文档库 最新最全的文档下载
当前位置:文档库 › 多径信道对信号影响的仿真和分析

多径信道对信号影响的仿真和分析

多径信道对信号影响的仿真和分析
多径信道对信号影响的仿真和分析

课程设计名称:通信原理课程设计

专业班级:

学生姓名:

学号:

指导教师:

课程设计时间:

1 需求分析

给定单频信号,使其经过多径信道,观察信号的变化,分析多经信道对传播信号的影响。

本次课程设计要求分析多径信道对信号的影响,信号选用单频信号,选中20条衰减相同,时延的大小随时间变化的路径。

任务要求如下:

1.用MATLAB产生一个幅度为1、频率为10Hz的单频信号,使其经过20条路径传输,设这20条路径的衰减相同,但时延的大小随时间变化,每径时延的变化规律为正弦型,变化的频率从0-2Hz随机均匀抽取。仿真其输出波形及频谱。

2.分析多径信道对传输信号的影响。

2 概要设计

此次课程设计是关于信号经过多径传输后变化的分析,所用的仿真软件是matlab,多径传播对信号的影响称为多径效应,会对信号传输质量造成很大的影响。本次课程设计是考察多径信号对单频正弦信号产生频域弥散的验证。

所使用的主要函数如下:

1.si=a0*cos(2*pi*f0*t)。此函数是用来产生单频信号。

2.r=rand(1,20)*2。此函数用来产生随机的时延。

3.sf=fft(s)。此函数用来把时域变换到频域。

4.for end。此函数用来产生循环,计算多次时延。

5.abs(n)。此函数用来得出绝对值。

3 运行环境

硬件环境:win7/windows xp/

软件系统:Matlab软件

4 开发工具和编程语言

开发工具:MATLAB 7.1

软件语言:Matlab编程语言

5 详细设计

多径效应指电波传播信道中的多径传输现象所引起的干涉延时效应。在实际的包含所有频率的无线电波传播信道中,常有许多时延不同的传输路径。各条传播路径会随时间变化,参与干涉的各分量场之间的相互关系也就随时间而变化。由此引起合成波场的随机变化。从而形成总的接收场的衰落。因此多径效应是衰落的重要原因。在此对多径效应对单频信号的影响进行仿真分析。

设计的思想原理比较简单,首先需要产生一个单频信号,然后经由多径信道时延传输,得出传输后结果,最后对结果进行分析。

发送的单频信号为si=a0*cos(2*pi*f0*t)

振幅衰减为0.8,时延v=abs(sin(2*pi*r(i)*t))

信道m20

s0=a1*cos(2*pi*f0*(t-v))

接收信号s=sum(s)

函数1.

r=rand(1,20)

此函数用来产生随机的时延

函数2.

si=a0*cos(2*pi*f0*t)

此函数用来产生单频信号

函数3.

sf=fft(s)

此函数用来使用傅立叶变换将信号变换到频域

函数4.

for i=1:m

v=abs(sin(2*pi*r(i)*t));

s0=a1*cos(2*pi*f0*(t-v));

s=s+s0

end

此函数用来计算20次延时后的信号。

其中for 函数用来产生20次循环。

v=abs(sin(2*pi*r(i)*t)),v为时延的绝对值,abs函数用来取绝对值。

s0=a1*cos(2*pi*f0*(t-v)),s0为经历一次时延后的信号。

s=s+s0,s为多次时延后的信号。

给出所需各个初值

f0=10;

a0=1;

m=20;

a1=0.8;%初值

t=0:0.001:2;

抽取随机的时延

r=rand(1,20)*2;

给出生成单频信号

si=a0*cos(2*pi*f0*t);

计算经由多径时延后的信号

s=0;

for i=1:m

v=abs(sin(2*pi*r(i)*t));

s0=a1*cos(2*pi*f0*(t-v));

s=s+s0

end

s=sum(s);

变换到频域分析

s0f=fft(si);

sf=fft(s);%傅里叶变换

给出运行结果图

figure(1)

subplot(2,1,1)

plot(t,si);xlabel('t');ylabel('si');title('单频信号');%单频输入信号时域波形

subplot(2,1,2)

plot(t,s);xlabel('t');ylabel('s');title('多径信道接收信号');%接收

信号时域波形

figure(2)

subplot(2,1,1)

plot(abs(s0f));xlabel('f');ylabel('s0f');title('单频信号频谱');%单频信号频谱

subplot(2,1,2)

plot(abs(sf));xlabel('f');ylabel('sf');title('多径信道后信号频谱');%多径传输后接受频谱

6 调试分析

对于本次模拟仿真分析,最开始没有进行傅立叶变换,所以仅仅有时域上上的结果,对频域上反而没有进行分析,而这恰恰是不合理的,经同学帮助后添加sf=fft(s)这一函数并给出其结果运行图,然后很容易就分析出了信号变化和多径影响。代码的编写也出现了一些小小的问题,例如分号的错误使用,经常有一些位置是多了分号而提示错误,这也说明了我对matlab 的基本功掌握不够,以后还要多加练习,才能更好的使用这一有力工具。

7 测试结果

00.20.40.60.81 1.2

1.4 1.6 1.82-1-0.5

0.5

1

t

s i

单频信号

00.20.40.60.81

1.2 1.4 1.6 1.82-100

10

20t s 多径信道接收信号

图一:时域多径传输信号衰落分析图

05001000150020002500

0500

1000

1500

f

s 0f

单频信号频谱

05001000

1500200025000500

1000

1500

f s f

多径信道后信号频谱

图二:频域多径传输信号衰落分析图

由图一可知,单频信号经多径信道后,接收信号的包络随时间随机起伏;由图二看出,单频信号的频谱为两个冲击,而多径传输后频谱变为窄带频谱。这是因为在多径传播的随参信道中,衰耗是恒定的,然而时延是随机变化的,因此接收到的信号便是各路径时延随时间变化的各路径的合成。因为随机时延的存在,导致了包络的起伏,同时时延误差导致了频率上出现一系列频率间隔,形成如上的频谱图。

参考文献

1、《MATLAB 通信仿真开发手册》 国防工业出版社 孙屹

2、《现代通信系统分析与仿真-MATLAB 通信工具箱》西安电子科技大学出版社 李建新

3、《现代通信原理》 清华大学出版社 曹志刚著

4、教学用“通信原理”教材

5、教学用“matlab ”教材

心得体会

本次试验是针对于通信原理的课程设计,但是在实际过程中发现,确切的说此次的课程设计是MATLAB,高频和通信原理,数字信号处理等课程知识的融合,并不仅仅是简简单单的一门课程知识的应用

作为电子信息工程专业的学生,信号的处理和通信系统是我们的主要研究对象,今后的专业方向的工作一般也和这两方面有关,在此之中,通信原理是我们的重要专业课程。我们是在上个学期学习的通信原理,通过此次的课程设计,相当于把上学期的重要知识复习了一遍,同时对多径效应对信号的影响有了更深刻的认识和理解。通过对单频信号经过多径传输后结果信号的分析,认识到了多径传输效应对信号的巨大危害,同时对滤波器的MATLAB实现有了进一步的实践。平时理论上我们想当然的知识,实践起来却并非如此,对于理论结合实际有了更深刻解读。

此外,我更深的认识到,通信是一门涉及知识面很广的技术,不仅仅限于将课本的知识熟练掌握,现代通信技术的发展日新月异,要想赶上通信的发展,我们还有很长的一段路要走。

基于Matlab的无线信道仿真

基于 Matlab 的无线信道仿真 近几年,随着无线通信业务和新兴宽带移动互联网接入业务的快速增长, 对 无线通信系统的优化显得尤为重要。与有线信道静态和可预测的典型特点相反, 在实际中, 由于无线信道动态变化且不可预测, 无线通信系统的性能在很大程度 上取决于无线信道环境, 所以对无线信道的准确理解和仿真对设计一个高性能和 高频谱效率的无线传输技术显得尤其重要。 无线信道的一个典型特征是“衰落” ,衰落现象大致可分为两种类型:大尺 度衰落和小尺度衰落。 其中,大尺度衰落主要在移动设备通过一段较长的距离时 体现,它是由信号的损耗(长距离传播)和大的障碍物(如建筑物、中间地形和 植物)形成的阴影所引起的,一般分为路径损耗和阴影衰落,另一方面,小尺度 衰落是指当移动台在较短距离内移动时, 由多条路径的相消或相长干涉所引起信 号电平的快速波动, 主要表现为多径衰落。 它们之间的关系如图 1 所示。报告中 分别对这几种衰落的常见模型进行了总结和仿真。 一、大尺度衰落 大尺度衰落是在一个较大的范围上考察功率的渐变 过程, 距离变化缓慢。 大尺度信道模型主要研究电波 传播在时间、 均特性。 功率的局部中值随 空间、频率范围内平 图1 各种衰落之间的

1.1 路径损耗 路径损耗由发射功率的辐射扩散及信道的传播特性造成,反映在宏观长距离

上。理论上认为,对于相同收发距离,路径损耗相同。其定义为有效发射功率和平均接收功率之间的比值。几种常用的描述大尺度衰落的模型有自由空间模型、对数距离路径损耗模型、Hata-Okumura 模型。 1.1.1自由空间模型 所谓自由空间是指天线周围为无限大真空时的电波传播,它是理想传播条件。电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射,传播路径上没有障碍物阻挡,到达接收天线的地面反射信号场强也可以忽略不计。 自由空间模型中路径损耗计算公式: 1 G t G r 其中,P t 为发射功率,P r 为接收功率, d 为发射端与接收端距离,f 为载波频率, c为光速取3 108,G t 为发射端天线增益,G r为接收端天线增益。转换成分贝表示:L(s dB)10lg Pt32.45 20lgd 20lg f 10lg G t G r P r 发射端与接收端均是全向天线,G t G r 1 ,得图2: 1.1.2对数距离路径损耗模型 与前面提到的自由空间路径损耗一样,在其他所有实际环境中,平均接收信号功率随距 d 呈对数方式减小。通过引入随着环境而改变的路径损耗指数n 可以修正自由空间模型,从而构造出一个更为普遍的路径损耗衰落模型。 L s P P t r4 π c df 图 2 路径损耗随距离、频率变化曲线

过孔对信号的影响

过孔对信号的影响 过孔对信号的影响一、过孔的寄生电容 过孔本身存在着对地的寄生电容,如果已知过孔在铺地层上的隔离孔直径为D2,过孔焊盘的直径为D1,PCB板的厚度为T,板基材介电常数为ε,则过孔的寄生电容大小近似于:C=1.41εTD1/(D2-D1)过孔的寄生电容会给电路造成的主要影响是延长了信号的上升时间,降低了电路的速度。举例来说,对于一块厚度为50Mil的PCB板,如果使用内径为10Mil,焊盘直径为20Mil的过孔,焊盘与地铺铜区的距离为32Mil,则我们可以通过上面的公式近似算出过孔的寄生电容大致是:C=1.41x4.4x0.050x0.020/(0.032-0.020)=0.517pF,这部分电容引起的上升时间变化量为:T10-90=2.2C(Z0/2)=2.2x0.517x(55/2)=31.28ps。从这些数值可以看出,尽管单个过孔的寄生电容引起的上升延变缓的效用不是很明显,但是如果走线中多次使用过孔进行层间的切换,设计者还是要慎重考虑的。 二、过孔的寄生电感 同样,过孔存在寄生电容的同时也存在着寄生电感,在高速数字电路的设计中,过孔的寄生电感带来的危害往往大于寄生电容的影响。它的寄生串联电感会削弱旁路电容的贡献,减弱整个电源系统的滤波效用。我们可以用下面的公式来简单地计算一个过孔近似的寄生电感:L=5.08h[ln(4h/d)+1]其中L指过孔的电感,h是过孔的长度,d是中心钻孔的直径。从式中可以看出,过孔的直径对电感的影响较小,而对电感影响最大的是过孔的长度。仍然采用上面的例子,可以计算出过孔的电感为:L=5.08x0.050[ln(4x0.050/0.010)+1]=1.015nH。如果信号的上升时间是1ns,那么其等效阻抗大小为:XL=πL/T10-90=3.19Ω。这样的阻抗在有高频电流的通过已经不能够被忽略,特别要注意,旁路电容在连接电源层和地层的时候需要通过两个过孔,这样过孔的寄生电感就会成倍增加。 三、高速PCB中的过孔设计 通过上面对过孔寄生特性的分析,我们可以看到,在高速PCB设计中,看似简单的过孔往往也会给电路的设计带来很大的负面效应。为了减小过孔的寄生效应带来的不利影响,

五款信号完整性仿真工具介绍

现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,Ansoft公司的仿真工具能够从三维场求解的角度出发,对PCB设计的信号完整性问题进行动态仿真。 Ansoft的信号完整性工具采用一个仿真可解决全部设计问题: SIwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何数量的过孔和信号引线条构成。仿真结果采用先进的3D图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿真器。 (二)SPECCTRAQuest Cadence的工具采用Sun的电源层分析模块: Cadence Design Systems的SpecctraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在PCB详细设计前使用此工具,对互连线的不同情况进行仿真,把仿真结果存为拓扑结构模板,在后期详细设计中应用这些模板进行设计。 (2)DF/Signoise工具是信号仿真分析工具,可提供复杂的信号延时和信号畸变分析、IBIS 模型库的设置开发功能。SigNoise是SPECCTRAQUEST SI Expert和SQ Signal Explorer Expert进行分析仿真的仿真引擎,利用SigNoise可以进行反射、串扰、SSN、EMI、源同步及系统级的仿真。 (3)DF/EMC工具——EMC分析控制工具。 (4)DF/Thermax——热分析控制工具。 SPECCTRAQuest中的理想高速PCB设计流程: 由上所示,通过模型的验证、预布局布线的space分析、通过floorplan制定拓朴规则、由规

信道是指以传输媒质为基础的信号通道11页

第4章信道 信道是指以传输媒质为基础的信号通道,是将信号从发送端传送到接收端的通道。 如果信道仅是指信号的传输媒质,这种信道称为狭义信道。如果信道不仅是传输媒质,而且包括通信系统中的一些转换装置,这些装置可以是发送设备、接收设备、馈线与天线、调制器、解调器等。这种信道称为广义信道。 无线信道利用电磁波在空间的传播来传播信号;有线信道利用导线、波导、光纤等媒质来传播信号。常把广义信道简称为信道。 4.1 无线信道 信道是对无线通信中发送端和接收端之间通路的一种形象比喻。 对于无线电波而言,它从发送端传送到接收端,其间并没有一个有形的连接,它的传播路径也有可能不只一条,但是我们为了形象地描述发送端与接收端之间的工作,想象两者之间有一个看不见的道路衔接,把这条衔接通路称为信道。 信道具有一定的频率带宽,正如公路有一定的宽度一样。 电磁波传播主要分为地波、天波和视线传播三种。 地波:频率在2MHz以下,电磁波沿大地与空气的分界面传播。传播时无线电波可随地球表面的弯曲而改变传播方向。在传播途中的衰减大致与距离成正比。地波的传播比较稳定,不受昼夜变化的影响,所以长波、中波和中短波可用来进行无线电广播。 根据波的衍射特性,当波长大于或相当于障碍物的尺寸时,波才能明显地绕到障碍物的后面。地面上的障碍物一般不太大,长波可以很好地绕过它们。中波和中短波也能较好地绕过,短波和微波由于波长过短,绕过障碍物的本领很差。 由于地波在传播过程中要不断损失能量,而且频率越高,损失越大,因此中波和中短波的传播距离不大,一般在几百千米范围内,收音机在这两个波段一般只能收听到本地或邻近省市的电台。长波沿地面传播的距离要远得多,但发射长波的设备庞大,造价高,所以长波很少用于无线电广播,多用于超远程无线电通信和导航等。 天波:天波是靠电磁波在地面和电离层之间来回反射而传播的,频率范围在 2~30MHz。天波是短波的主要传播途径。短波信号由天线发出后,经电离层反射回地

无线信道建模与仿真毕业设计论文

毕业论文(设计)原创性声明 本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。 作者签名:日期: 毕业论文(设计)授权使用说明 本论文(设计)作者完全了解红河学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。学校可以公布论文(设计)的全部或部分内容。保密的论文(设计)在解密后适用本规定。 作者签名:指导教师签名: 日期:日期:

摘要 移动通信最近几年得到了突飞猛进的发展,人们对无线信道的研究也成了当前通信行业的主题,特别是对无线信道的建模与仿真也受到了许多学者的关注,在这个领域的研究也取得了很大成果。无线信道模型分为自由空间模型、无线视距模型和经验模型,本文首先研究了无线信道模型的特点,建立了无线信道的的模型,对自由空间模型和经验模型Okumura-Hata 模型、COST-231 Hata模型以及COST231-WI模型进行了比较,并将其用Matlab软件仿真,对仿真结果进行了分析。 关键字:无线信道、Hata模型、COST231-WI模型

Abstract Mobile communication several years obtained the development recently which progresses by leaps and bounds, The people have also become the current correspondence profession subject to the wireless channel research. Specially has also received many scholars' attention to the wireless channel modeling and simulation, Has also yielded the very big result in this domain research. Wireless channel model is divided into free space model, the wireless line of sight and empirical model, this paper studied the characteristics of wireless channel model is established radio channel model, on the free space model and empirical model Okumura-Hata model, COST-231 Hata model and COST231-WI model were compared, using Matlab software to simulate, the simulation results are analyzed. Keywords: Wireless channel, Hata model, COST231-WI model

过孔与电流的关系

1、10mil的孔20mil的pad对应20mil的线过0.5A电流,20mil的孔40mil的焊盘对应40mil的线过1A电流,0.5oz。 2、过孔电感的计算公式为: L=5.08h[ln(4h/d)+1] L:通孔的电感 h:通孔的长度 d:通孔的直径 其实孔的大小对其感抗影响不是很大,倒是它的长度影响大些, 感抗大,其上面的压降就大些。 对于电流,应该与它的载流截面积有关,截面积越大,载流能力越大。孔越大,截面积越大,孔壁铜层越厚,截面积越大。 3、1,金属化过孔镀层厚度只有20几到几微米,经不起大电流!因此电源线、地线、有大电流的线非得通过过孔到另一面时可在此处多加几个过孔,或通过一个穿过两面的原件。2,脚较粗且多的器件如CD 型插座,应尽可能少从原件面出线。如非出不可有条件可在器件脚边加一过孔。固为多个插脚同时插下时容易破坏孔中的金属化镀层。 4、过孔的直径至少应为线宽的1/3 5、在走线的Via孔附近加接地Via 孔的作用及原理是什么?

答:pcb板的过孔,按其作用分类,可以分为以下几种: 1、信号过孔(过孔结构要求对信号影响最小) 2、电源、地过孔(过孔结构要求过孔的分布电感最小) 3、散热过孔(过孔结构要求过孔的热阻最小) 上面所说的过孔属于接地类型的过孔,在走线的Via孔附近加接地Via孔的作用是给信号提供一个最短的回流路径。注意:信号在换层的过孔,就是一个阻抗的不连续点,信号的回流路径将从这里断开,为了减小信号的回流路径所包围的面积,必须在信号过孔的周围打一些地过孔提供最短的信号回流路径,减小信号的emi 辐射。这种辐射随之信号频率的提高而明显增加。 请问在哪些情况下应该多打地孔?有一种说法:多打地孔,会破坏地层的连续和完整。效果反而适得其反。 答:首先,如果多打过孔,造成了电源层、地层的连续和完整,这种情况使用坚决避免的。这些过孔将影响到电源完整性,从而导致信号完整性问题,危害很大。打地孔,通常发生在如下的三种情况: 1、打地孔用于散热; 2、打地孔用于连接多层板的地层; 3、打地孔用于高速信号的换层的过孔的位置; 但所有的这些情况,应该是在保证电源完整性的情况下进行的。那就是说,只要控制好地孔的间隔,多打地孔是允许的吗?在五分之一的波长为间隔打地孔没有问题吗? 假如我为了保证多层板的地的连接,多打地孔,虽然没有隔断,那会

信号分析与处理仿真实验

实验报告 实验名称MATLAB仿真实验 课程名称信号分析与处理 院系部: 专业班级:学生姓名:学号:同组人:实验台号:指导教师:成绩:实验日期:2015-11-29

实验一信号的产生与运算 1.单位阶跃信号 (1)源程序 t=-0.5:0.01:1.5; u=stepfun(t,0); u1=stepfun(t,0.5); figure(1) plot(t,u);axis([-0.5 1.5 -0.2 1.2]);title('单位阶跃信号波形'); figure(2) plot(t,u1);axis([-0.5 1.5 -0.2 1.2]);title('延迟单位阶跃信号波形'); (2)实验结果

2.单位冲激信号 (1)源程序 clear;clc; t=-1:0.001:1; for i=1:3 dt=1/(i^4); x=(1/dt)*((t>=-(1/2*dt))-(t>=(1/2*dt))); subplot(1,3,i); stairs(t,x); end (2)实验结果

3.抽样信号 (1)源程序 clear;clc; t=-20:0.01:20; x=sinc(t/pi); plot(t,x); title('抽样信号'); (2)实验结果

4.单位样值序列(1)源程序 clear;clc; n1=input('n1='); n2=('n2='); n=n1:n2; k=length(n); x1=zeros(1,k); x1(1,-n1+1)=1 subplot(1,2,1); stem(n,x1,'filled') (2)实验结果

恒参信道及其特性

模块2 恒参信道及其特性(ZY3200102002) 【模块描述】本模块介绍了恒参信道及其特性,包含几种恒参信道及其特性、均衡的基本概念。通过概念介绍、图形讲解,掌握恒参信道的特性及其对信号传输的影响。 【正文】 恒参信道是指由电缆、光导纤维、人造卫星、中长波地波传播、超短波及微波视距传播等传输媒质构成的信道。 一、有线电信道 1.对称电缆 对称电缆是指在同一保护套内有许多对相互绝缘的双导线的传输媒质。导线材料主要是铜或铝,直径为0.4~1.4mm。为了减小各线对之间的干扰,每一对线都拧成扭绞状。对称电缆的传输损耗相对较大但其传输特性比较稳定。 2.同轴电缆 如图ZY3200102002-1所示。同轴电缆由同轴的两个导体构成,外导体是一个圆柱形的空管,在可弯曲的同轴电缆中,它可以由金属丝编织而成。内导体是金属线。它们之间填充着塑料或空气等介质。 图ZY3200102002-1同轴电缆的基本结构 二、光纤信道 光纤信道是以光导纤维(简称光纤)为传输媒质、以光波为载波的信道。它能够实现大容量的传输。光纤具有损耗低、频带宽、线径细、重量轻、可弯曲半径小、不怕腐蚀以及不受电磁干扰等优点。 三、无线电视距中继 无线电视距中继是指工作频率在超短波和微波波段时,电磁波基本上是沿视线传播,通信距离依靠中继方式延伸的无线电电路。相邻中继站之间的距离一般在40~50公里。 图ZY3200102002-2 无线电中继信道图ZY3200102002-5 卫星中继信道无线电中继信道的构成如图ZY3200102002-2所示。它由终端站、中继站及各站间的电波传播路径构成。具有传输容量大、发射功率小、通信稳定可靠等优点。主要用于长途干线、移动通信网以及某些数据收集系统。 四、卫星中继信道 保 护 层 外 导 体 绝 缘 层 内 导 体

无线信道建模与仿真

摘要 移动通信最近几年得到了突飞猛进的发展,人们对无线信道的研究也成了当前通信行业的主题,特别是对无线信道的建模与仿真也受到了许多学者的关注,在这个领域的研究也取得了很大成果。无线信道模型分为自由空间模型、无线视距模型和经验模型,本文首先研究了无线信道模型的特点,建立了无线信道的的模型,对自由空间模型和经验模型Okumura-Hata 模型、COST-231 Hata模型以及COST231-WI模型进行了比较,并将其用Matlab软件仿真,对仿真结果进行了分析。 关键字:无线信道、Hata模型、COST231-WI模型

Abstract Mobile communication several years obtained the development recently which progresses by leaps and bounds, The people have also become the current correspondence profession subject to the wireless channel research. Specially has also received many scholars' attention to the wireless channel modeling and simulation, Has also yielded the very big result in this domain research. Wireless channel model is divided into free space model, the wireless line of sight and empirical model, this paper studied the characteristics of wireless channel model is established radio channel model, on the free space model and empirical model Okumura-Hata model, COST-231 Hata model and COST231-WI model were compared, using Matlab software to simulate, the simulation results are analyzed. Keywords: Wireless channel, Hata model, COST231-WI model

过孔基础知识与差分过孔设计

过孔基础知识与差分过孔设计 导读:在一个高速印刷电路板 (PCB) 中,通孔在降低信号完整性性能方面一直饱受诟病。然而,过孔的使用是不可避免的。幸运的是,可设计出一种透明的过孔来最大限度地减少对性能的影响。 在一个高速印刷电路板 (PCB) 中,通孔在降低信号完整性性能方面一直饱受诟病。然而,过孔的使用是不可避免的。在标准的电路板上,元器件被放置在顶层,而差分对的走线在内层。内层的电磁辐射和对与对之间的串扰较低。必须使用过孔将电路板平面上的组件与内层相连。幸运的是,可设计出一种透明的过孔来最大限度地减少对性能的影响。 1. 过孔结构的基础知识 让我们从检查简单过孔中将顶部传输线与内层相连的元件开始。图1是显示过孔结构的3D图。有四个基本元件:信号过孔、过孔残桩、过孔焊盘和隔离盘。 过孔是镀在电路板顶层与底层之间的通孔外的金属圆柱体。信号过孔连接不同层上的传输线。过孔残桩是过孔上未使用的部分。过孔焊盘是圆环状垫片,它们将过孔连接至顶部或内部传输线。隔离盘是每个电源或接地层内的环形空隙,以防止到电源和接地层的短路。 图1:单个过孔的3D图 2. 过孔元件的电气属性 如表格1所示,我们来仔细看一看每个过孔元件的电气属性。

表1:图1中显示的过孔元件的电气属性 一个简单过孔是一系列的π型网络,它由两个相邻层内构成的电容-电感-电容 (C-L-C) 元件组成。表格2显示的是过孔尺寸的影响。 表2:过孔尺寸的直观影响

通过平衡电感与寄生电容的大小,可以设计出与传输线具有相同特性阻抗的过孔,从而变得不会对电路板运行产生特别的影响。还没有简单的公式可以在过孔尺寸与C和L元件之间进行转换。3D电磁 (EM) 场解算程序可以根据PCB布局布线中使用的尺寸来预测结构阻抗。通过重复调整结构尺寸和运行3D仿真,可优化过孔尺寸,来实现所需阻抗和带宽要求。 3. 设计一个透明的差分过孔 在实现差分对时,线路A与线路B之间必须高度对称。这些对在同一层内走线,如果需要一个过孔,必须在两条线路的临近位置上打孔。由于差分对的两个过孔距离很近,两个过孔共用的一个椭圆形隔离盘能够减少寄生电容,而不是使用两个单独的隔离盘。接地过孔也被放置在每个过孔的旁边,这样的话,它们就能够为A和B过孔提供接地返回路径。 图2显示的是一个地-信号-信号-地 (GSSG) 差分过孔结构示例。两个相邻过孔间的距离被称为过孔间距。过孔间距越小,互耦合电容越多。 图2:使用背面钻孔的GSSG差分过孔 不要忘记,在传输速率超过10Gbps时,过孔残桩会严重影响高速信号完整性。幸运的是,有一种背面钻孔PCB制造工艺,此工艺可以在未使用的过孔圆柱上钻孔。根据制造工艺公差的不同,背面钻孔去除了未使用的过孔金属,并最大限度地将过孔残桩减少到10mil以下。 3D EM仿真器用来根据所需的阻抗和带宽来设计差分过孔。这是一个反复的过程。此过程重复地调整过孔尺寸,并运行EM仿真,直到实现所需的阻抗和带宽。 4. 如何验证性能 图2中显示的差分过孔设计已构建完毕并经测试。测试样片包括顶层的一对差分线,之后是到内部差分线的差分过孔,然后第二对差分过孔再次连接至顶层的球状引脚栅格阵列封装 (BGA) 接地焊盘。信号路径的总长度大约为1330mil。我用差分时域反射仪 (TDR) 测得其差分阻抗,用网络分析仪测得了带宽,并用高速示波器测量了数据眼图来了解其对信号的影响。图3,4,5分别显示了阻抗、带宽和眼图。左图是使用背面钻孔时的测试结果,而右图是无背面钻孔的测试结果。在图5中的带宽波特图中,我们可以很清楚地看到背面钻孔对于在数据速率大于10Gbps 的情况下实现高性能是必不可少的。

DSB信号的仿真分析

《MATLAB课程设计》报告题目:基于MATLAB的DSB调制与解调分析专业班级: 通信1104班 学生姓名: 指导教师:

MATLAB课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 基于MATLAB的DSB调制与解调分析 设计内容和要求 DSB信号的仿真分析 调制信号:分别为300Hz正弦信号和矩形信号;载波频率:30kHz; 解调:同步解调; 要求:画出以下三种情况下调制信号、已调信号、解调信号的波形、频谱以及解调器输入输出信噪比的关系曲线; 1)调制信号幅度=×载波幅度;2)调制信号幅度=载波幅度; 3)调制信号幅度=×载波幅度; 时间安排 2013年12月25日:复习DSB的原理,初步构想设计的流程。 2013年12月26日至28日:程序编写及调试。 2013年12月29日:写报告。 指导教师签名:年月日

目录

摘要 调制在通信系统中有十分重要的作用。通过调制,不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于传播的已调信号,而且它对系统的传输有效性和传输的可靠性有着很大的影响,调制方式往往决定了一个通信系统的性能。MATLAB软件广泛用于数字信号分析,系统识别,时序分析与建模,神经网络、动态仿真等方面有着广泛的应用。本课题利用MATLAB软件对DSB 调制解调系统进行模拟仿真,分别利用300HZ正弦波和矩形波,对30KHZ正弦波进行调制,观察调制信号、已调信号和解调信号的波形和频谱分布,并在解调时引入高斯白噪声,对解调前后信号进行信噪比的对比分析,估计DSB调制解调系统的性能。 Abstract Modulation in communication systems have an important role. Through the modulation, not only can move the spectrum, the modulated signal spectrum move to the desired position, which will convert into a modulated signal suitable for transmission of modulated signals, and that its transmission system, the effectiveness and reliability of transmission has a great impact, the modulation method is often decided on a communication system performance. MATLAB software is widely used in digital signal analysis, system identification, time series analysis and modeling, neural networks, dynamic simulation have a wide range of applications. This topic using MATLAB software DSB modulation and demodulation system simulation, use, respectively, 300HZ sine wave and rectangular wave, sine wave modulation of the 30KHZ observed modulated signal modulated signal and demodulate the signal waveform and spectrum distribution, and in the solution white Gaussian noise introduced when adjusted for demodulating the signal-noise ratio before and after the comparative analysis, it is estimated DSB modulation and demodulation performance of the system.

基于Matlab的无线信道仿真

基于Matlab的无线信道仿真 近几年,随着无线通信业务和新兴宽带移动互联网接入业务的快速增长,对无线通信系统的优化显得尤为重要。与有线信道静态和可预测的典型特点相反,在实际中,由于无线信道动态变化且不可预测,无线通信系统的性能在很大程度上取决于无线信道环境,所以对无线信道的准确理解和仿真对设计一个高性能和高频谱效率的无线传输技术显得尤其重要。 无线信道的一个典型特征是“衰落”,衰落现象大致可分为两种类型:大尺度衰落和小尺度衰落。其中,大尺度衰落主要在移动设备通过一段较长的距离时体现,它是由信号的损耗(长距离传播)和大的障碍物(如建筑物、中间地形和植物)形成的阴影所引起的,一般分为路径损耗和阴影衰落,另一方面,小尺度衰落是指当移动台在较短距离内移动时,由多条路径的相消或相长干涉所引起信号电平的快速波动,主要表现为多径衰落。它们之间的关系如图1所示。报告中分别对这几种衰落的常见模型进行了总结和仿真。 图1 各种衰落之间的关系 一、大尺度衰落 大尺度衰落是在一个较大的范围上考察功率的渐变过程,功率的局部中值随距离变化缓慢。大尺度信道模型主要研究电波传播在时间、空间、频率范围内平均特性。 1.1 路径损耗 路径损耗由发射功率的辐射扩散及信道的传播特性造成,反映在宏观长距离

上。理论上认为,对于相同收发距离,路径损耗相同。其定义为有效发射功率和平均接收功率之间的比值。几种常用的描述大尺度衰落的模型有自由空间模型、对数距离路径损耗模型、Hata-Okumura 模型。 1.1.1自由空间模型 所谓自由空间是指天线周围为无限大真空时的电波传播,它是理想传播条件。电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射,传播路径上没有障碍物阻挡,到达接收天线的地面反射信号场强也可以忽略不计。 自由空间模型中路径损耗计算公式: r t r t s G G c df πP P L 142 ??? ??== 其中,t P 为发射功率,r P 为接收功率,d 为发射端与接收端距离,f 为载波频率,c 为光速取8103?,t G 为发射端天线增益,r G 为接收端天线增益。转换成分贝表示: r t r t s G G f d P P L lg 10lg 20lg 2045.32lg 10dB -++==)( 发射端与接收端均是全向天线,1==r t G G ,得图2: 图2 路径损耗随距离、频率变化曲线 1.1.2 对数距离路径损耗模型

PCB过孔对信号传输的影响

PCB过孔对信号传输的影响 -----Maxconn整理 https://www.wendangku.net/doc/8b5221999.html,/blog/maxconn/3796/message.aspx 一.过孔的基本概念 过孔(via)是多层PCB的重要组成部分之一,钻孔的费用通常占PCB制板费用的30%到40%。简单的说来,PCB上的每一个孔都可以称之为过孔。从作用上看,过孔可以分成两类:一是用作各层间的电气连接;二是用作器件的固定或定位。如果从工艺制程上来说,这些过孔一般又分为三类,即盲孔(blind via)、埋孔(buried via)和通孔(through via)。盲孔位于印刷线路板的顶层和底层表面,具有一定深度,用于表层线路和下面的内层线路的连接,孔的深度通常不超过一定的比率(孔径)。埋孔是指位于印刷线路板内层的连接孔,它不会延伸到线路板的表面。上述两类孔都位于线路板的内层,层压前利用通孔成型工艺完成,在过孔形成过程中可能还会重叠做好几个内层。第三种称为通孔,这种孔穿过整个线路板,可用于实现内部互连或作为元件的安装定位孔。由于通孔在工艺上更易于实现,成本较低,所以绝大部分印刷电路板均使用它,而不用另外两种过孔。以下所说的过孔,没有特殊说明的,均作为通孔考虑。 从设计的角度来看,一个过孔主要由两个部分组成,一是中间的钻孔(drill hole),二是钻孔周围的焊盘区。这两部分的尺寸大小决定了过孔的大小。很显然,在高速,高密度的PCB设计时,设计者总是希望过孔越小越好,这样板上可以留有更多的布线空间,此外,过孔越小,其自身的寄生电容也越小,更适合用于高速电路。但孔尺寸的减小同时带来了成本的增加,而且过孔的尺寸不可能无限制的减小,它受到钻孔(drill)和电镀(plating)等工艺技术的限制:孔越小,钻孔需花费的时间越长,也越容易偏离中心位置;且当孔的深度超过钻孔直径的6倍时,就无法保证孔壁能均匀镀铜。比如,如果一块正常的6层PCB板的厚度(通孔深度)为50Mil,那么,一般条件下PCB厂家能提供的钻孔直径最小只能达到8Mil。随着激光钻孔技术的发展,钻孔的尺寸也可以越来越小,一般直径小于等于6Mils的过孔,我们就称为微孔。在HDI(高密度互连结构)设计中经常使用到微孔,微孔技术可以允许过孔直接打在焊盘上(Via-in-pad),这大大提高了电路性能,节约了布线空间。 过孔在传输线上表现为阻抗不连续的断点,会造成信号的反射。一般过孔的等效阻抗比传输线低12%左右,比如50欧姆的传输线在经过过孔时阻抗会减小6欧姆(具体和过孔的尺寸,板厚也有关,不是绝对减小)。但过孔因为阻抗不连续而造成的反射其实是微乎其微的,其反射系数仅为:(44-50)/(44+50)=0.06,过孔产生的问题更多的集中于寄生电容和电感的影响。 二、过孔的寄生电容和电感 过孔本身存在着寄生的杂散电容,如果已知过孔在铺地层上的阻焊区直径为D2,过孔焊盘的直径为D1,PCB板的厚度为T,板基材介电常数为ε,则过孔的寄生电容大小近似于: C="1".41εTD1/(D2-D1) 过孔的寄生电容会给电路造成的主要影响是延长了信号的上升时间,降低了电路的速度。举例来说,对于一块厚度为50Mil的PCB板,如果使用的过孔焊盘直径为20Mil(钻孔直径为10Mils),阻焊区直径为40Mil,则我们可以通过上面的公式近似算出过孔的寄生电容大致是: C="1".41x4.4x0.050x0.020/(0.040-0.020)=0.31pF

五款信号完整性仿真分析工具

SI 五款信号完整性仿真工具介绍 (一)Ansoft公司的仿真工具 现在的高速电路设计已经达到GHz的水平,高速PCB设计要求从三维设计理论出发对过孔、封装和布线进行综合设计来解决信号完整性问题。高速PCB 设计要求中国工程师必须具备电磁场的理论基础,必须懂得利用麦克斯韦尔方程来分析PCB设计过程中遇到的电磁场问题。目前,An soft公司的仿真工具能够从三维场求解的角度出发,对PCB 设计的信号完整性问题进行动态仿真。 Ansoft 的信号完整性工具采用一个仿真可解决全部设计问题: Slwave是一种创新的工具,它尤其适于解决现在高速PCB和复杂IC封装中普遍存在的电源输送和信号完整性问题。 该工具采用基于混合、全波及有限元技术的新颖方法,它允许工程师们特性化同步开关噪声、电源散射和地散射、谐振、反射以及引线条和电源/地平面之间的耦合。该工具采用一个仿真方案解决整个设计问题,缩短了设计时间。 它可分析复杂的线路设计,该设计由多重、任意形状的电源和接地层,以及任何 数量的过孔和信号引线条构成。仿真结果采用先进的3D 图形方式显示,它还可产生等效电路模型,使商业用户能够长期采用全波技术,而不必一定使用专有仿 (二)SPECCTRAQuest Cade nee的工具采用Sun的电源层分析模块: Cade nee Design System 的SpeeetraQuest PCB信号完整性套件中的电源完整性模块据称能让工程师在高速PCB设计中更好地控制电源层分析和共模EMI 。 该产品是由一份与Sun Microsystems公司签署的开发协议而来的,Sun最初研制该项技术是为了解决母板上的电源问题。 有了这种新模块,用户就可根据系统要求来算出电源层的目标阻抗;然后基于板上的器件考虑去耦合要求,Shah表示,向导程序能帮助用户确定其设计所要求的去耦合电容的数目和类型;选择一组去耦合电容并放置在板上之后,用户就可运行一个仿真程序,通过分析结果来发现问题所在。 SPECCTRAQuest是CADENCE公司提供的高速系统板级设计工具,通过它可以控制与PCB layout相应的限制条件。在SPECCTRAQuest菜单下集成了一下工具: (1)SigXplorer 可以进行走线拓扑结构的编辑。可在工具中定义和控制延时、特性阻抗、驱动和负载的类型和数量、拓扑结构以及终端负载的类型等等。可在

移动无线信道多径衰落的仿真

******************* 实践教学 ******************* 兰州理工大学 计算机与通信学院 2011年秋季学期 移动通信课程设计 题目:移动无线信道多径衰落的仿真专业班级: 姓名: 学号: 指导教师: 成绩:

在移动通信迅猛发展的今天,人与人的交流越来越多的依赖于无线通信。而无线信道的好坏直接制约着无线通信质量的提高,因此对无线信道的研究有利于提高通信传输速率。本次课程设计用simulink对移动无线信道多径衰落特性进行了仿真,并且和理想传输环境下的情况进行比较得出了结论。 关键词:移动通信;无线信道;频率选择性衰落;多径传播

移动通信是指双方或至少其中一方在运动状态中进行信息传递的通信方式,是实现通信理想目标的重要手段。移动通信满足了人们在任何时间任何空间上通信的需求,同时,由于集成电路、计算机和软件工程的迅速发展为移动通信的发展提供了技术支持,移动通信的发展速度远远超过了人们的预料。移动通信追求在任何时间任何地方以任何方式与任何人进行通信,也就是移动通信的理想境界——个人通信。要实现这个理想,高效率、高质量是前提。所以,除了研究发射机接收机可以达到目的外,对于无线信道的研究更为重要。无线信道的好坏直接影响无线通信的质量和效率,对无线信道建立数学模型是一种科学的研究方法,通过建模可以了解影响信号传输质量的因素以及解决的方法。无线信道中,小尺度衰落占有重要地位,所以,研究小尺度衰落的特性和建模方法对于无线信道的研究具有重大意义。

第1章移动通信概述 (1) 1.1移动通信的发展史 (1) 1.2移动通信的特点 (2) 第2章无线信道的概念和特性 (4) 2.1 无线信道的定义 (4) 2.2 无线信道的类型 (4) 2.2.1 传播路径损耗模型(Propagation Path Loss Model) (4) 2.2.2 大尺度传播模型(Large Scale Propagation Model) (5) 2.2.3 小尺度传播模型(Small Scale Propagation Model) (5) 2.3 无线移动信道的概念 (5) 2.4 移动信道的特点 (6) 2.4.1 移动通信信道的3个主要特点 (6) 2.4.2 移动通信信道的电磁波传输 (6) 2.4.3 接收信道的3类损耗 (6) 2.4.4 三种快衰落(选择性衰落)产生的原因 (7) 第3章调制解调 (8) 第4章系统仿真及结果分析 (9) 4.1 QPSK 调制解调系统的仿真 (9) 4.2 利用Matlab研究QPSK信号 (11) 总结 (15) 参考文献 (16) 附录一: (17) 附录二: (19)

过孔对信号传输的影响

过孔对信号传输的影响 一.过孔的基本概念 过孔(via)是多层PCB的重要组成部分之一,钻孔的费用通常占PCB制板费用的30%到40%。简单的说来,PCB上的每一个孔都可以称之为过孔。从作用上看,过孔可以分成两类:一是用作各层间的电气连接;二是用作器件的固定或定位。如果从工艺制程上来说,这些过孔一般又分为三类,即盲孔(blind via)、埋孔(buried via)和通孔(through via)。盲孔位于印刷线路板的顶层和底层表面,具有一定深度,用于表层线路和下面的内层线路的连接,孔的深度通常不超过一定的比率(孔径)。埋孔是指位于印刷线路板内层的连接孔,它不会延伸到线路板的表面。上述两类孔都位于线路板的内层,层压前利用通孔成型工艺完成,在过孔形成过程中可能还会重叠做好几个内层。第三种称为通孔,这种孔穿过整个线路板,可用于实现内部互连或作为元件的安装定位孔。由于通孔在工艺上更易于实现,成本较低,所以绝大部分印刷电路板均使用它,而不用另外两种过孔。以下所说的过孔,没有特殊说明的,均作为通孔考虑。 从设计的角度来看,一个过孔主要由两个部分组成,一是中间的钻孔(drill hole),二是钻孔周围的焊盘区。这两部分的尺寸大小决定了过孔的大小。很显然,在高速,高密度的PCB设计时,设计者总是希望过孔越小越好,这样板上可以留有更多的布线空间,此外,过孔越小,其自身的寄生电容也越小,更适合用于高速电路。但孔尺寸的减小同时带来了成本的增加,而且过孔的尺寸不可能无限制的减小,它受到钻孔(drill)和电镀(plating)等工艺技术的限制:孔越小,钻孔需花费的时间越长,也越容易偏离中心位置;且当孔的深度超过钻孔直径的6倍时,就无法保证孔壁能均匀镀铜。比如,如果一块正常的6层PCB板的厚度(通孔深度)为50Mil,那么,一般条件下PCB厂家能提供的钻孔直径最小只能达到8Mil。随着激光钻孔技术的发展,钻孔的尺寸也可以越来越小,一般直径小于等于6Mils的过孔,我们就称为微孔。在HDI(高密度互连结构)设计中经常使用到微孔,微孔技术可以允许过孔直接打在焊盘上(Via-in-pad),这大大提高了电路性能,节约了布线空间。 过孔在传输线上表现为阻抗不连续的断点,会造成信号的反射。一般过孔的等效阻抗比传输线低12%左右,比如50欧姆的传输线在经过过孔时阻抗会减小6欧姆(具体和过孔的尺寸,板厚也有关,不是绝对减小)。但过孔因为阻抗不连续而造成的反射其实是微乎其微的,其反射系数仅为:(44-50)/(44+50)=0.06,过孔产生的问题更多的集中于寄生电容和电感的影响。 二、过孔的寄生电容和电感 过孔本身存在着寄生的杂散电容,如果已知过孔在铺地层上的阻焊区直径为D2,过孔焊盘的直径为D1,PCB板的厚度为T,板基材介电常数为ε,则过孔的寄生电容大小近似于:C=1.41εTD1/(D2-D1) 过孔的寄生电容会给电路造成的主要影响是延长了信号的上升时间,降低了电路的速度。举例来说,对于一块厚度为50Mil的PCB板,如果使用的过孔焊盘直径为20Mil(钻孔直径为10Mils),阻焊区直径为40Mil,则我们可以通过上面的公式近似算出过孔的寄生电容大致是: C=1.41x4.4x0.050x0.020/(0.040-0.020)=0.31pF 这部分电容引起的上升时间变化量大致为: T10-90=2.2C(Z0/2)=2.2x0.31x(50/2)=17.05ps 从这些数值可以看出,尽管单个过孔的寄生电容引起的上升延变缓的效用不是很明显,但是如果走线中多次使用过孔进行层间的切换,就会用到多个过孔,设计时就要慎重考虑。实际设计中可以通过增大过孔和铺铜区的距离(Anti-pad)或者减小焊盘的直径来减小寄生电容。 过孔存在寄生电容的同时也存在着寄生电感,在高速数字电路的设计中,过孔的寄生电感带来的危害往往大于寄生电容的影响。它的寄生串联电感会削弱旁路电容的贡献,减弱整个电源系统的滤波效用。我们可以用下面的经验公式来简单地计算一个过孔近似的寄生电感: L=5.08h[ln(4h/d)+1]

相关文档
相关文档 最新文档