文档库 最新最全的文档下载
当前位置:文档库 › 17_功率半导体器件基础教学大纲

17_功率半导体器件基础教学大纲

17_功率半导体器件基础教学大纲
17_功率半导体器件基础教学大纲

《功率半导体器件基础》课程教学大纲

课程编号:

课程名称:功率半导体器件基础/ Fundamentals of Power Semiconductor Devices 课程总学时/学分:48/3.0(其中理论36学时,实验12学时)

适用专业:电子科学与技术专业

一、教学目的和任务

功率半导体器件基础是电子科学与技术本科专业必修的一门专业核心课程。

功率半导体器件基础讲述功率半导体器件的原理、结构、特性和可靠性技术,在此基础上分析当前电力电子技术中使用的各种类型功率半导体器件,包括二极管、晶闸管、MOSFET、IGBT和功率集成器件,并包含了制造工艺、测试技术和损坏机理分析。根据电子科学与技术本科专业的特点和应用需要,使学生对功率半导体器件的基础理论和最新发展有一个全面而系统的认识,并培养学生在工程实践中的应用能力,提高学生的创新能力。

二、教学基本要求

通过对计算机控制技术课程的学习,要求学生:

(1)了解如何使用和选择功率半导体,以及半导体和PN结的物理特性以及功率器件的工艺。

(2)熟悉功率器件的可靠性和封装,以及在电力电子系统中的应用。

(3)掌握pin二极管、双极型晶体管、晶闸管、MOS晶体管、IGBT的结构与功能模式及物理特性。

三、教学内容与学时分配

第一章(知识领域1):功率半导体器件概述(2学时)。

(1)知识点:装置、电力变流器和功率半导体器件;使用和选择功率半导体;功率半导体的应用。

(2)重点与难点:重点是装置、电力变流器和功率半导体器件;使用和选择功率半导体;功率半导体的应用。

第二章(知识领域2):半导体的性质(2学时)。

(1)知识点:晶体结构;禁带和本征浓度;能带结构和载流子的粒子性质;掺杂的半导体;电流的输运;半导体器件的基本功式。

(2)难点与重点:重点是晶体结构、禁带和本征浓度和载流子的粒子性质

第三章(知识领域3):PN结(2学时)。

(1)知识点:热平衡状态下的PN结;PN结的I-V特性;PN结的阻断特性和击穿;发射区的注入效率;PN结的电容。

(2)难点与重点:重点是热平衡状态下的PN结;PN结的I-V特性;PN结的阻断特性和击穿;发射区的注入效率;PN结的电容。

第四章(知识领域4):功率器件和功率(2学时)。

(1)知识点:晶体生长;通过中子嬗变来调整晶片的参杂;外延生长、扩散和离子注入;氧化和掩蔽、边缘终端。

(2)重点与难点:重点是晶体生长、通过中子嬗变来调整晶片的参杂、外延生长和扩散和离子注入。

第五章(知识领域5):Pin二极管(2学时)。

(1)知识点:Pin二极管的结构和I-V特性;Pin二极管的设计和阻断电压;Pin二极管的正向导通特性;储存电荷和正向电压之间的关系;功率二极管的开通特性和反向恢复。

(2)重点与难点:重点是Pin二极管的结构和I-V特性和Pin二极管的设计和阻断电压。难点是功率二极管的开通特性和反向恢复。

第六章(知识领域6):Silvaco TCAD仿真软件(2学时)。

(1)知识点:Silvaco TCAD软件的使用方法。

(2)重点与难点:重点是Silvaco TCAD软件的使用方法。

第七章(知识领域7):双极型晶体管(4学时)。

(1)知识点:双极型晶体管的工作原理;功率双极型晶体管的结构;功率晶体管的I-V 特性;双极型晶体管的阻断特性;双极型晶体管的电流增益;基区展宽、电场再分布和二次击穿;硅双极型晶体管的局限性;SiC双极型晶体管。

(2)重点与难点:重点是功率双极型晶体管的结构、功率晶体管的I-V特性和双极型晶体管的阻断特性。难点是双极型晶体管的电流增益、基区展宽和电场再分布。

第八章(知识领域8):晶闸管(4学时)。

(1)知识点:结构与功能模型;晶闸管的I-V特性和阻断特性;发射极短路点的作用;晶闸管的触发方式和前沿扩展;晶闸管关断和恢复时间。

(2)重点与难点:重点是晶闸管的I-V特性和阻断特性和发射极短路点的作用。难点是晶闸管的触发方式和前沿扩展。

第九章(知识领域9):MOS晶体管(4学时)。

(1)知识点:MOSFET的基本工作原理;功率MOSFET的I-V特性;MOSFET沟道

的特性;MOSFET的开关特性和开关损耗。

(2)重点与难点:重点是功率MOSFET的I-V特性和MOSFET沟道的特性。难点是MOSFET的开关特性和开关损耗。

第十章(知识领域10):IGBT(4学时)。

(1)知识点:IGBT的I-V特性;IGBT的开关特性;IGBT中的等离子体分布;提高载流子浓度的现代IGBT。

(2)重点与难点:重点是IGBT的I-V特性和IGBT的开关特性。难点是IGBT中的等离子体分布。

第十一章(知识领域11):功率器件的封装和可靠性(6学时)。

(1)知识点:封装类型;材料的物理特性;热仿真和热等效电路;提高可靠性的要求;提高可靠性的策略。

(2)重点与难点:重点是封装类型;材料的物理特性;热仿真和热等效电路;提高可靠性的要求;提高可靠性的策略。

第十二章(知识领域12):电力电子系统(2学时)。

(1)知识点:单片集成系统——功率IC;印刷电路板上的系统集成;混合集成。

(2)重点与难点:重点是印刷电路板上的系统集成。

四、教学方法及手段

本课程要采取知识与能力并重的教学方法。

1.课堂教学:实行启发式教学,主要突出重点、难点。主要抓住功率半导体器件的结构功能及物理特性重点教学,在教学过程中注重引入实例。

2.实验教学:基于Silvaco TCAD仿真软件,模拟半导体器件电学性能,和半导体工艺流程仿真,加强学生实践动手能力的培养。

3.采用多媒体教室、校园网络等现代教学手段,提高教学效率和质量。

五、实验或上机内容

实验一:功率二极管仿真,2学时。实验目的:掌握功率二极管原理和特性,并会使用Silvaco软件仿真功率二极管器件。实验内容与方法:学习Silvaco仿真半导体器件的方法,用altlas语句模拟功率二极管的二维器件,并给出器件特性的数值分析。

实验二:双极型晶体管仿真,2学时。实验目的:掌握双极型晶体管原理和特性,并会使用Silvaco软件仿真双极型晶体管。实验内容与方法:学习Silvaco仿真半导体器件的方法,用altlas语句模拟双极型晶体管的二维器件,并给出器件特性的数值分析。

实验三:MOSFET器件及工艺仿真,4学时实验目的:掌握MOSFET原理和特性,并

会使用Silvaco软件仿真MOSFET器件和工艺。实验内容与方法:学会Silvaco仿真半导体器件工艺的方法,用altlas语句模拟MOSFET的二维器件,用A THENA组件仿真MOSFET 的工艺,并给出器件特性的数值分析。

实验四:IGBT器件及工艺仿真,4学时。实验目的:掌握IGBT原理和特性,并会使用Silvaco软件仿真IGBT器件和工艺。实验内容与方法:学会Silvaco仿真半导体器件工艺的方法,用altlas语句模拟IGBT的二维器件,用A THENA组件仿真IGBT的工艺,并给出器件特性的数值分析。

六、先修课程、后续课程

先修课程:模拟电子技术及实验,数字电子技术及实验,微电子器件基础,半导体物理学。

后续课程:电力电子学,微电子学,功率半导体器件应用。

七、考核方式

本课程的考核包括知识考核和能力考核,采用期末考试与平时考核相结合的方式。

计分方式:期评成绩=期末考试成绩*70%+平时成绩*30%。

八、教材及主要参考资料

[1].巴利加(美). 功率半导体器件基础. 北京,电子工业出版社,2013.

[2]. Josef Lutz, Heinrich Schlangenotto 等. 功率半导体器件——原理、特性和可靠性. 北京,

机械工业出版社,国际电气工程先进技术译丛,2013.

[3]. 维捷斯拉夫.本达(捷克),约翰.戈沃(英),邓肯A.格兰特(英).功率半导体器件—

—理论及应用. 北京,化学工业出版社,2005

[4]. 郭小军. 电子电路仿真:Multisim2001电子电路设计与应用. 北京,北京理工大学出版社,2009.

[5]. 唐龙谷. 半导体工艺和器件仿真工具Silvaco TCAD实用教程唐龙谷.北京,机械工业出

版社,2011.

[6]. 刘敏军,宋平岗等. 轨道交通车辆电力牵引控制系统. 北京,清华大学出版社,2014.

[7]. 徐安. 城市轨道交通电力牵引. 北京,中国铁道出版社,2000.

[8]. 袁寿财. IGBT场效应半导体功率器件导论. 北京,科学出版社,2007.

[9]. 李宏. MOSFET、IGBT驱动集成电路及应用. 北京,科学出版社,2012.

[10]. 惠晶,方光辉. 新能源转换与控制技术. 北京,机械工业出版社,2008.

[11]. 徐政等. 智能电网中的电力电子技术. 北京,机械工业出版社,2008.

半导体器件工艺基础知识

半导体基础知识和半导体器件工艺 第一章半导体基础知识  通常物质根据其导电性能不同可分成三类。第一类为导体,它可以很好的传导电流,如:金属类,铜、银、铝、金等;电解液类:NaCl水溶液,血液,普通水等以及其它一些物体。第二类为绝缘体,电流不能通过,如橡胶、玻璃、陶瓷、木板等。第三类为半导体,其导电能力介于导体和绝缘体之间,如四族元素Ge锗、Si硅等,三、五族元素的化合物GaAs砷化镓等,二、六族元素的化合物氧化物、硫化物等。 物体的导电能力可以用电阻率来表示。电阻率定义为长1厘米、截面积为1平方厘米的物质的电阻值,单位为欧姆*厘米。电阻率越小说明该物质的导电性能越好。通常导体的电阻率在10-4欧姆*厘米以下,绝缘体的电阻率在109欧姆*厘米以上。 半导体的性质既不象一般的导体,也不同于普通的绝缘体,同时也不仅仅由于它的导电能力介于导体和绝缘体之间,而是由于半导体具有以下的特殊性质: (1) 温度的变化能显著的改变半导体的导电能力。当温度升高时,电阻率会降低。比如Si在200℃时电阻率比室温时的电阻率低几千倍。可以利用半导体的这个特性制成自动控制用的热敏组件(如热敏电阻等),但是由于半导体的这一特性,容易引起热不稳定性,在制作半导体器件时需要考虑器件自身产生的热量,需要考虑器件使用环境的温度等,考虑如何散热,否则将导致器件失效、报废。 (2) 半导体在受到外界光照的作用是导电能力大大提高。如硫化镉受到光照后导电能力可提高几十到几百倍,利用这一特点,可制成光敏三极管、光敏电阻等。 (3) 在纯净的半导体中加入微量(千万分之一)的其它元素(这个过程我们称为掺杂),可使他的导电能力提高百万倍。这是半导体的最初的特征。例如在原子密度为5*1022/cm3的硅中掺进大约5X1015/cm3磷原子,比例为10-7(即千万分之一),硅的导电能力提高了几十万倍。 物质是由原子构成的,而原子是由原子核和围绕它运动的电子组成的。电子很轻、很小,带负电,在一定的轨道上运转;原子核带正电,电荷量与电子的总电荷量相同,两者相互吸引。当原子的外层电子缺少后,整个原子呈现正电,缺少电子的地方产生一个空位,带正电,成为电洞。物体导电通常是由电子和电洞导电。 前面提到掺杂其它元素能改变半导体的导电能力,而参与导电的又分为电子和电洞,这样掺杂的元素(即杂质)可分为两种:施主杂质与受主杂质。 将施主杂质加到硅半导体中后,他与邻近的4个硅原子作用,产生许多自由电子参与导电,而杂质本身失去电子形成正离子,但不是电洞,不能接受电子。这时的半导体叫N型半导体。施主杂质主要为五族元素:锑、磷、砷等。 将施主杂质加到半导体中后,他与邻近的4个硅原子作用,产生许多电洞参与导电,这时的半导体叫p型半导体。受主杂质主要为三族元素:铝、镓、铟、硼等。 电洞和电子都是载子,在相同大小的电场作用下,电子导电的速度比电洞

半导体器件基础测试题

第一章半导体器件基础测试题(高三) 姓名班次分数 一、选择题 1、N型半导体是在本征半导体中加入下列物质而形成的。 A、电子; B、空穴; C、三价元素; D、五价元素。 2、在掺杂后的半导体中,其导电能力的大小的说法正确的是。 A、掺杂的工艺; B、杂质的浓度: C、温度; D、晶体的缺陷。 3、晶体三极管用于放大的条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 4、晶体三极管的截止条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 5、晶体三极管的饱和条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 6、理想二极管组成的电路如下图所示,其AB两端的电压是。 A、—12V; B、—6V; C、+6V; D、+12V。 7、要使普通二极管导通,下列说法正确的是。 A、运用它的反向特性; B、锗管使用在反向击穿区; C、硅管使用反向区域,而锗管使用正向区域; D、都使用正向区域。 8、对于用万用表测量二极管时,下列做法正确的是。 A、用万用表的R×100或R×1000的欧姆,黑棒接正极,红棒接负极,指针偏转; B、用万用表的R×10K的欧姆,黑棒接正极,红棒接负极,指针偏转; C、用万用表的R×100或R×1000的欧姆,红棒接正极,黑棒接负极,指针偏转; D、用万用表的R×10,黑棒接正极,红棒接负极,指针偏转; 9、电路如下图所示,则A、B两点的电压正确的是。 A、U A=3.5V,U B=3.5V,D截止;

功率半导体器件在我国的发展现状

功率半导体器件在我国的发展现状 MOSFET是由P极、N极、G栅极、S源极和D漏级组成。它的导通跟阻断都由电压控制,电流可以双向流过,其优点是开关速度很高,通常在几十纳秒到几百纳秒,开关损耗小,适用于各类开关电源。但它也有缺点,那就是在高压环境下压降很高,随着电压的上升,电阻变大,传导损耗很高。 随着电子电力领域的发展,IGBT出现了。它是由BJT和MOS组成的复合式半导体,兼具二者的优点,都是通过电压驱动进行导通的。IGBT克服了MOS的缺点,拥有高输入阻抗和低导通压降的特点。因此,其广泛应用于开关电源、电车、交流电机等领域。 如今,各个行业的发展几乎电子化,对功率半导体器件的需求越来越大,不过现在功率半导体器件主要由欧美国家和地区提供。我国又是全球需求量最大的国家,自给率仅有10%,严重依赖进口。功率半导体器件的生产制造要求特别严格,需要具备完整的晶圆厂、芯片制造厂、封装厂等产业链环节。国内企业的技术跟资金条件暂时还无法满足。 从市场格局来看,全球功率半导体市场中,海外龙头企业占据主导地位。我国功率半导体器件的生产制造还需要付出很大的努力。制造功率半导体器件有着严格的要求,每一道工序都需要精心控制。最后的成品仍需要经过专业仪器的测试才能上市。这也是为半导体器件生产厂家降低生产成本,提高经济效益的体现。没有经过测试的半导体器件一旦哪方面不及格,则需要重新返工制造,将会增加了企业的生产成本。

深圳威宇佳公司是国内知名的功率半导体检测专家,专门生产制造简便易用、高精度的设备,让操作人员轻松上手操作,省力更省心。如生产的IGBT动态参数测试设备、PIM&单管IGBT 专用动态设备、IGBT静态参数测试设备、功率半导体测试平台等,均是经过经验丰富的技术人员精心打磨出来的,设备高可靠性、高效率,已在市场上应用超过10年,历经了超过500万只模块/DBC的测试考验。

第1章课后习题参考答案

第一章半导体器件基础 1.试求图所示电路的输出电压Uo,忽略二极管的正向压降和正向电阻。 解: (a)图分析: 1)若D1导通,忽略D1的正向压降和正向电阻,得等效电路如图所示,则U O=1V,U D2=1-4=-3V。即D1导通,D2截止。 2)若D2导通,忽略D2的正向压降和正向电阻,得等效电路如图所示,则U O=4V,在这种情况下,D1两端电压为U D1=4-1=3V,远超过二极管的导通电压,D1将因电流过大而烧毁,所以正常情况下,不因出现这种情况。 综上分析,正确的答案是U O= 1V。 (b)图分析: 1.由于输出端开路,所以D1、D2均受反向电压而截止,等效电路如图所示,所以U O=U I=10V。

2.图所示电路中, E

解: (a)图 当u I<E时,D截止,u O=E=5V; 当u I≥E时,D导通,u O=u I u O波形如图所示。 u I ωt 5V 10V uo ωt 5V 10V (b)图 当u I<-E=-5V时,D1导通D2截止,uo=E=5V; 当-E<u I<E时,D1导通D2截止,uo=E=5V; 当u I≥E=5V时,uo=u I 所以输出电压u o的波形与(a)图波形相同。 5.在图所示电路中,试求下列几种情况下输出端F的电位UF及各元件(R、DA、DB)中通过的电流:( 1 )UA=UB=0V;( 2 )UA= +3V,UB = 0 V。( 3 ) UA= UB = +3V。二极管的正向压降可忽略不计。 解:(1)U A=U B=0V时,D A、D B都导通,在忽略二极管正向管压降的情况下,有:U F=0V mA k R U I F R 08 .3 9.3 12 12 = = - =

功率器件的发展历程

功率器件的发展历程 IGBT、GTR、GTO、MOSFET、IGBT、IGCT…… 2009-12-08 08:49 引言 电力电子技术包括功率半导体器件与IC技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。从1958年美国通用电气(GE)公司研制出世界上第一个工业用普通晶闸管开始,电能的变换和控制从旋转的变流机组和静止的离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子技术的诞生。到了70年代,晶闸管开始形成由低压小电流到高压大电流的系列产品。同时,非对称晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等晶闸管派生器件相继问世,广泛应用于各种变流装置。由于它们具有体积小、重量轻、功耗小、效率高、响应快等优点,其研制及应用得到了飞速发展。 由于普通晶闸管不能自关断,属于半控型器件,因而被称作第一代电力电子器件。在实际需要的推动下,随着理论研究和工艺水平的不断提高,电力电子器件在容量和类型等方面得到了很大发展,先后出现了GTR、GTO、功率MOSET等自关断、全控型器件,被称为第二代电力电子器件。近年来,电力电子器件正朝着复合化、模块化及功率集成的方向发展,如IGPT、MCT、HVIC等就是这种发展的产物。 电力整流管 整流管产生于本世纪40年代,是电力电子器件中结构最简单、使用最广泛的一种器件。目前已形成普通整流管、快恢复整流管和肖特基整流管等三种主要类型。其中普通整流管的特点是: 漏电流小、通态压降较高(1 0~1 8V)、反向恢复时间较长(几十微秒)、可获得很高的电压和电流定额。多用于牵引、充电、电镀等对转换速度要求不高的装置中。较快的反向恢复时间(几百纳秒至几微秒)是快恢复整流管的显著特点,但是它的通态压降却很高(1 6~4 0V)。它主要用于斩波、逆变等电路中充当旁路

温湿度文献综述

学校代码: 学号: HENAN INSTITUTE OF ENGINEERING 文献综述 题目仓储温湿度报警系统的设计 学生姓名 专业班级电气工程及其自动化二班 学号 系(部)电气信息工程系 指导教师(职称)蒋威(讲师) 完成时间 2011年 3 月 1日

仓储温湿度报警系统的设计综述 摘要:为保证日常工作的顺利进行,首要问题是加强仓库内温度与湿度的监测 工作,并及时报警提示。本文根据粮仓环境测试的特点,应用现代检测理论,对温室的温度、湿度等环境因子进行自动检测,并实现报警功能,首先介绍了粮仓自动监测系统的发展背景及现状,指出在控制监测方面存在的问题和需要进一步深入探讨、研究的各个方面。 关键词:粮仓、单片机、监测、传感器 目前,关于这类监测系统的研究,国内外公开发表的文献不多,下面是关于 单片机自动监测的一些主要文献: 文献[1] 这本书从应用角度出发,精选了国内外最新流行的智能仪器与数据采集系统中的一些有特色、功能很强的新型集成电路20多类100余种。内容涉及仪用放大器,运算放大器,隔离放大器,变送器,A/D、 D/A变换器, LED、LCD驱动器,看门狗定时器,UP电源监控器,数字电位器,闪烁存储器,实时时钟等器件。所优选的每一种器件除阐述其基本功能、电路特点、性能参数和管脚说明之外,更突出器件的使用方法和应用电路。对智能仪器设计、数据采集、自动控制、数字通信和计算机接口这部分设计具有很高的使用和参考价值。 文献[2] 这本书是"单片机应用技术丛书"中专门介绍单片机应用系统软件 设计的一本著作。书中总结了作者多年来在80C51系列单片机应用系统软件设计 中的实践经验,归纳出一整套应用程序设计的方法和技巧。在内容安排上,不仅 有实现功能要求的应用程序设计步骤、子程序、监控程序及常用功能模块设计方法,还以较大篇幅介绍了提高系统可靠性的抗干扰设计和容错设计技术以及程序测试的正确思想方法。附录中向读者提供了完整的系统程序设计样本和经过多年使用考验的定点运算子程序库与浮点运算子程序库的程序文本、注释及使用方法。对于本次设计主要参考的是应用程序设计步骤、子程序、监控程序及常用功能模块设计方法这一部分的内容。 文献[3] 提出MCS-51系列单片机应用系统的构成和设计方法。详细地阐述 了应用系统的前向通道(传感器通道接口)、后向通道(伺服驱动、控制通道接 口)、人机对话通道和相互通道(单片机应用系统之间的通信接口)的结构设计、

功率半导体器件 LDMOS VDMOS

关于功率MOSFET(VDMOS & LDMOS)的报告 ---时间日期:2009.11.12 ---报告完成人:祝靖1.报告概况与思路 报告目的:让研一新同学从广度认识功率器件、了解功率器件的工作原理,起到一个启蒙的作用,重点在“面”,更深层次的知识需要自己完善充实。 报告内容:1)从耐压结构入手,说明耐压原理; 2)从普通MOS结构到功率MOS结构的发展;(功率MOS其实就是普通MOS结构和耐 压结构的结合); 3)纵向功率MOS(VDMOS)的工作原理; 4)横向功率MOS(LDMOS)的工作原理; 5)功率MOSFET中的其它关键内容;(LDMOS和VDMOS共有的,如输出特性曲线)报告方式:口头兼顾板书,点到即止,如遇到问题、疑惑之处或感兴趣的地方,可以随时打断提问。 2.耐压结构(硅半导体材料) 目前在我们的研究学习中涉及到的常见耐压结构主要有两种:①反向PN结②超结结构(包括); 2.1 反向PN结(以突变结为例) 图2.1所示的是普通PN结的耐压原理示意图,当这个PN结工作在一定的反向电压下,在PN结内部就会产生耗尽层,P区一侧失去空穴会剩下固定不动的负电中心,N区一侧会失去电子留下固定不动的正电中心,并且正电中心所带的总电量=负电中心所带的总电量,如图2.1a所示,A区就是所谓耗尽区。 图2.1b所示的是耗尽区中的电场分布情况(需熟悉了解),耗尽区以外的电场强度为零,Em称为峰值电场长度(它的位置在PN,阴影部分的面积就是此时所加在PN P区和N区共同耐压。图2.2所示的是P+N结的情况,耐压原理和图1中的相同,但是在这种情况中我们常说N负区是耐压区域(常说的漂移区) (a) (b) 图2.1 普通PN结耐压示意图(N浓度=P浓度)图2.2 P+N结耐压示意图(N浓度<

模电基础知识教程

模电基础教程 01单元半导体器件基础 半导体的导电特性 导体、绝缘体和半导体 本征半导体的导电特性 杂质半导体的导电特性 PN结 晶体二极管 二极管的结构与伏安特性 半导体二极管的主要参数 半导体二极管的等效电路与开关特性 稳压二极管 晶体三极管 三极管的结构与分类 三极管内部载流子的运动规律、电流分配关系和放大作用 三极管的特性曲线 三极管的主要参数 三极管的开关特性 场效应管 结型场效应管 绝缘栅型场效应管 特殊半导体器件 发光二极管 基本放大电路的工作原理 基本放大电路的组成 直流通路与静态工作点 交流通路与放大原理 放大电路的性能指标

放大电路的图解分析法 放大电路的静态图解分析 放大电路的动态图解分析 输出电压的最大幅度与非线性失真分析 微变等效电路分析法 晶体管的h参数 晶体管的微变等效电路 用微变等效电路法分析放大电路 静态工作点的稳定 温度变化对静态工作点的影响 工作点稳定的电路 场效应管放大电路 场效应管放大电路的静态分析 多级放大电路 多级放大电路的级间耦合方式 多级放大电路的分析方法 放大电路的频率特性 单级阻容耦合放大电路的频率特性 多级阻容耦合放大电路的频率特性 03单元负反馈放大电路反馈的基本概念和分类 反馈的基本概念和一般表达式 反馈放大电路的类型与判断 负反馈放大电路基本类型举例 电压串联负反馈放大电路 电流并联负反馈放大电路 电流串联负反馈放大电路 电压并联负反馈放大电路 负反馈对放大电路性能的影响 降低放大倍数 提高放大倍数的稳定性

展宽通频带 减小非线性失真 改变输入电阻和输出电阻 负反馈放大电路的分析方法 深度负反馈放大电路的近似计算 *方框图法分析负反馈放大电路 04单元功率放大器功率放大电路的基本知识 概述 甲类单管功率放大电路 互补对称功率放大电路 OCL类互补放大电路 OTL甲乙类互补对称电路 复合互补对称电路 05单元直接耦合放大电路 概述 直接耦合放大电路中的零点漂移 基本差动放大电路的分析 基本差动放大电路 基本差动放大电路抑制零点漂移的原理 基本差动放大电路的静态分析 基本差动放大电路的动态分析 差动放大电路的改进 06单元集成运算放大器集成电路基础知识 集成电路的特点 集成电路恒流源 有源负载的基本概念 集成运放的典型电路及参数 典型集成运放F007电路简介 集成运放的主要技术参数

功率半导体器件是什么

“power semiconductor device”和“power integrated circuit(简写为power IC或PIC)”直译就是功率半导体器件和功率集成电路。 在国际上与该技术领域对应的最权威的学术会议就叫做International Symposium on Power Semiconductor Devices and ICs,即功率半导体器件和功率集成电路国际会议。 “power”这个词可译为动力、能源、功率等,而在中文里这些词的含义不是完全相同的。由于行业的动态发展,“power”的翻译发生了变化。 从上世纪六七十年代至八十年代初,功率半导体器件主要是可控硅整流器(SCR)、巨型晶体管(GTR)和其后的栅关断晶闸管(GTO)等。它们的主要用途是用于高压输电,以及制造将电网的380V或220V交流电变为各种各样直流电的中大型电源和控制电动机运行的电机调速装置等,这些设备几乎都是与电网相关的强电装置。因此,当时我国把这些器件的总称———power semiconductor devices没有直译为功率半导体器件,而是译为电力电子器件,并将应用这些器件的电路技术power electronics没有译为功率电子学,而是译为电力电子技术。与此同时,与这些器件相应的技术学会为中国电工技术学会所属的电力电子分会,而中国电子学会并没有与之相应的分学会;其制造和应用的行业归口也划归到原第一机械工业部和其后的机械部,这些都是顺理成章的。实际上从直译看,国外并无与电力电子相对应的专业名词,即使日本的“电力”与中文的“电力”也是字型相同而含义有别。此外,当时用普通晶体管集成的小型电源电路———功率集成电路,并不归属于电力电子行业,而是和其他集成电路一起归口到原第四机械工业部和后来的电子工业部。 20世纪80年代以后,功率半导体行业发生了翻天覆地的变化。功率半导体器件变为以功率金属氧化物半导体场效应晶体管(功率MOSFET,常简写为功率MOS)、绝缘栅双极晶体管(IGBT)以及功率集成电路(power IC,常简写为PIC)为主。 这一转变的主要原因是,这些器件或集成电路能在比以前高10倍以上的频率下工作,而电路在高频工作时能更节能、节材,能大幅减少设备体积和重量。尤其是集成度很高的单片片上功率系统(power system on a chip,简写PSOC),它能把传感器件与电路、信号处理电路、接口电路、功率器件和电路等集成在一个硅芯片上,使其具有按照负载要求精密调节输出和按照过热、过压、过流等情况自我进行保护的智能功能,其优越性不言而喻。国际专家把它的发展喻为第二次电子学革命。

2015年功率半导体器件行业简析

2015年功率半导体器件行业简析 一、行业的定义与分类 (2) 二、行业的发展历史和现状 (3) 三、行业规模 (4) 四、行业的周期性 (6) 五、进入本行业的壁垒 (6) 1、技术壁垒 (6) 2、客户服务壁垒 (7) 六、行业风险因素 (7) 1、投入不足 (7) 2、质量意识差 (8) 七、影响行业未来发展趋势的因素 (8) 1、电子元器件微型化 (8) 2、电子元器件集成化 (9) 3、产业政策大力支持 (9)

一、行业的定义与分类 功率半导体器件是进行电能(功率)处理的半导体产品,典型的功率处理功能包括变频、变压、变流、功率放大和功率管理等,是弱电控制与强电运行间的桥梁,其中大部分是既能耐高压也能承受大电流。半导体产业的发展始于分立器件,所谓“分立”,一般是指被封装的半导体器件仅含单一元件(为了产品应用需要,部分分立器件封装实际上包含二个或多个元件或器件),它必须和其它类型的元件相结合,才能提供类似放大或开关等基本电学功能。 从产品结构来分,功率半导体分立器件可分为二极管、三极管、功率晶体管、功率集成电路等几大类产品,其中功率晶体管包括有MOSFET和IGBT等。从功率处理能力来分,功率半导体分立器件可分为四大类,包括低压小功率分立器件(电压低于200V,电流小于200mA)、中功率分立器件(电压低于200V,电流小于5A)、大功率分立器件(电压低于500V,电流小于40A)、高压特大功率分立器件(电压低于2,000V,电流小于40A)。 每个电子产品均离不开功率半导体技术。功率半导体的目的是使电能更高效、更节能、更环保并给使用者提供更多方便。如通过变频来调速,使变频空调在节能50-70%的同时,更环保、更安静、让人更舒适。人们希望便携式电子产品一次充电后有更长的使用时间,在电池没有革命性进步以前,需要更高性能的功率半导体器件进行高效的电源管理。正是由于功率半导体能将“粗电”变为“精电”,因此它是

18_功率半导体器件应用教学大纲

《功率半导体器件应用》课程教学大纲 课程编号: 课程名称:功率半导体器件应用/ Applications of Power Semiconductor Devices 课程总学时/学分:48/3.0(其中理论36学时,实验12学时) 适用专业:电子科学与技术专业 一、教学目的和任务 功率半导体器件应用是电子科学与技术本科专业必修的一门专业核心课程。 功率半导体器件应用讲述功率器件(分立的和集成)的结构、功能、特性和特征,在此基础上分析当前电力电子技术中使用的各种类型功率半导体器件,包括功率晶体管、晶闸管、各类晶闸管及其应用、静电感应功率器件、双极-MOS功率器件,并包含了可靠工作条件,更进一步讲述其重要应用。根据电子科学与技术本科专业的特点和应用需要,在掌握功率半导体器件基本原理的基础上,使学生对功率半导体器件的应用有一个全面而系统的认识,并培养学生在工程实践中的应用能力,提高学生的创新能力。 二、教学基本要求 通过对计算机控制技术课程的学习,要求学生: (1)了解如何使用和选择功率半导体,以及半导体和PN结的物理特性以及功率器件可靠工作的条件。 (2)熟悉功率器件的可靠工作条件以及在电力电子中的应用。 (3)掌握功率晶体管、晶闸管、各类晶闸管及其应用、金属-氧化物-半导体场效应功率晶体管、双极-MOS功率器件的结构、功能及其应用。 (4)掌握功率晶体管、晶闸管、各类晶闸管及其应用、金属-氧化物-半导体场效应功率晶体管、双极-MOS功率器件的结构、功能及其应用。 三、教学内容与学时分配 第一章(知识领域1):功率半导体器件应用概述(2学时)。 (1)知识点:轨道交通系统中的应用;新能源技术中的应用;智能电网中的应用。 (2)重点与难点:重点是轨道交通系统中的应用、新能源技术中的应用和智能电网中的应用。 第二章(知识领域2):双极结型功率晶体管(2学时)。 (1)知识点:双极结型晶体管结构的基本特性;功率晶体管的基本特性;功率晶体管

功率器件知识

功率器件知识 功率器件的主要功能是进行电能的处理与变换(比如变压、变流、变频、功放等)。主要应用领域是开关电源、电机驱动与调速、UPS 等等,这些装置都需输出一定的功率给予电器,所以电路中必须使用功率半导体。另一重要应用领域是发电、变电与输电,这就是原本意义上的电力电子。 功率器件的应用领域:消费电子24%,工业控制23.4%,计算机21.8%,网络通信20.5%,汽车电子5.2%。 任何电器设备都需要电源,任何用电机的设备都需要电机驱动。作为目前国际上主流的功率半导体器件,包括VD-MOSFET和IGBT,克服了以前功率半导体器件工业频率低、所需要的配套电感、电容、变压器等体积大、能耗高等缺点,制备工艺使用的设备和工艺线的要求与集成电路基本相同,完全不同于用台面技术和粗放光刻的晶闸管、台面二极管、功率BJT的制造。 全球能源需求的不断增长以及环境保护意识的逐步提升使得高效、节能产品成为市场发展的新趋势。MOSFET等功率器件越来越多地应用到整机产品中。我国用于电机的电能占我国总发电量的60%多。如果全国电机的驱动都采用功率半导体进行变频调速就可以节能大约 1/4 到 1/3,也就是说可节约全国总发电量的15%至20%。功率半导体还是信息产品、计算机、消费电子和汽车这4C产业的基础产品,当前用于4C产业的功率半导体已占功率半导体总量的70%多。

功率器件包括功率IC(半导体元件产品统称)和功率分立器件。 功率分立器件主要包括功率MOSFET、大功率晶体管和IGBT等半导体器件。功率IC和MOSFET的市场份额较大,分别占40.4%和26.0%市场份额,是中国功率半导体市场上最重要两个产品,此外大功率晶体管、达林顿管、IGBT和晶闸管也占有一定市场份额。 功率器件的中国市场结构:电源管理IC 40.4%,MOSFET26.0%,大功率晶体管13.7%,达林顿管5.3%,IGBT4.2%,晶闸管1.8%。 由于下游终端产品很多已向国内转移,其上游的功率器件市场也一直保持较快的发展速度。02-06年中国功率器件市场复合增长率29.4%,未来5年复合增长率19.1%,2011年达1680.4亿元。 国外厂商处于主导地位,国内厂商奋起直追。从功率半导体厂商的类型来看,多数功率芯片厂商是IDM(智能分销管理系统)厂商,Fabless(无生产线的IC设计公司)也占据了一定比例。美国、日本和欧洲功率芯片厂商大部分属于IDM 厂商,而中国台湾厂商则绝大多数属于Fabless厂商。 其中MOSFET在中国目前的市场规模为174.8亿元。MOSFET根据不同的耐压程度,有着不同的应用:耐压20v-应用领域手机、数码相机,30v-计算机主板、显卡,40v-机顶盒和电动自行车,60v-UPS、汽车雨刷、汽车音响、马达控制,80v-LCD TV、LCD 显示器和其他仪器仪表,150-400v-照明、CRT 电视、背投电视、电热水器和洗衣机等,400-800v-发动机启动器、车灯控制、电机控制,嵌入式电源和电源适配器,500-1000v-高压变频器、发电和变电设备。

半导体基础知识和半导体器件工艺

半导体基础知识和半导 体器件工艺 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

半导体基础知识和半导体器件工艺 第一章半导体基础知识 通常物质根据其导电性能不同可分成三类。第一类爲导体,它可以很好的传导电流,如:金属类,铜、银、铝、金等;电解液类:NaCl水溶液,血液,普通水等以及其他一些物体。第二类爲绝缘体,电流不能通过,如橡胶、玻璃、陶瓷、木板等。第三类爲半导体,其导电能力介於导体和绝缘体之间,如四族元素Ge锗、Si矽等,三、五族元素的化合物GaAs砷化镓等,二、六族元素的化合物氧化物、硫化物等。 物体的导电能力可以用电阻率来表示。电阻率定义爲长1厘米、截面积爲1平方厘米的物质的电阻值,单位爲欧姆*厘米。电阻率越小说明该物质的导电性能越好。通常导体的电阻率在10-4欧姆*厘米以下,绝缘体的电阻率在109欧姆*厘米以上。 半导体的性质既不象一般的导体,也不同于普通的绝缘体,同时也不仅仅由於它的导电能力介於导体和绝缘体之间,而是由於半导体具有以下的特殊性质: (1) 温度的变化能显着的改变半导体的导电能力。当温度升高时,电阻率会降低。比如Si在200℃时电阻率比室温时的电阻率低几千倍。可以利用半导体的这个特性制成自动控制用的热敏元件(如热敏电阻等),但是由於半导体的这一特性,容易引起热不稳定性,在制作半导体器件时需要考虑器件自身産生的

热量,需要考虑器件使用环境的温度等,考虑如何散热,否则将导致器件失效、报废。 (2) 半导体在受到外界光照的作用是导电能力大大提高。如硫化镉受到光照後导电能力可提高几十到几百倍,利用这一特点,可制成光敏三极管、光敏电阻等。 (3) 在纯净的半导体中加入微量(千万分之一)的其他元素(这个过程我们称爲掺杂),可使他的导电能力提高百万倍。这是半导体的最初的特徵。例如在原子密度爲5*1022/cm3的矽中掺进大约5X1015/cm3磷原子,比例爲10-7(即千万分之一),矽的导电能力提高了几十万倍。 物质是由原子构成的,而原子是由原子核和围绕它运动的电子组成的。电子很轻、很小,带负电,在一定的轨道上运转;原子核带正电,电荷量与电子的总电荷量相同,两者相互吸引。当原子的外层电子缺少後,整个原子呈现正电,缺少电子的地方産生一个空位,带正电,成爲电洞。物体导电通常是由电子和电洞导电。 前面提到掺杂其他元素能改变半导体的导电能力,而参与导电的又分爲电子和电洞,这样掺杂的元素(即杂质)可分爲两种:施主杂质与受主杂质。 将施主杂质加到矽半导体中後,他与邻近的4个矽原子作用,産生许多自由电子参与导电,而杂质本身失去电子形成正离子,但不是电洞,不能接受电子。这时的半导体叫N型半导体。施主杂质主要爲五族元素:锑、磷、砷等。 将施主杂质加到半导体中後,他与邻近的4个矽原子作用,産生许多电洞参与导电,这时的半导体叫p型半导体。受主杂质主要爲三族元素:铝、镓、铟、硼等。

信息论论文

信息科学技术概论课程报告 姓名: 葛坤 专业: 11级电子信息工程A班 学号: 1115102016 日期2013年3月1日—2013年4月26日

一、研究内容 信息科学 信息科学是以信息为主要研究对象,以信息的运动规律和应用方法为主要研究内容,以计算机等技术为主要研究工具,以扩展人类的信息功能为主要目标的一门新兴的综合性学科。 信息科学由信息论、控制论、计算机科学、仿生学、系统工程与人工智能等学科互相渗透、互相结合而形成的。 信息科学技术主要研究信息的产生、获取、存储、传输、处理及其应用。其中以微电子、计算机、软件、通信讯技术为主导,微电子是基础,计算机及通信设施是载体,而软件是核心,是计算机的灵魂。 信息,既是信息科学的出发点,也是它的归宿。具体来说,信息科学的出发点是认识信息的本质和它的运动规律;它的归宿则是利用信息来达到某种具体的目的。 信息概念 信息是人类对自然世界的了解的物化形式,信息的概念可以在两个层次上定义: 1、本体论意义的信息是事物运动的状态和状态变化的方式,即事物内部结构和外部联系的状态和方式。 2、认识论意义的信息是认识主体所感知、表达的相应事物的运动状态及其变化方式,包括状态及其变化方式的形式、含义和效用。 信息并非事物本身,而是表征事物之间联系的消息、情报、指令、数据或信号。 信息的主要特征有:可量度、可识别、可转换、可存储、可处理传递、可再生、可压缩、可利用、可共享、主客体二重性等。 信息的产生、存在和流通,依赖于物质和能量,没有物质和能量就没有能动作用。信息可以控制和支配物质与能量的流动。 数据、信息、知识和智慧 数据是未加工过的“信息”; 信息通过将事实和给定的语境关联而导出; 知识将某语境中的信息和在不同语境中得到的信息相关联; 智慧是从完全不同的知识导出的一般性原理。 信息论概念 信息论是研究信息的产生、获取、变换、传输、存贮、处理识别及利用的学科。信息论还研究信道的容量、消息的编码与调制的问题以及噪声与滤波的理论等方面的内容。信息论还研究语义信息、有效信息和模糊信息等方面的问题。 信息论有狭义和广义之分。狭义信息论即申农早期的研究成果,它以编码理论为中心,主要研究信息系统模型、信息的度量、信息容量、编码理论及噪声理论等。广义信息论又称信息科学,主要研究以计算机处理为中心的信息处理的基本理论,包括评议、文字的处理、图像识别、学习理论及其各种应用。广义信息论则把信息定义为物质在相互作用中表征外部情况的一种普遍属性,

13种常用的功率半导体器件介绍

13种常用的功率半导体器件介绍 电力电子器件(Power Electronic Device),又称为功率半导体器件,用于电能变换和电能控制电路中的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。可以分为半控型器件、全控型器件和不可控型器件,其中晶闸管为半控型器件,承受电压和电流容量在所有器件中最高;电力二极管为不可控器件,结构和原理简单,工作可靠;还可以分为电压驱动型器件和电流驱动型器件,其中GTO、GTR为电流驱动型器件,IGBT、电力MOSFET为电压驱动型器件。 1. MCT (MOS Control led Thyristor):MOS控制晶闸管 MCT 是一种新型MOS 与双极复合型器件。如上图所示。MCT是将MOSFET 的高阻抗、低驱动图MCT 的功率、快开关速度的特性与晶闸管的高压、大电流特型结合在一起,形成大功率、高压、快速全控型器件。实质上MCT 是一个MOS 门极控制的晶闸管。它可在门极上加一窄脉冲使其导通或关断,它由无数单胞并联而成。它与GTR,MOSFET,IGBT,GTO 等器件相比,有如下优点: (1)电压高、电流容量大,阻断电压已达3 000V,峰值电流达1 000 A,最大可关断电流密度为6000kA/m2; (2)通态压降小、损耗小,通态压降约为11V; (3)极高的dv/dt和di/dt耐量,dv/dt已达20 kV/s ,di/dt为2 kA/s; (4)开关速度快,开关损耗小,开通时间约200ns,1 000 V 器件可在2 s 内关断; 2. IGCT(Intergrated Gate Commutated Thyristors) IGCT 是在晶闸管技术的基础上结合IGBT 和GTO 等技术开发的新型器件,适用于高压大容量变频系统中,是一种用于巨型电力电子成套装置中的新型电力半导体器件。 IGCT 是将GTO 芯片与反并联二极管和门极驱动电路集成在一起,再与其门极驱动器在外围以低电感方式连接,结合了晶体管的稳定关断能力和晶闸管低通态损耗的优点。在导通阶段发挥晶闸管的性能,关断阶段呈现晶体管的特性。IGCT 芯片在不串不并的情况下,二电平逆变器功率0.5~ 3 MW,三电平逆变器1~ 6 MW;若反向二极管分离,不与IGCT

SiC功率半导体器件技术发展现状及市场前景

SiC功率半导体器件技术发展现状及市场前景 近年来,Si功率器件结构设计和制造工艺日趋完善,已经接近其材料特性决定的理论极限,依靠Si器件继续完善来提高装置与系统性能的潜力十分有限。本文首先介绍了SiC功率半导体器件技术发展现状及市场前景,其次阐述了SiC功率器件发展中存在的问题,最后介绍了SiC功率半导体器件的突破。 SiC功率半导体器件技术发展现状1、碳化硅功率二极管 碳化硅功率二极管有三种类型:肖特基二极管(SBD)、PiN二极管和结势垒控制肖特基二极管(JBS)。由于存在肖特基势垒,SBD具有较低的结势垒高度。因此,SBD具有低正向电压的优势。SiC SBD的出现将SBD的应用范围从250 V提高到了1200 V。同时,其高温特性好,从室温到由管壳限定的175℃,反向漏电流几乎没有增加。在3 kV以上的整流器应用领域,SiC PiN和SiC JBS二极管由于比Si整流器具有更高的击穿电压、更快的开关速度以及更小的体积和更轻的重量而备受关注。 2、单极型功率晶体管,碳化硅功率MOSFET器件 硅功率MOSFET器件具有理想的栅极电阻、高速的开关性能、低导通电阻和高稳定性。在300V以下的功率器件领域,是首选的器件。有文献报道已成功研制出阻断电压10 kV 的SiC MOSFET。研究人员认为,碳化硅MOSFET器件在3kV~5 kV领域将占据优势地位。尽管遇到了不少困难,具有较大的电压电流能力的碳化硅MOSFET器件的研发还是取得了显著进展。 另外,有报道介绍,碳化硅MOSFET栅氧层的可靠性已得到明显提高。在350℃条件下有良好的可靠性。这些研究结果表明栅氧层将有希望不再是碳化硅MOSFET的一个显著的问题。 3、碳化硅绝缘栅双极晶体管(SiC BJT、SiC IGBT)和碳化硅晶闸管(SiC Thyristor) 最近报道了阻断电压12kV的碳化硅P型IGBT器件,并具有良好的正向电流能力。碳化硅IGBT器件的导通电阻可以与单极的碳化硅功率器件相比。与Si双极型晶体管相比,SiC 双极型晶体管具有低20~50倍的开关损耗以及更低的导通压降。SiC BJT主要分为外延发

功率半导体器件的直接均流技术

功率半导体器件的直接均流技术 高占成(1)矫健(1)(2)揣荣岩(2)潘福泉(1)(2) (1)北京东菱宏博电气科技发展有限公司北京 100054 (2)沈阳工业大学信息科学与工程学院沈阳 110870 摘要:在认真研究双极注入型功率半导体器件通态特性的基础上,结合装置整机厂的并联技术经验,从器件角度,提出了功率半导体器件的直接均流技术,这一技术已得到了成功验证。 关键词:功率半导体器件、双极注入型、通态特性、门槛电压、直接均流技术 0 引言 无论是基础功率半导体器件如:整流二极管(Rectifier diodes简称RD,含快恢复整流二极管FRD)、晶闸管(SCR,含快速、高频晶闸管)、双向晶闸管(Triac)、逆导晶闸管(RCT)等,还是新型功率半导体器件如:门极关断晶闸管(GTO)、门极换流晶闸管(GCT)、集成门极换流晶闸管(IGCT)等,甚至是绝缘栅双极晶体管(IGBT),由于这些器件都属于双极注入器件,故其通态特性最后都归结到PiN功率二极管的通态特性上来。 在实际应用中,往往有多个器件的并联问题,而并联的核心就是均流,说到底是一个PiN功率二极管的通态特性问题。将PiN功率二极管的通态特性认真研究清楚了,不用任何特殊均流措施的直接均流问题就解决好了。PiN 功率二极管的通态特性研究清楚了,直接均流问题解决好了,就不难推广到FRD、SCR甚至是GTO、GCT、IGCT等的直接并联均流。届时将着眼点仅仅集中到些微差别上也就足够了。然而国内的许多现实令人遗憾:在一些人的眼里连晶闸管都早已研究过了,,哪里还谈得上最简单的PiN功率二极管的

再研究呢? 国际上先进的半导体厂家都投入巨大资金重新研究新型功率二极管【1】,其道理在哪里呢?。①前期的蓬勃发展的高频自关断器件的研究(即所谓安全运行区的问题)已解决得很有成果(如成功开发并大规模应用了IGBT和IGCT等),然而所有这些新型功率半导体器件的应用又是绝对离不开PiN功率二极管的进步的(如超快软恢复功率二极管的研发和应用等),这是国际上先进的半导体厂家投入巨大资金重新研究新型功率二极管的主要原因;②其次,许多新型功率二极管器件又独自踏入当前的先进科学技术中,极大地推动了现代基础工业的进程(如电阻型电焊机专用超大电流密度整流二极管对电焊机行业、高频电镀专用高频整流二极管对电化学行业、车用雪崩整流二极管对汽车行业等等)。 国际电力电子科学技术发展的实践表明,花大气力出重拳跟上当前国际先进科学技术的步伐,重新开展基础功率半导体新器件的研究是多么必要。我们的功率半导体器件的直接均流技术的研究,就是在PiN功率二极管的直接均流技术研究的基础上展开的,也是这个研究洪流中的有实际意义的一部分。 1,并联均流中问题的回顾 以往功率半导体器件并联均流技术的研究多半是由整机装置厂进行的。要么是电流容量太大,要么是装置可靠性高,不允许中途停电等,因此都必须要多个器件并联【2】。 并联均流技术主要解决的是电流平衡度的问题,既【3】【5】: ①并联器件同时触发开通; ②电流上升或下降时的电流平衡度;

高等学校“半导体器件物理”的全英文课程建设

高等学校“半导体器件物理”的全英文课程建设 随着我国高等教育的发展,课程建设的开放性和国际化成为我国高校教育改革的重要课题和发展方向。本文着重介绍了“半导体器件物理”全英文课程建设的必要性和可行性,并以上海工程技术大学电子封装技术专业近期开展的“半导体器件物理”全英文课程建设为实例,阐述了师资队伍建设、教材建设方面的情况。 标签:全英文教学;半导体器件物理;课程建设 一、背景介绍 近年来,随着中国经济的飞速发展,文化、科技、教育等诸多领域的国际交流与合作也日益频繁。借鉴国外著名大学的办学理念和管理模式,利用世界优质教育资源,提升教育水平,造就具有国际竞争能力的复合型创新人才,正成为我国教育改革与发展的新方向。而具有国际竞争能力的高级人才的培养就直接决定了专业课程实施全英文教学的重要性和必然性。[1]为推动国际化办学进程,提升国际化教学水平,构建国际教育课程体系,促进优秀人才培养,《国家中长期教育改革和发展规划纲要(2010—2020年)》中更是明确提出了开展全英语教学课程建设。[2] “半导体器件物理”是微电子及其相关从业人员所必须了解和掌握的一门课程,是相关材料学、电子学、光学等学科的学科基础必修课。在全国各高校的本科生教育中,该课程目前普遍采用中文教材,中文授课。大学生普遍所用教材则是施敏(Simon M·Sze)所著的Physics of Semiconductor Devices的中文译本,其中很多术语都与国际同类专业教育、大型半导体企业生产脱节,尤其与以欧美为主导的半导体企业教材大相径庭。 二、课程建设 1.教师能力的建设 全英文教学不是纯粹的英语教学,而是借助英语这个平台向学生传授专业知识。授课教师不仅要具有较强的英语听说读写能力,还必须掌握专业知识。甚至全英文教学对教师在专业知识方面的要求要超过母语,所以,全英文教学要求授课老师拥有更宽广、更扎实、更过硬的专业知识结构和能力。 2.教材建设 在“半导体器件物理”的全英文课程建设中,教材的建设相对简单,施敏所著的Physics of Semiconductor Devices是国内外高校公认的经典教材。 我们考虑到学生英语知识水平有高有低的问题,参考书采用中文书籍和英文书籍相结合的方式,主要采用由Pierret所著的北京电子工业出版社于2004年出

相关文档
相关文档 最新文档