文档库 最新最全的文档下载
当前位置:文档库 › lucene简介

lucene简介

lucene简介
lucene简介

2 lucene的工作方式

lucene提供的服务实际包含两部分:一入一出。所谓入是写入,即将你提供的源(本质是字符串)写入索引或者将其从索引中删除;所谓出是读出,即向用户提供全文搜索服务,让用户可以通过关键词定位源。

2.1写入流程

源字符串首先经过analyzer处理,包括:分词,分成一个个单词;去除stopword(可选)。将源中需要的信息加入Document 的各个Field中,并把需要索引的Field索引起来,把需要存储的Field存储起来。将索引写入存储器,存储器可以是内存或磁盘。

2.2读出流程

用户提供搜索关键词,经过analyzer处理。对处理后的关键词搜索索引找出对应的Document。用户根据需要从找到的Document中提取需要的Field。

3 一些需要知道的概念

lucene用到一些概念,了解它们的含义,有利于下面的讲解。

3.1 analyzer

Analyzer 是分析器,它的作用是把一个字符串按某种规则划分成一个个词语,并去除其中的无效词语,这里说的无效词语是指英文中的“of”、“the”,中文中的“的”、“地”等词语,这些词语在文章中大量出现,但是本身不包含什么关键信息,去掉有利于缩小索引文件、提高效率、提高命中率。

分词的规则千变万化,但目的只有一个:按语义划分。这点在英文中比较容易实现,因为英文本身就是以单词为单位的,已经用空格分开;而中文则必须以某种方法将连成一片的句子划分成一个个词语。具体划分方法下面再详细介绍,这里只需了解分析器的概念即可。

3.2 document

用户提供的源是一条条记录,它们可以是文本文件、字符串或者数据库表的一条记录等等。一条记录经过索引之后,就是以一个Document的形式存储在索引文件中的。用户进行搜索,也是以Document列表的形式返回。

3.3 field

一个Document可以包含多个信息域,例如一篇文章可以包含“标题”、“正文”、“最后修改时间”等信息域,这些信息域就是通过Field在Document中存储的。

Field有两个属性可选:存储和索引。通过存储属性你可以控制是否对这个Field进行存储;通过索引属性你可以控制是否对该Field进行索引。这看起来似乎有些废话,事实上对这两个属性的正确组合很重要,下面举例说明:

还是以刚才的文章为例子,我们需要对标题和正文进行全文搜索,所以我们要把索引属性设置为真,同时我们希望能直接从搜索结果中提取文章标题,所以我们把标题域的存储属性设置为真,但是由于正文域太大了,我们为了缩小索引文件大小,将正文域的存储属性设置为假,当需要时再直接读取文件;我们只是希望能从搜索解果中提取最后修改时间,不需要对它进行搜索,所以我们把最后修改时间域的存储属性设置为真,索引属性设置为假。上面的三个域涵盖了两个属性的三种组合,还有一种全为假的没有用到,事实上Field不允许你那么设置,因为既不存储又不索引的域是没有意义的。

3.4 term

term是搜索的最小单位,它表示文档的一个词语,term由两部分组成:它表示的词语和这个词语所出现的field。

3.5 tocken

tocken是term的一次出现,它包含trem文本和相应的起止偏移,以及一个类型字符串。一句话中可以出现多次相同的词语,它们都用同一个term表示,但是用不同的tocken,每个tocken标记该词语出现的地方。

3.6 segment

添加索引时并不是每个document都马上添加到同一个索引文件,它们首先被写入到不同的小文件,然后再合并成一个大索引文件,这里每个小文件都是一个segment。

4 lucene的结构

lucene包括core和sandbox两部分,其中core是lucene稳定的核心部分,sandbox包含了一些附加功能,例如highlighter、各种分析器。

Lucene core有七个包:analysis,document,index,queryParser,search,store,util。

4.1 analysis

Analysis包含一些内建的分析器,例如按空白字符分词的WhitespaceAnalyzer,添加了stopwrod过滤的StopAnalyzer,最常用的StandardAnalyzer。

4.2 document

Document包含文档的数据结构,例如Document类定义了存储文档的数据结构,Field类定义了Document的一个域。

4.3 index

Index 包含了索引的读写类,例如对索引文件的segment进行写、合并、优化的IndexWriter类和对索引进行读取和删除操作的IndexReader类,这里要注意的是不要被IndexReader这个名字误导,以为它是索引文件的读取类,实际上删除索引也是由它完成,IndexWriter只关心如何将索引写入一个个segment,并将它们合并优化;IndexReader则关注索引文件中各个文档的组织形式。

4.4 queryParser

QueryParser 包含了解析查询语句的类,lucene的查询语句和sql语句有点类似,有各种保留字,按照一定的语法可以组成各种查询。Lucene有很多种Query类,它们都继承自Query,执行各种特殊的查询,QueryParser的作用就是解析查询语句,按顺序调用各种Query类查找出结果。

4.5 search

Search包含了从索引中搜索结果的各种类,例如刚才说的各种Query类,包括TermQuery、BooleanQuery等就在这个包里。

4.6 store

Store包含了索引的存储类,例如Directory定义了索引文件的存储结构,FSDirectory为存储在文件中的索引,RAMDirectory为存储在内存中的索引,MmapDirectory为使用内存映射的索引。

4.7 util

Util包含一些公共工具类,例如时间和字符串之间的转换工具。

5 如何建索引

5.1 最简单的能完成索引的代码片断

IndexWriter writer = new Index Writer(“/data/index/”, new StandardAnalyzer(), true);

Document doc = new Document();

doc.add(new Field("title", "lucene introduction", Field.Store.YES, Field.Index.TOKENIZED)); doc.add(new Field("content", "lucene works well", Field.Store.YES, Field.Index.TOKENIZED)); writer.addDocument(doc);

writer.optimize();

writer.close();

下面我们分析一下这段代码。首先我们创建了一个writer,并指定存放索引的目录为“/data/index”,使用的分析器为StandardAnalyzer,第三个参数说明如果已经有索引文件在索引目录下,我们将覆盖它们。然后我们新建一个document。我们向document添加一个field,名字是“title”,内容是“lucene introduction”,对它进行存储并索引。再添加一个名字是“content”的field,内容是“lucene works well”,也是存储并索引。然后我们将这个文档添加到索引中,如果有多个文档,可以重复上面的操作,创建document并添加。添加完所有document,我们对索引进行优化,优化主要是将多个segment合并到一个,有利于提高索引速度。随后将writer关闭,这点很重要。对,创建索引就这么简单!当然你可能修改上面的代码获得更具个性化的服务。

5.2 将索引直接写在内存

你需要首先创建一个RAMDirectory,并将其传给writer,代码如下:

Directory dir = new RAMDirectory();

IndexWriter writer = new IndexWriter(dir, new StandardAnalyzer(), true);

Document doc = new Document();

doc.add(new Field("title", "lucene introduction", Field.Store.YES, Field.Index.TOKENIZED)); doc.add(new Field("content", "lucene works well", Field.Store.YES, Field.Index.TOKENIZED)); writer.addDocument(doc);

writer.optimize();

writer.close();

5.3 索引文本文件

如果你想把纯文本文件索引起来,而不想自己将它们读入字符串创建field,你可以用下面的代码创建field:

Field field = new Field("content", new FileReader(file));

这里的file就是该文本文件。该构造函数实际上是读去文件内容,并对其进行索引,但不存储。

6 如何维护索引

索引的维护操作都是由IndexReader类提供。

6.1 如何删除索引

lucene提供了两种从索引中删除document的方法,一种是void deleteDocument(int docNum)

这种方法是根据document在索引中的编号来删除,每个document加进索引后都会有个唯一编号,所以根据编号删除是一种精确删除,但是这个编号是索引的内部结构,一般我们不会知道某个文件的编号到底是几,所以用处不大。另一种是void deleteDocuments(Term term) 这种方法实际上是首先根据参数term执行一个搜索操作,然后把搜索到的

结果批量删除了。我们可以通过这个方法提供一个严格的查询条件,达到删除指定document的目的。下面给出一个例子:

Directory dir = FSDirectory.getDirectory(PATH, false);

IndexReader reader = IndexReader.open(dir);

Term term = new Term(field, key);

reader.deleteDocuments(term);

reader.close();

6.2 如何更新索引

lucene并没有提供专门的索引更新方法,我们需要先将相应的document删除,然后再将新的document加入索引。例如:

Directory dir = FSDirectory.getDirectory(PATH, false);

IndexReader reader = IndexReader.open(dir);

T erm term = new Term(“title”, “lucene introduction”);

reader.deleteDocuments(term);

reader.close();

IndexWriter writer = new IndexWriter(dir, new StandardAnalyzer(), true);

Document doc = new Document();

doc.add(new Field("title", "lucene introduction", Field.Store.YES, Field.Index.TOKENIZED));

doc.add(new Field("content", "lucene is funny", Field.Store.YES, Field.Index.TOKENIZED));

writer.addDocument(doc);

writer.optimize();

writer.close();

7 如何搜索

lucene 的搜索相当强大,它提供了很多辅助查询类,每个类都继承自Query类,各自完成一种特殊的查询,你可以像搭积木一样将它们任意组合使用,完成一些复杂操作;另外lucene还提供了Sort类对结果进行排序,提供了Filter 类对查询条件进行限制。你或许会不自觉地拿它跟SQL语句进行比较:“lucene能执行and、or、order by、where、like …%xx%?操作吗?”回答是:“当然没问题!”

7.1 各种各样的Query

下面我们看看lucene到底允许我们进行哪些查询操作:

首先介绍最基本的查询,如果你想执行一个这样的查询:“在content域中包含…lucene?的document”,那么你可以用TermQuery:

Term t = new Term("content", " lucene";

Query query = new TermQuery(t);

如果你想这么查询:“在content域中包含java或perl的document”,那么你可以建立两个TermQuery并把它们用

BooleanQuery连接起来:

TermQuery termQuery1 = new TermQuery(new Term("content", "java");

TermQuery termQuery 2 = new TermQuery(new Term("content", "perl");

BooleanQuery booleanQuery = new BooleanQuery();

booleanQuery.add(termQuery 1, BooleanClause.Occur.SHOULD);

booleanQuery.add(termQuery 2, BooleanClause.Occur.SHOULD);

如果你想对某单词进行通配符查询,你可以用WildcardQuery,通配符包括???匹配一个任意字符和?*?匹配零个或多个任意字符,例如你搜索?use*?,你可能找到?useful?或者?useless?:

Query query = new WildcardQuery(new Term("content", "use*");

你可能对中日关系比较感兴趣,想查找…中?和…日?挨得比较近(5个字的距离内)的文章,超过这个距离的不予考虑,你可以:

PhraseQuery query = new PhraseQuery();

query.setSlop(5);

query.add(new Term("content ", “中”));

query.add(new Term(“content”, “日”));

那么它可能搜到“中日合作……”、“中方和日方……”,但是搜不到“中国某高层领导说日本欠扁”。

如果你想搜以…中?开头的词语,你可以用PrefixQuery:

PrefixQuery query = new PrefixQuery(new Term("content ", "中");

FuzzyQuery用来搜索相似的term,使用Levenshtein算法。假设你想搜索跟…wuzza?相似的词语,你可以:

Query query = new FuzzyQuery(new Term("content", "wuzza");

你可能得到…fuzzy?和…wuzzy?。

另一个常用的Query是RangeQuery,你也许想搜索时间域从20060101到20060130之间的document,你可以用RangeQuery:

RangeQuery query = new RangeQuery(new Term(“time”, “20060101”), new Term(“time”, “20060130”), true);

最后的true表示用闭合区间。

7.2 QueryParser

看了这么多Query,你可能会问:“不会让我自己组合各种Query吧,太麻烦了!”当然不会,lucene提供了一种类似于SQL语句的查询语句,我们姑且叫它lucene语句,通过它,你可以把各种查询一句话搞定,lucene会自动把它们查分成小块交给相应Query执行。下面我们对应每种Query演示一下:

TermQuery可以用“field:key”方式,例如“content:lucene”。

BooleanQuery中…与?用…+?,…或?用… ?,例如“content:java contenterl”。

WildcardQuery仍然用…??和…*?,例如“content:use*”。

PhraseQuery用…~?,例如“content:"中日"~5”。

PrefixQuery用…*?,例如“中*”。

FuzzyQuery用…~?,例如“content: wuzza ~”。

RangeQuery用…[]?或…{}?,前者表示闭区间,后者表示开区间,例如“time:[20060101 TO 20060130]”,注意TO区分大小写。

你可以任意组合query string,完成复杂操作,例如“标题或正文包括lucene,并且时间在20060101到20060130之间的文章”可以表示为:“+ (title:lucene content:lucene) +time:[20060101 TO 20060130]”。代码如下:

Directory dir = FSDirectory.getDirectory(PATH, false);

IndexSearcher is = new IndexSearcher(dir);

QueryParser parser = new QueryParser("content", new StandardAnalyzer());

Query query = parser.parse("+(title:lucene content:lucene) +time:[20060101 TO 20060130]"; Hits hits = is.search(query);

for (int i = 0; i < hits.length(); i++)

{

Document doc = hits.doc(i);

System.out.println(doc.get("title");

}

is.close();

首先我们创建一个在指定文件目录上的IndexSearcher。

然后创建一个使用StandardAnalyzer作为分析器的QueryParser,它默认搜索的域是content。接着我们用QueryParser 来parse查询字串,生成一个Query。

然后利用这个Query去查找结果,结果以Hits的形式返回。

这个Hits对象包含一个列表,我们挨个把它的内容显示出来。

7.3 Filter

filter 的作用就是限制只查询索引的某个子集,它的作用有点像SQL语句里的where,但又有区别,它不是正规查询的一部分,只是对数据源进行预处理,然后交给查询语句。注意它执行的是预处理,而不是对查询结果进行过滤,所以使用filter的代价是很大的,它可能

会使一次查询耗时提高一百倍。

最常用的filter是RangeFilter和QueryFilter。RangeFilter是设定只搜索指定范围内的索引;QueryFilter是在上次查询的结果中搜索。

Filter的使用非常简单,你只需创建一个filter实例,然后把它传给searcher。继续上面的例子,查询“时间在20060101到20060130之间的文章”除了将限制写在query string中,你还可以写在RangeFilter中:

Directory dir = FSDirectory.getDirectory(PATH, false);

IndexSearcher is = new IndexSearcher(dir);

QueryParser parser = new QueryParser("content", new StandardAnalyzer());

Query query = parser.parse("title:lucene content:lucene";

RangeFilter filter = new RangeFilter("time", "20060101", "20060230", true, true);

Hits hits = is.search(query, filter);

for (int i = 0; i < hits.length(); i++){

Document doc = hits.doc(i);

System.out.println(doc.get("title");

}

is.close();

7.4 Sort

有时你想要一个排好序的结果集,就像SQL语句的“order by”,lucene能做到:通过Sort。Sort sort = new Sort(“time”); //相当于SQL的“order by time”

Sort sort = new Sort(“time”, true); // 相当于SQL的“order by time desc”

下面是一个完整的例子:

Directory dir = FSDirectory.getDirectory(PATH, false);

IndexSearcher is = new IndexSearcher(dir);

QueryParser parser = new QueryParser("content", new StandardAnalyzer());

Query query = parser.parse("title:lucene content:lucene";

RangeFilter filter = new RangeFilter("time", "20060101", "20060230", true, true);

Sort sort = new Sort(“time”);

Hits hits = is.search(query, filter, sort);

for (int i = 0; i < hits.length(); i++){

Document doc = hits.doc(i);

System.out.println(doc.get("title");

}

is.close();

8 分析器

在前面的概念介绍中我们已经知道了分析器的作用,就是把句子按照语义切分成一个个词语。英文切分已经有了很成熟的分析器:StandardAnalyzer,很多情况下StandardAnalyzer是个不错的选择。甚至你会发现StandardAnalyzer也能对中文进行分词。但是我们的焦点是中文分词,StandardAnalyzer能支持中文分词吗?实践证明是可以的,但是效果并不好,搜索“如果” 会把“牛奶不如果汁好喝”也搜索出来,而且索引文件很大。那么我们手头上还有什么分析器可以使用呢?core里面没有,我们可以在sandbox里面找到两个:ChineseAnalyzer和CJKAnalyzer。但是它们同样都有分词不准的问题。相比之下用StandardAnalyzer和ChineseAnalyzer建立索引时间差不多,索引文件大小也差不多,CJKAnalyzer 表现会差些,索引文件大且耗时比较长。要解决问题,首先分析一下这三个分析器的分词方式。StandardAnalyzer和ChineseAnalyzer都是把句子按单个字切分,也就是说“牛奶不如果汁好喝”会被它们切分成“牛奶不如果汁好喝”;而CJKAnalyzer则会切分成“牛奶奶不不如如果果汁汁好好喝”。这也就解释了为什么搜索“果汁”都能匹配这个句子。

以上分词的缺点至少有两个:匹配不准确和索引文件大。我们的目标是将上面的句子分解成“牛奶不如果汁好喝”。这里的关键就是语义识别,我们如何识别“牛奶”是一个词而“奶不”不是词语?我们很自然会想到基于词库的分词法,也就是我们先得到一个词库,里面列举了大部分词语,我们把句子按某种方式切分,当得到的词语与词库中的项匹配时,我们就认为这种切分是正确的。这样切词的过程就转变成匹配的过程,而匹配的方式最简单的有正向最大匹配和逆向最大匹配两种,说白了就是一个从句子开头向后进行匹配,一个从句子末尾向前进行匹配。基于词库的分词词库非常重要,词库的容量直接影响搜索结果,在相同词库的前提下,据说逆向最大匹配优于正向最大匹配。当然还有别的分词方法,这本身就是一个学科,我这里也没有深入研究。回到具体应用,我们的目标是能找到成熟的、现成的分词工具,避免重新发明车轮。经过网上搜索,用的比较多的是中科院的ICTCLAS和一个不开放源码但是免费的JE-Analysis。ICTCLAS有个问题是它是一个动态链接库,java调用需要本地方法调用,不方便也有安全隐患,而且口碑也确实不大好。JE-Analysis效果还不错,当然也会有分词不准的地方,相比比较方便放心。

9 性能优化

一直到这里,我们还是在讨论怎么样使lucene跑起来,完成指定任务。利用前面说的也确实能完成大部分功能。但是测试表明lucene的性能并不是很好,在大数据量大并发的条件下甚至会有半分钟返回的情况。另外大数据量的数据初始化建立索引也是一个十分耗时的过程。那么如何提高lucene的性能呢?下面从优化创建索引性能和优化搜索性能两方面介绍。

9.1 优化创建索引性能

这方面的优化途径比较有限,IndexWriter提供了一些接口可以控制建立索引的操作,另外我们可以先将索引写入RAMDirectory,再批量写入FSDirectory,不管怎样,目的都是尽量少的文件IO,因为创建索引的最大瓶颈在于磁盘IO。另外选择一个较好的分析器也能提高一些性能。setMaxBufferedDocs(int maxBufferedDocs)控制写入一个新的segment前内存中保存的document的数目,设置较大的数目可以加快建索引速度,默认为10。

setMaxMergeDocs(int maxMergeDocs)控制一个segment中可以保存的最大document数目,值较小有利于追加索引的速度,默认Integer.MAX_V ALUE,无需修改。

setMergeFactor(int mergeFactor)

控制多个segment合并的频率,值较大时建立索引速度较快,默认是10,可以在建立索引时设置为100。

我们可以先把索引写入RAMDirectory,达到一定数量时再批量写进FSDirectory,减少磁盘IO次数。

FSDirectory fsDir = FSDirectory.getDirectory("/data/index", true);

RAMDirectory ramDir = new RAMDirectory();

IndexWriter fsWriter = new IndexWriter(fsDir, new StandardAnalyzer(), true);

IndexWriter ramWriter = new IndexWriter(ramDir, new StandardAnalyzer(), true);

while (there are documents to index){

... create Document ...

ramWriter.addDocument(doc);

if (condition for flushing memory to disk has been met){

fsWriter.addIndexes(new Directory[] { ramDir });

ramWriter.close();

ramWriter = new IndexWriter(ramDir, new StandardAnalyzer(), true);

}

}

这个优化主要是对磁盘空间的优化,可以将索引文件减小将近一半,相同测试数据下由600M减少到380M。但是对时间并没有什么帮助,甚至会需要更长时间,因为较好的分析器需要匹配词库,会消耗更多cpu,测试数据用StandardAnalyzer耗时133分钟;用MMAnalyzer耗时150分钟。

9.2 优化搜索性能

虽然建立索引的操作非常耗时,但是那毕竟只在最初创建时才需要,平时只是少量的维护操作,更何况这些可以放到一个后台进程处理,并不影响用户搜索。我们创建索引的目的就是给用户搜索,所以搜索的性能才是我们最关心的。下面就来探讨一下如何提高搜索性能。

这是一个最直观的想法,因为内存比磁盘快很多。Lucene提供了RAMDirectory可以在内存中容纳索引:

Directory fsDir = FSDirectory.getDirectory(“/data/index/”, false);

Directory ramDir = new RAMDirectory(fsDir);

Searcher searcher = new IndexSearcher(ramDir);

但是实践证明RAMDirectory和FSDirectory速度差不多,当数据量很小时两者都非常快,

当数据量较大时(索引文件400M)RAMDirectory甚至比FSDirectory还要慢一点,这确实让人出乎意料。

而且lucene的搜索非常耗内存,即使将400M的索引文件载入内存,在运行一段时间后都会out of memory,所以个人认为载入内存的作用并不大。

9.2.2

既然载入内存并不能提高效率,一定有其它瓶颈,经过测试发现最大的瓶颈居然是时间范围限制,那么我们可以怎样使时间范围限制的代价最小呢?

当需要搜索指定时间范围内的结果时,可以:

1、用RangeQuery,设置范围,但是RangeQuery的实现实际上是将时间范围内的时间点展开,组成一个个BooleanClause 加入到BooleanQuery中查询,因此时间范围不可能设置太大,经测试,范围超过一个月就会抛BooleanQuery.TooManyClauses,可以通过设置BooleanQuery.setMaxClauseCount (int maxClauseCount)扩大,但是扩大也是有限的,并且随着maxClauseCount扩大,占用内存也扩大

2、用RangeFilter代替RangeQuery,经测试速度不会比RangeQuery慢,但是仍然有性能瓶颈,查询的90%以上时间耗费在RangeFilter,研究其源码发现RangeFilter实际上是首先遍历所有索引,生成一个BitSet,标记每个document,在时间范围内的标记为true,不在的标记为false,然后将结果传递给Searcher查找,这是十分耗时的。

3、进一步提高性能,这个又有两个思路:

a、缓存Filter结果。既然RangeFilter的执行是在搜索之前,那么它的输入都是一定的,就是IndexReader,而IndexReader 是由Directory决定的,所以可以认为RangeFilter的结果是由范围的上下限决定的,也就是由具体的RangeFilter对象决定,所以我们只要以RangeFilter对象为键,将filter结果BitSet缓存起来即可。lucene API 已经提供了一个

CachingWrapperFilter类封装了Filter及其结果,所以具体实施起来我们可以cache CachingWrapperFilter对象,需要注意的是,不要被CachingWrapperFilter的名字及其说明误导,CachingWrapperFilter看起来是有缓存功能,但的缓存是针对同一个filter的,也就是在你用同一个filter过滤不同IndexReader时,它可以帮你缓存不同IndexReader的结果,而我们的需求恰恰相反,我们是用不同filter过滤同一个IndexReader,所以只能把它作为一个封装类。

b、降低时间精度。研究Filter的工作原理可以看出,它每次工作都是遍历整个索引的,所以时间粒度越大,对比越快,搜索时间越短,在不影响功能的情况下,时间精度越低越好,有时甚至牺牲一点精度也值得,当然最好的情况是根本不作时间限制。

下面针对上面的两个思路演示一下优化结果(都采用800线程随机关键词随即时间范围):第一组,时间精度为秒:方式直接用RangeFilter 使用cache 不用filter

平均每个线程耗时10s 1s 300ms

第二组,时间精度为天

方式直接用RangeFilter 使用cache 不用filter

平均每个线程耗时900ms 360ms 300ms

由以上数据可以得出结论:

1、尽量降低时间精度,将精度由秒换成天带来的性能提高甚至比使用cache还好,最好不使用filter。

2、在不能降低时间精度的情况下,使用cache能带了10倍左右的性能提高。

这个跟创建索引优化道理差不多,索引文件小了搜索自然会加快。当然这个提高也是有限的。较好的分析器相对于最差的分析器对性能的提升在20%以下。

10 一些经验

10.1关键词区分大小写

or AND TO等关键词是区分大小写的,lucene只认大写的,小写的当做普通单词。

10.2 读写互斥性

同一时刻只能有一个对索引的写操作,在写的同时可以进行搜索

10.3 文件锁

在写索引的过程中强行退出将在tmp目录留下一个lock文件,使以后的写操作无法进行,可以将其手工删除

10.4 时间格式

lucene只支持一种时间格式yyMMddHHmmss,所以你传一个yy-MM-dd HH:mm:ss的时间给lucene它是不会当作时间来处理的

10.5 设置boost

有些时候在搜索时某个字段的权重需要大一些,例如你可能认为标题中出现关键词的文章比正文中出现关键词的文章更有价值,你可以把标题的boost设置的更大,那么搜索结果会优先显示标题中出现关键词的文章(没有使用排序的前题下)。使用方法:

Field. setBoost(float boost);默认值是1.0,也就是说要增加权重的需要设置得比1大。

lucene版本对比

一、为什么使用lucene 1、Lucene不是一个完整的全文索引应用,而是是一个用JAVA写的全文索引引擎工具包,它可以方便的嵌入到各种应用中实现针对应用的全文索引/检索功能。这样的定位,使得lucene有很高的抽象层次,便于扩展和整合到已有的系统。因为对于大多数的全文搜索应用来说,我们需要的是一个开发工具包而不是最终产品(虽然很多搜索引擎也可以扩展特性功能)。这也是程序员最愿意接受的封装层次。 2、Lucene的API接口设计的比较通用,输入输出结构都很像数据库的表==>记录==>字段,所以很多传统的应用的文件、数据库等都可以比较方便的映射到Lucene的存储结构/接口中。(上面语句有些来自在应用中加入全文检索功能——基于JAVA的全文索引引擎Lucene简介)。 二、lucene4.0新特性较重要部分 1、全部使用字节( utf-8 tytes )替代string来构建 term directory 。 带来的好处是:索引文件读取速度 30 倍的提升;占用原来大约10%的内存;搜索过程由于去掉了字符串的转化速度也会明显提升; 但是如果说这上面的好处只是一个副产品,你会怎么想?没错,Mysql有MyIsam,Innodb等诸多引擎供我们选择的,Lucene为什么不能向这个方向发展呢? 实现这个机制的模块叫:Codec (编码器),你可以实现自己的Codec 来进行自定义的扩展,很显然Codec的操作对象是Segment 。

2、支持多线程建索引,支持:concurrent flushing。 了解过Lucene 3.X的同学们都知道,诸如XXXPerThread 的类在建索引的时候已经支持多线程了,但是当每个线程的内存达到指定上限(maxBufferedDocs or ramMaxBufferSizeMB)的时候就需要写到硬盘上,而这个过程仍然不是多线程的,仍然需要一个个排队Flush到硬盘。Lucene 4.0 终于支持 concurrent flushing 了。DocumentsWriterPerThread ,Lucene 4.0 的Concurrent Flushing 正是这个类来实现的。 3、基于有限自动机的模糊匹配算法(FSA算法),FuzzyQuery FuzzyQuery 这类查询估计大家用的比较少。在英文中单词拼写错误,比如: Lucene, Licene , lucen 等就可以用FuzzyQuery来进行查询提高查全率。 在lucene 4.0 之前的FuzzyQuery 的实现非常耗费cpu,实现算法也很暴力。具体过程是:读取每个term,然后计算每个term与查询词的“编辑距离”,如果在指定的范围内则返回。 Lucene 4.0 使用Levenshtein Automaton 的来衡量文字的"编辑距离" ,使用有限状态自动机来进行计算。以数百倍的效率提升了FuzzyQuery 的效率。 三、lucene4.0正式版亮点功能: 一、通过解码器Codec 机制 Lucene 索引格式与Lucene架构解耦,变成了Plugin方式实现,包括:Terms , Postings lists ,Stored 字段,Term Vectors 等都可以以自定义的格式予以支持。正如Mysql支持多种存储引擎一样,现在Lucene也可以了。

基于Lucene的语段模糊匹配中文检索系统设计与实现

(责任编辑:陈和榜) 浙江理工大学学报,第26卷,第1期,2009年1月 Journal of Zhejiang Sci 2Tech U niversity Vol.26,No.1,J an.2009 文章编号:167323851(2009)0120109205收稿日期:2008-05-29 作者简介:黄 珏(1982-  ),女,浙江杭州人,助理研究员,主要从事搜索引擎,数字图书馆,软件工程方面的研究。基于Lucene 的语段模糊匹配中文检索系统设计与实现 黄 珏,黄志远 (浙江理工大学科技与艺术学院,杭州311121) 摘 要:为提高图书馆中文信息检索的精确度和有效性,设计了基于L ucene 的语段模糊匹配中文检索系统。其采用了自然语言处理中的词语切分技术,使输入条件可以直接通过自然语言的方式提交,同时针对语段匹配的实际问题情境,设计了一种新的结果有效性判别模型,提高了检索结果相似度的科学性和准确性。经过多次实验结果的统计,搜索结果有效性可提高12%。 关键词:L ucene ;语段;中文检索;有效性判别 中图分类号:TP393 文献标识码:A 0 引 言 信息检索技术在图书馆领域的应用是举足轻重的,然而,当前图书馆用户在检索资料的时候,常常会遇到这样的情况:记得一篇文章或一本书刊中的某段话,却记不清标题、作者、出版社之类的特征信息。凭着对这个语段的记忆,选取某些关键字/词进行查询,又无法快速准确的找到目标答案。个别数字资源自带的搜索引擎具有全文检索功能,允许用户输入一个语段来进行查询,但是查全率和查准率差强人意:要求输入条件与文档内容完全匹配,或者查询结果不能很好地对应用户感兴趣的内容。 首先,基于关键字/词和逻辑表达式的检索方式不能全面地反映用户的需求。由于用户输入的关键字/词之间,往往不存在任何联系,因此检索条件本身无法清晰表达用户的真正含义[1]。 其次,简单的关键字/词匹配,往往输出大量的文档,而真正相关的文本却很少,使得用户耗费很多的时间和精力处理一些不相关的结果。 因此建立一种基于语段模糊匹配的中文检索系统,为用户提供更为细致和有效的帮助是必要的。目前检索系统的开发平台并不多见,本文采用了一个较为实用的检索引擎架构———L ucene ,它结构精巧,功能强大,便于嵌入各种应用。在L ucene 良好的架构之上,本文结合最大正向匹配的中文分词算法,通过对L ucene 评分机制的改进,建立了一个新的文档有效性二次判别模型,设计了一个多维非线性计算函数得到搜索结果的相似度,并对搜索结果按照有效性来进行排序。与现有的图书馆中文检索系统相比,具有以下改进:输入全文中的某个语段(只需基本一致),即可搜索到与之相关的书籍/文章;检索的精度及结果集的有效性较一般检索系统有所提高。 1 基于Lucene 的语段模糊匹配中文检索系统设计 1.1 开放源码的搜索引擎(L ucene ) L ucene 是apache 软件基金会J akarta 项目组的子项目,是一个开放源代码的全文检索引擎工具包,它不是一个完整的全文检索引擎,而是一个全文检索引擎的架构[2],提供了完整的查询引擎和索引引擎,部分

全文检索功能

在应用中加入全文检索功能 ——基于java的全文索引引擎lucene简介 作者:车东 email: https://www.wendangku.net/doc/8413598649.html,/https://www.wendangku.net/doc/8413598649.html, 写于:2002/08 最后更新: 版权声明:可以任意转载,转载时请务必以超链接形式标明文章原始出处和作者信息及本声明 https://www.wendangku.net/doc/8413598649.html,/tech/lucene.html 关键词:lucene java full-text search engine chinese word segment 内容摘要: lucene是一个基于java的全文索引工具包。 1.基于java的全文索引引擎lucene简介:关于作者和lucene的历史 2.全文检索的实现:luene全文索引和数据库索引的比较 3.中文切分词机制简介:基于词库和自动切分词算法的比较 4.具体的安装和使用简介:系统结构介绍和演示 5.hacking lucene:简化的查询分析器,删除的实现,定制的排序,应用接口的扩展 6.从lucene我们还可以学到什么 基于java的全文索引/检索引擎——lucene lucene不是一个完整的全文索引应用,而是是一个用java写的全文索引引擎工具包,它可以方便的嵌入到各种应用中实现针对应用的全文索引/检索功能。 lucene的作者:lucene的贡献者doug cutting是一位资深全文索引/检索专家,曾经是v-twin搜索引擎(apple的copland操作系统的成就之一)的主要开发者,后在excite担任高级系统架构设计师,目前从事于一些internet底层架构的研究。他贡献出的lucene的目标是为各种中小型应用程序加入全文检索功能。 lucene的发展历程:早先发布在作者自己的https://www.wendangku.net/doc/8413598649.html,,后来发布在sourceforge,2001年年底成为apache基金会jakarta的一个子项目:https://www.wendangku.net/doc/8413598649.html,/lucene/ 已经有很多java项目都使用了lucene作为其后台的全文索引引擎,比较著名的有: ?jive:web论坛系统; ?eyebrows:邮件列表html归档/浏览/查询系统,本文的主要参考文档“thelucene search engine: powerful, flexible, and free”作者就是eyebrows系统的主要开发者之一,而eyebrows已 经成为目前apache项目的主要邮件列表归档系统。 ?cocoon:基于xml的web发布框架,全文检索部分使用了lucene ?eclipse:基于java的开放开发平台,帮助部分的全文索引使用了lucene

Lucene in Action(中文版)

Lucene in Action(中文版) -------------------------------------------------------------------------------- Lucene in Action 中文版 第一部分 Lucene核心 1. 接触Lucene 2. 索引 3. 为程序添加搜索 4. 分析 5. 高极搜索技术 6. 扩展搜索 第二部分 Lucene应用 7. 分析常用文档格式 8. 工具和扩充 9. Lucene其它版本 10. 案例学习 序 Lucene开始是做为私有项目。在1997年末,因为工作不稳定,我寻找自己的一些东西来卖。Java是比较热门的编程语言,我需要一个理由来学习它。我已经了解如何来编写搜索软件,所以我想我可以通过用Java写搜索软件来维持生计。所以我写了Lucene。 几年以后,在2000年,我意识到我没有销售天赋。我对谈判许可和合同没有任何兴趣,并且我也不想雇人开一家公司。我喜欢做软件,而不是出售它。所以我把Lucene放在SourceForge上,看看是不是开源能让我继续我想做的。 有些人马上开始使用Lucene。大约一年后,在2001年,Apache提出要采纳Lucene。Lucene 邮件列表中的消息每天都稳定地增长。也有人开始贡献代码,大多是围绕Lucene的边缘补充:我依然是仅有的理解它的核心的开发者。尽管如些,Lucene开始成为真正的合作项目。现在,2004年,Lucene有一群积极的深刻理解其核心的开发者。我早已不再每天作开发,这个强有力的工作组在进行实质性的增加与改进。 这些年来,Lucene已经翻译成很多其它的语言包括C++、C#、Perl和Python。在最开始的Java和其它这些语言中,Lucene的应用比我预想的要广泛地多。它为不同的应用(如财富100公司讨论组、商业Bug跟踪、Microsoft提供的邮件搜索和100页面范围的Web搜索引擎)提供搜索动力。在业内,我被介绍为“Lucene人”。很多人告诉我他们在项目中使用到Lucene。我依然认为我只听说了使用Lucene的程序的小部分。 如果我当初只是出售它,Lucene应用得不会这么广泛。程序开发人员看来更喜欢开源。他们在有问题时不用联系技术支持而只需查看一下源代码。如果这还不够,邮件列表中的免费支持比大多商业支持要好得多。类似Lucene的开源项目使得程序开发人员更加有效率。Lucene通过开源已经变得比我想象的伟大的多。我见证了它的发展,是Lucene社区的努力

一种基于Lucene的中文全文检索系统

—94— 一种基于Lucene 的中文全文检索系统 苏潭英1,郭宪勇2,金 鑫3 (1. 解放军信息工程大学电子技术学院,郑州 450004;2. 北京飞燕技术公司,北京 100072;3. 解放军通信指挥学院,武汉 430010)摘 要:在开源全文索引引擎Lucene 的基础上,设计了一个中文全文检索系统模型,该模型系统由7个模块组成,索引模块、检索模块是其中的核心部分。论述了模型的整体结构,分析设计了索引及检索模块,通过具体的索引技术和检索技术来提高整个系统的检索效率。该系统增加了加密模块,实现对建立的全文索引进行加密处理,增强了信息的安全性。 关键词:全文检索;Lucene ;倒排索引 Chinese Full-text Retrieval System Based on Lucene SU Tan-ying 1, GUO Xian-yong 2, JIN Xin 3 (1. Institute of Electronic Technology, PLA Information Engineering University, Zhengzhou 450004; 2. Technology Company of Beijing Feiyan, Beijing 100072; 3. Institute of PLA Communication Command, Wuhan 430010) 【Abstract 】This paper proposes a model of Chinese full-text retrieval system based on Lucene which is an open source full-text retrieval engine,and expatiates its frame. This model is composed of seven modules, among which the index module and the search module are the core parts. It designs them concretely, and improves the search efficiency of the full-text retrieval system with index technology and search technology. The system model concludes an encryption module to encrypt the index and increases the system security. 【Key words 】full-text retrieval; Lucene; inverse index 计 算 机 工 程Computer Engineering 第33卷 第23期 Vol.33 No.23 2007年12月 December 2007 ·软件技术与数据库· 文章编号:1000—3428(2007)23—0094—03 文献标识码:A 中图分类号:TP391 1 中文全文检索系统 全文检索技术是一个最普遍的信息查询应用,人们每天在网上使用Google 、百度等搜索引擎查找自己所需的信息,这些搜索引擎的核心技术之一就是全文检索。随着文档处理电子化、无纸化的发展,图书馆、新闻出版、企业甚至个人的电子数据激增,如何建立数据库、管理好自己的数据,是亟待解决的问题,而全文检索是其中一个非常实用的功能。全文检索产品实际上是一个内嵌该项技术的数据库产品[1]。 西文的全文检索已有许多成熟的理论与方法,其中,开放源代码的全文检索引擎Lucene 是Apache 软件基金会Jakarta 项目组的一个子项目,它的目的是为软件开发人员提供一个简单易用的工具包,方便在目标系统中实现全文检索的功能。很多项目使用了Lucene 作为其后台的全文索引引擎,比较著名的有: (1)Jive :Web 论坛系统; (2)Cocoon :基于XML 的Web 发布框架,全文检索部分使用了Lucene ; (3)Eclipse :基于Java 的开放开发平台,帮助部分的全文索引使用了Lucene 。 Lucene 不支持中文,但可以通过扩充它的语言分析器实现对中文的检索。本文在深入学习研究Lucene 的前提下,设计了一个中文的全文检索系统,对其核心的索引模块和检索模块进行了阐释,并添加了加密模块对索引信息加密,增强了系统的安全性。 2 系统的总体结构 本模型总体上采用了Lucene 的架构。Lucene 的体系结构如表1所示,它的源代码程序由7个模块组成。 表1 Lucene 的组成结构 模块名 功能 org.apache.Lucene.search 搜索入口 org.apache.Lucene.index 索引入口 org.apache.Lucene.analysis 语言分析器 org.apache.Lucene.queryParser 查询分析器 org.apache.Lucene.document 存储结构 org.apache.Lucene.store 底层IO/存储结构 org.apache.Lucene.util 一些公用的数据结构 本文通过扩充Lucene 系统来完成中文的全文检索系统,Lucene 包含了大量的抽象类、接口、文档类型等,需要根据具体应用来定义实现,本文对其作了如下扩充修改: (1)按照中文的词法结构来构建相应的语言分析器。Lucene 的语言分析器提供了抽象的接口,因此,语言分析(analyser)是可以定制的。Lucene 缺省提供了2个比较通用的分析器SimpleAnalyser 和StandardAnalyser ,但这2个分析器缺省都不支持中文,因此,要加入对中文语言的切分规则,需要对其进行修改。 (2)按照被索引的文件的格式对不同类型的文档进行解析,进而建立全文索引。例如HTML 文件,通常需要把其中的内容分类加入索引,这就需要从org.apache.lucene.子document 中定义的类Document 继承,定义自己的HTMLDocument 类,然后将之交给org. apache.lucene.index 模块写入索引文件。Lucene 没有规定数据源的格式,只提供 作者简介:苏潭英(1981-),女,硕士研究生,主研方向:数据库全文检索;郭宪勇,高级工程师;金 鑫,硕士研究生 收稿日期:2007-01-10 E-mail :sutanyingwendy@https://www.wendangku.net/doc/8413598649.html,

lucene 版本变动总结

3.1 1. 性能提升 2. ReusableAnalyzerBase使得跟容易让TokenStreams 可重用 3. 改进分析器的功能,包括对Unicode的支持(Unicode 4)、CharTermAttribute、对象重用等 4. ConstantScoreQuery允许直接封装Query 对象 5. 可通过IndexWriterConfig 对IndexWriter 进行配置 6. IndexWriter.getReader 被IndexReader.open(IndexWriter) 所替换. 7. 废弃了MultiSearcher;ParallelMultiSearcher被直接吸收到IndexReader 类中 8. 在64位的Windows 和Solaris JVMs, MMapDirectory 作为默认的FSDirectory.open 的实现 9. 新的TotalHitCountCollector用来获取索引的命中数 10. ReaderFinishedListener API 用来清除外部缓存 3.2 1、全新的分组模块,位于lucene/contrib/grouping 使得搜索结果可通过单值的索引域进行分组 2、新的IndexUpgrader 工具,用来转换老格式的索引到当前的版本 3、实现一个新的Directory ——NRTCachingDirectory ,用来在内存中缓存一些小的segments,以减少应用对IO的负载过高,更快速的NRT 再次打开的效率 4、新的Collector 实现——CachingCollector,用来收集搜索命中率(文档ID和分值) 5、可使用IndexWriter 新的addDocuments 和updateDocuments 来批量创建和更新文档的索引 6、新的默认索引合并策略——TieredMergePolicy,更高效的合并非连续的segments,详见https://www.wendangku.net/doc/8413598649.html,/merging 7、修复了NumericField 在加载已存储文档时没正确返回的问题 Deleted terms are now applied during flushing to the newly flushed segment, which is more efficient than having to later initialize a reader for that segment. 3.3 1、固定打开的文件句柄泄漏在很多地方代码。现在MockDirectoryWrapper(在测试框架)跟踪所有打开的文件、包括锁,并且如果测试失败,释放所有这些失败。 2、拼写检查suggest模块现在包括提示/自动完成功能、有三种实现:Jaspell,三元特里和有限状态https://www.wendangku.net/doc/8413598649.html,/question/554168_155187 3、改进MMapDirectory(现在也是默认的实现通过FSDirectory.open在64位Linux)返回 4、NRTManager简化处理近乎实时搜索与多个搜索线程,允许应用程序来控制索引变化必须是可见的哪个搜索请求。 5、TwoPhaseCommitTool便于执行多资源两阶段提交,其中包括的IndexWriter。 6、默认合并策略,TieredMergePolicy,在默认情况下有一个新方法(套/

深入理解lucene原理

深入理解lucene原理 一:什么是索引,为什么需要索引 对非结构化数据也即对全文数据的搜索主要有两种方法: 一种是顺序扫描法(Serial Scanning):所谓顺序扫描,比如要找内容包含某一个字符串的文件,就是一个文档一个文档的看,对于每一个文档,从头看到尾,如果此文档包含此字符串,则此文档为我们要找的文件,接着看下一个文件,直到扫描完所有的文件。如利用windows的搜索也可以搜索文件内容,只是相当的慢。如果你有一个80G硬盘,如果想在上面找到一个内容包含某字符串的文件,不花他几个小时,怕是做不到。Linux下的grep命令也是这一种方式。大家可能觉得这种方法比较原始,但对于小数据量的文件,这种方法还是最直接,最方便的。但是对于大量的文件,这种方法就很慢了。 有人可能会说,对非结构化数据顺序扫描很慢,对结构化数据的搜索却相对较快(由于结构化数据有一定的结构可以采取一定的搜索算法加快速度),那么把我们的非结构化数据想办法弄得有一定结构不就行了吗? 这种想法很天然,却构成了全文检索的基本思路,也即将非结构化数据中的一部分信息提取出来,重新组织,使其变得有一定结构,然后对此有一定结构的数据进行搜索,从而达到搜索相对较快的目的。 这部分从非结构化数据中提取出的然后重新组织的信息,我们称之索引 例如:字典,字典的拼音表和部首检字表就相当于字典的索引 二:索引包含哪些东西 其实是由于我们想要搜索的信息和非结构化数据中所存储的信息不一致造成的。

非结构化数据中所存储的信息是每个文件包含哪些字符串,已知文件,欲求字符串相对容易,也即是从文件到字符串的映射。 而我们想搜索的信息是哪些文件包含此字符串,也即已知字符串,欲求文件,也即从字符串到文件的映射。两者恰恰相反。 于是如果索引总能够保存从字符串到文件的映射,则会大大提高搜索速度。 由于从字符串到文件的映射是文件到字符串映射的反向过程,于是保存这种信息的索引称为反向索引。 左边保存的是一系列字符串,称为词典。每个字符串都指向包含此字符串的文档(Document)链表,此文档链表称为倒排表(Posting List)。 三:索引的创建过程 1.全文索引相对于顺序扫描的优势:一次索引,多次使用 2.创建索引的步骤: (1)要索引的原文档 (2)将原文档传给分词组件(Tokenizer) 分词组件会做如下事情:(此过程称为Tokenize) a.将文档分成一个一个的单词 b.去除标点符号 c.去除停词(Stop Word)停词就是语句中无意义的词汇,英语中比如“the”,“a”,“this”等 每一种分词组件(Tokenize)都有一个停词集合 经过分词组件分词后得到的结果称为(词元)Token

搜索引擎论文题目(热门标题100个)

搜索引擎论文题目(热门标题100个) 搜索引擎(Search Engine)是指根据一定的策略、运用特定的计算机程序从互联网上搜集信息,在对信息进行组织和处理后,为用户提供检索服务,将用户检索相关的信息展示给用户的系统。下面是100个关于搜索引擎论文题目,供大家参考。 搜索引擎论文题目一: 1、搜索引擎商标侵权法律问题研究 2、搜索引擎中的伦理失范问题与治理研究 3、中文学术搜索引擎比较研究 4、利用搜索引擎数据模拟疾病空间分布 5、大学生网络信息搜索行为实证研究——基于搜索引擎的利用 6、跨设备搜索引擎结果页面注意力分布研究——基于眼动视觉数据的实证分析 7、基于Lucene的新闻垂直搜索引擎设计与实现 8、基于更新信息的网页机器理解及其在站内搜索引擎中应用 9、利用学术搜索引擎及学术论坛提高大学生研究性学习效率 10、基于大数据的有声图书馆搜索引擎设计 11、基于Redis的分布式搜索引擎研究 12、大数据搜索引擎下的知识产出机制研究

13、“老狐狸”施密特:带领谷歌从搜索引擎变身7000亿美元市值科技巨头 14、基于搜索引擎数据的流感监测预警 15、竞价排名中搜索引擎服务提供商的审查义务范围研究 16、论搜索引擎公司的社会责任 17、电商营销精确搜索引擎的优化设计与实现 18、电子商务专业“学赛创”一体化教学模式的设计与实践——以《搜索引擎优化》课程为例 19、基于Google API的全文搜索引擎系统 20、基于知网与搜索引擎的词汇语义相似度计算 21、国内可视化搜索引擎研究进展:领域应用与系统实现 22、开源搜索引擎Elasticsearch和Solr对比和分析 23、如何免费从搜索引擎获取SEO流量 24、网站SEO中被搜索引擎惩罚的几种表现 25、网络搜索引擎广告的创新传播策略 搜索引擎论文题目二: 26、搜索引擎社会责任缺失的现状、原因及对策研究 27、知识发现系统与通用学术搜索引擎文献资源比较研究——以超星发现和百度学术为例 28、搜索引擎中缩略图使用的合法性分析 29、多边平台的产品市场界定——兼论搜索引擎的产品市场

基于Lucene的网站全文搜索的设计与实现.

科技情报开发与经济 文章编号:1005-6033(2005)15-0242-03 SCI/TECHINFORMATIONDEVELOPMENT&ECONOMY2005年第15卷第15期 收稿日期:2005-06-03 基于Lucene的网站全文搜索的设计与实现 陈庆伟1,刘 军2 (1.山西省网络管理中心,山西太原,030001;2.山西省科技情报研究所,山西太原,030001)摘要:Lucene是一个基于Java技术的开放源代码全文索引引擎工具包,它可以方便 地嵌入到各种应用中实现针对应用的全文索引/检索功能。利用Lucene的API可以比较方便地为一个网站提供全文搜索功能。探讨了如何使用Lucene建造一个通用的Web站点全文搜索工具,并对在构建系统中应注意的若干问题进行了探讨。关键词:全文搜索;Lucene;Java中图分类号:TP393.07文献标识码:A 在构建一个信息类Web站点的时候,站点的全文搜索功能是必备的功能之一。一般站点的信息内容都存储在各种数据库系统中,并使用数据库提供的检索和查询功能构建网站的搜索功能。但随着信息的累‘%keyword%’查询构成的数据检索性能将积,使用数据库中的类似like急剧下降,因此,只使用数据库查询进行全文检索并不是一个好的解决它可以方便方案。Lucene是一个基于Java技术的全文索引引擎工具包,

地嵌入到各种应用中实现针对应用的全文索引/检索功能。例如Lucene可以快速实现一个简单、功能强大的数据全文检索系统。 PDFWord XSLT 格式化 各种输出 Text XML输出 XML格式 XML中间格式 DBLuceneDB 1设计目标 全文检索系统的主要功能就是为信息资料提供全文索引和查询。对 其他 专业格式 图1 接口的实现示意图 于一个以提供信息资料为主要目的网站来说,网站的全文检索系统是必备功能之一。但对于小型的信息网站来说,购置全文检索系统的代价经‘keyword’查询来代替全文检索常是昂贵的。如果只使用数据库的Like

用lucene实现在一个(或者多个)字段中查找多个关键字

用lucene实现在一个(或者多个)字段中查找多个关键字 最近跟着师兄们做个项目,我的任务就是负责做个“全文检索”的小模块。用到了Lucene 的索引,下面的是其中的用Lucene实现在索引的一个字段(比如文章内容字段)进行查找多个关键字的实例代码。 1.Lucene说明 Lucene是非常优秀的成熟的开源的免费的纯java语言的全文索引检索工具包。 Lucene的的强项在“建立索引”和”搜索“,而不是实现具体的”分词“。Lucene支持对生成索引的进行”增,删,改,查“操作,这比自己建立的索引有了很大的进步。 可以使用专门的分词程序进行分词,在分词的结果上用Lucene建立索引。 2.用Lucene实现在一个或者多个字段中的检索 主要是函数:MultiFieldQueryParser.parse(String[] query,String[] field,Occur[] occ,Analyzer analyzer); 1)query:要查找的字符串数组 2)field:要查找的字符串数组对应的字段(当然有可以相同的) 3)occ:表示对应字段的限制。有三种:Occur.MUST(必须有),Occur.MUST_NOT(必须没有),Occur.SHOULD(应该) 4)analyzer:对查询数据的分析器,最好与建立索引时用的分析器一致 3.代码示例 下面这个程序可以实现在一个字段“contents”中查找多个关键字。稍加修改也可以在多个字段查找多个关键字。 import org.apache.lucene.analysis.standard.StandardAnalyzer; import org.apache.lucene.document.Document; import org.apache.lucene.document.Field; import org.apache.lucene.index.IndexWriter; import org.apache.lucene.queryParser.MultiFieldQueryParser; import org.apache.lucene.search.BooleanClause.Occur; import org.apache.lucene.search.Hits; import org.apache.lucene.search.IndexSearcher; import org.apache.lucene.search.Query;

Lucene简介

在应用中加入全文检索功能 ——基于Java的全文索引引擎Lucene简介 作者:车东 Email: https://www.wendangku.net/doc/8413598649.html,/https://www.wendangku.net/doc/8413598649.html, 写于:2002/08 最后更新:09/09/2006 17:09:05 Feed Back >> (Read this before you ask question) 版权声明:可以任意转载,转载时请务必以超链接形式标明文章原始出处和作者信息及本声明 https://www.wendangku.net/doc/8413598649.html,/tech/lucene.html 关键词:Lucene java full-text search engine Chinese word segment 内容摘要: Lucene是一个基于Java的全文索引工具包。 1.基于Java的全文索引引擎Lucene简介:关于作者和Lucene的历史 2.全文检索的实现:Luene全文索引和数据库索引的比较 3.中文切分词机制简介:基于词库和自动切分词算法的比较 4.具体的安装和使用简介:系统结构介绍和演示 5.Hacking Lucene:简化的查询分析器,删除的实现,定制的排序,应用 接口的扩展 6.从Lucene我们还可以学到什么 基于Java的全文索引/检索引擎——Lucene Lucene不是一个完整的全文索引应用,而是是一个用Java写的全文索引引擎工具包,它可以方便的嵌入到各种应用中实现针对应用的全文索引/检索功能。 Lucene的作者:Lucene的贡献者Doug Cutting是一位资深全文索引/检索专家,曾经是V-Twin搜索引擎(Apple的Copland操作系统的成就之一)的主要开发者,后在Excite担任高级系统架构设计师,目前从事于一些INTERNET底层架构的研究。他贡献出的Lucene的目标是为各种中小型应用程序加入全文检索功能。 Lucene的发展历程:早先发布在作者自己的https://www.wendangku.net/doc/8413598649.html,,后来发布在SourceForge,2001年年底成为APACHE基金会jakarta的一个子项目:https://www.wendangku.net/doc/8413598649.html,/lucene/ 已经有很多Java项目都使用了Lucene作为其后台的全文索引引擎,比较著名的有: Jive:WEB论坛系统;

lucene基础学习

搜索引擎Lucene 第一章Lucene简介 Lucene是apache软件基金会jakarta项目组的一个子项目,是一个开放源代码[的全文检索引擎工具包,即它不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎,部分文本分析引擎(英文与德文两种西方语言)。Lucene的目的是为软件开发人员提供一个简单易用的工具包,以方便的在目标系统中实现全文检索的功能,或者是以此为基础建立起完整的全文检索引擎。 第二章lucene索引的建立 的五个基础类 索引的建立,Lucene 提供了五个基础类,分别是Document, Field, IndexWriter, Analyzer, Directory。以下是他们的用途: Document Document的含义为文档,在Lucene中,它代表一种逻辑文件。Lucene本身无法对物理文件建立索引,而只能识别并处理Document的类型文件。Lucene从Document取出相关的数据源并根据属性配置进行相应的处理。 Field 对象是用来描述一个文档的某个属性的 lucene中的field也具有一些特定的类型如

在中,Field内部包含两个静态的内部类分别是Store和Index详细的描述了Field的属性,它们分别表示Field的储存方式和索引方式。 Store类有3个公有的静态属性: :表示该Field不需要储存。 :表示该Field需要储存。 :表示使用压缩方式来保存这个Field的值。 Index有4个公有的静态属性: :表示该Field不需要索引,也就是用户不需要去查找该Field的值。 :表示该Field先被分词再被索引。 TOKENIZED:表示不对该Field进行分词,但是要对他进行索引,也就是该Field会被用户查找。 :表示对该Field进行索引,但是不使用Analyzer,同时禁止它参加评分,主要是为了减少内存的消耗。 Analyzer

好程序员大数据ELK相关原理

【原创技术贴】ELK相关原理解析 bin 存放elasticSearch 运行命令 config 存放配置文件 lib 存放elasticSearch运行依赖jar包 modules 存放elasticSearch 模块 plugins 存放插件 1.1 Elasticsearch与Mysql对比 Elasticsearch 集群可以包含多个索引(Index),每个索引可以包含多个类型(Type),每个类型可以包含多个文档(Document),每个文档可以包含多个字段(Field)。以下是 MySQL 和 Elasticsearch 的术语类比图,帮助理解: 就像使用 MySQL 必须指定 Database 一样,要使用 Elasticsearch 首先需要创建Index:client.indices.create({index : 'blog'}); 这样就创建了一个名为 blog的 Index。Type 不用单独创建,在创建 Mapping 时指定就可以。Mapping 用来定义 Document 中每个字段的类型,即所使用的 analyzer、是否索引等属性,非常关键等。 索引对象(blob):存储数据的表结构,任何搜索数据,存放在索引对象上。

映射(mapping):数据如何存放到索引对象上,需要有一个映射配置,包括:数据类型、是否存储、是否分词等。 文档(document):一条数据记录,存在索引对象上。 文档类型(type):一个索引对象存放多种类型数据,数据用文档类型进行标识。 那这里后续编程可分为以下操作步骤: 第一步:建立索引对象。 第二步:建立映射。 第三步:存储数据“文档”。 第四步:指定文档类型进行搜索数据“文档”。 1.2 创建一个索引 Elasticsearch 命令的一般格式是:REST VERBHOST:9200/index/doc-type,其 中 REST VERB 是 PUT、GET 或DELETE。(使用 curlL -X 动词前缀来明确指定 HTTP 方法。)要创建一个索引,可在你的 shell 中运行以下命令:curl -XPUT并对其进行查看。

全文检索lucene研究

本文由美白面膜排行榜https://www.wendangku.net/doc/8413598649.html,整理 全文检索lucene研究 1 Lucene简介 Lucene是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎。Lucene以其方便使用、快速实施以及灵活性受到广泛的关注。它可以方便地嵌入到各种应用中实现针对应用的全文索引、检索功能,本总结使用lucene3.0.0 2 Lucene 的包结构 1、analysis对需要建立索引的文本进行分词、过滤等操作 2、standard是标准分析器 3、document提供对Document和Field的各种操作的支持。 4、index是最重要的包,用于向Lucene提供建立索引时各种操作的支持 5、queryParser提供检索时的分析支持 6、search负责检索 7、store提供对索引存储的支持 8、util提供一些常用工具类和常量类的支持 Lucene中的类主要组成如下:

1)org.apache.1ucene.analysis语言分析器,主要用于的切词Analyzer是 一个抽象类,管理对文本内容的切分词规则。 2)org.apache.1uceene.document索引存储时的文档结构管理,类似于关系 型数据库的表结构。 3)document包相对而言比较简单,document相对于关系型数据库的记录对 象,Field主要负责字段的管理。 4)org.apache.1ucene.index索引管理,包括索引建立、删除等。索引包是 整个系统核心,全文检索的根本就是为每个切出来的词建索引,查询时就只需要遍历索引,而不需要去正文中遍历,从而极大的提高检索效率。 5)org.apache.1ucene.queryParser查询分析器,实现查询关键词间的运算, 如与、或、非等。 6)org.apache.1ucene.search检索管理,根据查询条件,检索得到结果。 7)org.apache.1ucene.store数据存储管理,主要包括一些底层的I/0操作。 8)org.apache.1ucene.util一些公用类。 3 Document文档 1)void add(Field field) 往Document对象中添加字段 2)void removeField(String name)删除字段。若多个字段以同一个字段 名存在,则删除首先添加的字段;若不存在,则Document保持不变 3)void removeFields(String name)删除所有字段。若字段不存在,则 Document保持不变 4)Field getField(String name)若多个字段以同一个字段名存在,则 返回首先添加的字段;若字段不存在,则Document保持不变 5)Enumeration fields()返回Document对象的所有字段,以枚举类型返 回 6)Field [] getFields(String name)根据名称得到一个Field的数组 7)String [] getValues(String name)根据名称得到一个Field的值的数 组 Document doc1 = new Document();

Lucene初级教程

Lucene初级教程 2007-12-26 15:24 点击次数:0 次 1 lucene简介 1.1 什么是lucene Lucene是一个全文搜索框架,而不是应用产品。因此它并不像https://www.wendangku.net/doc/8413598649.html,或者google Desktop 那么拿来就能用,它只是提供了一种工具让你能实现这些产品。 2 lucene的工作方式 lucene提供的服务实际包含两部分:一入一出。所谓入是写入,即将你提供的源(本质是字符串)写入索引或者将其从索引中删除;所谓出是读出,即向用户提供全文搜索服务,让用户可以通过关键词定位源。 2.1写入流程 源字符串首先经过analyzer处理,包括:分词,分成一个个单词;去除stopword(可选)。 将源中需要的信息加入Document的各个Field中,并把需要索引的Field索引起来,把需要存储的Field 存储起来。 将索引写入存储器,存储器可以是内存或磁盘。 2.2读出流程 用户提供搜索关键词,经过analyzer处理。 对处理后的关键词搜索索引找出对应的Document。 用户根据需要从找到的Document中提取需要的Field。 3 一些需要知道的概念 3.1 analyzer Analyzer是分析器,它的作用是把一个字符串按某种规则划分成一个个词语,并去除其中的无效词语,这里说的无效词语是指英文中的“of”、“the”,中文中的“的”、“地”等词语,这些词语在文章中大量出现,但是本身不包含什么关键信息,去掉有利于缩小索引文件、提高效率、提高命中率。 分词的规则千变万化,但目的只有一个:按语义划分。这点在英文中比较容易实现,因为英文本身就是以单词为单位的,已经用空格分开;而中文则必须以某种方法将连成一片的句子划分成一个个词语。具体划分方法下面再详细介绍,这里只需了解分析器的概念即可。 3.2 document 用户提供的源是一条条记录,它们可以是文本文件、字符串或者数据库表的一条记录等等。一条记录经过索引之后,就是以一个Document的形式存储在索引文件中的。用户进行搜索,也是以Document列表的形式返回。 3.3 field 一个Document可以包含多个信息域,例如一篇文章可以包含“标题”、“正文”、“最后修改时间”等信息域,这些信息域就是通过Field在Document中存储的。 Field有两个属性可选:存储和索引。通过存储属性你可以控制是否对这个Field进行存储;通过索引属性你可以控制是否对该Field进行索引。这看起来似乎有些废话,事实上对这两个属性的正确组合很重要,下面举例说明:还是以刚才的文章为例子,我们需要对标题和正文进行全文搜索,所以我们要把索引属性设置为真,同时我们希望能直接从搜索结果中提取文章标题,所以我们把标题域的存储属性设置为真,但是由于正文域太大了,我们为了缩小索引文件大小,将正文域的存储属性设置为假,当需要时再直接读取文件;我们只是希望能从搜索解果中提取最后修改时间,不需要对它进行搜索,所以我们把最后修改时间域的存储属性设置为真,索引属性设置为假。上面的三个域涵盖了两个属性的三种组合,还有一种全为假的没有用到,事实上Field不允许你那么设置,因为既不存储又不索引的域是没有意义的。

相关文档