文档库 最新最全的文档下载
当前位置:文档库 › 1共射级单管放大器工作原理

1共射级单管放大器工作原理

1共射级单管放大器工作原理
1共射级单管放大器工作原理

1共射级单管放大器工作原理

管子工作前题是BE结加正向电压BC结加反向电压,然后1.发射区向基区扩散电子,2.电子在基区边界扩散与复合,空穴由外电源补充,维持电流。3.电子被集电极收集。改变基极电流就可以改变集电极电流:IC=BIB

2.在两个放大管与VEE之间接的有一个恒流源.

一、微恒流源原理电路

电路如图1所示,当IR一定时,IC2可确定为:

图1

可见,利用两管基一射电压差VBE可以控制IO。由于VBE的数值小,用阻值不大的Re2即可得微小的工作电流--微电流源。

二、恒流源电路的主要应用-有源负载

前面曾提到,增大Rc可以提高共射放大电路的电压增益。但是,Rc不能很大,因为在集成工艺中制造大电阻的代价太高,而且,在电源电压不变的情况下,Rc越大,导致输出幅度越小。那么,能否找到一种元件代替RC,其动态电阻大,使得电压增益增大,但静态电阻较小。因而不致于减小输出幅度呢?自然地,我们可以考虑晶体管恒流源。由于电流源具有直流电阻小,交流电阻大的特点,在模拟集成电路中广泛地把它作负载使用--有源负载,如图2所示。

在本图中恒流源由20K电阻和Q7与Q8组成.其他同基本放大电路.

Q7短接基极和集电极的接法在集成电路制作中常用.

由于晶体管电流源具有直流电阻小,交流电阻大的特点,在模拟集成电路中广泛地把它作负载使用--有源负载.

而且集成电路中做二极管就是用三极管一个极.短接另一个极.

3三级运放放大电路工作原理

三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。

下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。

三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大

4,集成放大电路工作原理

集成电路是在一小块P型硅晶片衬底上,制成多个晶体管( 或FET)、电阻、电容,组合成具有特定功能的电路。

集成电路在结构上的特点:

1. 采用直接耦合方式。

2. 为克服直接耦合方式带来的温漂现象,采用了温度补偿的手段----输入级是差放电路。

3. 大量采用BJT或FET构成恒流源,代替大阻值R ,或用于设置静态电流。

4. 采用复合管接法以改进单管性能。

集成电路分为数字和模拟两大部分。

5.运算放大器工作原理

运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。

图1-1

通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正回馈(positive feedback),相反地,在很多需要产生震荡讯号的系统中,正回馈组态的运算放大器是很常见的组成元件。

开环回路

图1-2开环回路运算放大器

开环回路运算放大器如图1-2。当一个理想运算放大器采用开回路的方式工作时,其输出与输入电压的关系式如下:

V out = ( V+ -V-) * Aog

其中Aog代表运算放大器的开环回路差动增益(open-loop differential gai由于运算放大器的开环回路增益非常高,因此就算输入端的差动讯号很小,仍然会让输出讯号「饱和」(saturation),导致非线性的失真出现。因此运算放大器很少以开环回路出现在电路系统中,少数的例外是用运算放大器做比较器(comparator),比较器的输出通常为逻辑准位元的「0」与「1」。

闭环负反馈

将运算放大器的反向输入端与输出端连接起来,放大器电路就处在负反馈组态的状况,此时通常可以将电路简单地称为闭环放大器。闭环放大器依据输入讯号进入放大器的端点,

又可分为反相(inverting)放大器与非反相(non-inverting)放大器两种。

反相闭环放大器如图1-3。假设这个闭环放大器使用理想的运算放大器,则因为其开环增益为无限大,所以运算放大器的两输入端为虚接地(virtual ground),其输出与输入电压的关系式如下:

V out = -(Rf / Rin) * Vin

图1-3反相闭环放大器

非反相闭环放大器如图1-4。假设这个闭环放大器使用理想的运算放大器,则因为其开环增益为无限大,所以运算放大器的两输入端电压差几乎为零,其输出与输入电压的关系式如下:

V out = ((R2 / R1) + 1) * Vin

图1-4非反相闭环放大器

集成运算放大器原理

由于运算放大器的增益极高,所以不能在两输入端之间加上输入信号,而一定要用作反

馈放大器。这种运算放大器基本上可分为图 2 - 9 所示的非倒相放大电路和图 2 - 10 所示的倒相放大电路两类。

(a) 非倒相放大电路

首先,我们来讨论非倒相放大电路。设IN+ 端和IN -端的电压分别为和

,并认为运算放大器的增益无限大,则为要获得有限的输出电压,则

=

。这点则是运算放大器工作中的一大特征。在此前提下,分析电路工作就能变得十分简单。根据此特征,输入与输出的关系为:

(b) 倒相放大电路

下面我们来分析倒相放大电路。

=

,这点是与非倒相放大电路情况相同的,所以=0V 。这样,尽管有输入信号,然而端处为0V 。恰似接地,所以被叫做假想接地。于是,若讨论流经Rs.Rf

的电流I ,由于运算放大器的输入电流为0 ,则据此,可得出

输入与输出的关系

可见,非倒相放大器和倒相放大电路,是从对应于输入,其输出是否倒向这一事实出发而得名的。

(c) 差分放大电路

如图 2 - 11 所示,可将两个这种放大电路组合成差分放大电路。端的电压

由和

分压而得

流经Rs2和Rf2的电流I 为

由上述两式可得

其中,如设Rs1=Rs2,Rf1=Rf2,则

即差分放大器能够获得V1和V2

之差成正比的输出。

实际的运算放大器

以上所述是均是理想的运算放大器的情况。实际上,运算放大器的增益不可能无限大,有电流向IN-、IN+端子流入(或流出),并且其电流不一定相等。即使在无信号时,V+、V-之间也有一定的电压。

(a) 输入偏置电流(Ib)的影响

如果运算放大器的输入级由晶体管构成,要使电路能正常工作,应有偏置电

流(基极电流)流过。该输入偏置电流流经反馈电阻时,会产生压降,从而造成输出误差。

在图 2 - 12 电路中,尽管无输入,但是在输出端也会出现位移电压

。此为:

由于Ib-设=Rs(Rs与Rf并联的值),则=0,输入偏流的影响消失。

并且,采取C 耦合,将电容器与Rs串连时,若设Rc=Rf,则= 0 。

对于采用场效应管构成输入级的运算放大器,由于输入偏流几乎可以忽略不计,不必产生过去的顾虑。但是,由于采用场效应管输入的运算放大器来讲,如果温度上升10 摄氏度,则输入偏流将增高两倍,因此,这种运算放大器必须避免在高温情况下使用。

,

放大电路原理

放大电路原理 放大器有交流放大器和直流放大器。交流放大器又可按频率分为低频、中源和高频;接输出信号强弱分成电压放大、功率放大等。此外还有用集成运算放大器和特殊晶体管作器件的放大器。它是电子电路中最复杂多变的电路。但初学者经常遇到的也只是少数几种较为典型的放大电路。 读放大电路图时也还是按照“逐级分解、抓住关键、细致分析、全面综合”的原则和步骤进行。首先把整个放大电路按输入、输出逐级分开,然后逐级抓住关键进行分析弄通原理。放大电路有它本身的特点:一是有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析;二是电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能“瞻前顾后”。在弄通每一级的原理之后就可以把整个电路串通起来进行全面综合。 下面我们介绍几种常见的放大电路。 低频电压放大器 低频电压放大器是指工作频率在 20 赫~ 20 千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。 ( 1 )共发射极放大电路 图 1 ( a )是共发射极放大电路。 C1 是输入电容, C2 是输出电容,三极管 VT 就是起放大作用的器件, RB 是基极偏置电阻 ,RC 是集电极负载电阻。 1 、 3 端是输入, 2 、3 端是输出。 3 端是公共点,通常是接地的,也称“地”端。静态时的直流通路见图 1 ( b ),动态时交流通路见图 1 ( c )。电路的特点是电压放大倍数从十几到一百多,输出电压的相位和输入电压是相反的,性能不够稳定,可用于一般场合。

( 2 )分压式偏置共发射极放大电路 图 2 比图 1 多用 3 个元件。基极电压是由 RB1 和 RB2 分压取得的,所以称为分压偏置。发射极中增加电阻 RE 和电容 CE , CE 称交流旁路电容,对交流是短路的; RE 则有直流负反馈作用。所谓反馈是指把输出的变化通过某种方式送到输入端,作为输入的一部分。如果送回部分和原来的输入部分是相减的,就是负反馈。图中基极真正的输入电压是RB2 上电压和 RE 上电压的差值,所以是负反馈。由于采取了上面两个措施,使电路工作稳定性能提高,是应用最广的放大电路。 ( 3 )射极输出器 图 3 ( a )是一个射极输出器。它的输出电压是从射极输出的。图 3 ( b )是它的交流通路图,可以看到它是共集电极放大电路。

模电仿真实验 共射极单管放大器

仿真实验报告册 仿真实验课程名称:模拟电子技术实验仿真仿真实验项目名称:共射极单管放大器 仿真类型(填■):(基础■、综合□、设计□) 院系:专业班级: 姓名:学号: 指导老师:完成时间: 成绩: .

. 一、实验目的 (1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。 (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 (3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。 二、实验设备及材料 函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。 三、实验原理 电阻分压式共射极单管放大器电路如图3.2.1所示。它的偏置电路采用(R W +R 1)和R 2组成的分压电路,发射极接有电阻R 4(R E ),稳定放大器的静态工作点。在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。 在图3.2.1电路中,当流过偏置电阻R 1和R 2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC 为电源电压): CC 21W 2 BQ ≈ U R R R R U ++ (3-2-1) C 4 BE B EQ ≈I R U U I -= (3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3) 电压放大倍数 be L 3u ||=r R R β A - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 图3.2.1 共射极单管放大器

实验三_晶体管共射级单管放大器实验报告

实验三晶体管共射级单管放大器实验报告学号:姓名: 一、题目:晶体管共射级单管放大器 二、实验原理: 下图为电阻分压式工作点稳定单管放大 器实验电路图。晶体管共射电路是电压反向放大器。当在放大器的输入端加入输入信号U i后,在放大器的输出端便可得到一个与U i相位相反,幅值被放大了的输出信号U o,从而实现了电压放大。 实验电路图 三、实验过程

1.放大器静态工作点的测量与测试 ①静态工作点的测量 置输入信号U i=0,将放大器的输入端与地端短接,然后选用量程合适的万用表分别测量晶体管的各电极对地的电位U、U和U。通过 I=(U-U)/R 由U确定I。 ②静态工作点的调试 在放大器的输入端加入一定的输入电压U i,检查输出电压U o的大小和波形。若工作点偏高,则放大器在加入交流信号后易产生饱和失真,若工作点偏低则易产生截止失真。 2.测量最大不失真输出电压 将静态工作点调在交流负载的中点。在放大器正常工作的情况下,逐步加大输入信号的幅度,并同时调节R w,用示波器观察U o,当输出波形同时出现削底和缩顶现象时,说明静态工作点已调在交流负载线的中点。然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用示波器直接读出U opp。 3.测量电压放大倍数 调整放大器到合适的静态工作点,然后加入输入电压U i,在输出电压U o不失真的情况下,测出U i和U o的有效值, A u=U o/U i 4.输入电阻R i的测量 在被测放大器的输入端与信号源之间串入一已知电阻R,

在放大器正常工作的情况下,用毫伏表测出U s和U i。 根据输入电阻的定义可求出R i。 5.输出电阻R o的测量 在放大器正常工作条件下,测出输出端不接负载的输出电压U o和接入负载的输出电压U L。 U L=R L U O /(R O+R L) 计算出Ro。 在测试中保证负载接入前后输入信号的大小不变。 四、实验数据 1.调试静态工作点 测量值计算值 U(V)U(V)U(V)R(K)U(V)U(V)I(mA) 2.测量电压放大倍数 ∞

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级__________姓名___________学号_________ 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I=βI BQ

U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e管共基极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2)) I BQ=I EQ/(1+β) U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e) (3)动态分析。AU=β(R C极管将输入信号放大。 2.两电阻给三极管基极提供一个不受温度影响的偏置电流。 3.采用单管分压式共射极电流负反馈式工作点稳定电路。 四、实验步骤: 1.选用2N1711型三极管,测出其β值。 (1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

运算放大器的工作原理

运算放大器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同, 运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括 一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。 图1-1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正回

晶体管单管放大器

实验二晶体管单管放大器 一、实验目的 1.熟悉电子元器件和TB型模拟电路实验仪 2.学会放大器静态工作点的调试方法。 3.分析电路参数的变化对放大器静态工作点、电压放大倍数及输出波形的影响。 4.掌握放大器电压放大倍数,输入电阻、输出电阻及最大不失真输出电压的测试方法。 二、实验电路及设备 1.示波器、万用表。 2.TB型模拟电路实验仪及①号实验模板。 二、实验电路及原理 1.估算电流放大系数β 晶体三极管的β值可以由输出特性曲线上求出,如图2-1所示。先通过Q点作横轴的垂直线,确定对应Q点的V CE值,再从图中求出一定V CE条件下的和相应的,则Q点附近的交流电流放大系数为:

它的偏置电路采用R b和R b2组成的分压电路。在放大器的输入端加上输入信号以后,在放大器的输出端便可得到幅值被放大了的相位相反的输出信号。 静态工作点:V CEQ=E C-I CQ。R C I BQ=E C-V BEQ=I CQ R Bβ 动态参数:电压放大倍数 其中 四、实验步骤 按图用连线在①号实验模板上连接号电路,将Rp的阻值调到最大,检查连线无误后接通电源。 1.静态工作点测试 调整Rp为某一值(使V CE=6V),测量静态工作点,填入表2-1并计算出I B、I CO(I CQ、I BQ可通过计算求得) 2.放大倍数测试 (1)将信号放大器调到f=1kHz幅值为5mv,接到放大器的输入端Vi,用示波器观察Vi和Vo端的波形,并比较与输入端的相位。 (2)输入信号频率不变,逐渐加大输入信号幅度,在R L=∞时,用示波器观察V O不失真时的最大值,并填表2-2

3.观察Rb、Rc、R L对放大电路静态工作点、电压放大倍数及输出波形的影响。按表2-3要求,输入信号Vi=5mV,f=1kHz、记录测量数据和Vo波形。 4.观察波形失真,测量静态工作点电压V CEQ、V BEQ 输入信号Vi=10mV f=1kHz调节Rp ,使Rb增大或减小,观察波形失真情况,测量并填入表2-4(若不失真观察不明显,可变化Vi重测) 5.测量放大器的输入输出电阻 (1)输入电阻的测量,在输入端串接一个4.7k的电阻,如图 2-3,按第八页输入电阻的计算方法,即可计算出输入电阻r i. (2)输出电阻的测量,在输出端接入负载电阻2.7K,在输出V O不失真的情况下,测负载与空载时的Vo值,按第八页输出电阻的计算方法,即可求输出电阻ro.

晶体管共射极单管放大器实验报告

实验二晶体管共射极单管放大器 一、实验目的 1、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i后,在放大器的输出端便可得到一个与u i相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。 在图2-1电路中,当流过偏置电阻R B1和R B2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1 B1 B U R R R U + ≈ C E BE B E I R U U I≈ + - ≈ 1 F R U CE=U CC-I C(R C+R E+R F1) 电压放大倍数 1 ) 1( F R // β + + - = be L C V r R R β A 输入电阻 R i=R B1 // R B2 //[r be+(1+β)R F1 ] 输出电阻 R O≈R C 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量图2-1 共射极单管放大器实验电路

和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1、 放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用 C E BE B E I R U U I ≈+-≈ 1 F R 算出I C (也可根据 C C CC C R U U I -= ,由U C 确定I C ),同时也能算出U BE =U B -U E ,U CE =U C -U E 。 为了减小误差,提高测量精度,应选用阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a)所示;如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的输入电压u i ,检查输出电压u O 的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。 (a) (b) 图2-2 静态工作点对u O 波形失真的影响

功率放大器原理功率放大器原理图

袁蒁膃蚇腿肀肃功率放大器原理功率放大器原理 图 芃蚆葿艿袂薇蒆要说功率放大器的原理,我们还是先来看看功率放大器的组成:射频功率放大器(RF PA)是各种无线发射机的重要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。 射频功率放大器是发送设备的重要组成部分。射频功率放大器的主要技术指标是输出功率与效率。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 螆肇葿蚄蚆芈羁功率放大器原理 衿蚈膂袆袆膁螁高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。在“低频电子线路” 课程中已知,放大器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,适用于小信号低功率放大。乙类放大器电流的流通角约等于180o;丙类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作。丙类工作状态的输出功率和效率是三种工作状态中最高者。 高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。除了以上几种按电流流通角来分类的工作状态外,又有使电子器件工作于开关状态的丁类放大和戊类放大。丁类放大器的效率比丙类放大器的还高,理论上可达100%,但它的最高工作频率受到开关转换瞬间所产生的器件功耗(集电极耗散功率或阳极耗散功率)的限制。如果在电路上加以改进,使电子器件在通断转换瞬间的功耗尽量减小,则工作频率可以提高。这就是戊类放大器。 我们已经知道,在低频放大电路中为了获得足够大的低频输出功率,必须采用低频功率放大器,而且低频功率放大器也是一种将直流电源提供的能量转换为交流输出的能量转换器。高频功率放大器和低频功率放大器的共同特点都是输出功率大和效率高,但二者的工作频率和相对频带宽度却相差很大,决定了他们之间有着本质的区别。低频功率放大器的工作频率低,但相对频带宽度却很宽。例如,自20至20000 Hz,高低频率之比达1000倍。因此它们都是采用无调谐负载,如电阻、变压器等。高频功率放大器的工作频率高(由几百kHz一直到几百、几千甚至几万MHz),但相对频带很窄。例如,调幅广播电台(535-1605 kHz的频段范围)的频带宽度为10 kHz,如中心频率取为1000 kHz,则相对频宽只相当于中心频率的百分之一。中心频率越高,则相对频宽越小。因此,高频功率放大器一般都采用选频网络作为负载回路。由于这后一特点,使得这两种放大器所选用的工作状态不同:低频功率放大器可工作于甲类、甲乙类或乙类(限于推挽电路)状态;高频功率放大器则一般都工作于丙类(某些特殊情况可工作于乙类)。 近年来,宽频带发射机的各中间级还广泛采用一种新型的宽带高频功率放大器,它不采用选频网络作为负载回路,而是以频率

单管放大器

第二章基础性实验 实验一单管交流放大电路 一.实验目的 1.熟悉电子元件和模拟电路实验箱; 2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响; 3.掌握测量放大电路的Q点,A V,r I,r0的方法,了解共射极电路的特性。 二.实验仪器 1.模拟电路实验箱; 2.函数信号发生器; 3.双踪示波器; 4.数字万用表。 三.预习要求 1.三极管及单管放大电路工作原理; 2.放大电路静态工作点和动态参数的测量方法; 3.各种仪器仪表使用方法。 四.实验内容 1.连接电路与简单测量 (1) 用万用表判断实验箱上三极管V的极性和好坏并测量三极管β值。(注意:不能带电测量)。 (2) 接通电源用数字万用表测量+12V电源。 (3) 然后关断电源,按图2.1.1所示,连接实验电路,将R P的阻值调到最大位置。

图2.1.1 共射极放大电路 2.静态工作点的测量与调整 接线完毕仔细检查,确定无误后接通电源。 改变偏置电阻R b(即R P)值就改变了电路的静态工作点,为调整最佳工作点可借助示波器观察输出波形。方法:在A点加入频率1KHz 电压500mV的正弦交流信号或在放大器输入端(V i处)加入f=1KHz V i=5mV的正弦交流信号(将函数信号发生器频率调在1KHz,用晶体管毫伏表测量其输出电压,使其输出电压调在500mV或5mV,波形为正弦波),用示波器观察放大电路的输出波形,调整R P使其输出幅值最大且不失真(一般VC为 4-6V),然后去掉输入信号,用数字万用表按表2.1.1进行测量和计算,结果填入表2.1.1中。(测量电阻R b时必须关断电源) 注意:I b和I c的测量和计算方法 ①测I b和I c一般可用间接测量法,即通过测V c和V b,R c和R b计算出I b和I c。(注:图2.1.1中I b为支路电流)建议初学者采用。此法操作简单,不容易损坏器件和仪表。 ②直接测量法即将微安表和毫安表直接串联在基极(集电极)中测量。但操作不当容易损坏器件和仪表。不建议初学者采用。此法直观。 估算公式:I c = C C CC R V V- I B ≈ β C I (β≈160) 表2.1.1 3.电压放大倍数的测量和计算

功率放大器的设计

课程设计任务书 学生姓名:专业班级:电子1003班 指导教师:葛华工作单位:信息工程学院 题目: 功率放大器的设计 初始条件: 计算机、Proteus软件、Cadence软件 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:2周 2、技术要求: (1)学习Proteus软件和Cadence软件。 (2)设计一个功率放大器电路。 (3)利用Cadence软件对该电路设计原理图并进行PCB制版,用Proteus软件对该电路进行仿真。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规范。 时间安排: 2013.11.11做课设具体实施安排和课设报告格式要求说明。 2013.11.11-11.16学习Proteus软件和Cadence软件,查阅相关资料,复习所设计内容的基本理论知识。 2013.11.17-11.21对功率放大器进行设计仿真工作,完成课设报告的撰写。 2013.11.22 提交课程设计报告,进行答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要........................................................................ I Abstract ................................................................... II 1 功放的工作原理及分类 (1) 1.1功放的工作原理 (1) 1.2功放的分类 (1) 2 软件介绍 (2) 2.1 Proteus (2) 2.1.1 Proteus简介 (2) 2.1.2工作界面 (2) 2.1.3 对象的放置和编辑 (3) 2.1.4 连线 (4) 2.2Cadence软件 (4) 2.2.1 Cadence简介 (4) 2.2.2 Cadence软件的特点 (4) 2.2.3电路PCB的设计步骤 (4) 3 设计方案 (6) 3.1 运算放大电路的设计 (6) 3.2 功率放大电路的设计 (7) 3.3 音频功率放大电路 (9) 3.4方案总结及仿真 (10) 4 Candence软件操作 (11) 4.1 Cadence画电路原理图 (11) 4.2 布线及PCB图 (11) 4.2.1布线注意事项 (11) 4.2.2 PCB制作 (12) 5.心得体会 (14) 6.参考文献 (15)

晶体管共射极单管放大器 实验报告

实验二 晶体管共射极单管放大器 一、实验目的 1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2 组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。 在图2-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1B1B U R R R U +≈ C E BE B E I R U U I ≈+-≈ 1 F R U CE =U CC -I C (R C +R E +R F1) 电压放大倍数 1 )1(F R // β++-=be L C V r R R β A 输入电阻 R i =R B1 // R B2 // [ r be +(1+β)R F1 ] 输出电阻 R O ≈R C 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量 图2-1 共射极单管放大器实验电路

和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1、放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流 I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电 压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用 C E BE B E I R U U I≈ + - ≈ 1 F R 算出I C (也可根据C C CC C R U U I - = ,由U C 确定I C ),同时也能算出U BE =U B -U E ,U CE =U C -U E 。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放 大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a)所示; 如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进 行动态调试,即在放大器的输入端加入一定的输入电压u i ,检查输出电压u O 的大小和波形 是否满足要求。如不满足,则应调节静态工作点的位置。 (a) (b) 图2-2 静态工作点对u O 波形失真的影响

单管放大电路实验报告

单管放大电路 一、实验目的 1. 掌握放大电路直流工作点的调整与测量方法; 2.掌握放大电路主要性能指标的测量方法; 3.了解直流工作点对放大电路动态特性的影响; 4.掌握射极负反馈电阻对放大电路特性的影响; 5.了解射极跟随器的基本特性。 二、实验电路 实验电路如图2.1所示。图中可变电阻R W是为调节晶体管静态工作点而设置的。 三、实验原理 1.静态工作点的估算

将基极偏置电路CC V ,1B R 和2B R 用戴维南定理等效成电压源。 开路电压CC B B B BB V R R R V 2 12 += ,内阻 21//B B B R R R = 则 ) )(1(21E E B BEQ BB BQ R R R V V I +++-= β, BQ CQ I I β= CQ E E C CC CEQ I R R R V V )(21++-≈ 可见,静态工作点与电路元件参数及晶体管β均有关。 在实际工作中,一般是通过改变上偏置电阻R B1(调节电位器R W )来调节静态工作点的。R W 调大,工作点降低(I CQ 减小),R W 调小,工作点升高(I CQ 增加)。 一般为方便起见,通过间接方法测量CQ I ,先测E V ,)/(21E E E EQ CQ R R V I I +=≈。 2.放大电路的电压增益与输入、输出电阻 be L C u r R R ) //(β-= A be B B i r R R R ////21= C O R R ≈ 式中晶体管的输入电阻r be =r bb′+(β+1)V T /I EQ ≈ r bb′+(β+1)×26/I CQ (室温)。 3.放大电路电压增益的幅频特性 放大电路一般含有电抗元件,使得电路对不同频率的信号具有不同的放大能力,即电压增益是频率的函数。电压增益的大小与频率的函数关系即是幅频特性。一般用逐点法进行测量。测量时要保持输入信号幅度不变,改变信号的频率,逐点测量不同频率点的电压增益,以各点数据描绘出特性曲线。由曲线确定出放大电路的上、下限截止频率f H 、f L 和频带宽度BW =f H -f L 。 需要注意,测量放大电路的动态指标必须在输出波形不失真的条件下进行,因此输入信号不能太大,一般应使用示波器监视输出电压波形。

【实验一】单管共射放大电路的原理

实验一单管共射放大电路的原理 一、实验目的: 1.掌握放大电路静态工作点的调 试方法及其对放大电路性能的影 响; 2.学习测量放大电路Q 点,Au、 Ri、Ro的方法,了解共射极电路 特性; 3.学习放大电路的动态性能。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 三、预习要求 1.在MultiSIM的环境下按照本次实验的内容和步骤搭建各电路,测量表格当中要求的数据。 2.总结放大电路静态和动态测量方法。 四、实验内容及步骤 1.装接电路与简单测量 图 1.l 基本放大电路 (1)实验开始时,应先用万用表判断实验箱上三极管的好坏。(2)按图 1.1 所示,连接电路(注意:接线前先测量+12V电源,关断电源后再连线),将R P的阻值调到最大位置。 2.静态测量与调整 (1)接线完毕仔细检查,确定无误后接通电源。改变R P大小,记录I C分别为2mA、3mA、4mA、5mA 时三极管MRF9011L的β值。 注意:I b和I c 的测量和计算方法:

测I b和I c一般可用间接测量法,即通过测U C和U B,R C和R B计算出I B 和I C。此法虽不直观,但操作较简单,建议初学者采用。 表 1.l 基本放大电路静态工作点的测量 3.动态研究 (1)按图1.2所示电路接线,调R B使U CEQ为9V。 (2)将信号发生器的输出信号调到f=1KHz,例如V P-P为500mV,接至放大电路的A点,经过R 1、R 2衰减(100倍),U i点得到5mV 的小信号,观察U i和U O端波形,并比较相位,填表1.2。 (3)信号源频率不变,逐渐加大信号源幅度,观察U O不失真时的最大值,并记录下来。

晶体管共射极单管放大器 实验报告

实验二 晶体管共射极单管放大器 一、实验目的 1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2 组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。 在图2-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1B1 B U R R R U +≈ C E BE B E I R U U I ≈+-≈ 1 F R U CE =U CC -I C (R C +R E +R F1) 电压放大倍数 1)1(F R // β++-=be L C V r R R β A 输入电阻 R i =R B1 // R B2 // [ r be +(1+β)R F1 ] 输出电阻 R O ≈R C 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量 图2-1 共射极单管放大器实验电路

和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1、 放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用 C E BE B E I R U U I ≈+-≈ 1 F R 算出I C (也可根据 C C CC C R U U I -= ,由U C 确定I C ),同时也能算出U BE =U B -U E ,U CE =U C -U E 。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a)所示;如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的输入电压u i ,检查输出电压u O 的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。 (a) (b) 图2-2 静态工作点对u O 波形失真的影响

功率放大器的基本工作原理_共7页

一.功率放大器的基本工作原理 A 类扩音机的输出级中两个(或两组)晶体管永远处于导电状态,也就是说不管有无 讯号输入 它们都保持传导电流,并使这个电流等于交流电的峰值,这时交流在最大讯号情 况下流入负载。当无讯号时,两个晶体管各流通等量的电流,因此在输出中心点上没有不 平衡的电流或电压,故无电流输入扬声器,当讯号趋向正极,线路上方的输出晶体管容许 流入较多的电流,下方的输出晶体管则相对减少电流,由于电流开始不平衡,于是流入扬 声器发声。 A 类放大方式具有最佳的线性,每个输出晶体管均放大讯号全波,完全不存在交越失 真 ( Switching Distortion ),即使不采用负反馈,它的环路失真仍十分低,因此被认为是声 音最理想的放大线路设计。但凡事总是有利亦有弊, A 类放大的缺点是效率低,因为无讯 号时仍有较大电流流入,扩音机产生高热量和浪费功率,这种功率正如输出级的热量一样 完全消散,但却没输到负载,当讯号电平增加时有些功率可进入负载,但许多仍转变为热 量。 A 类放大器是一种最浪费能量的设计,只要一开机它的耗电量最高,播放音乐时,效 率约为百分之50,即一半功率变为热量浪费。如果不计较上述的缺点, A 类扩音机是重播 音乐的理想选择,它能提供非常平滑的音质,音色圆润温暖,高音透明开扬,这些优点足 以补偿它的缺点。为了有效处理散热问题, A 类扩音机必须采用大型沉热器,有些大功率 设计还需要风扇散热。因为它的效率低,供电器一定要能提供充足的电流,一部 25瓦的 A 类扩音机供电器的能力至少够 100瓦AB 类扩音机用。所以 A 类机的体积和重量都比 AB 类大,这令制造成本增加,售价当然较贵,一般而言 A 类扩音标机的售价约为同等功 率A B 类机的两倍或以上。 B 类放大的工作方式是当无讯号输入时,输出晶体管不导电,所以不消耗功率,当有 讯号时每 对输出管各放大一半波形,彼此一开一关轮流工作完成一个全波放大,在两个输 出晶体管转换工作时便发生交越失真,因此形成非线性。纯 B 类扩音机较少,因为在讯号 非常低时失真十分严重,因交越失真令声音变得粗糙。 B 类扩音机的效率平均约为百分之 75,产生的热量较 A 类机低,允许用较小的散热器,这类放大工作当其输出为最大功率的 40.5%,扩音机内消耗的功率最高,这时为百分之 50,输出功率较低和较高时则效率增加, 因此供电器可以比 A 类机小。 AB 类工作达成性能的妥协,大多数 B 类扩音机都不是用纯 B 类工作,通常有两个偏 压,在无讯号时也有少量电流通过输出晶体管,这类扩音机在讯号小时用 A 类工作,获得 最佳线性,当讯号提高到某一个电平时自动转为 B 类工作获得较高的效率。普通机十瓦的 AB 类大约在5瓦以内用 A 类工作,由于聆听音乐时所需要的功率只有几瓦,因此 AB 类 B 类,这种设计可以 AB 类扩音机将偏 A 类 机,但产生的热 可变偏流式扩音机:可变偏流扩音机据知是美国 Threshold 公司最先发展,八十年代 日本厂家却普遍采用并创造出多种不同的名称,这种设计是利用一个线路探测输入讯号电 压,根据电 压的高低自动改变偏流,讯号电压愈低偏流愈高,等于 A 类工作,讯号电压愈 高偏流愈低达成 B 类工作,这种偏流的变化是连续性,可将交越失真减至最少。理论上这 种设计颇为理想,但这类扩音机常因偏流探测线路与伺服控制线路本身工作不准确而导致 额外的失真,能真正达到接近 A 类音质的产品不多。 C 类放大不适合 HI-FI 用,C 类(丙类)放大器较少听闻,因为它是一种失真非常高 的放大 器,只适合在通讯用途上使用。 A 类输出晶体管百分之百时间都在工作, B 类输出 晶HP 曰 扩音机在大部分时间是用 A 类工作,只在出现音乐瞬态强音时才转为 获得优良的音质和提高效率减少热量,是一种颇为合逻辑的设计。有些 流调得甚高,令其在更宽润的功率范围内以 A 类工作,使声音接近纯 量亦相对增加。

共射极单管放大电路(一)

电路分析实验报告 共射极单管放大电路(一) 一 、实验摘要 通过单管放大电路,认识三极管放大电路的性能参数。静态参数有:三极管的静态工作点Ib、Ic和Vce;了解三极管放大电路的线性放大,饱和失真、截止失真;动态参数有:电压放大倍数Av、最大不失真输出电压Uomax。 2、 实验环境 模拟电路试验箱 函数信号发生器 示波器 万用表 3、 实验原理 ui直接加在三极管V的基极和发射极之间,引起基极电流iB作相应的变化 。 通过三极管VT的电流放大作用,VT的集电极电流iC也将变化 。 iC的变化引起V的集电极和发射极之间的电压uCE变化。 uCE中的交流分量uce经过电容C2畅通地传送给负载RL,成为输出交流电压uo,,实现了电压放大作用。 4、 实验步骤 在模电试验箱对应模块上连 接电路 调节信号发生器调节频率、峰峰值,观察波形 调节电位器调节电位器,观察波形 分别在饱和失真、截止失计算得出放大倍数,Ib、Ic和Vce,最

真、不失真时观察波形,记 大不失真输出电压 录数据 5、 实验数据 截止失真 Vce/V Ic/A Ie/A Ib/A放大倍数Av 8.380.000890.0008-0.000098.89 饱和失真 Vce/V Ic/A Ie/A Ib/A放大倍数Av 2.610.00220.0023-0.000111.23 不失真

Vce/V Ic/A Ie/A Ib/A放大倍数Av 4.820.00170.001780.0000812.63 最大不失真输出电压Uomax=500mVPP 上下半波均失真,形成矩形波 相移:140.5° 6、 实验总结 在本次实验中了解到了三极管的放大特性。通过单管放大电路,认识了三极管放大电路的性能参数。

实验三 单管共射放大电路

实验三 单管共射放大电路 一、实验目的 1、 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图3-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。 图3-1 共射极单管放大器实验电路 在图3-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1B1 B U R R R U +≈ U CE =U CC -I C (R C +R E ) C E BE B E I R U U I ≈-≈

电压放大倍数 be L C V r R R β A // -= 输入电阻 R i =R B1 // R B2 // r be 输出电阻 R O ≈R C 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1、 放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用 E E E C R U I I = ≈算出I C (也可根据C C CC C R U U I -=,由U C 确定I C ), 同时也能算出U BE =U B -U E ,U CE =U C -U E 。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图3-2(a)所示;如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一

相关文档
相关文档 最新文档