文档库 最新最全的文档下载
当前位置:文档库 › 流式检测多发性骨髓瘤

流式检测多发性骨髓瘤

流式检测多发性骨髓瘤
流式检测多发性骨髓瘤

Hematopathology / F LOW C YTOMETRIC A NALYSIS OF M YELOMA P LASMA C ELLS

Four-Color Flow Cytometric Analysis of Myeloma Plasma Cells

Shoichi Kobayashi, MT,1Rie Hyo, MD,2Yukiko Amitani, MT,1Masatsugu Tanaka, MD,2 Chizuko Hashimoto, MD,3Rika Sakai, MD,2Takeshi Tamura, MT,1Shigeki Motomura, MD,3 and Atsuo Maruta, MD2

Key Words: Multiple myeloma; Four-color flow cytometric analysis; Immunofixation

DOI: 10.1309/VWXARAAG9DAPQ31Y

A b s t r a c t

We monitored the behavior of residual myeloma plasma cells in patients with multiple myeloma after high-dose therapy and autologous or allogeneic transplantation using 3 methods of a flow cytometric technique using 4-color staining, immunofixation, and polymerase chain reaction approaches. We analyzed 17 cases by a relatively simple flow cytometric technique using CD38/CD45/CD19/CD56. Detectable myeloma plasma cells were found in 5 patients at diagnosis and 9 patients after treatment. Of 14 cases, 9 (64%) had

CD19–CD56+ myeloma plasma cells, and 5 (36%) of 14 had CD19–CD56– myeloma plasma cells. When 37 bone marrow samples that had less than 5% myeloma plasma cells were assessed, myeloma plasma cells were detected in all 20 immunofixation-positive cases and 3 of 17 immunofixation-negative cases (P = .002). All 4 polymerase chain reaction–negative samples characterized as immunofixation-negative contained no detectable myeloma plasma cells. Flow cytometry can provide effective information to detect low levels of myeloma plasma cells.

Many patients who receive high-dose therapy and autolo-gous or allogeneic transplantation for myeloma undergo com-plete remission by conventional criteria, with a minority achieving a molecular remission. Complete remission is defined as the absence of the original monoclonal paraprotein in serum and urine by immunofixation and fewer than 5% plasma cells in the bone marrow (BM).1

Effective maintenance strategies require more sensitive methods for the detection of low-level disease. Polymerase chain reaction (PCR) assay methods using primers specific for the neoplastic variable-diversity-joining (VDJ) region permit sensitivities of up to 1 in 105cells if no other B cells are present. If B cells are present, which is the case in most patient samples, the assay will identify a population that rep-resents more than 2% of total amplifiable B cells, equating to a sensitivity of 1 in 103to 1 in 104to total leukocytes.2,3Such approaches are not quantitative and are labor-intensive. Furthermore, only 60% to 70% of patients have an amplifiable VDJ region.4

Studies using 3-color flow cytometry have demonstrated that a flow cytometric assay can detect 1 plasma cell in 104 leukocytes.3,5Plasma cell phenotypic aberrations by flow cytometry using a panel of monoclonal antibodies in quadru-ple combinations (CD38/CD56/CD19/CD45, CD138/CD28/ CD33/CD38, and CD20/CD117/CD138/CD38) were identified at diagnosis and then used as patient-specific probes for follow-up analyses.6We monitored the behavior of residual myeloma plasma cells in patients with multiple myeloma (MM) after high-dose therapy and autologous or allogeneic transplanta-tion using 3 different methods of a flow cytometric technique using 4-color staining against CD38/CD45/CD19/CD56, immunofixation, and PCR.

Hematopathology / O RIGINAL A RTICLE

Materials and Methods

Cases

The 17 cases included in this study were analyzed at the Kanagawa Cancer Center, Yokohama, Japan, between July 2003 and March 2005 ?Table 1?. Cases 1 through 5 were new and untreated at sampling, but cases 6 through 17 were treat-ed at sampling. The median age at diagnosis was 61 years (range, 34-73 years), with a male/female ratio of 9:8.

All patients were treated with conventional chemotherapy with vincristine, doxorubicin (Adriamycin), and dexametha-sone (V AD), followed by collection of peripheral blood stem cells with high-dose etoposide (500 mg/m2for 3 days) and a subsequent course of peripheral blood stem cell–supported high-dose melphalan (200 mg/m2). A second autologous trans-plantation was followed within 3 to 6 months using the same chemotherapy regimen. Response was monitored by means of serum electrophoresis and immunofixation, which was per-formed on serum. Designation of a complete response required fewer than 5% plasma cells in the BM aspirate and negative serum electrophoresis and immunofixation results.1 For standardization procedures, we used BM samples from 10 acute myelogenous leukemia, 5 chronic myelogenous leukemia, 2 severe aplastic anemia, and 1 acute lymphoblastic leukemia cases after transplantation as negative control samples without MM. Informed consent was obtained from all patients before performing these procedures.

Flow Cytometry

Cell Surface Staining

Leukocytes were prepared by incubation with a 10-fold excess of ammonium chloride (8.6 g/L in distilled water) for 15 minutes and washed twice with phosphate-buffered saline with 0.5% bovine serum albumin (BSA). Then, 1 × 106leuko-cytes were stained with each of the following monoclonal antibody conjugates for 30 minutes at 4°C: CD38 fluorescein isothiocyanate (F I TC); CD45-phycoerythrin/cyanin 5.1 (PC5); CD19-phycoerythrin/cyanin 7 (PC7); and CD3-phyco-erythrin (PE), CD56-PE, or CD138-PE (I mmunotech, Marseille, France). Cells were washed twice with 0.5% BSA and analyzed by means of an Epics XL with EXPO 32 soft-ware (Beckman Coulter, Fullerton, CA). Between 200,000 and 500,000 total cells were analyzed in each test.

The gating strategy was optimized to exclude contaminat-ing events, particularly apoptotic cells and cellular debris. Analysis of CD38 vs CD45 expression ?Image 1A?(left) pro-vides the best separation of plasma cells from other leuko-cytes. The CD38+ plasma cells in each case showed negative to strong positive variable staining for CD45. Thus, an initial region (R1) is set around a large number of cells expressing a high level of CD38 and a high level, a low level, or lack of CD45 in each case (Image 1A, left),3,5,7,8and a second region (R2) is set on the forward scatter vs side scatter to exclude apoptotic cells and cellular debris (Image 1A, center). A third region (R3) is set on the side scatter vs CD38 to include all CD38+ leukocytes (Image 1A, right). The plasma cell popula-tion satisfies all of R1, R2, and R3. IgG1 PC7 and IgG1 PE (Immunotech) served as negative controls.

Horizontal quadrant markers were set according to the CD3 control for analysis of CD56 and CD138 expression. The expression of CD19-PC7 and CD56-PE was used to dis-tinguish between normal and neoplastic plasma cells. The former are consistently CD19+CD56– or CD56dim, whereas

?Table 1?

Characteristics of and Results for 17 Patients With Multiple Myeloma

Immunophenotype

Case No./Plasma Cells Myeloma Cells: CD38,

Sex/Age (y)M Protein Time of Study IEP in BM Smears CD45 Gating (%)CD19/CD56CD138 (%)β

2

-MG

1/M/40IgA-λDiagnosis IgA-λ50.035.803–/+55.0 3.1 2/F/61IgG-λDiagnosis IgG-λ; BJP-λ56.260.434–/+88.7 4.4 3/F/63BJP-λDiagnosis BJP-λ20.416.461–/+48.012.6 4/F/68BJP-λDiagnosis BJP-λ37.030.906–/+81.0 2.2 5/M/73BJP-κDiagnosis BJP-κ74.076.386–/+35.0ND

6/M/36IgG-λPC IgG-λ22.022.291–/+15.0ND

7/M/62IgG-κPC IgG-κ 2.81.429–/+72.91.8 8/M/65IgA-κPC IgA-κ7.0 3.747–/+57.4ND

9/M/73IgG-κPC IgG-κ; BJP-κ51.642.267–/+60.09.7 10/F/54IgG-λPC IgG-λ1.80.235–/–20.01.5 11/M/47IgA-κPC–; IFE–; PCR–0.60.000ND 12/F/50IgG-λPA PBSCT IgG-λ17.613.924–/– (–/+ at diagnosis)85.5 4.7 13/F/62IgG-κPA PBSCT IgG-κ9.47.670–/–79.4 4.7 14/F/61IgG-λPAU PBSCT–; IFE–1.00.0001.2 15/M/34IgD-λPA PBSCT IFE–0.00.000 2.1 16/F/53IgA-κPAU PBSCT–; IFE–0.80.043–/– 6.0ND 17/M/59IgD-κPAU PBSCT–0.40.032–/–8.0ND

β2-MG, β

2

-microglobulin; BJP, Bence Jones protein; BM, bone marrow; IEP, immunoelectrophoresis; IFE, immunofixation electrophoresis; ND, not done; PA, postallogeneic;

PAU, postautologous; PBSCT, peripheral blood stem cell transplantation; PC, postchemotherapy; PCR, polymerase chain reaction; +, positive; –, negative.

Kobayashi et al / F LOW C YTOMETRIC A NALYSIS OF M YELOMA P LASMA C ELLS

the latter are CD19– or CD19+CD56+.5,9Myeloma plasma cells express higher levels of CD138 than normal plasma cells.5The expression of CD138-PE is useful for making it possible to discriminate between the majority of plasma cells and other hematopoietic cells (particularly B-progenitor cells)?Image 1B ?.10The level of CD19 expression is broad on normal plasma cells, and up to 26.0% may be CD19– compared with negative control samples. Therefore, samples were classified

100

101102103

100

101

102

103

100

101

102

10S i d e S c a t t e r

1,023

1,023

S i d e S c a t t e r

1,023

R1

R2

R3103

0.0%

0.0%

99.9%

0.0%

0.0%

0.0%

100.0%

0.0%

0.6%

0.0%

99.4%

0.0%

31.2%

0.5%

68.0%

0.3%

29.6%

0.5%

53.0%

16.9%

17.8%

15.5%

14.7%

52.1%

90.9%

0.0%

9.1%

0.0%

93.5%

1.4%

5.0%

0.0%

70.0%

23.3%

6.7%

0.0%

0.1%

0.0%

99.8%

0.1%

0.0%

0.4%

0.2%

99.4%

0.0%

0.3%

11.2%

88.4%

100101

102103

100

101102103

100101

102103

100

101102103

100101

102103100101102103

100

101

102103

100101102

IgG1 PE

CD3 PE

CD56 PE

CD138 PE

103

100

101

102103

100101102

103

100

101

102103100

101102103

100

101

102103100101102

103

100

101

102103

100101102

IgG1 PE

103

100

101

102

103

100

101102103

100

101

102103

100

101102

103

100

101

102103

100101102

103

100

101

102103

100

101

102

CD3 PE

CD56 PE

CD138 PE

C D 19 P C 7

C D 19 P C 7

C D 19 P C 7

C D 19 P C 7

C D 19 P C 7

C D 19 P C 7

?Image 1?Flow cytometric analysis of myeloma plasma cells. A , The gating strategy used to detect plasma cells. B , T op row,case 2 at diagnosis with only neoplastic phenotype (CD19–CD56+) cells. Middle row, a case of severe aplastic anemia after transplantation with only normal phenotype (CD19+CD56–) plasma cells. Bottom row, case 12 at 31 months after

transplantation with neoplastic phenotype (CD19–CD56– or CD56+) and normal phenotype (CD19+CD56–) plasma cells. PC7,PE/cyanin 7; PE, phycoerythrin.

Hematopathology / O RIGINAL A RTICLE

as containing neoplastic plasma cells only if more than 26.0%had an abnormal phenotype. A minimum of 50 events that sat-isfied the gating strategy (Image 1) were required for identifi-cation of a neoplastic or normal plasma cell population. Up to 500,000 events were acquired, allowing a maximum sensitiv-ity of detection of 1 plasma cell in 104leukocytes.3,5

Cytoplasmic Immunoglobulin Staining

A combination of CD38-PE, CD45-PC5, and cytoplas-mic immunoglobulin staining was performed. Cells were incubated with CD38-PE and CD45-PC5 (I mmunotech) for 30 minutes at 4°C. Cells were exposed to the reagents using

the Intrastain Kit (DAKO, Glostrup, Denmark), according to the manufacturer’s instructions. The permeabilized cells then were incubated with anti–κ-FI TC, anti–λ-FI TC, anti–I gA-F TC, anti–gD-F TC, anti–gG-F TC, anti–gM-F TC, or isotype-negative control antibody for 30 minutes at 4°C. Cells were washed with 0.5% BSA, and data were acquired by means of the Epics XL with EXPO 32 software. A total of 25,000 cells was analyzed in each test ?Image 2?.

PCR Amplification

mmunoglobulin heavy chain PCR was performed at Mitsubishi Kagaku Bio-Clinical Laboratories, Tokyo, Japan.

C D 38 F I T C

CD45 PC5

Forward Scatter

100

101102103

100

101

102

103

10S i d e S c a t t e r

1,023

1,023

S i d e S c a t t e r

1,023

R1

R2

R3?Image 2?(Case 1) Flow cytometric analysis of cytoplasmic immunoglobulin light and heavy chain expression diagnosis using 3-color staining. The dot plot shows CD38+CD45+ cells that were monoclonal for λcytoplasmic light chain and IgA cytoplasmic heavy chain. FITC, fluorescein isothiocyanate; PC5, PE/cyanin 5.1; PE, phycoerythrin.

Kobayashi et al / F LOW C YTOMETRIC A NALYSIS OF M YELOMA P LASMA C ELLS

High-molecular-weight DNA was obtained from separated leukocytes using the DNAzol reagents (Invitrogen, Carlsbad, CA). DNA was amplified with a primer to a consensus region of the J heavy chain (JH) gene and a primer to a consensus framework 2 region or a primer to a consensus framework 3 region, as previously described.11Products were then elec-trophoresed and analyzed using an ABI automated DNA sequencer PR I SM 3100 Genetic Analyzer (Applied Biosystems, Cheshire, England).

Statistical Analysis

Statistical analyses were carried out using the Student t test.

Results

The CD38+ plasma cells in each case showed negative to strong positive variable staining for CD45 (Images 1 and 2). Myeloma plasma cells can be distinguished from normal plas-ma cells on the basis of CD19 and CD56 expression (Image 1). Of 17 cases of MM, myeloma plasma cells were detected by flow cytometry in 5 at diagnosis and 9 of 12 patients after treatment. All myeloma plasma cells from the 5 patients assessed at diagnosis showed their phenotype to be CD19–CD56+. After treatment, 5 (56%) of 9 patients had CD19–CD56– myeloma plasma cells, and 4 (44%) had CD19–CD56+ myeloma plasma cells. Although myeloma cells in case 12 showed a CD19–CD56+ phenotype when diagnosed at another hospital, the myeloma cells of this patient, who received allogeneic peripheral blood stem cell transplantation, showed a CD19–CD56– phenotype at our hospital. Thus, the phenotype of myeloma cells obtained from case 12 changed from CD19–CD56+ to CD19–CD56–.

The majority of normal plasma cells in 18 patients with-out MM after transplantation were CD19+CD56– but includ-ed a minor population of plasma cells with moderate CD56 expression. The major tendency was CD138 expression on myeloma plasma cells (Table 1). Myeloma plasma cells expressed higher levels of CD138 than normal plasma cells (Image 1B).

Fourteen BM samples from 7 patients were analyzed using a combination of CD38, CD45, and cytoplasmic immunoglobulin staining by 3-color flow cytometry ?Table 2?. Twelve samples remained immunoelectrophoresis-positive and contained detectable myeloma plasma cells using 4-color flow cytometry against the combination CD38/CD45/CD19/CD56. Monoclonality was based on light chain restriction (κ/λratio,≥5.0 or κ/λratio ≤0.5).7Of the 12 samples containing detectable myeloma plasma cells, 11 with 0.196% or more myeloma plasma cells showed definitive plasma cell light chain restriction, whereas the 1 remaining sample with 0.020% myeloma plasma cells showed no detectable light chain restriction (κ/λratio, 0.7). The median κ/λratio of the 2 samples containing no detectable myeloma plasma cells was 2.2 (2.8 and 1.6).

As shown in ?Figure 1?, 37 BM samples with up to 5% myeloma plasma cells were characterized as being immunofixation-negative or immunofixation-positive in serum samples. Myeloma plasma cells were detected in all 20 immunofixation-positive cases (median percentage of myelo-ma plasma cells, 0.518%; range, 0.020%-4.761%) and also in 3 of 17 immunofixation-negative cases (median percentage of myeloma plasma cells, 0.000%; range, 0.000%-0.043%). All 4 PCR-negative samples characterized as immunofixa-tion-negative contained no detectable myeloma plasma cells. The detection of myeloma plasma cells resulted in a highly

?Table 2?

Phenotypic Analysis of Plasma Cells

Immunophenotype (%) M Plasma Cells in Myeloma Cells:

Case No.Protein IEP BM Smear (%)CD38, CD45 (%)κ/λκλIgG IgA IgM IgD

1IgA-λIgA-λ50.035.8030.00.299.01.699.3 4.30.7 IgA-λ0.20.1960.315.151.99.872.623.6 3.0

IgA-λ0.20.0200.735.053.813.237.90.00.0 2IgG-λIgG-λ0.40.2020.323.180.378.614.5 6.7 6.3 6IgG-λIgG-λ 2.07.9030.00.093.895.90.50.40.2 IgG-λ9.28.4780.19.890.973.1 4.6 4.01.8

IgG-λ 4.07.7890.0 2.097.297.51.8 5.80.8

IgG-λ 4.8 3.2180.0 4.896.178.9 2.312.6 2.4

IgG-λ0.20.4750.111.689.676.3 3.710.2 3.8 7IgG-κIgG-κ 6.4 2.23836.097.2 2.793.6 4.87.01.0 11IgA-κ–; IFE–; PCR– 2.40.000 2.876.627.034.841.322.0 3.2–; IFE–; PCR–1.00.0001.660.236.550.033.39.01.3 12IgG-λIgG-λ1.80.6640.328.281.674.620.840.80.0 13IgG-κIgG-κ 2.00.8827.082.311.860.822.922.31.3

BM, bone marrow; IEP, immunoelectrophoresis; IFE, immunofixation electrophoresis; PCR, polymerase chain reaction.

Hematopathology / O RIGINAL A RTICLE

significant difference (P = .002) between immunofixation-negative and immunofixation-positive cases.

Although we examined residual disease analysis in only 1sample of peripheral blood obtained for autologous stem cell transplantation using a flow cytometric technique (case 6), the peripheral blood stem cell harvest in this case had detectable myeloma plasma cells (0.010% [51/495,712]) (data not shown).

As shown in ?Figure 2?, of 5 cases after chemotherapy, 4were associated with detectable paraprotein by immunofixa-tion and a sequential decrease in myeloma plasma cell num-ber as evaluated by immunoelectrophoresis. The remaining case with immunofixation-negative and PCR-negative in plateau phase had no detectable myeloma plasma cells. Of 5

cases after autologous transplantation, 2 with immunofixa-tion-negative results in plateau phase had no detectable myeloma plasma cells. Case 16, characterized as immunofix-ation-negative, showed a sequential decrease in myeloma plasma cell number and finally had no detectable myeloma plasma cells. The remaining 2 cases with detectable parapro-tein by immunofixation and immunoelectrophoresis showed no specific tendency in myeloma plasma cell numbers.

Of 3 cases after allogeneic transplantation, 1 with immunofixation-negative results in plateau phase had no detectable myeloma plasma cells. The remaining 2 with detectable paraprotein by immunofixation and immunoelec-trophoresis showed no specific tendency in myeloma plasma cell numbers.

Discussion

n this study, we monitored the behavior of residual myeloma plasma cells in patients with MM after high-dose therapy and autologous or allogeneic transplantation using 3different methods of a flow cytometric technique using 4-color staining against CD38/CD45/CD19/CD56, immunofix-ation, and PCR approaches. Flow cytometric analysis has not only been shown to be extremely effective in chronic lympho-cytic leukemia using 4-color staining 2but also has been wide-ly used as a method for residual disease analysis in MM using a 3-color staining approach.3,5Plasma cell phenotypic aberra-tions by flow cytometry using a panel of monoclonal antibod-ies in quadruple combinations (CD38/CD56/CD19/CD45,CD138/CD28/CD33/CD38, and CD20/CD117/CD138/CD38)were identified at diagnosis and then used as patient-specific probes for follow-up analyses.

6

?Figure 1?Percentage of myeloma plasma cells in

immunofixation-negative and immunofixation-positive cases with up to 5% myeloma plasma cells. P = .002. IFE,immunofixation electrophoresis.

?Figure 2?Allo, allogeneic transplantation; Auto, autologous transplantation; IEP , immunoelectrophoresis; IFE, immunofixation electrophoresis; PCR, polymerase chain reaction.

Kobayashi et al / F LOW C YTOMETRIC A NALYSIS OF M YELOMA P LASMA C ELLS

We have demonstrated in this study that a relatively sim-ple flow cytometric technique using 4-color staining against CD38/CD45/CD19/CD56 can distinguish neoplastic plasma cells from their normal counterparts on the basis of their CD19 and CD56 expression,3,5,9even if both cell types are present within the same sample. Detectable myeloma plasma cells were found in 5 cases at diagnosis and 9 cases after treat-ment. Of 14 cases, 9 (64%) had CD19–CD56+ myeloma plas-ma cells, and 5 (36%) had CD19–CD56– myeloma plasma cells. The majority of normal plasma cells in 18 patients with-out MM after transplantation were CD19+CD56– but includ-ed a minor population of plasma cells having moderate CD56 expression.8The major tendency was CD138 expression on myeloma plasma cells.

Myeloma plasma cells expressed higher levels of CD138 than normal plasma cells.5The expression of CD138 is useful for making it possible to discriminate between the majority of plasma cells and other hematopoietic cells (particularly B-pro-genitor cells). Within the BM of patients with myeloma, CD138 is a specific marker for plasma cells and is not expressed by other hematopoietic cells or endothelial cells.10 Although myeloma cells in case 12 showed a CD19–CD56+ phenotype when diagnosed at another hospi-tal, myeloma cells of this patient, who received allogeneic peripheral blood stem cell transplantation, showed a CD19–CD56– phenotype at our hospital. The phenotype of myeloma cells obtained from case 12 changed from CD19–CD56+ to CD19–CD56–. Pellat-Deceunynck et al12 reported that CD56– MM presented a leukemic phase more frequently than CD56+ MM. Sahara et al13demonstrated that overall survival was significantly lower in CD56– MM than CD56+ MM. According to a previous report,871% of myeloma plasma cells from 65 newly diagnosed patients with MM without evidence of extramedullary involvement showed high CD56 expression, and a mixture of CD56+ and CD56– myeloma plasma cell subsets were found in 5 of 65 cases. When compared with BM, CD56 expression was down-regulated in extramedullary myeloma plasma cells and peripheral blood. CD56 expression was down-regulated and CD44 expression was up-regulated in extramedullary myeloma cells.

Monoclonality was based on light chain restriction (κ/λratio, ≥5.0 or κ/λratio, ≤0.5).7Of the 12 samples containing detectable myeloma plasma cells with immunoelectrophore-sis-positive results, 11 with 0.196% or more myeloma plasma cells definitively showed plasma cell light chain restriction cells, whereas the 1 remaining sample with 0.020% myeloma plasma cells showed no detectable light chain restriction. These data show that analysis of 4-color flow cytometry against the combination CD38/CD45/CD19/CD56 is more sensitive than that of 3-color flow cytometry against the com-bination of CD38/CD45/cytoplasmic immunoglobulins.

Although we examined residual disease analysis in only 1 peripheral blood sample obtained for autologous stem cell trans-plantation using a flow cytometric technique, the sample had detectable myeloma plasma cells (0.010%).5The results of 37 BM samples with up to 5% myeloma plasma cells analyzed by flow cytometry were compared with the results of immunofixa-tion performed on serum. Myeloma plasma cells were detected in all 20 immunofixation-positive cases and 3 of 17 immunofix-ation-negative cases. All 4 PCR-negative samples characterized as immunofixation-negative contained no detectable myeloma plasma cells. The detection of myeloma plasma cells resulted in a highly significant difference (P = .002) between immunofixa-tion-negative and immunofixation-positive cases.

According to a previous report,6of 10 patients with immunofixation-positive results, 9 had positive minimal resid-ual disease (MRD) by allelic-specific oligonucleotide real-time quantitative PCR (ASO-RQ-PCR), and 6 patients had positive MRD by flow cytometry. On the other hand, of 14 patients with immunofixation-negative results, 8 had positive MRD by ASO-RQ-PCR and 5 patients had positive MRD by flow cytometry. Although MRD evaluation by ASO-RQ-PCR was slightly more sensitive and specific than flow cytometry, it was applicable in a lower proportion of patients with MM and was more time-consuming, while both techniques provide similar prognostic information.

Furthermore, only 60% to 70% of patients have an ampli-fiable VDJ region.4PCR assay methods can detect neoplastic plasma cells at the level of 1 in 105leukocytes if no other B cells are present.3If B cells are present, which is the case in most patient samples, the assay will identify a population that represents more than 2% of total amplifiable B cells, equating to a sensitivity of 1 in 103to 1 in 104total leukocytes.2 Analysis using consensus primer PCR is relatively insensitive and provides no additional information to that provided by immunofixation.14All patients responding to treatment showed a serial decrease in the number of myeloma plasma cells in response to treatment, whereas patients later shown to have disease refractory to treatment showed no overall decrease in number. Case 16 with immunofixation-negative results showed a sequential decrease in myeloma plasma cell number and finally had no detectable myeloma plasma cells.

These data suggest that analysis of 4-color flow cytome-try against the combination of CD38/CD45/CD19/CD56 is more sensitive than immunofixation. Flow cytometry can effectively detect low levels of myeloma plasma cells.

From the 1Division of Clinical Laboratory and Departments of

2Hematology and 3Chemotherapy, Kanagawa Cancer Center, Yokohama, Japan.

Address reprint requests to Mr Kobayashi: Division of Clinical Laboratory, Kanagawa Cancer Center, 1-1-2 Nakao, Asahi-ku, Yokohama, 241-0815, Japan.

Hematopathology / O RIGINAL A RTICLE

Acknowledgments: We thank the Center for Molecular Biology and Cytogenetics of Mitsubishi Kagaku Bio-Clinical Laboratories for expert technical assistance.

References

1.Blade J, Samson D, Reece D, et al. Criteria for evaluating

disease response and progression in patients with multiple

myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Br J Haematol. 1998;102:1115-1123.

2.Rawstron AC, Kennedy B, Evans PA, et al. Quantitation of

minimal disease levels in chronic lymphocytic leukemia using

a sensitive flow cytometric assay improves the prediction of

outcome and can be used to optimize therapy. Blood.

2001;98:29-35.

3.Rawstron AC, Davies FE, DasGupta R, et al. Flow cytometric

plasma disease monitoring in multiple myeloma: the

relationship between normal and neoplastic plasma cells

predicts outcome after transplantation. Blood. 2002;100:3095-3100.

4.Owen RG, Johnson RJ, Rawstron AC, et al. Assessment of

IgH PCR strategies in multiple myeloma. J Clin Pathol.

1996;49:672-675.

5.Rawstron AC, Owen RG, Davies FE, et al. Circulating plasma

cells in multiple myeloma: characterization and correlation

with disease stage. Br J Haematol. 1997;97:46-55.

6.Sarasquete ME, Garcia-Sanz R, Gonzalez D, et al. Minimal

residual disease monitoring in multiple myeloma: a

comparison between allelic-specific oligonucleotide real-time quantitative polymerase chain reaction and flow cytometry.

Haematologica. 2005;90:1365-1372.

7.Billadeau D, Ness BV, Kimlinger T, et al. Clonal circulating

cells are common in plasma cell proliferative disorders: a

comparison of monoclonal gammopathy of undetermined

significance, smoldering multiple myeloma, and active

myeloma. Blood. 1996;88:289-296.

8.Dahl IM, Rasmussen T, Kauric G, et al. Differential expression

of CD56 and CD44 in the evolution of extramedullary

myeloma. Br J Haematol. 2002;116:273-277.

9.Harada H, Kawano MM, Huang N, et al. Phenotypic

difference of normal plasma cells from mature myeloma cells.

Blood. 1993;81:2658-2663.

10.Bayer-Garner IB, Sanderson RD, Dhodapkar MV, et al.

Syndecan-1 (CD138) immunoreactivity in bone marrow

biopsies of multiple myeloma: shed syndecan-1 accumulates in fibrotic regions. Mod Pathol. 2001;14:1052-1058.

11.Ramasamy I, Brisco M, Morley A. Improved PCR method for

detecting monoclonal immunoglobulin heavy chain

rearrangement in B cell neoplasms. J Clin Pathol. 1992;45:770-775.

12.Pellat-Deceunynck C, Barille S, Jego G, et al. The absence

of CD56 (NCAM) on malignant plasma cells is a hallmark

of plasma cell leukemia and of a special subset of multiple

myeloma. Leukemia. 1998;12:1977-1982.

13.Sahara N, T akeshita A, Shigeno K, et al. Clinicopathological

and prognostic characteristics of CD56-negative multiple

myeloma. Br J Haematol. 2002;117:882-885.

14.Davies FE, Forsyth PD, Rawstron AC, et al. The impact of

attaining a minimal disease state after high-dose melphalan

and autologous transplantation for multiple myeloma. Br J

Haematol. 2000;112:814-819.

多发性骨髓瘤化疗方案

化疗方案骨髓瘤 、-√-9→万案药物剂量用法时间 ABVD 母28天周期阿霉素 2 25mg∕m iv d1, 15 博来霉素10mg∕m iv d1, 15 长春碱6mg∕m2iv d1, 15 达卡巴嗪 2 375mg∕m iv d1, 15 BACOP (*为加强方案)阿霉素25mg∕m2(*40mg∕m2) 或iv d1, 8 母28天周期EPI 40mg∕m2(*50mg∕m2) 环磷酰胺 2 650mg∕m iv d1, 8 长春新碱 1.4mg∕m2iv d1, 8 泼尼松 2 40-60mg∕m PO d15-28 博来霉素10mg∕m2iv d15, 22 BEACoPP (*为加强方案)阿霉素 2 2 25mg∕m (*35mg∕m )iv d1 每21天一周期环磷酰胺650mg∕m2(*1250mg∕m2)iv d1 依托泊甘 2 2 100mg∕m (*200mg∕m iv d1-3 长春新碱 1.4mg∕m2(max 2mg∕m2)iv d8 甲基苄肼 2 100mg∕m Po d1-7 泼尼松 2 40mg∕m Po d1-14 博来霉素 2 10mg∕m iv d8 dex-DEAM 卡莫司汀 2 60mg∕m iv d2 美法仑20mg∕m2iv d3 依托泊甘 2 200mg∕m iv ,Q12h d4-7 阿糖胞甘 2 100mg∕m iv ,Q12h d4-7 地塞米松8mg po, tid d1-10 mi ni-DEAM 卡莫司汀 2 60mg∕m iv d1 美法仑30mg∕m (max 50mg) iv d5 依托泊甘75mg∕m iv d2-5 阿糖胞甘 2 100mg∕m iv ,Q12h d2-5 CHOP 14天或21天一阿霉素50mg∕m (或EPI 80mg∕m )iv d1 周期环磷酰胺 2 750mg∕m iv d1 长春新碱 1.4mg∕m2iv d1 泼尼松100mg Po d1-5 CHOP-E 每21天一周期阿霉素50mg∕m2(或EPI 80mg∕m2)iv d1 环磷酰胺 2 750mg∕m iv d1

-多发性骨髓瘤护理常规

多发性骨髓瘤 1.护理评估 1.1病史:评估患者目前的主要症状和体征,既往有关的相关辅助检查、用药和其他治疗情况。 1. 2身体评估:观察病人的生命体征、意识状态、营养状况。 1.3实验室及其他检查:外周血中白细胞计数、血红蛋白、红细胞计数、血小板是否正常。 2.护理问题 2. 1疼痛骨骼疼痛 2. 2躯体活动障碍 2. 3潜在并发症 3.护理措施 3. 1加强心理护理。 3.2平日应睡硬板床,保持身体的生理弯曲,减少体重对骨骼的压力。不做剧烈活动,防止骨骼横断。 3. 3饮食指导,给予高热量、高维生素、高钙、低蛋白质、低钠饮食,同时增加摄水量。 3. 4严密观察出血倾向,去除能引起出血的因素。 3. 5积极预防感染。 3. 6骨痛的护理 3. 6. 1观察疼痛部位、形式、强度、性质、持续时间等并做好记录。

3. 6. 2减少疼痛刺激,取舒适卧位,防止因姿势不对造成肌肉、韧带或关节牵扯而引起疼痛。 3. 6. 3药物止痛:注意选择合适的止痛剂及给药途径。了解止痛剂的有效剂量及使用时间,正确预防其副作用。 3. 7贫血的护理 3. 7. 1轻度贫血可适当活动,应避免劳累,重度贫血应绝对卧床休息。 3. 7. 2取半卧位,以利于呼吸。 3. 7. 3对于极度虚弱者,应协助完成生活护理。 4.健康指导 4. 1注意休息,劳逸结合。 4. 2加强营养,积极预防感染。 4. 3按医嘱用药,定期门诊复查血象,如有不适,随时就诊。 5.护理评价 5.1病人能描述引起或加重出血的危险因素,积极采取预防措施,减少或避免了出血。 5. 2出预防感染的重要性,积极配合治疗与护理,未发生感染。 5. 3采取应对措施,主动配合治疗。 5. 4疾病,悲观情绪减轻并消除。

最新【标准与讨论】中国多发性骨髓瘤诊治指南(2017年修订)汇编

【标准与讨论】中国多发性骨髓瘤诊治指南(2017年修订) 作者:中国医师协会血液科医师分会中华医学会血液学分会中国医师协会多发性骨髓瘤专业委员会本文刊于:中华内科杂志, 2017,56(11) : 866-870 多发性骨髓瘤(multiple myeloma,MM)是一种克隆性浆细胞异常增殖的恶性疾病,在很多国家是血液系统第2位常见恶性肿瘤,多发于老年,目前仍无法治愈。随着新药不断问世及检测手段的提高,MM的诊断和治疗得以不断改进和完善,每两年一次的中国MM诊治指南的更新对于提高我国MM 的诊治水平具有重要意义。 临床表现MM常见的症状包括骨髓瘤相关器官功能损伤的 表现,即'CRAB'症状[血钙增高(calcium elevation),肾功能损害(renal insufficiency),贫血(anemia),骨病(bone disease),详见诊断标准],以及淀粉样变性等靶器官损害等相关表现。诊断标准、分型、分期一、诊断所需的检测项目(表1)[1,2]对于临床疑似MM的患者,针对MM疾病要完成基本检查项目的检测,有条件者可进行对诊断病情及预后分层具有重要价值的项目检测。 二、诊断标准参考美国国立综合癌症网络(NCCN)及国际骨髓瘤工作组(IMWG)的指南[3],诊断无症状骨髓瘤(冒烟型骨髓瘤)和有症状骨髓瘤(活动性骨髓瘤)的标准见表2,表3。三、

分型依照异常增殖的免疫球蛋白类型分为:IgG型、IgA型、IgD型、IgM型、IgE型、轻链型、双克隆型以及不分泌型。进一步可根据轻链类型分为κ型和λ型。 四、分期按照传统的Durie-Salmon(DS)分期体系[4]和修订的国际分期体系(R-ISS)[5]进行分期(表4,表5)。 鉴别诊断MM需与可出现M蛋白的下列疾病鉴别:意义未明的单克隆丙种球蛋白病(MGUS)、华氏巨球蛋白血症(WM)、冒烟型WM及IgM型MGUS、AL型淀粉样变性、孤立性浆细胞瘤(骨或骨外)、POEMS综合征、反应性浆细胞增多症(RP)、浆母细胞性淋巴瘤(PBL)、单克隆免疫球蛋白相关肾损害(MGRS)[6],骨损害需与转移性癌的溶骨性病变等鉴别。其中,MGRS是由于单克隆免疫球蛋白或其片段导致的肾脏损害,其血液学改变更接近MGUS,但出现肾功能损害,需要肾脏活检证明是M蛋白沉积等病变所致。MM的预后评估与危险分层MM在生物学及临床上都具有明显的 异质性,建议进行预后分层。MM的精准预后分层仍然在研究探索中[7,8]。 MM的预后因素主要可以归为宿主因素、肿瘤特征和治疗方式及对治疗的反应3个大类,单一因素常并不足以决定预后。宿主因素中,年龄、体能状态和老年人身心健康评估(geriatric assessment,GA)评分可用于评估预后。肿瘤因素中, Durie-Salmon分期主要反映肿瘤负荷与临床进程;R-ISS主

(整理)多发性骨髓瘤护理常规

多发性骨髓瘤护理常规 【评估及观察要点】 1、评估患者疼痛的特征及日常活动能力。 2、评估患者有无尿潴留。 【护理措施】 1、骨痛的护理: (1)卧床休息,对疼痛剧烈的病人,给予止痛剂。 (2)病理性骨折的病人,使用围腰夹板固定,不要弯腰及做剧烈运动,在卧床期间进行被动肢体运动。 2、感染的护理 (1)病室环境清洁卫生,定期空气消毒,限制探视,进行保护性隔离。 (2)严格执行消毒隔离制度和无菌技术操作。 (3)做好口腔、会阴及肛门的护理。 (4)观察病人有无发热现象、感染伴随症状及体征,鼓励病人多饮水,警惕感染中毒性休克。 (5)遵医嘱按时给予抗感染治疗。 (6)对病人及家属作好预防感染的卫生宣教工作。

3、出血的护理: (1)明显出血时卧床休息,待出血停止后逐渐增加活动。 (2)严密观察出血部位、出血量、注意有无皮肤粘膜出血、淤斑、牙龈出血、鼻出血、呕血、便血、血尿、女性病人月经是否过多,特别要观察有无头痛、呕吐、视力模糊、意识障碍等颅内出血症状。(3)遵医嘱给予止血药物或输血治疗。 (4)各种操作应动作轻柔,避免手术,穿刺后压迫局部或加压包扎。 (5)应避免刺激性食物以及粗硬食物。 4、高粘滞性综合征的护理: (1)卧床休息,密切观察病情变化。 (2)遵医嘱给予化学治疗。 5、合并压缩性骨折的护理: (1)避免负荷过重,如不要手提或肩背重物,过度肥胖的病人,

瞩其减肥。 (2)遵医嘱使用围腰夹板。 (3)观察精神症状:有无麻木、感觉异常。 【健康指导】1、坚持用药,定期复诊。 2、避免剧烈活动,进行适当的轻微运动,如慢走、打太极拳。 3、加强营养,提高抵抗力。 4、鼓励病人多饮水,防止血钙升高造成肾损害。

多发性骨髓瘤化疗方案

化疗方案 骨髓瘤 方案药物剂量用法时间ABVD 每28天一周期BACOP (*为加强方案)每28天一周期 BEACOPP (*为加强方案)每21天一周期 dex-DEAM mini-DEAM CHOP 14天或21天一周期 CHOP-E 每21天一周期阿霉素 博来霉素 长春碱 达卡巴嗪 阿霉素 环磷酰胺 长春新碱 泼尼松 博来霉素 阿霉素 环磷酰胺 依托泊苷 长春新碱 甲基苄肼 泼尼松 博来霉素 卡莫司汀 美法仑 依托泊苷 阿糖胞苷 地塞米松 卡莫司汀 美法仑 依托泊苷 阿糖胞苷 阿霉素 环磷酰胺 长春新碱 泼尼松 阿霉素 环磷酰胺 25mg/m2 10mg/m2 6mg/m2 375mg/m2 25mg/m2(*40mg/m2)或 EPI 40mg/m2(*50mg/m2) 650mg/m2 1.4mg/m2 40-60mg/m2 10mg/m2 25mg/m2(*35mg/m2) 650mg/m2(*1250mg/m2) 100mg/m2(*200mg/m2) 1.4mg/m2(max 2mg/m2) 100mg/m2 40mg/m2 10mg/m2 60mg/m2 20mg/m2 200mg/m2 100mg/m2 8mg 60mg/m2 30mg/m2(max 50mg) 75mg/m2 100mg/m2 50mg/m2(或EPI 80mg/m2) 750mg/m2 1.4mg/m2 100mg 50mg/m2(或EPI 80mg/m2) 750mg/m2 iv iv iv iv iv iv iv po iv iv iv iv iv po po iv iv iv iv,Q12h iv,Q12h po,tid iv iv iv iv,Q12h iv iv iv po iv iv d1,15 d1,15 d1,15 d1,15 d1,8 d1,8 d1,8 d15-28 d15,22 d1 d1 d1-3 d8 d1-7 d1-14 d8 d2 d3 d4-7 d4-7 d1-10 d1 d5 d2-5 d2-5 d1 d1 d1 d1-5 d1 d1

多发性骨髓瘤的_护理

多发性骨髓瘤 多发性骨髓瘤(multiplemyeloma,MM)为发生于B淋巴细胞的恶性浆细胞病。好发于中老年为40岁以上,但近年发病率有增高及发病年龄有提前趋势。本病误诊率很高,患者可因发热、尿改变、腰腿痛被误诊为呼吸系统感染、肾炎、骨病而延误病情。在诊治中应予足够重视。常见症状:骨痛,骨骼变形,病理骨折,贫血,出血,肝脾,淋巴结,肾脏病变,神经系统症状,感染,肾功能损害,高粘滞综合征,淀粉样变。 1疾病病因 病因与发病机制不清楚。可能与电离辐射、慢性抗原刺激、EB病毒或卡氏肉瘤相关的疱疹病毒感染诱发C-MYC、N-RAS或K-RAS或H-RAS等癌基因高表达有关。也可能与一些细胞因子有关,IL-6为多发性骨髓瘤的生长因子。 2临床表现 MM的临床表现除贫血、感染、出血血液病的常见临床表现外,可有骨痛(重者骨折)、蛋白尿(甚至尿毒症)、高凝状态或静脉血栓等其它临床表现。 临床上MM的误诊率高达40-50%,引起误诊的常见临床表现如下: 一、感染 由于正常免疫球蛋白减少,异常免疫球蛋白增多但无免疫活性;白细胞减少、贫血及放化疗等影响正常免疫功能,故易于反复感染。患者可以发热作为首发症状就诊。易发生上感、肺炎等呼吸道感染或泌尿系统感染,女性患者更易于发生泌尿系统感染。在病程晚期,感染是致死的主要原因之一。 故对于中老年患者反复发生感染,不应仅局限于抗感染治疗,应在抗感染治疗的同时,积极寻找是否有原发病。若患者合并有骨痛、贫血、出血等应考虑到本病的可能。 二、骨髓瘤骨病 骨痛和溶骨性骨质破坏是本病的突出临床表现。骨痛部位以腰背部最多见,其次为胸骨、肋骨和下肢骨骼。 由于本病患者常有严重骨质疏松,常在稍用力或不经意情况下即可发生病理性骨折,可造成的机械性压迫引起神经系统症状,严重者造成截瘫。若截瘫时间过久即使经过有效治疗,患者也很难恢复行走,极影响患者的生存质量。 也可出现骨骼肿物,瘤细胞由骨髓向外浸润骨质、骨膜及临近组织形成肿块。 局限于一个部位的孤立性浆细胞瘤较少见,最终可演变为多发性骨髓瘤。 X线检查在本病诊断中具有重要意义。阳性病变部位主要在颅骨、骨盆、肋骨、脊椎骨,也可见于四肢骨。典型表现为以下三种:①穿凿样溶骨性病变,为多发性类圆形透亮区,为本病的特殊X线表现。以颅骨、骨盆最易发现。②弥漫性骨质疏松。③病理性骨折,最常见于下胸椎及上腰椎,也见于肋骨等处。对疑似病例可行核磁共振检查以明确溶骨性病变的部位。 患者可因骨痛或腰腿痛不予重视,或就诊于骨科,被误诊扭伤、骨折、骨结核或骨肿瘤而延误病情。 故对于中老年患者严重骨质疏松或发生骨折的患者,在诊断时应考虑到本病。注意查血免疫球蛋白和血清蛋白电泳等以早期明确诊断。 常见影像学检查对MM患者的综合诊断价值依次为:PET-CT>MRI(核磁共振) >CT>X线检查。 三、骨髓瘤肾病 肾脏病变为本病常见而重要的病变。临床表现以蛋白尿最常见,其次为血尿。晚期可发展为慢性肾功能不全或尿毒症,为本病致死的主要原因之一。 国外研究发现,MM肾病患者在病理上肾小球病变较轻,而小管-间质病变严重,故患者临床上很少出现高血压。

多发性骨髓瘤的护理

多发性骨髓瘤的护理

————————————————————————————————作者: ————————————————————————————————日期: ?

多发性骨髓瘤 多发性骨髓瘤(multiplemyeloma,MM)为发生于B淋巴细胞的恶性浆细胞病。好发于中老年为40岁以上,但近年发病率有增高及发病年龄有提前趋势。本病误诊率很高,患者可因发热、尿改变、腰腿痛被误诊为呼吸系统感染、肾炎、骨病而延误病情。在诊治中应予足够重视。常见症状:骨痛,骨骼变形,病理骨折,贫血,出血,肝脾,淋巴结,肾脏病变,神经系统症状,感染,肾功能损害,高粘滞综合征,淀粉样变。 1疾病病因 病因与发病机制不清楚。可能与电离辐射、慢性抗原刺激、EB病毒或卡氏肉瘤相关的疱疹病毒感染诱发C-MYC、N-RAS或K-RAS或H-RAS等癌基因高表达有关。也可能与一些细胞因子有关,IL-6为多发性骨髓瘤的生长因子。 2临床表现 MM的临床表现除贫血、感染、出血血液病的常见临床表现外,可有骨痛(重者骨折)、蛋白尿(甚至尿毒症)、高凝状态或静脉血栓等其它临床表现。 临床上MM的误诊率高达40-50%,引起误诊的常见临床表现如下: 一、感染 由于正常免疫球蛋白减少,异常免疫球蛋白增多但无免疫活性;白细胞减少、贫血及放化疗等影响正常免疫功能,故易于反复感染。患者可以发热作为首发症状就诊。易发生上感、肺炎等呼吸道感染或泌尿系统感染,女性患者更易于发生泌尿系统感染。在病程晚期,感染是致死的主要原因之一。 故对于中老年患者反复发生感染,不应仅局限于抗感染治疗,应在抗感染治疗的同时,积极寻找是否有原发病。若患者合并有骨痛、贫血、出血等应考虑到本病的可能。 二、骨髓瘤骨病 骨痛和溶骨性骨质破坏是本病的突出临床表现。骨痛部位以腰背部最多见,其次为胸骨、肋骨和下肢骨骼。 由于本病患者常有严重骨质疏松,常在稍用力或不经意情况下即可发生病理性骨折,可造成的机械性压迫引起神经系统症状,严重者造成截瘫。若截瘫时间过久即使经过有效治疗,患者也很难恢复行走,极大地影响患者的生存质量。 也可出现骨骼肿物,瘤细胞由骨髓向外浸润骨质、骨膜及临近组织形成肿块。 局限于一个部位的孤立性浆细胞瘤较少见,最终可演变为多发性骨髓瘤。 X线检查在本病诊断中具有重要意义。阳性病变部位主要在颅骨、骨盆、肋骨、脊椎骨,也可见于四肢骨。典型表现为以下三种:①穿凿样溶骨性病变,为多发性类圆形透亮区,为本病的特殊X线表现。以颅骨、骨盆最易发现。②弥漫性骨质疏松。③病理性骨折,最常见于下胸椎及上腰椎,也见于肋骨等处。对疑似病例可行核磁共振检查以明确溶骨性病变的部位。患者可因骨痛或腰腿痛不予重视,或就诊于骨科,被误诊扭伤、骨折、骨结核或骨肿瘤而延误病情。 故对于中老年患者严重骨质疏松或发生骨折的患者,在诊断时应考虑到本病。注意查血免疫球蛋白和血清蛋白电泳等以早期明确诊断。 常见影像学检查对MM患者的综合诊断价值依次为:PET-CT>MRI(核磁共振) >CT>X线检查。 三、骨髓瘤肾病 肾脏病变为本病常见而重要的病变。临床表现以蛋白尿最常见,其次为血尿。晚期可发展为慢性肾功能不全或尿毒症,为本病致死的主要原因之一。 国外研究发现,MM肾病患者在病理上肾小球病变较轻,而小管-间质病变严重,故患者临床上很少出现高血压。

多发性骨髓瘤化疗规划方案.doc

骨髓瘤 方案药物ABVD 每 28 天一周期阿霉素 博来霉素 长春碱 达卡巴嗪BACOP (* 为加强方案)阿霉素 每 28 天一周期 环磷酰胺 长春新碱 泼尼松 博来霉素BEACOPP ( * 为加强方案)阿霉素 每 21 天一周期环磷酰胺 依托泊苷 长春新碱 甲基苄肼 泼尼松 博来霉素dex-DEAM 卡莫司汀 美法仑 依托泊苷 阿糖胞苷 地塞米松mini-DEAM 卡莫司汀 美法仑 依托泊苷 阿糖胞苷CHOP 14 天或 21 天一阿霉素 周期环磷酰胺 长春新碱 泼尼松CHOP-E 每 21 天一周期阿霉素 环磷酰胺 化疗方案 剂量用法时间 25mg/m 2 iv d1,15 10mg/m 2 iv d1,15 6mg/m 2 iv d1,15 375mg/m 2 iv d1,15 25mg/m 2(*40mg/m 2)或iv d1,8 EPI 40mg/m2(*50mg/m 2) 650mg/m 2 iv d1,8 m2 iv d1,8 40-60mg/m2 po d15-28 10mg/m2 iv d15,22 25mg/m 2(*35mg/m 2)iv d1 650mg/m 2( *1250mg/m 2)iv d1 100mg/m 2( *200mg/m 2)iv d1-3 m2(max 2mg/m 2)iv d8 100mg/m 2 po d1-7 40mg/m 2 po d1-14 10mg/m 2 iv d8 60mg/m 2 iv d2 20mg/m 2 iv d3 200mg/m 2 iv,Q12h d4-7 100mg/m 2 iv,Q12h d4-7 8mg po,tid d1-10 60mg/m 2 iv d1 30mg/m 2(max 50mg)iv d5 75mg/m 2 iv d2-5 100mg/m 2 ,d2-5 iv Q12h 50mg/m 2(或 EPI iv d1 80mg/m 2)iv d1 750mg/m 2 iv d1 m2 po d1-5 100mg 50mg/m 2(或 EPI iv d1 iv d1

中国多发性骨髓瘤诊治指南(2020年修订)要点

中国多发性骨髓瘤诊治指南(2020年修订)要点 随着新药的不断涌入,多发性骨髓瘤也迎来越来越多治疗方案,但目前多发性骨髓瘤仍不可治愈,多发性骨髓瘤的治疗仍面临诸多挑战。面对多种多样的治疗方案,少有治疗方案被直接比较,临床医生该如何选择呢? Network Meta-Analysis(NMA)可以通过直接和间接比较同时评估不同治疗方案的疗效,是一种非常有效的统计学方法。本文汇总了最新发表的四篇NMA,分析的结果可以帮助医生基于临床证据来选择最合适的治疗方案。 1不适合移植的新诊断的多发性骨髓瘤 2019年5月发表《Haematologica》的一篇网状分析1,该研究检索1999年1月1日至2016年3月1日来自EMBASE、MEDLINE、MEDLINE-in-Process等数据库相关研究(图1)。结果参照HR风险比,HR <1代表更好的获益。

图1. 纳入分析的随机对照研究 图2. 不同方案较地塞米松单药PFS的对比

从无进展生存期(PFS)来看(图2),20个治疗方案均优于对照方案(单药地塞米松)。DVMP以及VMPT-VT为最好疗效的治疗方案,PFS风险率(HR)分别为0.19和0.22。目前临床常用的方案VRD、VMP、Rd方案相较于单药地塞米松方案HR值分别为0.31 、0.39 及0.44 。 2020年3月在《Leukemia & Lymphoma》发表一篇最新的NMA2,并涵盖了最新的达雷妥尤单抗关键研究——MAIA及ALCYONE研究数据。从MEDLINE、Embase、Cochrane协作数据库、血液肿瘤国际会议数据(ASH、ESMO、ASCO、IMW等)以及之前发表的指南与系统综述检索。最终分析纳入8项研究(ALCYONE、MAIA、VISTA、IFM01/01、IFM9906、MM03、FIRST、SWOG S0777)(图3)。 本研究以Rd研究作为参照;主要评价指标为:总生存期(OS)与PFS。结果参照HR风险比,HR <1代表更好的获益。

多发性骨髓瘤护理问题及措施.docx

多发性骨髓瘤护理问题及措施 护理问题及措施 疼痛措施: 评估病人疼痛的部位,并正确引导病人对疼痛的性质定级,有利于制定适合病人的护理计划。 选用非药物性措施,使疼痛缓解,如:减少噪音和活动,室内光线柔和;可采用身体舒适的体位;足够的休息和睡眠;通过看电视、听广播等转移病人对疼痛的注意力。 遵医嘱给予止痛剂,并告诉病人用药的剂量、方法和途径,以利于病人更好地配合治疗。 根据病人疼痛的规律和最佳药效时间给予止痛剂,以便起到良好的效果。 躯体移动障碍措施: 评估病人日常活动的能力和水平,鼓励病人表达自己的感受,有利于制定适合病人的护理计划。 在卧床期间协助病人洗漱、进食、大小便及个人卫生等。 将病人经常使用的物品和呼叫器放在床旁易取处,便于病人使用。 在病情平稳后协助并督促病人早日进行功能锻炼,活动要循序渐进,防止碰伤。 鼓励并帮助病人在可以活动的限度内进行活动,以防止骨骼进一步脱钙。 增进病人自我照顾的能力和信心,并在活动时给予正面鼓励,但注意适当休息。 有感染的危险措施: 密切监测病人的生命体征及血象变化,以便及时发现病情变化,及时处理。 每日紫外线空气消毒和空气落尘一次,紫外线消毒60 min,并保持室内空气新鲜,每日通风两次,每次15~30 min ,注意保暖。 嘱病人注意口腔、鼻腔、会阴、肛周及皮肤的卫生,要养成勤洗手、勤漱口和勤换内衣、裤的习惯,以减少发生感染的机会。 教会病人每日自我观察口腔、鼻腔、皮肤有无破溃,肿胀等,发现异常及时报告医生。

增强机体抵抗力,加强饮食营养,多食用高蛋白、高维生素、易消化饮食。 严格执行无菌技术操作,防止医源性感染和交叉感染。 告诉病人和家属尽量减少探视的次数,并避免与有感染的病人接触,防止交叉感染。 潜在并发症——出血措施: 密切观察并记录病人的血小板变化及有无出血的症状和体征,并同时教会病人如何观察,如皮肤有无瘀点瘀斑,牙龈有无渗血,大小便颜色,有无头痛,视力模糊等。 在病人血小板低于20 x109 / L 时,应嘱病人绝对卧床休息,以防止自发性出血。 各种穿刺时应尽量选用小号针头,注射后按压穿刺部位5~10min ,并应密切观察陈旧穿刺部位的情况 指导病人避免各种可引起出血的活动,告诉病人使用软毛牙刷刷牙,不要用牙签,不要用力擤鼻涕,大便时不要用力过度,不要穿紧身衣裤。 遵医嘱予以新鲜血或血小板,并密切观察有无输血反应,如恶心、呕吐、寒颤、高热、荨麻疹等,应立即通知医师,给予相应的处理。

中国多发性骨髓瘤诊治指南(2020年修订完整版)

中国多发性骨髓瘤诊治指南(2020年修订完整版) 摘要 多发性骨髓瘤(MM)是一种克隆浆细胞异常增殖的恶性疾病,在很多国家是血液系统第2位常见恶性肿瘤,多发于老年,目前仍无法治愈。随着新药不断问世及检测手段的提高,MM的诊断和治疗得以不断改进和完善。本次指南修订中增加了达雷妥尤单抗联合治疗部分及相关注意事项,在难治复发性MM部分增加了嵌合抗原受体T细胞免疫疗法,强调自体造血干细胞移植对于适合移植患者仍然具有不可替代的地位。 多发性骨髓瘤(multiple myeloma,MM)是一种克隆浆细胞异常增殖的恶性疾病,在很多国家是血液系统第2位常见恶性肿瘤[1,2],多发于老年,目前仍无法治愈。随着新药不断问世及检测手段的提高,MM的诊断和治疗得以不断改进和完善。本次指南修订中增加了达雷妥尤单抗联合治疗部分及相关注意事项,在难治复发性MM部分增加了嵌合抗原受体T 细胞(chimeric antigen receptor T cell,CAR-T)免疫疗法,强调自体造血干细胞移植(autologous hematopoietic stem cell transplantation,ASCT)对于适合移植患者仍然具有不可替代的地位。每2~3年1次的中国MM诊治指南的更新对于提高我国MM的诊治水平具有重要意义。 临床表现

MM常见的症状包括骨髓瘤相关器官功能损伤的表现,即"CRAB"症状[血钙增高(calcium elevation),肾功能损害(renal insufficiency),贫血(anemia),骨病(bone disease)]以及继发淀粉样变性等相关表现。 诊断标准、分型、分期 一、诊断所需的检测项目(表1[3]) 对于临床疑似MM的患者,应完成基本检查项目。在此基础上,有条件者可进行对诊断病情及预后分层具有重要价值的项目检测。 二、诊断标准 综合参考美国国家综合癌症网络(National Comprehensive Cancer Network,NCCN)及国际骨髓瘤工作组(International Myeloma Working Group,IMWG)的指南[4],诊断无症状(冒烟型)骨髓瘤和有症状(活动性)骨髓瘤的标准如下。 (一)无症状(冒烟型)骨髓瘤诊断标准(需满足第3条+第1条/第2条)

多发性骨髓瘤的护理措施

https://www.wendangku.net/doc/8713733184.html,/ 多发性骨髓瘤(MM)为发生于B淋巴细胞的恶性浆细胞病。好发于中老年,但近年发病率有增高及发病年龄有提前趋势。本病误诊率很高,患者可因发热、尿改变、腰腿痛被误诊为呼吸系统感染、肾炎、骨病而延误病情。在诊治中应予足够重视。 一、多发性骨髓瘤的护理措施具体有: 1.持续性的无法解释的骨骼疼痛(特别是在背部或胸廓),肾功能衰竭。 2.反复发生细菌感染(特别是肺炎球菌性肺炎)。 3.病理性骨折和椎骨压缩,可能导致脊髓受压迫和截瘫。 4.有些病人以贫血,伴乏力和疲劳为主。 5.诊断标准:存在血清M蛋白的患者,并具有下列三项症象中的一项:骨髓浆细胞成片或成丛;溶骨性病损;蛋白尿>300mg/24h. 6.血液病检查为正色素正细胞性贫血,血沉常明显加快。血尿素氮,血清肌酸和血清尿酸常增高。血钙增高。血清β2-微球蛋白常增高并与浆细胞瘤肿块相关。 2.专家介绍,骨髓瘤的发生与环境、饮食等因素有关,故预防本病发生,增强病人的体质,积极治疗慢性疾患,避免射线及化学毒物的接触,对于疾病的防治具有重要的意义。中医方法宜注意调理情志,防止七情太过,从而保持气血和畅,阴阳平衡,预防疾病的发生。患病之后,保持乐观情绪,性情勿大怒、勿大悲伤,树立战胜疾病的信心,是战胜疾病的重要一环。这也是多发性骨髓瘤的护理措施之一。 3.注意身体锻炼,顺四时而调形体,可采取气功、太极拳等方法,以增强体质,预防疾病发生,或配合本病治疗。注意起居有常,劳逸有度,适寒温,避虚邪,尤宜节房事,以防肾精暗耗。宜禁烟酒,注意饮食调养,忌暴饮暴食,饮食偏嗜。避免辛辣肥甘厚味之品。既病之后,可对症选用补血、壮骨和减轻脾肿大的食品。 二、多发性骨髓瘤的症状有: 1、骨路损害:骨痛是多发性骨髓瘤的主要症状.部位以腰、背部脊椎最多见,也见于胸骨、肋骨及四肢骨路,容易发生病理性骨折。 2、感染:由于机体的免疫缺陷,病程中常反复发生感染。 3、贫血及出血倾向:几乎所有患者都有不同程度的贫血,并随病情的发展而加重。出血由于血小板减少、血管损害及凝血障碍所致,表现以皮肤紫瘦及粘膜渗血为主。晚期可有内脏出血、颅内出血是引起死亡的原因之一。 4、肾脏损害:常在发病时发生,约20%的病例发生肾功能衰竭,尿豫症也是本病常见的死亡原因。 文章来源:https://www.wendangku.net/doc/8713733184.html,/ 北京蓝海中医医院血液科

CAR-T在多发性骨髓瘤上的治疗实例

CD19嵌合抗原受体(CAR)T细胞治疗多发性骨髓瘤获得 完全缓解 原创编译:爱康得生物医学技术(苏州)有限公司医学转化部高级经理Paul Hsu 摘要: 1例难治性多发性骨髓瘤患者,在接受清髓性化疗(马法兰,140mg/m2体表面积)和自体干细胞移植后,进行自体抗CD19嵌合抗原受体T细胞(CTL019)治疗。4年前,这例患者曾接受更高剂量的马法兰(200mg/m2)和自体干细胞移植,获得了短暂的缓解。在自体移植后接受CTL019治疗获得完全缓解,治疗后12个月的最近的一次评估中,没有发现疾病进展的证据,在血清和尿液中没有发现蛋白克隆。尽管患者恶性浆细胞99.95%不表达CD19,但仍然获得了这一响应。(诺华等资助,https://www.wendangku.net/doc/8713733184.html,编号:NCT02135406) 重组自体T细胞特异性表达CD19嵌合抗原受体在B细胞肿瘤的治疗中拥有广阔的前景。之前我们报道了,利用慢病毒载体转染自体T淋巴细胞构建的CD3-ζ/CD137抗CD19嵌合抗原受体自体T细胞(CTL019)可使难治性慢性淋巴细胞性白血病和B-细胞急性淋巴细胞白血病获得持续缓解。据报道,多发性骨髓瘤作为B细胞系肿瘤通常不表达CD19,因此CD19不作为多发性骨髓瘤免疫治疗的靶标。然而有一些报告指出,微量的具有耐药性,疾病复发特性的多发性骨髓瘤克隆,具有B细胞表型(即CD19阳性)。此外,在我们尚未公布的观察结果表明,恶性浆细胞表达低水平CD19比之前的报道更加常见,并且在体外,CTL019对CD19表达水平极低的细胞具有细胞毒性。基于这些观察,我们推测CTL019细胞对多发骨髓瘤具有疗效。由于多发性骨髓瘤中仅有小部分表达CD19,我们进一步推测,CTL019仅对进行了CD19阴性浆细胞清除治疗的患者有效。因此我们进行了一项对难治性多发性骨髓瘤患者的临床试验,以检测安全性和可行性,并初步评估输注CTL019联合标准疗法(包括高剂量马法兰和自体干细胞移植)治疗多发性骨髓瘤的疗效。在此,我们报告第一例按照该方案治疗的患者的结果。 病例报告 患者,女性,在2009年,43岁时出现脊椎压缩性骨折后经IgA kappa诊断为多发性骨髓瘤。接受来那度胺,硼替佐米,地塞米松治疗后获得初步缓解,但在暂停用药为自体干细胞移植采集造血干细胞时病情进展。随后接受了顺铂,阿霉素,环磷酰胺和依托泊苷的96小时输注疗法。其后用非格司亭动员并采集造血干细胞。2010年5月14日,患者接受高剂量马法

DCEP方案治疗多发性骨髓瘤

Received 25-10-2006; Accepted 31-12-2006 Author and address for correspondence: Magda Dadacaridou, MD 139, Kallikratida Street 185 46 Piraeus Greece Tel: +30 210 4628690 Fax: +30 210 4635237 Journal of BUON 12: 41-44, 2007? 2007 Zerbinis Medical Publications. Printed in Greece ORIGINAL ARTICLE Dexamethasone, cyclophosphamide, etoposide and cisplatin (DCEP) for relapsed or refractory multiple myeloma patients M. Dadacaridou, X. Papanicolaou, D. Maltesas, C. Megalakaki, P. Patos, K. Panteli, P. Repousis, C. Mitsouli-Mentzikof Department of Haematology, “Metaxa” Cancer Hospital, Piraeus, Greece Summary Purpose: The purpose of this study was to assess the ef? cacy and toxicity of DCEP (dexamethasone, cyclophos-phamide, etoposide, cisplatin), as third-line regimen in relapsed or refractory multiple myeloma (MM) patients. Patients and methods: Twelve patients (11 men, 1 woman, aged 38-73 years, median 58) with relapsed or refrac-tory MM received 28 cycles of DCEP. Eleven out of 12 patients had already failed 4-6 cycles of VAD (vincristine, doxorubicin, dexamethasone), 7/12 had received 2 or more lines of prior therapy and one of them had high-dose therapy with stem cell support. Seven out of 12 patients were candidates for megatherapy with autologous peripheral blood stem cells transplantation (ASCT) either as consolidation or as salvage treatment. Each cycle of DCEP consisted of cyclophospha-mide 400 mg/m2/daily, cisplatin 15 mg/m2/daily and etoposide 40 mg/m2/daily as a 24h infusion, all three drugs administered on days 1-4; plus dexamethasone i.v. bolus 40 mg daily, days 1-4. The dose of cisplatin was adjusted in case of renal impair-ment. G-CSF was administered daily from day +5 to recovery. The course was repeated every 28 days or was delayed 5-10 days according to the patient’s clinical condition. Results: The regimen was well tolerated with no major adverse reactions, except for grade 3 or 4 myelotoxicity of short duration. Responses were assessed using the EBMT criteria after the second cycle. Two out of 12 patients achieved complete remission (CR) and 5/12 partial remission (PR), while 5/12 had no response (NR). The overall response (OR) was 58.3% with a median response duration 9 months (range 4-36). Four patients proceeded to successful peripheral blood stem cell mobilization and transplantation. Conclusions: DCEP is an effective and safe salvage treatment for relapsed or refractory MM patients which also offers the possibility for a successful peripheral blood stem cells collection in patients eligible for high-dose therapy and ASCT. Key words: autologous peripheral stem cell transplanta-tion, DCEP, multiple myeloma, relapsed/refractory Introduction Multiple myeloma is an incurable disease even in young patients who can tolerate very aggressive therapeutic approaches, with the possible exception of allogeneic stem cell transplantation which may of-fer a possibility of cure of this debilitating disease [1]. Therefore the goal of treatment of MM is to achieve remission, improve the quality of life and prolong survival of the patients. During the last two decades the ? rst line treat-ment of MM consists of several cycles of the VAD regimen (vincristine, doxorubicin, dexamethasone) [2,3]. After a satisfactory remission eligible patients receive high-dose therapy followed by ASCT. Drugs such as the rather recently introduced

多发性骨髓瘤.doc

多发性骨髓瘤 多发性骨髓瘤( MM)是一种以骨髓中积聚浆细胞为特征的恶性肿瘤,可导致 骨质破坏和骨髓衰竭。据美国癌症协会估计,在2012 年美国预计有 21,700 例新诊断的多发性骨髓瘤病例,预计有 10,710 例患者死亡。男性患病的平均年龄为62 岁( 75%年龄高于 70 岁),女性患病的平均年龄为61 岁( 79%年龄高于 70 岁)。美国国家监测、流行病学和最终结果( SEER)注册数据库中的数据报告称 : 随着更新、更有效的治疗方案问世,该病的五年生存率已由1975 年的 25%提高至 2003 年的 34%。多发性骨髓瘤通常对很多细胞毒性药物敏感,初始治疗或复发时治疗均是 如此。不幸的是疗效常是短暂的,当前尚无可以治愈 MM的方法。然而,由于新药的 引入(如沙利度胺、来那度胺、硼替佐米),关于 MM的治疗发展迅速。此外, 随着对骨髓微环境越来越深的理解,为新的联合治疗方案和新药研发奠定了基础。 细胞遗传学异常的相关研究表明:MM为异质性疾病,建议采用风险等级调整的方 法和个体化治疗,以改善患者的治疗。 一、多发性骨髓瘤的发生 多发性骨髓瘤与其他恶性肿瘤一样,发病原因还不太清楚,但造成的结果和恶 性肿瘤相似。人体的许多部位都有浆细胞,如骨髓、肝、脾扁桃体、胃肠粘膜下组织 中均有浆细胞,故这种病可发生在有浆细胞的任何部位,但常发生在骨髓中。几乎人 体所有组织中均含可造血的骨髓组织,但这种病好发于颅内、脊椎骨和骨盆的骨髓组 织中。病变早期常发生在一个部位称为骨髓瘤;也可同时发生在多个部位,称为多发 性骨髓瘤。晚期这种细胞可转移至全身。如果在外周血液中也发现骨髓瘤细胞就称为 浆细胞性白血病。这几种情况只是说明病变的不同状态或所处的不同时期,实际是一 种病,而不是三种病。由于浆细胞是合成免疫球蛋白的专有,骨常有免疫球蛋白的增 多,但这种免疫球蛋白是由瘤细胞合成的异常免疫球蛋白,因此没有正常免疫球蛋白 的功能。也就是说,这种免疫球蛋白没有抗病能力。该病患者极易发生感染,因为这 种瘤细胞主要在骨髓中生长、分化,数量不断增殖,可发

多发性骨髓瘤一线治疗方案

多发性骨髓瘤一线治疗方案(综述) 法国南特大学中心医院血液科Moreau P 等对多发性骨髓瘤(MM)患者一线治疗方案的进展进行了综述,并于近期发表于BLOOD 上。 MM 占所有肿瘤发病的1%,约占血液系统肿瘤的3%。全世界每年新发病例约有86000 例,中位发病年龄约70 岁。在出现临床症状或终末器官损害前,由于肿瘤负荷持续增加,故一直认为意义未明的丙种球蛋白病(MGUS)和冒烟型MM(SMM)是活动性MM 的前期状态。 目前关于SMM 的基本原则是「观察等待」策略,疾病进展到有症状期才开始治疗。年龄是制定治疗方案的重要依据,治疗前根据患者的年龄、体能状态及并发症初步评估是否适合大剂量药物治疗(HDT)及自体干细胞移植(ASCT)。 沙利度胺、硼替佐米和来那度胺的产生更改了多发性骨髓瘤治疗方案。本文重点讲述老年患者、不适于大剂量化疗及不符合异基因造血干细胞移植(ASCT)标准患者的一线治疗方案。年轻患者符合ASCT 应早期移植。 年轻患者一线治疗方案:移植患者同时应用新药 上世纪90 年代,新诊断的MM(NDMM)年轻患者(<65 岁)随机对照研究和病例对照研究结果表明,强化方案联合ASCT 的生存率较常规化疗高,使这一联合方案成为标准治疗方法。过去十年中,已将沙利度胺、硼替佐米和来那度胺应用于ASCT 前期和后期的治疗中。 ASCT 前诱导治疗 诱导治疗中包含新药可提高效应:长春新碱- 多柔比星- 地塞米松(VAD)诱导化疗,非常好的部分缓解(VGPR)为15%,而在硼替佐米- 地塞米松基础上联用VAD 的VGPR 达70%,这一联合方案优于早期ASCT 前应用马法兰(200 mg/m2)预处理方案。 硼替佐米- 地塞米松加用另一药物(如:沙利度胺-VTD,多柔比星-PAD,来那度胺-RVD 或环磷酰胺-VCD)缓解率高于单一应用硼替佐米- 地塞米松。三项前瞻性试验结果表明VTD 方案优于TD(沙利度胺- 地塞米松)或硼替佐米- 地塞米松。 虽然尚无3 期临床试验比较这些化疗方案的疗效,但最近的EVOLUTION 研究表明RVD 与VCD 方案疗效相似。根据缓解率、缓解深度和PFS 等指标,2014 年将包含硼替佐米和地塞米松在内的三药联合作为移植前ASCT 的标准治疗方案,患者在造血干细胞移植前需接受3-6 个疗程的诱导治疗。 移植前预处理方案 目前,ASCT 前的预处理方案标准是马法兰200 mg/m2(mel200)。现已有几项研究尝试着完善这一方案,如大剂量马法兰联合硼替佐米、苯达莫司汀或是白消安。mel 200 与这些方案疗效比较的三期临床试验正在进行中。 连续性ASCT 新药问世前,MM 患者第一次HDT 后ASCT 很少达到VGPR,常需要连续ASCT。最新的数据显示高危组患者应以新药为基础的诱导治疗可达到较好的预后,这需要前瞻性随机对照研究进一步证实。 ASCT 后巩固治疗 HDT 及ASCT 后短期巩固治疗的目的是加深缓解深度,巩固治疗应该是在一定期限内,给予高效联合的最小毒性药物。以新药为基础的巩固治疗第2 和3 阶段研究的初步结果显示,该方案能够达深度分子学或流式细胞学定义的完全缓解,伴微小存留病灶(MRD)阴性的一些患者可长期及无病生存,同时也提高了PFS。 大量的试验正在研究该巩固方案对OS 的影响,以及最佳的巩固治疗方案。

相关文档
相关文档 最新文档