。 二、教学要求 1.掌握伺服驱动的基本原理 一般来说,伺服系统组成框图如图1所示。 图1 伺服系统组成框图 (1)控制器:伺服系统中控制器的主要任务是根据输入信号和反馈信号决定控制策略,控制器通常由电子线路或计算机组成。 (2)功率放大器:伺服系统中功率放大器的作用是将信号进行放大,并用来驱动执行机构完成某种操作,功率放大装置主要由各种电力电子器件组成。 (3)执行机构:执行机构主要由伺服电动机或液压伺服机构和机械传动装置等组成。 (4)检测装置:检测装置的任务是测量被控制量,实现反馈控制。无论采用何种控制方案,系统的控制精度总是低于检测装置的精度,因此要求检测装置精度高、线性度好、可靠性高、响应快。 2.了解机电一体化伺服驱动系统的种类及其特性 (1)根据使用能量的不同,可以分为电气式、液压式和气压式等几种类型,特性如表1所示。 表1 伺服驱动系统的特点及优缺点 种类特点优点缺点 电 气 式 可使用普通电源;信号与动力 的传送方向相同;有交流和直 流之别,须注意电压之大小 操作简便;编程容易;能实现定 位伺服;响应快、易与CPU接 口;体积小,动力较大;无污染 瞬时输出功率大,但过载能力差,由于某 种原因而卡住时,会引起烧毁事故,易受 外部噪声影响 气 压 式 空气压力源的压力为(5~7) ×105Pa;要求操作人员技术 熟练 气源方便、成本低;无泄漏污染; 速度快、操作比较简单 功率小,体积大,动作不够平稳;不易小 型化;远距离传输困难;工作噪声大、难 于伺服 液 压 式 要求操作人员技术熟练;液压 源的压力为(20~80)×105Pa 输出功率大,速度快,动作平 稳,可实现定位伺服 设备难于小型化;液压源或液压油要求(杂 质、温度、测量、质量)严格;易泄漏且 有污染

在伺服系统选型及调试中,常会碰到惯量问题

在伺服系统选型及调试中,常会碰到惯量问题 问题其具体表现为: 在伺服系统选型时,除考虑电机的扭矩和额定速度等等因素外,我们还需要先计算得知机械系统换算到电机轴的惯量,再根据机械的实际动作要求及加工件质量要求来具体选择具有合适惯量大小的电机;在调试时,正确设定惯量比参数是充分发挥机械及伺服系统最佳效能的前提。此点在要求高速高精度的系统上表现尤为突出,这样,就有了惯量匹配的问题。 一、什么是“惯量匹配”? 1、根据牛顿第二定律:“进给系统所需力矩T = 系统传动惯量J ×角加速度θ角”。加速度θ影响系统的动态特性,θ越小,则由控制器发出指令到系统执行完毕的时间越长,系统反应越慢。如果θ变化,则系统反应将忽快忽慢,影响加工精度。由于马达选定后最大输出T值不变,如果希望θ的变化小,则J应该尽量小。 2、进给轴的总惯量“J=伺服电机的旋转惯性动量JM +电机轴换算的负载惯性动量JL。负载惯量JL由(以平面金切机床为例)工作台及上面装的夹具和工件、螺杆、联轴器等直线和旋转运动件的惯量折合到马达轴上的惯量组成。JM为伺服电机转子惯量,伺服电机选定后,此值就为定值,而JL则随工件等负载改变而变化。如果希望J变化率小些,则最好使JL所占比例小些。这就是通俗意义上的“惯量匹配”。 二、“惯量匹配”如何确定? 传动惯量对伺服系统的精度,稳定性,动态响应都有影响。惯量大,系统的机械常数大,响应慢,会使系统的固有频率下降,容易产生谐振,因而限制了伺服带宽,影响了伺服精度和响应速度,惯量的适当增大只有在改善低速爬行时有利,因此,机械设计时在不影响系统刚度的条件下,应尽量减小惯量。 衡量机械系统的动态特性时,惯量越小,系统的动态特性反应越好;惯量越大,马达的负载也就越大,越难控制,但机械系统的惯量需和马达惯量相匹配才行。不同的机构,对惯量匹配原则有不同的选择,且有不同的作用表现。不同的机构动作及加工质量要求对JL与JM大小关系有不同的要求,但大多要求JL与JM的比值小于十以内。一句话,惯性匹配的确定需要根据机械的工艺特点及加工质量要求来确定。对于基础金属切削机床,对于伺服电机来说,一般负载惯量建议应小于电机惯量的5倍。 惯量匹配对于电机选型很重要的,同样功率的电机,有些品牌有分轻惯量,中惯量,或大惯量。其实负载惯量最好还是用公式计算出来。常见的形体惯量计算公式在以前学的书里都有现成的(可以去查机械设计手册)。我们曾经做过一试验,在一伺服电机的轴伸,加一大的惯量盘准备用来做测试,结果是:伺服电机低速时停不住,摇头摆尾,不停地振荡怎么也停不下来。后来改为:在两个伺服电机的轴伸对接加装联轴器,对其中一个伺服电机通电,作为动力即主动,另一个伺服电机作为从动,即做为一个小负载。原来那个摇头摆尾的伺服电机,启动、运动、停止,运转一切正常! 三、惯量的理论计算的公式 惯量计算都有公式,至于多重负载,比如齿轮又带齿轮,或涡轮蜗杆传动,只要分别算出各转动件惯量然后相加即是系统惯量,电机选型时建议根椐不同的电机进行选配。负

伺服控制系统(设计)

第一章伺服系统概述 伺服系统是以机械参数为控制对象的自动控制系统。在伺服系统中,输出量能够自动、快速、准确地跟随输入量的变化,因此又称之为随动系统或自动跟踪系统。机械参数主要包括位移、角度、力、转矩、速度和加速度。 近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及电机制造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步电机、感应电机为伺服电机的新一代交流伺服系统。 目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路制造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性制造系统以及自动化生产线等领域中的应用也迅速发展。 1.1伺服系统的基本概念 1.1.1伺服系统的定义 “伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行停止。 伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵活方便的控制。

1.1.2伺服系统的组成 伺服系统是具有反馈的闭环自动控制系统。它由检测部分、误差放大部分、部分及被控对象组成。 1.1.3伺服系统性能的基本要求 1)精度高。伺服系统的精度是指输出量能复现出输入量的精确程度。 2)稳定性好。稳定是指系统在给定输入或外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。 3)快速响应。响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。 4)调速范围宽。调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。 5)低速大转矩。在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。 6)能够频繁的启动、制动以及正反转切换。 1.1.4 伺服系统的种类 伺服系统按照伺服驱动机的不同可分为电气式、液压式和气动式三种;按照功能的不同可分为计量伺服和功率伺服系统,模拟伺服和功率伺服系统,位置

伺服驱动系统设计方案

?、伸缩缝损坏现状 伺服驱动系统设计方案 伺服电机的原理: 伺服的基本概念是准确、精确.快速定位。与普通电机一样,交流伺服电机也由定子和转子构成。;^^子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间柑差90°电角度。 伺服电机内部的转子是永磁铁,驱动控制的U/V/W三相电形成电磁场转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反惯值与目标值进行比较,调整转子转动的角度0伺服电机的精度决世于编码器的精度{线数)。 伺服电动机又称执行电动机?在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出.其主要特点是,当信号电压为零时无自转现彖.转速随着转矩的增加而匀速下降作用:伺服电机/可使控制速度,位置精度非常准确。 交流伺服电机的工作原理和单相感应电动机无本质上的差异。但是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓“自转"现象,即无控制信号时,它不应转动,特别是当它已在转动时.如果控制信号消失,它应能立即停止转动。而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点: lx起动转矩大 由于转子电阻大,苴转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2 相比,有明显的区别。它可使临界转差率so>r这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩0因此,当;^子一有控制电压,转子立即转动,即具有起动快、灵敏度髙的特点。

伺服系统调试心得体

伺服系统调试心得体 (一)电机问题 (1)电动机窜动:在进给时出现窜动现象,测速信号不稳定,如编码器有裂纹;接线端子 接触不良,如螺钉松动等;当窜动发生在由正方向运动与反方向运动的换向瞬间时,一般是 由于进给传动链的反向问隙或伺服驱动增益过大所致; (2)电动机爬行:大多发生在起动加速段或低速进给时,一般是由于进给传动链的润滑 状态不良,伺服系统增益低及外加负载过大等因素所致。尤其要注意的是,伺服电动机和滚珠丝杠联接用的联轴器,由于连接松动或联轴器本身的缺陷,如裂纹等,造成滚珠丝杠与伺服电动机的转动不同步,从而使进给运动忽快忽慢; (3)电动机振动:机床高速运行时,可能产生振动,这时就会产生过流报警。机床振动 问题一般属于速度问题,所以应寻找速度环问题; (4)电动机转矩降低:伺服电动机从额定堵转转矩到高速运转时,发现转矩会突然降低, 这时因为电动机绕组的散热损坏和机械部分发热引起的。高速时,电动机温升变大,因此,正确使用伺服电动机前一定要对电动机的负载进行验算; (5)电动机位置误差:当伺服轴运动超过位置允差范围时(KNDSD100出厂标准设置 PA17 : 400 ,位置超差检测范围),伺服驱动器就会出现“ 4”号位置超差报警。主要原因有:系统设定的允差范围小;伺服系统增益设置不当;位置检测装置有污染;进给传动链累计误差过大等; (6)电动机不转:数控系统到伺服驱动器除了联结脉冲+方向信号外,还有使能控制信 号,一般为DC+24 V 继电器线圈电压。伺服电动机不转,常用诊断方法有:检查数控系统是否有脉冲信号 输出;检查使能信号是否接通;通过液晶屏观测系统输入/出状态是否满足 进给轴的起动条件;对带电磁制动器的伺服电动机确认制动已经打开;驱动器有故障;伺服电动机有故障;伺服电动机和滚珠丝杠联结联轴节失效或键脱开等。 (二)增益问题首先,机械本身的结构对伺服增益的调整有重要影响。如

三协伺服电机的调试步骤(精选)

三协伺服电机的调试步骤(精选) 1、初始化参数 在接线之前,先初始化参数。[2] 在控制卡上:选好控制方式;将PID参数清零;让控制卡上电时默认使能信号关闭;将此状态保存,确保控制卡再次上电时即为此状态。 在三协伺服电机上:设置控制方式;设置使能由外部控制;编码器信号输出的齿轮比;设置控制信号与电机转速的比例关系。一般来说,建议使伺服工作中的最大设计转速对应9V的控制电压。 2、接线 将控制卡断电,连接控制卡与伺服之间的信号线。以下的线是必须要接的:控制卡的模拟量输出线、使能信号线、伺服输出的编码器信号线。复查接线没有错误后,电机和控制卡(以及PC)上电。此时电机应该不动,而且可以用外力轻松转动,如果不是这样,检查使能信号的设置与接线。用外力转动电机,检查控制卡是否可以正确检测到电机位置的变化,否则检查编码器信号的接线和设置 3、试方向 对于一个闭环控制系统,如果反馈信号的方向不正确,后果肯定是灾难性的。通过控制卡打开伺服的使能信号。这是伺服应该以一个较低的速度转动,这就是传说中的“零漂”。一般控制卡上都会有抑制零漂的指令或参数。使用这个指令或参数,看电机的转速和方向是否可以通过这个指令(参数)控制。如果不能控制,检查模拟量接线及控制方式的参数设置。确认给出正数,电机正转,编码器计数增加;给出负数,电机反转转,编码器计数减小。如果电机带有负载,行程有限,不要采用这种方式。测试不要给过大的电压,建议在1V以下。如果方向不一致,可以修改控制卡或电机上的参数,使其一致。 4、抑制零漂 在闭环控制过程中,零漂的存在会对控制效果有一定的影响,最好将其抑制住。使用控制卡或伺服上抑制零飘的参数,仔细调整,使电机的转速趋近于零。由于零漂本身也有一定的随机性,所以,不必要求电机转速绝对为零。 5、建立闭环控制 再次通过控制卡将伺服使能信号放开,在控制卡上输入一个较小的比例增益,至于多大

伺服电机的一般调试步骤

运动控制器以模拟量信号控制伺服电机的一般调试步骤 运动控制器控制伺服电机通常采用两种指令方式: 1,数字脉冲这种方式与步进电机的控制方式类似,运动控制器给伺服驱动器发送“脉冲/方向”或“CW/CCW”类型的脉冲指令信号;伺服驱动器工作在位置控制模式,位置闭环由伺服驱动器完成。日系伺服和国产伺服产品大都采用这种模式。其优点是系统调试简单,不易产生干扰,但缺点是伺服系统响应稍慢。 2,模拟信号这种方式下,运动控制系统给伺服驱动器发送+/-10 V的模拟电压指令,同时接收来自电机编码器或直线光栅等位置检测元件的位置反馈信号;伺服驱动器工作在速度控制模式,位置闭环由运动控制器完成。欧美的伺服产品大多采用这种工作模式。其优点是伺服响应快,但缺点是对现场干扰较敏感,调试稍复杂。 以下介绍运动控制器以模拟量信号控制伺服电机的一般调试步骤:1、初始化参数 在接线之前,先初始化参数。 在控制器上:选好控制方式;将PID参数清零;让控制器上电时默认使能信号关闭;将此状态保存,确保控制器再次上电时即为此状态。在伺服驱动器上:设置控制方式;设置使能由外部控制;编码器信号输出的齿轮比;设置控制信号与电机转速的比例关系。一般来说,建议使伺服工作中的最大设计转速对应9V的控制电压。比如,松下MI NAS A4系列伺服驱动器的速度指令增益参数Pr50用来设置1V指令电压对应的电机转速(出厂值为500),如果你只准备让电机在100

0转以下工作,那么,将这个参数设置为111。 2、接线 将控制器断电,连接控制器与伺服之间的信号线。以下的连线是必须的:控制器的模拟量输出线、使能信号线、伺服输出的编码器信号线。复查接线没有错误后,将电机和控制器上电。此时电机应该不动,而且可以用外力轻松转动,如果不是这样,检查使能信号的设置与接线。用外力转动电机,检查控制器是否可以正确检测到电机位置的变化,否则检查编码器信号的接线和设置 3、试方向 对于一个闭环控制系统,如果反馈信号的方向不正确,后果肯定是灾难性的。通过控制器打开伺服的使能信号。此时伺服电机应该以一个较低的速度转动,这就是所谓的“零漂”。一般控制器上都会有抑制零漂的指令或参数。使用这个指令或参数,看电机的转速和方向是否可以通过这个指令(参数)控制。如果不能控制,检查模拟量接线及控制方式的参数设置。确认给出正数,电机正转,编码器计数增加;给出负数,电机反转转,编码器计数减小。如果电机带有负载,行程有限,不要采用这种方式。测试不要给过大的电压,建议在1V以下。如果方向不一致,可以修改控制器或电机上的参数,使其一致。 4、抑制零漂 在闭环控制过程中,零漂的存在会对控制效果有一定的影响,最好将其抑制住。使用控制器或伺服上抑制零飘的参数,仔细调整,使电机的转速趋近于零。由于零漂本身也有一定的随机性,所以,不必要求

伺服控制系统应用课程

伺服控制系统应用 一、培训时间:4天、老师边讲、学员边练习,每个学员自 带电脑 二、课程大纲 1 伺服电动机的结构和工作原理 2 伺服驱动器的结构和工作原理 3 伺服驱动器主电路的接线 4 伺服驱动器位置控制模式的接线 5 伺服驱动器速度控制模式的接线 6 伺服驱动器转矩控制模式的接线 7 伺服放大器控制端子内部原理图 8 伺服放大器各端子的功能 【主办单位】中国电子标准协会 【咨询热线】0 7 5 5 – 2 6 5 0 6 7 5 7 1 3 7 9 8 4 7 2 9 3 6 李生 【报名邮箱】martin#https://www.wendangku.net/doc/8d13322534.html, (请将#换成@) 9 伺服放大器和外围设备接线举例 10 伺服放大器基本参数的设置 11 利用PLC对伺服电机进行7段速的控制(应用案例举例) 12 伺服电机在速度控制模式下对工作台进行往返的控制(应用案例举例) 13 伺服电机转矩控制模式举例(应用案例举例) 14 伺服电机位置和速度复合模式的控制(应用案例举例) 三、老师介绍 程老师 男,高级技师。有着多年的职业教育经验,主要研究是自动控制技术,擅长三菱、西门子系列PLC、变频器、伺服等应用。2009年广州市人社局授予“广州市技术能手”称号。2011年公派德国学习交流,学习德国先进职教理念。2013年广州市人设局授予“广州市机电一体化专业带头人”。2014年7月,被广州市人设局派往清华大学进修学习。 本人在工控应用领域,教学成果显著,从2008年开始开发系列的视频教程,这些教程由浅到深,通俗易懂,因此在现在工控应用领域有一定的影响力,讲解的视频教程有三菱FX系列,三菱Q系列,西门子200系列,西门子300/400系列共20多个教程。

伺服驱动系统设计方案

伺服驱动系统设计 方案

伺服驱动系统设计方案 伺服电机的原理: 伺服的基本概念是准确、精确、快速定位。与普通电机一样,交流伺服电机也由定子和转子构成。定子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间相差90°电角度。伺服电机内部的转子是永磁铁,驱动控制的u/V/W三相电形成电磁场转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度{线数)。 伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降作用:伺服电机,可使控制速度,位置精度非常准确。 交流伺服电机的工作原理和单相感应电动机无本质上的差异。可是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓“自转”现象,即无控制信号时,它不应转动,特别是当它已在转动时,如果控制信号消失,它应能立即停止转动。而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。 交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,

但前者的转子电阻比后者大得多,因此伺服电动机与单机异步电动机相比,有三个显著特点: 1、起动转矩大 由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。它可使临界转差率S0>1,这样不但使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。 图3 伺服电动机的转矩特性 2、运行范围较宽 如图3所示,较差率S在0到1的范围内伺服电动机都能稳定运转。 3、无自转现象 正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)如图4所示,与普通的单相异步电动机的转矩特性

伺服电机和伺服驱动器的使用介绍

伺服电机和伺服驱动器的使用介绍 一、伺服电机? 伺服驱动器的控制原理 伺服电机和伺服驱动器是一个有机的整体,伺服电动机的运行性能是电动机及其驱动器二者配合所反映的综合效果。 1、永磁式同步伺服电动机的基本结构 图1为一台8极的永磁式同步伺服电动机结构截面图,其定子为硅钢片叠成的铁芯和三相绕组,转子是由高矫顽力稀土磁性材料(例如钕铁錋)制成的磁极。为了检测转子磁极的位置,在电动机非负载端的端盖外面还安装上光电编码器。驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 图1 永磁式同步伺服电动机的结构 图2 所示为一个两极的永磁式同步电机工作示意图,当定子绕组通上交流电源后,就产生一旋转磁场,在图中以一对旋转磁极N、S表示。当定子磁场以同步速n1逆时针方向旋转时,根据异性相吸的原理,定子旋转磁极就吸引转子磁极,带动转子一起旋转,转子的旋转速度与定子磁场的旋转速度(同步转速n1)相等。当电机转子上的负载转矩增大时,定、转子磁极轴线间的夹角θ就相应增大,导致穿过各定子绕组平面法线方向的磁通量减少,定子绕组感应电动势随之减小,而使定子电流增大,直到恢复电源电压与定子绕组感应电动势的平衡。这时电磁转矩也相应增大,最后达到新的稳定状态,定、转子磁极轴线间的夹角θ称为功率角。虽然夹角θ会随负载的变化而改变,但只要负载不超过某一极限,转子就始终跟着定子旋转磁场以同步转速n1转动,即转子的转速为: (1-1)

图 2 永磁同步电动机的工作原理 电磁转矩与定子电流大小的关系并不是一个线性关系。事实上,只有定子旋转磁极对转子磁极的切向吸力才能产生带动转子旋转的电磁力矩。因此,可把定子电流所产生的磁势分解为两个方向的分量,沿着转子磁极方向的为直轴(或称d轴)分量,与转子磁极方向正交的为交轴(或称q轴)分量。显然,只有q轴分量才能产生电磁转矩。 由此可见,不能简单地通过调节定子电流来控制电磁转矩,而是要根据定、转子磁极轴线间的夹角θ确定定子电流磁势的q轴和d轴分量的方向和幅值,进而分别对q 轴分量和d轴分量加以控制,才能实现电磁转矩的控制。这种按励磁磁场方向对定子电流磁势定向再行控制的方法称为“磁场定向”的矢量控制。 2、位置控制模式下的伺服系统是一个三闭环控制系统,两个内环分别是电流环和速度环。 图 3 ? 稳态误差接近为零; ? 动态:在偏差信号作用下驱动电机加速或减速。

现代交流伺服系统原理及控制方法

现代交流伺服系统原理及控制方法 现代交流伺服系统,经历了从模拟到数字化的转变,数字控制环已经无处不在,比如换相、电流、速度和位置控制;采用新型功率半导体器件、高性能DSP加FPGA、以及伺服专用模块(比如IR推出的伺服控制专用引擎)也不足为奇。本文主要介绍了现代交流伺服系统原理及控制方法,具体的跟随小编一起来了解一下。 现代交流伺服系统原理交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口单元、伺服电动机及相应的反馈检测器件组成,其结构组成如图1所示。其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等等。我们的交流永磁同步驱动器其集先进的控制技术和控制策略为一体,使其非常适用于高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化是传统的驱动系统所不可比拟的。 目前主流的伺服驱动器均采用数字信号处理器(dsp)作为控制核心,其优点是可以实现比较复杂的控制算法,事项数字化、网络化和智能化。功率器件普遍采用以智能功率模块(ipm)为核心设计的驱动电路,ipm内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。 伺服驱动器大体可以划分为功能比较独立的功率板和控制板两个模块。如图2所示功率板(驱动板)是强电部,分其中包括两个单元,一是功率驱动单元ipm用于电机的驱动,二是开关电源单元为整个系统提供数字和模拟电源。 控制板是弱电部分,是电机的控制核心也是伺服驱动器技术核心控制算法的运行载体。控制板通过相应的算法输出pwm信号,作为驱动电路的驱动信号,来改逆变器的输出功率,以达到控制三相永磁式同步交流伺服电机的目的。 功率驱动单元 功率驱动单元首先通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的

丰田普锐斯电机及驱动控制系统解析word资料6页

丰田普锐斯电机及驱动控制系统解析 作为全球最成功的环保车型,丰田普锐斯(PRIUS)早已成为油电混合动力车型中的全球销量冠军,即使在我们的身边,也经常可以见到它们的身影。目前,在国内生产的丰田普锐斯(PRIUS)是采用丰田第二代混合动力系统,集发动机和电动机组合而成的并行混合动力车(图1)。 丰田第二代混合动力系统(THS-Ⅱ),可以根据车辆行驶状态,灵活地使用2种动力源,并且弥补2种动力源之间不足之处,从而降低燃油消耗,减少有害气体排放,发挥车辆的最大动力。由于其THS-Ⅱ电机及驱动系统结构复杂,技术先进,本文将为大家详细介绍该系统的结构及基本原理,以帮助读者更进一步了解THS-Ⅱ系统。 一、THS-Ⅱ电机及驱动控制系统的特点 1.在电动机和发电机之间采用AC500V高压电路传输,可以极大地降低动力传输中电能损耗,高效地传输动力。 2.采用大功率电机输出,提高电机的利用率。当发动机工作效率低时,此系统可以将发动机停机,车辆依靠电机动力行驶。 3.极大地增加了减速和制动过程中的能量回收,提高能量的利用率。 二、THS-Ⅱ电机及驱动系统基本组成 1.HV蓄电池:由168个单格镍氢电瓶(1.2V×6个电瓶×28个模块)组成,额定电压DC20 1.6V,安装在车辆后备厢内。在车辆起步、加速和上坡时,HV蓄电池将电能提供给驱动电机。 2.混合动力变速驱动桥:混合动力变速驱动桥由发电机MG1、驱动电机MG2和行星齿轮组成(图2)。

3.变频器:由增压转换器、逆变整流器、直流转换器、空调变频器组成。 (1)增压转换器:将HV蓄电池DC201.6V电压增压到DC500V(反之从DC500V 降压到DC201.6V)。 (2)逆变整流器:将DC500V转换成AC500V,给电动机MG2供电。反之将AC500V转换成DC500V,经降压后,给HV蓄电池充电。 (3)直流转换器:将HV蓄电池DC201.6V降为DC12V,为车身电器供电,同时为备用蓄电池充电。 (4)空调变频器:将HV蓄电池DC201.6V转换成AC201.6V交流电为空调系统中电动变频压缩机供电。 4.HV控制ECU采用32位计算机,接收来自传感器和ECU(发动机ECU、HV蓄电池ECU、制动防滑控制ECU、电动转向ECU)信息。根据此信息,计算车辆所需的扭矩和功率,将计算结果发送给发动机ECU,变频器总成,蓄电池ECU 和制动防滑控制ECU。 三、THS-Ⅱ系统电机(MG1、MG2)工作原理 交流伺服驱动系统中,应用的交流永磁驱动电机有两大类。一类称为无刷直流同步电动机(BDCM),另一类称为三相永磁同步电动机(PMSM),THS-Ⅱ系统的电机(MG1、MG2)属于BDCM类型的驱动电机。 BDCM用装有永磁体转子代替了有刷直流电动机的定子磁极。有刷直流电动机依靠机械换向器,将直流电流转换成近似梯形波的交流电流。而BDCM是将逆变器产生的方波交流电流直接输入电机定子绕组,省去了机械换向器和电刷。BDCM定子绕组中通入三相方波交流电流。定子绕组上会产生感应电动势,生成

北汽新能源纯电动汽车驱动电机控制系统故障维修

近年来,在我国作为技术的纯的研发与应用取得了突破性发展。这就客观要求行业提升维修 水平,升级故障维修手段,利用有效的电子诊断技术提升效率。本文以北汽纯的具体故障作 为切入点,通过故障分析及其排除过程,对关键技术进行相应的探究。 一、故障现象 一辆北汽生产的EV 160新能源纯,整车型号为:BJ7000B3D5-BEV,电机型号为: TZ20S02,电池型号为:29/135/220-80Ah,电池工作电压为320V。该车行驶里程为0.56万km,出现无法行驶且仪表报警灯常亮、报警音鸣叫的故障;故障发生时电机有沉闷的“咔、咔”声。 二、系统重要作用及其结构原理 驱动电机系统由驱动电动机(DM)、驱动电机控制器(MCU)构成,通过高低压线束与 整车其它系统作电气连接。驱动电机系统是纯三大核心部件之一,是车辆行驶的主要执行机构,其特性决定了车辆的主要性能指标,直接影响车辆动力性、经济性和用户驾乘感受。 1.驱动电机系统工作原理 在驱动电机系统中,驱动电机的输出动作主要是执行控制单元给出的命令,即控制器输出 命令。如图1所示,控制器主要是将输入的直流电逆变成电压、频率可调的三相交流电,供 给配套的三相交流永磁同步电机使用。 整车控制器(VCU)根据驾驶员意图发出各种指令,电机控制器响应并反馈,实时调整驱 动电机输出,以实现整车的怠速、前行、倒车、停车、能量回收以及驻坡等功能。电机控制 器另一个重要功能是通信和保护,实时进行状态和故障检测,保护驱动电机系统和整车安全 可靠运行。 电机控制器(MCU)由逆变器和控制器两部分组成。驱动电机控制器采用三相两电平电 压源型逆变器。逆变器负责将动力电池输送的直流电电能逆变成三相交流电给汽车驱动电机 提供电源;控制器接受驱动电机和其它部件的信号反馈到仪表,当发生制动或者加速行为时,它能控制频率的升降,从而达到加速或减速的目的。 电机控制器是依靠内置旋转变压器、温度传感器、电流传感器、电压传感器等来提供电 机的工作状态信息,并将驱动电机运行状态信息实时发送给VCU。驱动电机系统的控制中心,又称智能功率模块,以绝缘栅双极型晶体管模块(IGBT)为核心,辅以驱动集成电路、主控集成电路,对所有的输入信号进行处理,并将驱动电机控制系统运行状态的信息通过 CAN2.0网络发送给整车控制器,同时也会储存故障码和数据。

相关文档