文档库 最新最全的文档下载
当前位置:文档库 › 公路勘察GPSRTK测量中坐标系定义方法

公路勘察GPSRTK测量中坐标系定义方法

公路勘察GPSRTK测量中坐标系定义方法
公路勘察GPSRTK测量中坐标系定义方法

《交通标准化》2006年第8期

COMMUNICATIONS STANDARDIZATION.No.8,2006

4.2.4控制沥青用量:混合料中沥青的用量不宜过

多。自由沥青相当于润滑油,它不但会大幅度地降

低矿料的内摩擦力,而且会显著降低其粘结力,从而导致沥青混凝土强度的降低。

4.3控制集料的级配和密实度适当增大集料的粒径,可以提高抗车辙能力。

沥青混合料的密实度决定着其空隙率(VTM的大

小,密实度越大,空隙率越小,混合料的抗辙槽能力就越强,但VTM也不能太小, Superpave认为,当VTM<4%时,路面的抗车辙能力明显下降。

4.4控制沥青面层的厚度

半刚性基层的沥青面层厚度不宜太大,厚的沥

青面层容易产生车辙,但也不宜过薄,否则沥青面

层容易损坏基层,出现沥青面层底部开裂现象。国外柔性路面沥青混合料层通常在30cm以上,半刚性路面沥青面层的厚度通常为10cm ̄20cm,半刚性

组合路面沥青层的厚度为4cm ̄8cm。参考文献

[1]Brown E R,Handdock J E,Mallicks R B and

Lynn T A.Development of Mixture Design Procedure for stone Matrix Asphalt[J]. AAPT,1997,26(3:8-12.[2]Brown E R and Mallicks R B.Evaluation of Stone-on-stone Contact in Stone-Matrix Asphalt[J].TRR,

1998,35(6:43-46.[3]Corry R W,Dolan C W.Strengthening and Repair of a Column Bracket Using a Carbon Fiber Reinforced Polymer(CFRP Fabric[J].PIC Journal,2001,

(4:28-32.

[4]Banfill P F G,Saunders D C.The Relationship Between the Retardation of Hydration[J].Cement

and Concrete Research.1986,

(3:12-16.[5]Insights intoPavement Preservation[R].Washington:U.S.Federal Highway Administration,April2003.

[6]Prevention of Rut in Pavement[R].A.Vanelstraete,L.Francken.RILEM Report 18,1997.

收稿日期:2005-12-28

李峰伟

(河南省交通规划勘察设计院,河南郑州450052

摘要:公路勘察GPS RTK

测量是公路工程的基础,其中正确定义坐标系求解不同坐标系间的转化参数是RTK 测量的关键,因此就公路勘察GPS RTK

测量中点在不同坐标系下的坐标转换方法及坐标转换中的注意事项进行探讨,具有一定的实用

价值。

关键词:公路RTK测量;坐标系统;坐标系定义方法;一步法中图分类号:U412.2文献标识码:A

文章编号:1002-4786(200608-0019-03

Method for Coordinate Definition of GPS RTK in

Highway Measuring

LI Feng-wei

(Henan Provincial Communications Planning&Survey Institute,Zhengzhou 450052,China

Abstract:The measure of GPS RTK is the basis of highway engineering,for which the key problem is right definition of parameters in different coordinate.Therefore,it has practical significance to discuss on""""""""""""""""""""""""""""""""""""""""""""""

公路勘察GPS RTK测量中

坐标系定义方法

19

《交通标准化》2006年第8期

C O M M U N I C A T I O N S S T A N

D A R D I Z A T I O N.N o.8,2006

随着3S(GPS,GIS,RS技术的发展,GPS RTK

测量已在公路勘察中得以广泛应用。公路勘察RTK

测量中主要是确定公路中桩地面点的空间位置,也

就是确定地面点的空间位置的坐标和高程。通常,GPS观测得到的是地面点的WGS 84大地坐标系经纬度坐标,而测量作业人员则使用地面点在地方格网

坐标系中的平面直角坐标,故在利用GPS测量时如

何正确确定这两个参考框架间的坐标转换即坐标系

定义是RTK测量的关键。

1点的坐标系统简介

地面点的坐标可根据不同的用途,在地理坐

标、高斯平面直角坐标、平面直角坐标中选用。在

大区域内地面点的位置,常以球面坐标系统来表

示。用经度、纬度表示的地面点在球面上的位置,

称为地理坐标。地理坐标又因所用基准面、基准线

及测量计算坐标方法的不同而不同。地理坐标是球

面坐标,但测量中的计算和绘图最好在平面上进

行。测量上将旋转椭球面上的点换算到平面上,称

为地图投影。我国一般采用高斯投影的方法,在公路测量中我们常用的是点的WGS 84大地坐标和投影到某中央子午线上的1954(或1980平面直角坐标。1.1WGS

84和地方坐标系统

WGS1984基准面采用WGS84椭球体,它是一

个地心坐标系,即以地心作为椭球体中心。目前GPS测量数据多以WGS

1984为基准。1984世界大地坐标系(WGS84是采用与地球平均表面符合得最

好的椭球体(长半轴a=6378,

137.000m,扁率f=1/298.253

,基于WGS84椭球的大地水准面。

同一个物理点P可以有不同WGS84坐标类型的坐标(见图1:

a WGS84直角坐标:X,Y,Z

P=4264650.810X

724089.202Y

4672014.4546Z

b WGS84大地坐标:纬度、经度和大地高

P=47°23′45.84283″N

9°38′10.58730″E

449.6911m

同一个物理点P也可以有地方坐标系统中的坐标:

a

地方直角坐标:X,Y,Z P=4264750.810X

724189.202Y

4672114.4546Z

b

地方大地坐标:纬度、经度和椭球高P=47°23′43.14014″N

9°38′10.49009″E

1305.241m

同一个点在不同坐标类型间的转换,即转换参数的求得就是坐标系定义。2坐标系定义方法

公路RTK测量中,已知一些控制点的WGS84坐标(这些坐标已经用GPS 静态测量得到,及其地方坐标(这些坐标已经用TPS或其他测量方法得到

,由于同一个物理点P在WGS84系统和地方坐

标系统中有不同的直角坐标,故如何正确确定两

个参考框架间的坐标转换即坐标系定义即为GPS

测量的关键。常用的坐标系定义方法有三种:经典3D

转换、一步法转换和两步转换。

2.1经典3D转换

(见图2如图2所示,用以下参数来连接这两个参考框

架间的坐标转换称为经典3D坐标转换:

a

三个平移参数:dx,dy,dz;b

三个旋转参数:Rx,Ry,Rz;c

一个尺度参数:λ。例如:dx=200,dy=200,dz=200经典3D转换需满足下列要求:图2经典3D转换

图1

items needing attention in coordinate definition of GPS RTK.

Key words:RTK measure in highway;coordinate;methods for definition of coordinate;one-step method

20

《交通标准化》2006年第8期

COMMUNICATIONS STANDARDIZATION.No.8,2006

图5

图4两步法转换图3一步法转换a

必需至少已知3个点(可以用少于3个的已知

点进行转换,但这样的结果不可信,故不推荐这种做法

在两个坐标系统中的平面位置和高程;b需要已知地方椭球和地图投影(或大地水准面;

c

点位的水平位置和高程不能分别处理,故

用来求转换参数的点的平面位置和高程都必需已知。

RTK测量时经典3D转换可以用于任何大小的

区域,但实际上,这种方法受到地方坐标系统完整性的限制。

2.2一步法转换

一步法坐标转换(见图3可以直接在WGS84和

地方格网坐标系间进行转换,不需要已知地方椭球

和投影,因为它不进行尺度和旋转转换计算,可以

混合使用不同类型的已知点、只知平面位置的点、

只知高程的点以及平面位置和高程均为已知的点。

一步法转换由于会发生变形而只能用于有限的

区域。公路RTK测量中用投影到某中央子午线上的

平面来替代地球曲面,这导致路线走向为东西向时变形较大,建议不要用于间隔大于15km的区域,即每隔15km,我们应重新选择控制点,再在GPS上

采用一步法定义新的坐标系,从而确保RTK测量时

得到较精准的测量成果,为设计提供准确的基础资料。

2.3两步法转换

两步法转换(见图4就是物理点的WGS84坐标经经典3D

转换成为地方预备格网坐标,再经过2D转换变为需要的“真实的”格网。

两步法转换有如下特点:

a

具有经典3D转换和一步法转换的优点;b

点位和高程分开处理(与一步法类似;c

但是要使用地方坐标系的椭球和地图投影;d

经典3D预转换覆盖区域的大小没有限制。经典3D

转换和两步法转换都需要知道地方坐标系的椭球和地图投影,相比之下,公路RTK 测量中一步法转换在GPS上操作方便,故常用一步法转

换来定义坐标系,求得点在两个坐标系中的转换参数。3

坐标转换计算时应注意的问题

公路GPS RTK测量中每隔5km布一对控制点,

进行坐标转换时控制点的分布应满足下列要求(见

图5:

a

控制点必须覆盖整个转换区域;b

需要已知GPS控制点的平面位置和高程。

在定义坐标系时,在控制点之外区域的点的转

换误差是无法预测的,它随离控制点区域的距离而增加。

GPS RTK测量中为了控制转换的质量,当一些

控制点转化后参差较大时可以从计算参数的控制点

中删除这些控制点,再进行转换参数计算,在GPS

上进行多次计算,直到转换误差达到期望值,就可以用此时定义的坐标系来进行RTK 测量。4结论

公路勘察GPS RTK测量是公路工程的基础。正

确定义坐标系求解不同坐标系间的转化参数是RTK

测量的关键。因不需要知道地方椭球和地图投影,一步法定义坐标系在公路勘察GPS RTK测量中使用方便且满足精度要求,是常用的坐标系定义方法。参考文献

[1]钟孝顺,聂让.测量学[M].北京:人民交通出版社,1997.

作者简介:李峰伟(1978-,男,工学学士,助理工程师,从事公路设计及研究工作。收稿日期:2006-01-09

21

平面度常识及测量方法

平面度误差测量数据处理。 在大中专学校机械类各专业中,《互换性与测量技术基础》是一门重要的技术基础课,该课程内容十分丰富,而教学课时相对较少,许多重点和难点内容难以作详细讲解。其中形位公差与技术测量的内容学生理解掌握更为困难,在四项形位公差中,直线度与平面度误差的测量是一般机械制造行业主要的检测项目,故要求学生重点学习和掌握。直线度误差的测量相对较为简单,而平面度误差的测量及数据处理比较复杂,且理解困难。本文仅对平面度误差的测量和数据处理作较为详细的介绍,希冀初学者能尽快掌握这一重点和难点内容。 一、平面度误差的测量 平面度误差是指被测实际表面对其理想平面的变动量。 平面度误差是将被测实际表面与理想平面进行比较,两者之间的线值距离即为平面度误差值;或通过测量实际表面上若干点的相对高度差,再换算以线值表示的平面度误差值。 平面度误差测量的常用方法有如下几种: 1、平晶干涉法:用光学平晶的工作面体现理想平面,直接以干涉条纹的弯曲程度确定被测表面的平面度误差值。主要用于测量小平面,如量规的工作面和千分尺测头测量面的平面度误差。 2、打表测量法:打表测量法是将被测零件和测微计放在标准平板上,以标准平板作为测量基准面,用测微计沿实际表面逐点或沿几条直线方向进行测量。打表测量法按评定基准面分为三点法和对角线法:三点法是用被测实际表面上相距最远的三点所决定的理想平面作为评定基准面,实测时先将被测实际表面上相距最远的三点调整到与标准平板等高;对角线法实测时先将实际表面上的四个角点按对角线调整到两两等高。然后用测微计进行测量,测微计在整个实际表面上测得的最大变动量即为该实际表面的平面度误差。 3、液平面法:液平面法是用液平面作为测量基准面,液平面由“连通罐”内的液面构成,然后用传感器进行测量。此法主要用于测量大平面的平面度误差。

眼图常用知识介绍

眼图常用知识介绍 关于眼图及其测量大家已经做了较多的讨论传输指标测试大全其侧重于眼图的定义和测量光眼图分析张轩/22336著 以及色散对长距离传输后的眼图的影响 如下降时间消光比信噪比以及如何从各个方面来衡量一个眼图的优劣 现在我们公司常用的测量眼图的仪器为CSA8000 1眼图与常用指标介绍 下图为一个10G光信号的眼图右边一栏为这个光信号的一些测量值ExdB交叉点比例QF平均光 功率Rise下降时间峰值抖动 RMSJ 消光比定义为眼图中电平比电平的值传输距离又不同的要求G.957的建议 衡量器件是否符合要求除了满足建议要求之外 一般的对于FP/DFB直调激光器要求EML电吸收激光器消光比不小于10dBμ?ê??a2¢2?òa??×???1a±è

可以无限大将导致激光器的啁啾系数太大不利于长距传 输与速率的最低要求消光比大0.5~1.5dB???ùò???3??a?′ò???êy?μê?o|????1a±èì???á? μ????ó??2úéú?òí¨μà′ú??3?±ê??óD2úéú?ó??2¢?òí¨μà′ú???ú×???±êòa?ó?à′ó???éò? óéóú′?ê?1y3ì?Dμ????óê?2àμ???2?μ??à??óú·¢?í2àé?ò?±£?¤?óê?2àμ???2?μ?±èày?ú′ó??50ê1μ??óê?2àμ?áé???è×???ò?°?·¢?í2à??2?μ?±èày?¨òé?????ú4045 Q因子综合反映眼图的质量问题表明眼图的质量越好 光功率一般来说1???????ú2??ó1a?¥??μ??é????越高越好越高越好 如果需要准确地测量光功率 信号的上升时间下降的快慢 的变化的时间下降时间不能大于信号的周期的40如9.95G信号要求其上升 峰可以定性反映信号的抖动大小这两个测量值是越小越好如Agilint 的37718 在测量抖动的时候才能保证测量值相对准确 做为一个比较参考一般在发送侧的测量值都大于30dB

自定义眼高测量

力科示波器自定义眼高测量方法 美国力科公司深圳代表处 曹刘 前言 示波器的五大基本功能之一就是测量,通过示波器的测量功能可以直观地体现波形的基本特征,如波形的上升下降时间,幅值,周期,频率等等。测量的方法包括使用光标,使用示波器自带的测量参数,必要时需使用其他特别的测量方法。 对于目前GHz 以上的信号,最常表征信号特征的方式就是使用眼图,通过观察,测量以及分析眼图就可以非常直观地了解信号质量,如比如幅度(包括噪声,过冲等)和时序(上升下降时间,抖动等)特征。下面我们以眼高测量为例来介绍一台高端示波器在测量上的特点。 眼高参数定义 与眼图相关的最重要的测量参数包括眼高,眼宽,1电平,0电平等等。这些参数的定义,如下图所示,1电平与0电平表示选取眼图中间部分20%的UI 向垂直轴做直方图,其中出现概率最大点的高低电平分别定义为1点平和0电平,眼幅度即为“1”电平与“0”电平差值。眼幅度减去高低电平标准偏差值的3倍即为眼高。 光标光标测量方法测量方法 对于眼高的测量,示波器提供不同的方法,若用户对测试的准确度要求不高可以使用光标直接测量。光标测量是从模拟示波器沿用过来的,特点时容易设置,直观,但是测试精度有限但是测试精度有限但是测试精度有限,,它无法利用示波器的处理精度与处理速度它无法利用示波器的处理精度与处理速度,,不同的使用者测量出来的结果的使用者测量出来的结果可能会差别很大可能会差别很大可能会差别很大。。我们可以说这种方法并不能真正反映真实的眼高,但在客户要求测量精度不高的情况下可以使用,非常直观。 One(Eye) Zero(Eye)

自定义眼高测量 有经验的工程师可能遇到过这种情况,就是眼图质量很差的情况下,比如眼图即将闭合时,眼高的测试有时候无法进行,或者说无法准确的测量出来,这个时候需要用户使用其他的方法来测试,下面我就给大家介绍一下自定义眼高测量,或称为手动测试方法。 1)如下图所示,示波器生成眼图之后,我们对眼图做垂直直方图,F8=Phistogram(Eye); Step1:设置F8为eye的垂直直方图 Step2:设为

检测平面度的方法介绍

检测平面度的方法介绍

一、平面度的定义 平面度是指基片具有的宏观凹凸高度相对理想平面的偏差。 平面的平面度公差符号、基本表示方法,如图1所示。 图1 二、平面度误差的检测方法 平面度误差是指被测实际表面相对其理想表面的变动量,理想平面的位置应符合最小条件,平面度误差属于形位误差中的形状误差。 平面度误差的测量方法: 直接测量法 间接测量法 利用太友科技数据采集仪连接百分表法 1、直接测量法 通过测量可直接获得平面上各点坐标值或能直接评定平面度误差值的方法。具体如下: 平晶干涉法 测微表测量法 光轴法、液面法等。 1)平晶干涉法 干涉法测量平面度误差,是把平晶放在它所能覆盖的整个被测平面上,用平晶工作面体现理想平面,根据测量时出现的干涉条纹形状和数目,由计算所得的结果作为平面度误差值,如图所示。

该方法只适合测量精研小平面及小光学元件。 2)测微表测量法 用3个可调支承将被测件支撑在标准平板上,用测微仪指示。调整可调支承,用三点法或四点法(对角线法)进行测量。然后用测微仪读出被测表上各点的最大与最小读数差作为平面度误差值的测量结果。该测量方法适用于车间较低精度、中等尺寸的工件。 3)光轴法 光轴法测量平面度误差是利用准直类仪器2、以它的光轴经转向棱镜3扫描的平面作为测量基准,将瞄准靶1放置在实际被测平面4上,按选定的布点,测出各测点相对于该测量基准的偏离量,再经数据处理评定平面误差值。

2、间接测量法 特点:测量精度高,但数据处理麻烦。因被测平面需测若干个截面,而各截面内的偏差值在测量时不是由同一基准产生,故须经复杂的数据后,才能获得各测量截面相对统一基准的坐标值。 适用于中大平面的测量。 测量方法:水平仪法、自准仪法、互检法 1)水平仪法 原理:以自然水平面作为测量基础。测量时,先把被测表面调到基本水平,然后把水平仪放在桥板上,再把桥板置于被测表面上,按照一定的布线逐渐测量,同时记录各测点的读数,根据测得的读数通过数据处理,即可得平面度误差值。 分类:依布线方法不同又分为水平面法和对角线法。 2)水平面法 采用网格布点,基准平面为过被测表面上的某给定点且与水平面平行的几何平面:测量时应采用同一桥板,各测点的同一坐标值用累积法求得,计算比较简单。测量时选择不同的起始点和不同的测量线,其数据处理的方法、结果不同。存在一个最佳结果。 3)对角线法 采用对角线布点。 过渡基准平面是:过被测表面的一条对角线,且平行于被测表面的另一条对角线的平面。测量时常须用三块长度不同的板桥。数据处理较麻烦。 4)自准仪法

GPS-RTK技术在道路横断面测量中的应用

摘要 本论文主要研究了全球定位系统GPS-RTK技术及南方CASS地形图成图软件和纬地公路设计软件联合用于公路断面测量的方内容,提出了利用上述硬件和软件结合进行内外业一体化的公路断面测量方法。 论文简要介绍了GPS系统的组成、主要工作特点以及在公路工程中的应用现状;论述了GPS-RTK的工作原理、外业测量的过程、以及在公路工程断面测量中应用的优势;论文介绍了南方CASS地形图成图软件地表模型的建立和等高线的绘制方法、纬地公路设计软件的线路设计和数模建立以及断面图绘制的方法。 论文通过庄盖高速公路2标段的断面测量实例,验证了文中提出的利用GPS-RTK及南方CASS软件和纬地软件相结合的一体化公路断面测量的方法,实践证明,该方法是可行的,达到了提高效率和自动化程度的目的,断面数据精度也得到了提高,为快速进行断面测量和地面土方计算提供了解决方案。论文还论述了GPS-RTK与常规水准仪相结合,解决现状测区高程拟合的问题。 关键词: GPS-RTK;公路断面测量;GPS控制网;南方CASS;纬地软件

Abstract This paper is a global positioning system (GPS) for the measurement of the content of highway projects, the main research will be the Global Positioning System (GPS) RTK technology for the road section survey, and with latitude in the South CASS software software and graphics within the industry to calculate Earthwork. An outline of the GPS system, the composition of the main features and the status of highway engineering; discusses the GPS-RTK cross-section measurement in the application of highway engineering advantages; from the basic principle of GPS positioning, detailed analysis of the GPS- RTK surveying outside the process: systematic study of latitude in the South CASS with software use. Papers with CASS and latitude to the south of software use, comprehensive study of the road GPS RTK operation mode of the characteristics of measurement and the application of GPS RTK technology road measurements (including road surface, profile, cross section) the entire process, and highlights South CASS combining with the latitude to the process of drawing cross-section and earthwork calculations. GPS RTK paper discusses the combination with conventional water level to solve specific engineering problems, CASS and the latitude of the South proposed to combine the concept drawing, saving time. Key words:GPS-RTK;Road section survey;GPS Control Network;South CASS;Latitude to the software

我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位, 它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大 地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我 国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m短轴6356863,扁率1/298.3 ; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。 为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐 标系,又简称西安大地原点。基准面采用青岛大港验潮站1952- 1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m短轴6356755,扁率1/298.25722101 3、W G-84坐标系 WG—84坐标系(WorldGeodeticSystem )是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,丫轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS^播星历是以WGS-84坐标系为根据的。 WGS8坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。 由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。 4、2000国家大地坐标系 英文缩写为CGCS200O 2000国家大地坐标系是全球地心坐标系在我国的具体体现,其原点为包括海洋和大气的整个地球的质量中心。2000国家大地坐标系采用的地球椭球参数如下:长半轴a=6378137m 扁率f=1/298.257222101, 地心引力常数GM=3.986004418< 1014m3s2 自转角速度3 =7.292115 < 10-5rads-1 我国常用高程系 “ 1956年黄海高程系”,是在1956年确定的。它是根据青岛验潮站1950年到1956年的黄海验潮资料,求出该站验潮井里横按铜丝的高度为 3.61米,所以就确定这个钢丝以下3.61米处为黄海平均海水面。从这个平均海水面起,于1956年推算出青岛水准原点的高程为72.289米。 国家85高程基准其实也是黄海高程基准,只不过老的叫“1956年黄海高程系统”,新的叫“ 1985国家高程基准”,新的比旧的低0.029m 我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,为中国第一个国家高程系

自定义眼图模板

自定义眼图模板 美国力科公司万力劢 一、眼图模板的电气特性意义 眼图模板测试是评估高速信号质量的重要方法。力科示波器串行数据分析功能已经内置了业界主流高速信号的模板,多达50种以上。但是以下几种情况可能无法直接套用示波器已经内置的标准模板:被测信号是新出标准定义的,或者芯片的电气特性没有严格符合标准,或者实际测试点和标准要求的测试点不一致。这时需要示波器用户自定义模板。一个典型模板的形状如下图深色图形: 模板水平方向一般占一个UI的宽度。上有“天花板”,下有“地板”,中间一般为六边形或菱形。通常用X1~X4,Y1~Y4几个坐标刻度定义“天花板”、“地板”以及中间图形的位置和形状。对信号的眼图套用模板,可以快速评估信号的电气特性是否满足要求。 1)垂直方向Y1~Y4四个刻度用于限定信号幅度上的特性,对于差分信号,限定的是差分电 压的摆幅范围。 Y1:信号允许的最小电压(或光功率,以下同理)。 Y4:信号允许的最大电压。 ——对于差分信号,Y1和Y4为允许的最大差分摆幅,Y1为负值,Y4为正值。 Y2:信号低电平允许的最大电压,如果信号幅度超过此电压,信号可能不会被器件当作低电平。电气特性规格很多以Vol(max)、Vil(max)表示此参数。 Y3:信号高电平允许的最小电压,如果信号幅度小于此电压,信号可能不会被器件当作高电平。电气特性规格很多以Voh(min)、Vih(min)表示此参数 ——对于差分信号,Y2和Y3为允许的最小差分摆幅,Y2为负值,Y3为正值。 也就说,信号的高电平必须在Y3和Y4之间,低电平必须在Y1和Y2之间

2)水平方向X1~X4四个刻度用于限定信号时域上的特性。 实际信号的眼图,两侧跳变沿的余辉可能较粗,这是抖动的直观反映。抖动越大、跳变沿余辉就越粗、眼宽也越小。如下图,眼图两侧跳变沿交叉处余辉的宽度反映了信号的总体抖动Tj (准确的总体抖动值需要一定算法来测量和统计,直接在眼图上测量余辉宽度不准确,它只是直观的反映)。X1和X4两个刻度用来限定两侧抖动的范围。抖动范围往内不超过X1,X4,说明抖动大小满足相关电气特性要求。 X2,X3两个刻度用来限定信号上升/下降时间,用以验证信号的最大上升/下降时间是否满足要求。 二、根据芯片电气特性规格定义模板

GPS静态控制测量网平差报告

FJ -3 工程测量技术交流群18874248 省道S 229南坑至源头段 二级公路改建工程 GPS 静态控制测量 网平差报告 萍 乡 公 路 勘 察 设 计 院 二○一一年九月 目 录 一、 GPS 控制点成果表…………………………………………1 二、 GPS 控制点网示意图………………………………………1 三、 GPS 控制网平差报告……………………………………1~4

一、G PS控制点成果表 二、GPS控制点网示意图 三、GPS控制网平差报告 1 坐标系统 1.1 坐标系统名称 Beijing54 1.2 基准参数

1.3 投影参数 M0 =1.00000000 投影比率 H = 0.0000 投影高 Bm =0投影面的平均纬度 B0 =0:00:00.00N 原点纬度 L0 =113:50:00.00E 中央子午线 N0 =0.0000 北向加常数 E0 =500000.0000 东向加常数 回到顶部 2 三维无约束平差2.1 平差参数 2.2 基线向量及改正数 2.3 τ(Tau)检验表 2.4 τ(Tau)检验直方图

2.5 自由网平差坐标 回到顶部 3 二维约束平差 3.1 平差参数 3.2 平面距离平差值 3.3 平面坐标 ***** 回到顶部

4 高程拟合 4.1 平差参数 4.2 高程拟合坐标 240.7246 回到顶部 5 基线闭合差 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G1->G2.242A 99.9 0.0077 -1046.7333 -648.5635 534.7004 1342.4566 G1->G3.242A 99.9 0.0068 -3110.1745 -2426.1123 1829.3052 4348.0529 G2->G3.242A 99.9 0.0062 -2063.4456 -1777.5444 1294.6074 3015.5398 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.76ppm EX = 0.0043 EY = -0.0043 EZ = -0.0026 8706.0493 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G1->G4.242B 65.6 0.0072 -5107.6816 -3742.5441 2584.4937 6839.1999 G1->G2.242A 99.9 0.0077 -1046.7333 -648.5635 534.7004 1342.4566 G2->G4.242B 99.9 0.0072 -4060.9524 -3093.9755 2049.7944 5501.4248 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.48ppm EX = -0.0041 EY = 0.0051 EZ = 0.0010 13683.0814 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G1->GD1.242X 99.9 0.0087 507.9850 -1545.3781 3267.2106 3649.7818 G1->G2.242A 99.9 0.0077 -1046.7333 -648.5635 534.7004 1342.4566 G2->GD1.242X 99.9 0.0065 1554.7134 -896.8104 2732.5118 3269.2543 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.80ppm EX = -0.0048 EY = 0.0042 EZ = 0.0017 8261.4927 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G3->G4.242B 99.9 0.0063 -1997.5067 -1316.4322 755.1870 2508.6519 G1->G3.242A 99.9 0.0068 -3110.1745 -2426.1123 1829.3052 4348.0529 G1->G4.242B 65.6 0.0072 -5107.6816 -3742.5441 2584.4937 6839.1999 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.12ppm EX = -0.0003 EY = 0.0004 EZ = 0.0015 13695.9047 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G3->GD1.242X 99.9 0.0071 3618.1569 880.7382 1437.9069 3991.7835 G1->G3.242A 99.9 0.0068 -3110.1745 -2426.1123 1829.3052 4348.0529 G1->GD1.242X 99.9 0.0087 507.9850 -1545.3781 3267.2106 3649.7818 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.42ppm EX = 0.0026 EY = -0.0040 EZ = -0.0015 11989.6182 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G4->GD1.242X 99.9 0.0073 5615.6650 2197.1667 682.7190 6068.7182 G1->G4.242B 65.6 0.0072 -5107.6816 -3742.5441 2584.4937 6839.1999 G1->GD1.242X 99.9 0.0087 507.9850 -1545.3781 3267.2106 3649.7818 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.16ppm EX = 0.0015 EY = -0.0007 EZ = -0.0022 16557.6999

GPS技术在公路测量中的应用前景

GPS技术在公路测量中的应用前景

GPS技术在公路测量中的应用前景 1、GPS技术发展现状 全球定位系统GPS(GlobalPositioningSystem)是美国陆海空三军联合研制的卫星导航系统,具有全球性、全天侯、连续性、实时性导航定位和定时功能,能为各类用户提供精密的三维坐标、速度和时间。单点导航定位与相对测地定位是GPS应用的两个方面;对常规测量而言相对测地定位是主要的应用方式。 相对测地定位是利用L1和L2载波相位观测值实现高精度测量,其原理是采用载波相位测量局域差分法:在接收机之间求一次差,在接收机和卫星观测历元之间求二次差,通过两次差分计算解算出待定基线的长度;求解整周模糊度是其关键技术,根据算法模型,设计了静态、快速静态以及RTK等作业模式。静态作业模式主要用于地壳变形观测、国家大地测量、大坝变形观测等高精度测量;快速静态测量以其高效的作业效率与厘米级精度广泛应用于一般的工程测量;而RTK测量以其快速实时,厘米级精度等特点广泛应用于数据采集(如碎部测量)与工程放样中。RTK技术代表着GPS相对测地定位应用的主流。 GPS测地型接收设备是实现测地定位的基本条件,接收机有单

输入等中间环节,是公路勘测设计“内外业一体化”的要求,也是影响高等级公路设计技术发展的“瓶颈”所在。目前公路勘测中虽已采用电子全站仪等先进仪器设备,但常规测量方法受横向通视和作业条件的限制,作业强度大,且效率低,大大延长了设计周期。勘测技术的进步在于设备引进和技术改造,在目前的技术条件下引入GPS技术应当是首选。当前,用GPS静态或快速静态方法建立沿线总体控制测理,为勘测阶段测绘带状地形图,路线平面、纵面测量提供依据;在施工阶段为桥梁,隧道建立施工控制网,这仅仅是GPS在公路测量中应用的初级阶段,其实,公路测量的技术潜力蕴于RTK(实时动态定位)技术的应用之中,RTK技术在公路工程中的应用,有着非常广阔的前景。下面就RTK技术在公路勘测中的应用作简单的介绍。 3、RTK技术在公路测量中的应用 3.1 实时动态(RTK)定位技术简介 实时动态(RTK)定位技术是以载波相位观测值为根据的实时差分GPS(RTDGPS)技术,它是GPS测量技术发展的一个新突破,在公路工程中有广阔的应用前景。众所周知,无论静态定位,还是准动态定位等定位模式,由于数据处理滞后,所以无法实时解算出定位结果,而且也无法对观测数据进行检核,这就难以保证观测数据的质

眼图分析

清风醉明月 slp_art 随笔- 42 文章- 1 评论- 20 博客园首页新随笔联系管理订阅 眼图——概念与测量(摘记) 中文名称: 眼图 英文名称: eye diagram;eye pattern 定义: 示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。 一.概述 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出:

(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。 (3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 (4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。 (5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。 (6)横轴对应判决门限电平。” 二、眼图的一些基本概念 —“什么是眼图?” “眼图就是象眼睛一样形状的图形。 图五眼图定义” 眼图是用余辉方式累积叠加显示采集到的串行信号的比特位的结果,叠加后的图形形状看起来和眼睛很像,故名眼图。眼图上通常显示的是1.25UI的时间窗口。眼睛的形状各种各样,眼图的形状也各种各样。通过眼图的形状特点可以快速地判断信号的质量。 图六的眼图有“双眼皮”,可判断出信号可能有串扰或预(去)加重。 图六“双眼皮”眼图

工程测量中的坐标系选择原理与方法

摘要 摘要:近几年来,国家大力兴建高速铁路,由于高速铁路对边长投影变形的控制要求很高(2.5cm /km),因而导致长期以来一直使用的三度带高斯投影平面之间坐标系已难以满足高速铁路建设的的精度要求,本文就具有抵偿高程投影面的任意带坐标系原理作出了阐释,具有抵偿高程投影面的任意带坐标系,克服了三度带坐标系在大型工程中精度无法满足要求的局限性,能有效地实现两种长度变形的相互抵偿,从而达到控制变形的目的。 关键词:高速铁路、抵偿高程面、坐标转换、投影变形、高斯正形投影

Abstract Abstract:In recent years, countries build high-speed railway, due to high speed railway projective deformation control of revised demanding (2.5 cm/km), and therefore cause has long been used with three degrees of gaussian projection planes already difficult to satisfy between coordinate system of high-speed railway construction, this article the accuracy requirement of the planes with counter elevation arbitrary made interpretation with coordinate system, with the principle of any planes with anti-subsidy elevation, overcome three degrees coordinate with coordinate system in large engineering accuracy can't satisfy requirements limitation, can effectively achieve the two length deformation of mutual counter, achieve the purpose of controlling deformation. keywords:rapid transit railway Counter elevation surface Coordinate transformation Projective deformation Gaussian founder form projection

ddr2信号和协议测试分析方案_图文

DDR2/3信号和协议测试分析方案 -BJLK 目前在计算机主板和各种嵌入式的应用中,DDR3已经逐渐要取代DDR2成为市场的主流。DDR3相对于DDR2的主要优势再有更高的数据速率和更低的功耗,例如DDR2的数据速率最高到800MT/s,DDR3的最高数据速率可以到 1600MT/s,而在有些嵌入式的应用中还有可能使用更高速率,因此对于设计和测试都提出了更高的要求。 DDR2/3信号测试分析方案 为了进行可靠的探测,对于示波器器和探头的要求也非常高。对于DDR3的信号,由于JEDEC 没有给出信号上升/下降时间的参数,因此用户只有根据使用芯片的实际最快上升/下降时间来估算需要的示波器带宽,对于DDR3的信号,20 - 80%的上升时间大约在80~120ps左右。对于传统的高斯频响的示波器,为了保证测量精度,通常需要示波器带宽是被测信号带宽的3~5倍,而对于Agilent 的90000系列示波器,由于其优异的类似砖墙的频响特性,可以保证带内比较好的平坦度,因此可以使用以下公式: Scope bandwidth required = 1.4x maximum signal frequency for 3% accuracy measurements Scope bandwidth required = 1.2x maximum signal frequency for 5% accuracy measurements Scope bandwidth required = 1.0x maximum signal frequency for 10% accuracy measurements 根据这个公式计算出来的示波器带宽通常都在4~8GHz,因此对于DDR3信号的测试,通常推荐的示波器和探头的带宽在8GHz 。 对于DDR2和DDR3信号的测试,除了我们所熟知的双边沿采样以外,最主要的挑战在于2个方面,第一是如何进行读写信号的分离,第二是JEDEC 规定了很多DDR3的参数,如何进行方便可靠的测量。下面分别进行介绍: 1、读写信号分离

眼图测量方法B

三、眼图测量方法 之前谈到,眼图测量方法有两种:2002年以前的传统眼图测量方法和2002年之后力科发明的现代眼图测量方法。传统眼图测量方法可以用两个英文关键词来表示:“Triggered Eye”和“Single‐Bit Eye”。现代眼图测量方法用另外两个英文关键词来表示:“Continuous‐Bit Eye”和“Single‐Shot Eye”。传统眼图测量方法用中文来理解是八个字:“同步触发+叠加显示”,现代眼图测量方法用中文来理解也是八个字:“同步切割+叠加显示”。两种方法的差别就四个字:传统的是用触发的方法,现代的是用切割的方法。“同步”是准确测量眼图的关键,传统方法和现代方法同步的方法是不一样的。“叠加显示”就是用模拟余辉的方法不断累积显示。 传统的眼图方法就是同步触发一次,然后叠加一次。每触发一次,眼图上增加了一个UI,每个UI的数据是相对于触发点排列的,因此是“Single‐Bit Eye”,每触发一次眼图上只增加了一个比特位。图一形象表示了这种方法形成眼图的过程。 图一传统眼图测量方法的原理 传统方法的第一个缺点就是效率太低。对于现在的高速信号如PCI‐Express Gen2,PCI‐SIG 要求测量1百万个UI的眼图,用传统方法就需要触发1百万次,这可能需要几个小时才能测量完。第二个缺点是,由于每次触发只能叠加一个UI,形成1百万个UI的眼图就需要触发1百万次,这样不断触发的过程中必然将示波器本身的触发抖动也引入到了眼图上。对于2.5GBbps以上的高速信号,这种触发抖动是不可忽略的。 如何同步触发,也就是说如何使每个UI的数据相对于触发点排列?也有两种方法,一种方法是在被测电路板上找到和串行数据同步的时钟,将此时钟引到示波器作为触发源,时钟的边沿作为触发的条件。另外一种方法是将被测的串行信号同时输入到示波器的输入通道和硬件时钟恢复电路(CDR)通道,硬件CDR恢复出串行数据里内嵌的时钟作为触发源。这种同

GPS公路横断面测量与常规测量方法之比较

GPS公路横断面测量与常规测量方法之比较 摘要:本文通过对公路横断面测量作出基本介绍,介绍了常规测量方法与运用GPS测量方法的作业过程,由此对两种方法进行比较说明。 关键词:公路,横断面,测量,比较 Abstract: this paper introduces basic measuring a cross-section of the highway, and introduces the measurement method and using conventional GPS measurement methods of process, which of the two methods are compared. Keywords: highway, transverse section, measurement, and more 1.引言 在进行道路设计时,需要对整个路线的横断面进行测量,以获得道路中线上各个里程桩及加桩处的高程,利用观测数据绘制横断面图,其最终目的是为设计人员合理地设计道路边坡、路基以及计算土石方量提供依据[1]。 随着社会科技的发展,测绘仪器不断发生着更新换代,相应的横断面测量方法也在不断改进,本文旨在对常规的道路横断面测量方法与发展迅速的新兴的GPS测量方法进行比较说明。 2.横断面测量方法 2.1常规测量方法 进行横断面测量时,首先应确定出横断面的方向,再以中心线做依据向两边施测,常规的横断面测量方法有花杆皮尺法、水准仪配合皮尺法,经纬仪视距法等[2]。其作业方法如下: (1)根据公路的设计坐标对中桩及加桩进行测设,然后对公路路线的纵断面进行中桩放样。上述工作完成之后,利用公路路线附近原本埋设的高等级水准点,使用水准仪测出每个中桩的高程。 (2)运用经纬仪及水准尺对公路路线的横断面进行测量。由于横断面反应的是路线两侧地面的高程变化情况,为横断面设计及土石方量计算提供基础资料,测量时,在中桩点上安置经纬仪并量出相应的仪器高度,经纬仪镜头瞄准线

眼图测量

眼图——概念与测量(摘记) 中文名称: 眼图 英文名称: eyediagram;eye pattern 定义: 示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。 一.概述 “在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。 在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。通常眼图可以用下图所示的图形来描述,由此图可以看出: (1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。显然,最佳抽样时刻应选在眼睛张开最大的时刻。 (2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。 (4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。 (5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。 (6)横轴对应判决门限电平。” 二、眼图的一些基本概念 —“什么是眼图?” “眼图就是象眼睛一样形状的图形。 图五眼图定义” 眼图是用余辉方式累积叠加显示采集到的串行信号的比特位的结果,叠加后的图形形状看起来和眼睛很像,故名眼图。眼图上通常显示的是1.25UI的时间窗口。眼睛的形状各种各样,眼图的形状也各种各样。通过眼图的形状特点可以快速地判断信号的质量。 图六的眼图有“双眼皮”,可判断出信号可能有串扰或预(去)加重。 图六“双眼皮”眼图 图七的眼图“眼睛里布满血丝”,这表明信号质量太差,可能是测试方法有错误,也可能是PCB布线有明显错误。

相关文档