文档库 最新最全的文档下载
当前位置:文档库 › 10 第十章 界面现象习题解

10 第十章 界面现象习题解

10 第十章 界面现象习题解
10 第十章 界面现象习题解

第十章界面化学 课后作业题解

10.3 计算373.15K 时,下列情况下弯曲液面承受的附加压力。已知373.15K 时水的表面张力为58.91×10-3N.m -1。

(1)水中存在的半径为0.1μm 的小气泡;

(2)空气中存在的半径为0.1μm 的小液滴;

(3)空气中存在的半径为0.1μm 的小气泡。

解:

10.4 在298.15K 时,将直径为0.1mm 的玻璃毛细管插入乙醇中。问需要在管内加多大的压力才能防止液面上升?若不加任何压力,平衡后毛细管内液面的高度为多少?已知该温度下乙醇的表面张力为22.3×10-3N.m -1,密度为789.4 kg.m -3 ,重力加速度为9.8m.s -2。设乙醇能很好地润湿玻璃。

解:乙醇能很好地润湿玻璃,可看作cos θ=0,

所以r=r 1(曲率半径与毛细管半径相等)

需要在管内加892 Pa 的压力才能防止液面上升。

若不加任何压力,平衡后毛细管内液面的高度为0.115m 。

kPa 2356Pa 2356400101091584r 4p 3kPa 1178Pa 117820010

1091582r 2p 217

3

73==??=γ=?==??=γ=?----..)())((Pa 892100.051022.32r 2p 33

=???=γ=?--m 1150100.0589789.41022.32gr 2h 33

..=?????=ργ=--

10.9 已知在273.15K 时,用活性炭吸附CHCl 3,其饱和吸附量为93.8dm 3.kg -1,若CHCl 3的分压力为13.375 kPa ,其平衡吸附量为82.5 dm 3.kg -1。试求:

(1)朗缪尔吸附等温式中的b 值;

(2)CHCl 3的分压为6.6672 kPa 时,平衡吸附量为若干?

解:(1)朗缪尔吸附等温式

(2)根据朗缪尔吸附等温式

10.14 293.15K 时,水的表面张力为72.75mN.m -1,汞的表面张力为486.5mN.m -1,而汞和水之间的界面张力为375mN.m -1,试判断:

(1)水能否在汞的表面上铺展开?

(2)汞能否在水的表面上铺展开?

解:(1)

水能在汞的表面上铺展

(2)

汞不能在水的表面上铺展

bp 1bp V V m +=b 375131b 37513893582....+=0

m 38.75mN 72.75-375-486.5--S -1->?==γγγ=水水汞汞0

m -788.75mN 486.5-375-72.75--S -1-

-3m kg 73.58dm 6.66720.54591 6.66720.545993.8bp 1bp V V ?=?+??=+=1

kPa 545901-82.593.8375131b -=??? ???=..

10.17 292.15K 时,丁酸水溶液的表面张力可以表示为)bc 1(a -0+γ=γln ,式中0γ为纯水的表面张力,a 和b 皆为常数。

(1)试求该溶液中丁酸的表面吸附量Γ和浓度c 的关系。

(2)若已知a=13.1 mN.m -1,b=19.62 dm 3.mol -1试计算当c=0.200 mol. dm -3时的Γ。

(3)当丁酸的浓度足够大,达到bc>>1时,饱和吸附量m Γ为多少?设此时表面上丁酸呈单分子层吸附,计算在液面上每个丁酸分子所占的截面积。

解:(1)

(2)

(3)

()

bc 1RT abc bc 1ab RT c -dc d RT c -+=??? ??+-=γ=Γ()()26--3m mol 104.2980.20019.621292.15

8.3140.20019.621013.1bc 1RT abc -??=?+????=+=Γ26--3m m mol 103935292.158.3141013.1RT a -??=??==Γ.2219-23

6-m m nm 30790m 1007931002361039351L 1a ....=?=???=Γ=

第10章习题解答

第10章习题参考答案* * 10.3【解】

10-4【解】 * 10.5题目改为:已知下列配合物的磁矩,根据价键理论指出各中心原子轨道杂化类型、 配离子空间构型,并指出配合物属内轨型还是外轨型。 【解】 [Co (NH 3)6]Cl 3 三氯化六氨合钴(Ⅲ) [CoCl 2 (NH 3)4]Cl 氯化二氯?四氨合钴(Ⅲ) [CoCl(NH 3)5]Cl 2 二氯化一氯?五氨合钴(Ⅲ) [CoCl 3 (NH 3)3] 三氯?三氨合钴(Ⅲ) 10.7题目改为:计算下列反应的标准平衡常数,并判断在标准状态下反应的方向。 【解】-2- -2-2θ 224 - 4 -2 2 {[Ag(CN)]}(S ) {[Ag(CN)]}(S )(Ag ) = = (CN ) (CN )(Ag ) c c c c c K c c c + + =θ2 θ f sp ()K K =2.51×10 -50 ×(1.3 ×1021)2 = 4.24 ×10 -8 θ m G r Δ=-RT ln K θ>0,反应逆向自发进行。 (2) + 322+ 44 4 434 44 3Cu )/[NH )/][OH )/][NH )/] [H )/]{[Cu(NH ]}/[OH )/][NH )/] )c c c c c c c c c c c c c c c c K (((((((θ Θ Θ Θ Θ Θ Θ Θ Θ + - + -= = θθ θ f w 44 (() ) b K K K = -54 2412 -144 1.78104.710 1.010 =2.1410) (()?????

解三角形典型例题

1.正弦定理和余弦定理 在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r . 1.在△ABC 中,A >B ?a >b ?sin A >sin B ?cos A c; a-b

10 第十章 界面现象习题解

第十章界面化学 课后作业题解 10.3 计算373.15K 时,下列情况下弯曲液面承受的附加压力。已知373.15K 时水的表面张力为58.91×10-3N.m -1。 (1)水中存在的半径为0.1μm 的小气泡; (2)空气中存在的半径为0.1μm 的小液滴; (3)空气中存在的半径为0.1μm 的小气泡。 解: 10.4 在298.15K 时,将直径为0.1mm 的玻璃毛细管插入乙醇中。问需要在管内加多大的压力才能防止液面上升?若不加任何压力,平衡后毛细管内液面的高度为多少?已知该温度下乙醇的表面张力为22.3×10-3N.m -1,密度为789.4 kg.m -3 ,重力加速度为9.8m.s -2。设乙醇能很好地润湿玻璃。 解:乙醇能很好地润湿玻璃,可看作cos θ=0, 所以r=r 1(曲率半径与毛细管半径相等) 需要在管内加892 Pa 的压力才能防止液面上升。 若不加任何压力,平衡后毛细管内液面的高度为0.115m 。 kPa 2356Pa 2356400101091584r 4p 3kPa 1178Pa 117820010 1091582r 2p 217 3 73==??=γ=?==??=γ=?----..)())((Pa 892100.051022.32r 2p 33 =???=γ=?--m 1150100.0589789.41022.32gr 2h 33 ..=?????=ργ=--

10.9 已知在273.15K 时,用活性炭吸附CHCl 3,其饱和吸附量为93.8dm 3.kg -1,若CHCl 3的分压力为13.375 kPa ,其平衡吸附量为82.5 dm 3.kg -1。试求: (1)朗缪尔吸附等温式中的b 值; (2)CHCl 3的分压为6.6672 kPa 时,平衡吸附量为若干? 解:(1)朗缪尔吸附等温式 (2)根据朗缪尔吸附等温式 10.14 293.15K 时,水的表面张力为72.75mN.m -1,汞的表面张力为486.5mN.m -1,而汞和水之间的界面张力为375mN.m -1,试判断: (1)水能否在汞的表面上铺展开? (2)汞能否在水的表面上铺展开? 解:(1) 水能在汞的表面上铺展 (2) 汞不能在水的表面上铺展 bp 1bp V V m +=b 375131b 37513893582....+=0 m 38.75mN 72.75-375-486.5--S -1->?==γγγ=水水汞汞0 m -788.75mN 486.5-375-72.75--S -1-

电子电路第十章习题及参考答案

习题十 10-1 在数字系统中,为什么要采用二进制如何用二—十进制表示十进制数 答:在数字系统中采用二进制数有许多优点,其主要优点有:①对元件参数的要求较低;②不仅具备算术运算功能,而且具备逻辑运算功能;③抗干扰能力强、精度高;④便于长期保存信息;⑤安全、可靠;⑥通用性强。 通过二进制的编码来表示十进制数,这种编码称为BCD 码,BCD 的编码方式有很多种,最容易理解、最直观的编码是“8421”码,这是一种有权码,常用的BCD 有权码还有“2421码等,除此之外,在BCD 码中还有无权码。如格雷码、余3码等。 10-2 什么叫编码用二进制编码与二进制数有何区别 答:由于数字系统中用0、1两个数表示所有的信息,对于数字信息可以直接用二进制数表示,但是对于一些图形、符号、文字等信息,要用0、1来表示,就必须按照0、1的一定规则组合来代表。这种按照一定规则组合的代码,并赋予一定含义就称为编码。 二进制编码赋予了不同的含义(或代表图形、符号、文字、颜色等),而二进制数就是一个具体的数值,它代表了数值的大小和正负。 10-3 将下列二进制数转换成十进制数: ① ② .1001 ③ 111111 ④ 解:①()B =(27+26+22 +1)D =(128+64+4+1)D =(197)D ②(.1001)B =(27+25+22+21+2-1+2-4 )D =D ③(111111)B =(26 -1)D =(63)D ④()B =(211+210+27+26+23+22 )D =(3276)D 10-4 将下列十进制数转换成二进制数、八进制数、十六进制数: ① 57 ② ③ ④ 解:①(57)D =(111001)B =(71)O =(39)H ②D ≈B =O =H ③D =B =O =H ④D ≈(0.)B =O =(E7)H 10-5 把下列十六进制数转化成二进制数、八进制数、十进制数: ① H ② H ③ (3AB6)H ④ H 解:①H =B =O =D ②H =(.)B =O ≈D ③(3AB6)H =(0)B =(35266)O =(15030)D ④H =B =O ≈D 10-6 什么是模2加它与逻辑代数加法有何区别 答:模2加就是一位二进制加法的运算规则(不考虑进位)、而逻辑代数的加是逻辑关系的一种表述。。它们的规则分别如下: 模2加:011110101000=⊕=⊕=⊕=⊕ 逻辑加:1111101010 00=+=+=+=+ 10-7 将下列十进制数用8421BCD 码表示。 ① D ② D 解:①D =(0011 0111. 1000 0110)8421BCD ②D =(0110 0000 0101. 0000 0001)8421BCD 10-8 根据格雷码与二进制数的关系式,列出四位二进制数所对应的格雷码。

解三角形典型例题答案

1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+= sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-= cos()cos(),2cos cos 0A B A B A B -=-+= cos 0A =或cos 0B =,得2A π=或2B π= 所以△ABC 是直角三角形。 2. 证明:将ac b c a B 2cos 222-+=,bc a c b A 2cos 2 22-+=代入右边 得右边22222222 22()222a c b b c a a b c abc abc ab +-+--=-= 22a b a b ab b a -==-=左边, ∴)cos cos (a A b B c a b b a -=- 3.证明:∵△AB C 是锐角三角形,∴,2A B π+>即022A B ππ>>-> ∴sin sin()2 A B π >-,即sin cos A B >;同理sin cos B C >;sin cos C A > ∴C B A C B A cos cos cos sin sin sin ++>++ 4.解:∵2,a c b +=∴sin sin 2sin A C B +=,即2sin cos 4sin cos 2222 A C A C B B +-=, ∴1sin cos 222B A C -==0,22 B π<<∴cos 2B = ∴sin 2sin cos 22244B B B ==?=839 5解:22222222sin()sin cos sin ,sin()cos sin sin a b A B a A B A a b A B b A B B ++===-- cos sin ,sin 2sin 2,222cos sin B A A B A B A B A B π===+=或2 ∴等腰或直角三角形 6解:2sin sin 2sin sin )sin ,R A A R C C b B ?-?=- 222sin sin )sin ,,a A c C b B a c b -=--=-

第十章习题解(上网)

第十章习题解 10-8 波源作简谐运动,其方程为()m t πcos240100.43-?=y , 形成的波形以30m·s-1 的速度沿直线传播.(1)求波的周期及波长;(2)写出波动方程. 解:分析:已知波源振动方程求波动物理量及波动方程,可先将振动方程与其一般式 ()?ω+=t cos A y 比较,求出振幅A 、角频率ω及初相φ0 ,该类物理量与波动方程的一般 式 ()[]0cos ?ω+-=u x t A y /相应的物理量相同.利用已知波速u 、ω=2πν =2π /T 、λ=u T 即可写出相应波动方程. (1)由已知波源振动方程:质点振动的角频率1s π240-=ω.波的周期就是振动的周期,故有: 波动周期: s 1033.8/π23-?==ωT (1) 波长: λ=uT =0.25 m (2) (2) 将已知波源振动方程与谐振动方程一般式比较可得波动周期、角频率、初相: A =4.0 ×10-3m 1s π240-=ω φ0 =0 故以波源为原点,沿x 轴正向传播的波动方程为: ()[]() () m π8π240cos 100.4/cos 3 0x t u x t A y -?=?+-ω=- (3) 10-9 已知波动方程为:y=0.05sin(10πt –0.6x)m , (1) 求波长、频率、波速和周期; (2)说明x=0时方程的意义,并作图表示; 解:分析:可采用比较法求解,先将已知波动方程改写成余弦形式,与波动方程一般式 ()[]0cos ?ω+-=u x t A y /比较可求出相应物理量,当x 确定时波动方程即成为

质点的振动方程. (1)波动方程改写成余弦形式: y=0.05cos[10π(t -x / 5π)-π / 2](m) 得: u=5π=15.7m ?s -1 ν=5Hz T=1 / ν=0.2 s (1) λ= uT =3.14m (2) 当x=0时波动方程成为坐标原点处质点的振动方程: y=0.05cos(10πt -π / 2)(m) (2) 由(2)式作如图所示; 10-20 如图所示两相干波源分别在P 、Q 两点处,波源发出频率ν、波长λ,初相相同的两 列相干波.设PQ =3λ/2,R 为PQ 连线上的一点.求: (1)自P 、Q 发出的两列波在R 处的相位差; (2)两列波在R 处干涉的合振幅; 解:分析:两波源初相相同,故两波在点R 处的相位差Δφ仅由其波程差决定.因R 处质点同时受两列相干波的作用,其振动为同频率、同振动方向的两谐振动合成,合振幅为: ? ?++=cos 2212221A A A A A (1) 两相干波在R 处的相位差为: π=λ=?3/Δπ2Δr (1) (2) 由于π3Δ=,则合振幅为: (s)

第十章界面现象练习题及答案

第十章界面现象练习题 一、是非题(对的画√错的画×) 1、液体的表面张力总是力图缩小液体的表面积。() 2、液体的表面张力的方向总是与液面垂直。() 3、分子间力越大的物体其表面张力也越大。() 4、垂直插入水槽中一支干净的玻璃毛细管,当在管中上升平衡液面外加热时,水柱会上升。() 5、在相同温度下,纯汞在玻璃毛细管中呈凸液面,所以与之平衡的饱和蒸气压必大于其平液面的蒸汽压。() 6、溶液表面张力总是随溶液的浓度增大而减小。() 7、某水溶液发生负吸附后,在干净的毛细管中的上升高度比纯水在该毛细管中上升的高度低。() 8、通常物理吸附的速率较小,而化学吸附的速率较大。() 9、兰格缪尔等温吸附理论只适用于单分子层吸附。() 10、临界胶束浓度(CMC)越小的表面活性剂,其活性越高。() 11、物理吸附无选择性。() 12、纯水、盐水、皂液相比,其表面张力的排列顺序是:γ(盐水)<γ(纯水)<γ(皂液)。() 13、在相同温度与外压力下,水在干净的玻璃毛细管中呈凹液面,故管中饱和蒸气压应小于水平液面的蒸气压力。() 14、朗缪尔吸附的理论假设之一是吸附剂固体的表面是均匀的。() 15、同一纯物质,小液滴的饱和蒸气压大于大液滴的饱和蒸气压。() 16、弯曲液面的饱和蒸气压总大于同温度下平液面的蒸气压。() 17、表面张力在数值上等于等温等压条件下系统增加单位表面积时环境对系统所做的可逆非体积功。() 18、某水溶液发生正吸附后,在干净的毛细管中的上升高度比在纯水的毛细管中的水上升高度低。() 19、弯曲液面处的表面张力的方向总是与液面相切。()

20、吉布斯所定义的“表面过剩物质的量”只能是正值,不可能是负值。( ) 21、封闭在容器内的大、小液滴若干个,在等温下达平衡时,其个数不变,大小趋于一致。() 22、凡能引起表面张力降低的物质均称之为表面活性剂。() 23、表面过剩物质的量为负值,所以吸附达平衡后,必然引起液体表面张力降低。() 24、在吉布斯模型中,选择表面相的位置使溶剂的表面过剩物质的量n1(γ),则溶质的表面过剩物质的量ni(γ)可以大于零、等于零或小于零。() 25、过饱和蒸气之所以可能存在,是因新生成的微小液滴具有很大的 比表面吉布斯函数。() 二、选择题 1、液体表面分子所受合力的方向总是(),液体表面张力的方向总是() (1)沿液体表面的法线方向,指向液体内部。 (2)沿液体表面的法线方向,指向气体内部。 (3)沿液体表面的切线方向, (4)无确定的方向。 2、在定温定压下影响物质的表面吉布斯函数的因素是() (1)仅有表面积As (2)仅有表面张力γ (3)表面积As和表面张力γ(4)没有确定的函数关系 3、附加压力产生的原因是() (1)由于存在表面(2)由于在表面上存在表面张力 (3)由于表面张力的存在,在弯曲表面两边压力不同 (4)难于确定 4、在水平放置的玻璃毛细管中注入少许水(水润湿玻璃)在毛细管中水平水柱 的两端呈凹液面,当在右端水凹面处加热,毛细管中的水向何端移动。()(1)向左移动(2)向右移动 (3)不动(4)难以确定 5、今有一球形肥皂泡,半径为r,肥皂水溶液的表面张力为γ,则肥皂泡内附加压力是()

正弦定理余弦定理综合应用解三角形经典例题老师

一、知识梳理 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 111 sin sin sin 222ABC S ab C bc A ac B ?= == 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二: ?? ? ??===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三:::sin :sin :sin a b c A B C = 形式四: sin ,sin ,sin 222a b c A B C R R R = == 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2 2 2 2cos a b c bc A =+- 2 2 2 2cos b c a ca B =+- 222 2cos c a b ab C =+-(解三角形的重要工具) 形式二: 222cos 2b c a A bc +-= 222cos 2a c b B ac +-= 222 cos 2a b c C ab +-= 二、方法归纳 (1)已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b c A B C == ,可求出角C ,再求b 、c . (2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2 -2b c cosA ,求出a ,再由余弦定理,求出角B 、C . (3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C . (4)已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a b A B = ,求出另一边b 的对角B ,由C =π-(A +B ),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a b A B = 求B 时,可能出一解,两解或无解的情况 a = b sinA 有一解 b >a >b sinA 有两解 a ≥b 有一解 a >b 有一解 三、课堂精讲例题 问题一:利用正弦定理解三角形

第十章 界面现象

第十章 界面现象 10.3 298.15K 时,乙醚-水、乙醚-汞及水-汞的界面张力分别为0.0107N·m -1、0.379 N·m -1及0.375 N·m -1,若在乙醚与汞的界面上滴一滴水,试求其润湿角。 解:此润湿过程如图所示,因此可按杨氏方程计算接触角。 ? ==-=-= +=05.683738.00107 .0375 .0379.0cos cos -- --- -θσσσθθ σσσ水乙醚水汞乙醚汞水乙醚水汞乙醚汞 10.5 已知CaCO 3在773.15K 时的密度为3900kg·m -3,表面张力为1210×10-3N·m -1,分解压力为101.325Pa 。若将CaCO 3研磨成半径为30nm(1nm=10-9m)的粉末,求其在773.15K 时的分解压力。 解:一定温度下CaCO 3的分解压力是指CaCO 3分解产物CO 2的平衡压力。此分解压力与反应物CaCO 3的分散度即颗粒半径之间关系可用开尔文公式表示,即 Pa p p p r RT M p p r r r 8.139325.101380.1380.132206 .010*******.773314.81009.10021.122ln 83=?===???????==--ρσ 10.10 20℃时,水的表面张力为72.8mN·m -1,汞的表面张力为483mN·m -1,而汞和水的界面张力为375mN·m -1,请判断: (1)水能否在汞的表面上铺展开? (2)汞能否在水的表面上铺展开? 解:(1)可用水在汞表面上的铺展系数S 来判断。 S =-ΔG S =γS -γl S -γl =483-375-72.8=35.2 mN·m -1 S>0,所以水能在汞的表面上铺展开。

第十章 界面现象概念题及解答

§10.2 概念题 10.2.1填空题 1. 液体表面层中的分子总受到一个指向()力,而表面张力则是()方向上的力。 2. 在恒T,P下,纯液体是通过()来降低其表面吉布斯函数的,例如荷叶上的水滴呈球状是因为()。 3. 在25℃下,于100KPa的大气中,当某溶液形成半径为r之液滴时,液滴内液体的压力为150KPa.若在同温、同压下的空气中,将该溶液吹成一半径为r的气泡时,则该气泡内气体的压力为()(填入具体数值)。不考虑重力的影响。 4. 分散在大气中的小液滴和小气泡,或者毛细血管中的凸液面和凹液面,所产生的附加压力的方向均指向于( )。 图10-1 5. 如图10-1所示,设管中液体对毛细血管完全润湿,当加热管中水柱的右端时,则水柱将向()移动。 6. 将同样量的两小水滴中之一灌在玻璃毛细血管中该水滴能很好地润湿管壁,而另一小水滴则放在荷叶上,若两者均放在温度的大气中,则最先蒸发掉的是()。 7. 产生过冷、过热和过饱和等亚稳态现象之原因是()。 8. 固体对气体的吸附有物理吸附和化学吸附之分,原因是() 9. 朗缪尔的吸附理论只适用于()吸附,根据朗缪尔理论导出的吸附等温式所描绘的吸附等温线的形状为()(画出图形)。 10. 如图10-2所示,在固体表面上附着一气泡,气泡被液体所包围,请在图中画出接触角 的位置。 图10一2 图10一3

11. 如图10-3所示,将一半径为r 的固体球体并恰有一般浸没在液体中,设固体和液体的表面张力分别为,s l γγ与固液界面张力为sl γ,则在恒T,P 下,球在浸没前后的表面吉布斯函数变化s G ?=( )(写出式子)。 10.2.2 单项选择题 1. 如图所示,该U 型管的粗、细两管的半径分别为0.05cm 和0.01cm 。若将密度30.80.g cm U ρ-=?的液体注入型管中,测得细管液面比粗管的液面高h= 2.2cm , (γ=l 利用上述数据便可求得该液体的表面张力 ) 。设该液体与管壁能很好润湿,即0θ=?。 选择填入:(a)5.20×31313110.;()10.7910.;()12.8210.;N m b N m c N m ------??(d)因数据不足,无法计算。 2. 在100℃,大气压力为101.325kPa 下的纯水中,如有一个半径为r 的蒸汽泡,则该蒸汽泡内的水的饱和蒸汽压r p ( )大气压力0p 0p ;若不考重力的作用,则蒸汽泡受到的压力为( )。 选择填入:(a )大于;0p (大气压力)-p ?(附加压力);(b)大于;0p +p ?;(c)小于; o p p -?;(d)小于;o p p +?。 3. 在T ,p 一定的条件下,将一体积为V 的大水滴分散为若干小水滴后,在下列性质中,认为基本不发生变化的性质为( )。 选择填入:(a)表面能; (b)表面张力;(c )弯曲液面下的附加压力;(d )饱和蒸汽压。 4. 在室温、大气压力下,用同一支滴管分别滴下同体积的纯水和稀的表面活性剂水溶液(其密度可视为与纯水相同)则水的滴数1n 与稀表面活性剂溶液的滴数2n 之比,即12 /n n

第10章习题解答(DOC)

第10章 信号产生与处理电路 习 题 10 10.1 振荡电路与放大电路有何异同点。 解:振荡电路和放大电路都是能量转换装置。振荡电路是在无外输入信号作用时,电路自动地将直流能量转换为交流能量;放大电路是在有外输入信号控制下,实现能量的转换。 10.2 正弦波振荡器振荡条件是什么?负反馈放大电路产生自激的条件是什么?两者有何不同,为什么?。 解:正弦波振荡电路的振荡条件为1=? ?F A ,电路为正反馈时,产生自激的条件。 负反馈放大电路的自激条件为1-=? ?F A ,电路为负反馈时,产生自激的条件。 10.3 根据选频网络的不同,正弦波振荡器可分为哪几类? 各有什么特点? 解:正弦波振荡电路可分为RC 正弦波振荡器,LC 正弦波振荡器和石英晶体振荡器。 RC 正弦波振荡器通常产生低频正弦信号,LC 正弦波振荡器常用来产生高频正弦信号,石英晶体振荡器产生的正弦波频率稳定性很高。 10.4 正弦波信号产生电路一般由几个部分组成,各部分作用是什么? 解:正弦波振荡电路通常由四个部分组成,分别为:放大电路、选频网络、正反馈网络和稳幅网络。放大电路实现能量转换的控制,选频网络决定电路的振荡频率,正反馈网络引入正反馈,使反馈信号等于输入信号,稳幅网络使电路输出信号幅度稳定。 10.5 当产生20Hz ~20KHz 的正弦波时,应选用什么类型的振荡器。当产生100MHz 的正弦波时,应选用什么类型的振荡器。当要求产生频率稳定度很高的正弦波时,应选用什么类型的振荡器。 解:产生20Hz~20KHz 的正弦波时,应选用RC 正弦波振荡器。产生100MHz 的正弦波时,应选用LC 正弦波振荡器。当要求产生频率稳定度很高的正弦波时,应选用石英晶体振荡器。 10.6 电路如图10.1所示,试用相位平衡条件判断哪个电路可能振荡,哪个不能振荡,并简述理由。 解:(a) 不能振荡,不满足正反馈条件;(b) 可能振荡,满足振荡条件。

解三角形的必备知识和典型例题及习题

解三角形的必备知识和典型例题及习题一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC中,C=90°,AB=c,AC=b,BC=a。 2 2 2 (1)三边之间的关系: a + b =c 。(勾股定理) (2)锐角之间的关系:A+B=90°; (3)边角之间的关系:(锐角三角函数定义) sin A=cos B=a c ,cos A=sin B= b c ,tan A= a b 。 2.斜三角形中各元素间的关系: 在△ABC中,A、B、C为其内角,a、b、c 分别表示A、B、C的对边。(1)三角形内角和:A+B+C=π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 a sin A b sin B c sin C 2R (R为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 2 2 2 2 2 2 2 2 2 a = b + c -2bc cos A; b =c +a -2ca cos B; c =a +b -2ab cos C。 3 .三角形的面积公式: (1)S =1 2 ah a= 1 2 bh b= 1 2 ch c(h a、h b、h c 分别表示a、b、c 上的高); (2)S =1 2 ab sin C= 1 2 bc sin A= 1 2 ac sin B; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角. 第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换 三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

第10章习题答案

实训习题参考答案 一、选择题 1.可以用普通螺纹中径公差限制( A B E ) A .螺距累积误差 B .牙型半角误差 C .大径误差 D .小径误差 E .中径误差 2.普通螺纹的基本偏差是( B C ) A .ES B .EI ; C .es D .ei 。 3.国家标准对内、外螺纹规定了( A B ) A .中径公差 B .顶径公差; C .底径公差 二、判断题 1.普通螺纹的配合精度与公差等级和旋合长度有关。 (√ ) 2.国标对普通螺纹除规定中径公差外,还规定了螺距公差和牙型半角公差。 (╳ ) 3.作用中径反映了实际螺纹的中径偏差、螺距偏差和牙型半角偏差的综合作用。(√ ) 三、简答题 1. 对内螺纹,标准规定了哪几种基本偏差?对外螺纹,标准规定了哪几种基本偏差? 答:对内螺纹,标准规定了G 及H 两种基本偏差。 对外螺纹,标准规定了e 、f 、g 和h 四种基本偏差? 2. 螺纹分几个精度等级?分别用于什么场合? 答:标准中按不同旋合长度给出精密、中等、粗糙三种精度。精密螺纹主要用于要求结合性质变动较小的场合;中等精度螺纹主要用于一般的机械、仪器结构件;粗糙精度螺纹主要用于要求不高的场合,如建筑工程、污浊有杂质的装配环境等不重要的连接。对于加工比较困难的螺纹,只要功能要求允许,也可采用粗糙精度。 3. 解释M10×1—5g6g —S 的含义。 答:M10—螺纹代号 1—螺距为1mm 5g —外螺纹中径公差带代号 6g —外螺纹顶径公差带代号 S —短旋合长度 四、计算题 1.有一对普通螺纹为M12×1.5—6G/6h ,今测得其主要参数如表1所示。试计算内、 (1)确定中径的极限尺寸 211.025D mm = 查表得:,2 190D T m μ=,32EI m μ=+ ES =EI +190=32+190=+222μm

第10章 界面现象

第10章界面现象 10.1 请回答下列问题: (1)常见的亚稳定状态有哪些?为什么会产生亚稳定状态?如何防止亚稳定状态的产生? 解:常见的亚稳定状态有:过饱和蒸汽、过热或过冷液体和过饱和溶液等。 产生亚稳定状态的原因是新相种子难生成。如在蒸气冷凝、液体凝固和沸腾以及溶液结晶等过程中,由于要从无到有生产新相,故而最初生成的新相,故而最初生成的新相的颗粒是极其微小的,其表面积和吉布斯函数都很大,因此在系统中产生新相极其困难,进而会产生过饱和蒸气、过热或过冷液体和过饱和溶液等这些亚稳定状态。 为防止亚稳定态的产生,可预先在系统中加入少量将要产生的新相种子。 (2)在一个封闭的钟罩内,有大小不等的两个球形液滴,问长时间恒温放置后,会出现什么现象? 解:若钟罩内还有该液体的蒸气存在,则长时间恒温放置后,出现大液滴越来越大,小液滴越来越小,并不在变化为止。 其原因在于一定温度下,液滴的半径不同,其对应的饱和蒸汽压不同,液滴越小,其对应的饱和蒸汽压越大。当钟罩内液体的蒸汽压达到大液滴的饱和蒸汽压时。该蒸汽压对小液滴尚未达到饱和,小液滴会继续蒸发,则蒸气就会在大液滴上凝结,因此出现了上述现象。 (3)物理吸附和化学吸附最本质的区别是什么? 解:物理吸附与化学吸附最本质的区别是固体与气体之间的吸附作用力不同。 物理吸附是固体表面上的分子与气体分子之间的作用力为范德华力,化学吸附是固体表面上的分子与气体分子之间的作用力为化学键力。 (4)在一定温度、压力下,为什么物理吸附都是放热过程? 解:在一定温度、压力下,物理吸附过程是一个自发过程,由热力学原理可知,此过程系统的ΔG<0。同时气体分子吸附在固体表面,有三维运动表为二维运动,系统的混乱度减小,故此过程的ΔS<0。根据ΔG=ΔH-TΔS可得,物理吸附过程的ΔH<0。在一定的压力下,吸附焓就是吸附热,故物理吸附过程都是放热过程。 10.2 在293.15K及101.325kPa下,把半径为1×10-3m的汞滴分散成半径为1×10-9m小汞滴,试求此过程系统的表面吉布斯函数变为多少?已知汞的表面张力为0.4865N·m-1。

(完整版)解三角形三类经典题型

解三角形三类经典类型 类型一 判断三角形形状 类型二 求范围与最值 类型三 求值专题 类型一 判断三角形形状 例1:已知△ABC 中,bsinB=csinC,且C B A 2 22sin sin sin +=,试判断三角形的形状. 解:∵bsinB=csinC,由正弦定理得 sin 2B=sin 2 C ,∴ sinB=sinC ∴ B=C 由 C B A 222sin sin sin += 得 2 22c b a += ∴三角形为等腰直角三角形. 例2:在△ABC 中,若B=ο 60,2b=a+c,试判断△ABC 的形状. 解:∵2b=a+c, 由正弦定理得2sinB=sinA+sinC,由B=ο 60得sinA+sinC=3 由三角形内角和定理知sinA+sin(A -ο 120)=3,整理得 sin(A+ο30)=1 ∴A+ο ο ο 60,9030==A 即,所以三角形为等边三角形. 例3:在△ABC 中,已知2 2 tan tan b a B A =,试判断△ABC 的形状. 解:法1:由题意得 B A A B B A 2 2sin sin cos sin cos sin =,化简整理得sinAcosA=sinBcosB 即sin2A=sin2B ∴2A=2B 或2A+2B=π ∴A=B 或2 π = +B A ,∴三角形的形状为等腰三角形或直角三角形. 法2:由已知得22cos sin cos sin b a A B B A =结合正、余弦定理得2 222222222b a bc a c b b a c b c a a =-+? -+? , 整理得0))((2 2 2 2 2 =-+-c b a b a ∴ 2 2222c b a b a =+=或 即三角形为等腰三角形或直角三角形 例4:在△ABC 中,(1)已知sinA=2cosBsinC ,试判断三角形的形状; (2)已知sinA= C B C B cos cos sin sin ++,试判断三角形的形状. 解:(1)由三角形内角和定理得 sin(B+C)=2cosBsinC 整理得sinBcosC -cosBsinC=0即sin(B -C)=0 ∴ B=C 即三角形为等腰三角形. (2)由已知得 sinAcosB+sinAcosC=sinB+sinC ,结合正、余弦定理得

第十章练习题及答案

第十章数据库恢复技术 一、选择题 1.一个事务的执行,要么全部完成,要么全部不做,一个事务中对数据库的所有操作都是一个不可分割的操作序列的属性是(A )。 A. 原子性 B. 一致性 C. 独立性 D. 持久性 2.表示两个或多个事务可以同时运行而不互相影响的是(C)。 A. 原子性 B. 一致性 C. 独立性 D. 持久性 3. 事务的持续性是指(B ) A.事务中包括的所有操作要么都做,要么都不做。 B.事务一旦提交,对数据库的改变是永久的。 C.一个事务内部的操作对并发的其他事务是隔离的。 D.事务必须是使数据库从一个一致性状态变到另一个一致性状态。 4.SQL语言中的COMMIT语句的主要作用是(C)。 A. 结束程序 B. 返回系统 C. 提交事务 D. 存储数据 5.SQL语言中用(B)语句实现事务的回滚 A. CREATE TABLE B. ROLLBACK C. GRANT和REVOKE D. COMMIT 6.若系统在运行过程中,由于某种硬件故障,使存储在外存上的数据部分损失或全部损失,这种情况称为(A )。 A. 介质故障 B. 运行故障 C. 系统故障 D. 事务故障 7.在DBMS中实现事务持久性的子系统是(B D )。 A. 安全管理子系统 B. 完整性管理子系统 C. 并发控制子系统 D. 恢复管理子系统 8. 后援副本的作用是(C)。 A. 保障安全性 B. 一致性控制 C. 故障后的恢复 D. 数据的转储 9.事务日志用于保存(D C)。 A. 程序运行过程 B. 程序的执行结果 C. 对数据的更新操作 D. 数据操作10.数据库恢复的基础是利用转储的冗余数据。这些转储的冗余数据包括(C)。 A. 数据字典、应用程序、审计档案、数据库后备副本 B. 数据字典、应用程序、审计档案、日志文件 C. 日志文件、数据库后备副本 D. 数据字典、应用程序、数据库后备副本 选择题答案: (1) A (2) C (3) B (4) C (5) B (6) A (7) D (8) C (9) C (10) C 二、简答题 1.试述事务的概念及事务的四个特性。 答:事务是用户定义的一个数据库操作序列,这些操作要么全做要么全不做,是一个不可分割的工作单位。 事务具有四个特性:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)和持续性(Durability)。这个四个特性也简称为ACID特性。 原子性:事务是数据库的逻辑工作单位,事务中包括的诸操作要么都做,要么都不做。 一致性:事务执行的结果必须是使数据库从一个一致性状态变到另一个一致性状态。 隔离性:一个事务的执行不能被其他事务干扰。即一个事务内部的操作及使用的数据对其他并发事务是隔离的,并发执行的各个事务之间不能互相干扰。

九年级数学下册《解直角三角形》典型例题(含答案)

《解直角三角形》典型例题 例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形. 分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解 (1) ; (2)由a b B =tan ,知 ; (3)由c a B = cos ,知860cos 4cos =?==B a c . 说明 此题还可用其他方法求b 和c . 例 2 在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形. 解法一 ∵ ∴ 设 ,则 由勾股定理,得 ∴ . ∴ . 解法二 133330tan =?=?=b a 说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3 设 中, 于D ,若 ,解三 角形ABC .

分析“解三角形ABC”就是求出的全部未知元素.本题CD不是的边,所以应先从Rt入手. 解在Rt中,有: ∴ 在Rt中,有 说明(1)应熟练使用三角函数基本关系式的变形,如: (2)平面几何中有关直角三角形的定理也可以结合使用,本例中 “”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值: 所以解直角三角形问题,应开阔思路,运用多种工具. 例4在中,,求. 分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差; (2)不是直角三角形,可构造直角三角形求解.

解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有,且有 ; 在中,,且 , ∴; 于是,有, 则有 说明还可以这样求:

机械课后习题答案第10章习题及解答

第10章习题及解答 10.1答:根据所承受载荷的不同,轴可分为转轴、传动轴和心轴三类。转轴:既承受转矩又承受弯矩,如减速箱中各轴、机床主轴等;传动轴:主要承受转矩,不承受或承受很小的弯矩,如汽车的传动轴、螺旋浆轴等;心轴:只承受弯矩而不承受转矩,如自行车轮轴、火车轮轴、滑轮轴等。 10.2答:转轴所受弯曲应力通常是对称循环变应力。转轴所受扭转应力则常常不是对称循环变应力,有可能是静应力、脉动循环变应力或对称循环变应力,根据实际受力状况判断。 10.3 答:轴的常用材料有碳素钢、合金钢、铸钢和球墨铸铁。按轴的工作场合、受载情况、使用状况和制造成本等选用材料。10.4答:从公式[]333 62.01055.9n p C n p d ≥?≥τ可以看出,在采用相同材料并忽略功率损耗的条件下,轴的最小直径与转速成反比,低速轴的转速远远要小于高速轴的转速,故低速轴的直径要比高速轴粗很多。 10.5答:因为开始设计时,支承的距离、受力大小、方向及作用位置均属未知。10.6答:轴的结构设计任务是在满足强度和刚度要求的基础上,确定轴的合理结构和全部几何尺寸。轴的结构设计应满足的要求是:轴及安装轴上的零件要有确定的工作位置;轴上零件要便于装拆、定位和调整;轴的结构不仅要有良好的工艺性,而且有利于提高轴的强度、刚度以及节省材料,减轻重量。 10.7答:轴上零件周向固定方式有: 1)键:广泛采用; 2)花键:用于传递载荷大、高速、对中性好、导向性好、对轴的削弱程度小等场合; 3)过盈配合:用于对中性好、承受冲击载荷等场合。 轴上零件周向固定方式有: 1)轴肩:可承受大的轴向力,结构简单、可靠; 2)轴环:可承受大的轴向力,结构简单、可靠; 3)套筒:可承受较大的轴向力,用于相邻两零件之间距离较短、转速较低的场合; 4)圆螺母:可承受较大的轴向力,用于便于零件装拆、轴的强度要求不高的场合; 5)轴端挡圈:可承受较大的轴向力,用于轴端; 6)弹性挡圈:只能承受较小的轴向力,用于不太重要场合; 7)圆锥面:通常与轴端挡圈或圆螺母联合使用,用于高速、受冲击载荷等场合。10.8解: 36.28()d mm ≥取d =38(mm ) 10.9解: []33660.20.23514505571.61()9.55109.5510d n P KW τ???≤==??10.10解:因轴的材料为45号钢,调质处理,由表16-1查得 B σ=650MPa ,由表16-3查得 许用弯曲应力[1b σ-]=60MPa ,取α=0.3,则

物理化学第十章界面现象

第十章界面现象 10.1 界面张力 界面:两相的接触面。 五种界面:气—液、气—固、液—液、液—固、固—固界面。(一般常把与气体接触的界面称为表面,气—液界面=液体表面,气—固界面=固体表面。) 界面不是接触两相间的几何平面!界面有一定的厚度, 有时又称界面为界面相(层)。 特征:几个分子厚,结构与性质与两侧体相均不同 比表面积:αs=A s/m(单位:㎡·㎏-1) 对于一定量的物质而言,分散度越高,其表面积就越大,表面效应也就越明显,物质的分散度可用比表面积αs来表示。 与一般体系相比,小颗粒的分散体系有很大的表面积,它对系统性质的影响不可忽略。 1. 表面张力,比表面功及比表面吉布斯函数 物质表面层的分子与体相中分子所处的力场是不同的——所有表面现象的根本原因! 表面的分子总是趋向移往内部,力图缩小表面积。液体表面如同一层绷紧了的富有弹性的橡皮膜。 称为表面张力:作用于单位界面长度上的紧缩力。单位:N/m, 方向:表面(平面、曲面)的切线方向 γ可理解为:增加单位表面时环境所需作的可逆功,称比表面功。单位:

J · m-2。 恒温恒压: 所以: γ等于恒温、恒压下系统可逆增加单位面积时,吉布斯函数的增加,所以,γ也称为比表面吉布斯函数或比表面能。单位J · m-2 表面张力、比表面功、比表面吉布斯函数三者的数值、量纲和符号等同,但物理意义不同,是从不同角度说明同一问题。(1J=1N·m故1J·m-2=1N·m-1,三者单位皆可化成N·m-1) 推论:所有界面——液体表面、固体表面、液-液界面、液-固界面等,由于界面层分子受力不对称,都存在界面张力。 2. 不同体系的热力学公式 对一般多组分体系,未考虑相界面面积时:

相关文档