文档库 最新最全的文档下载
当前位置:文档库 › 细胞生物学考试要点

细胞生物学考试要点

细胞生物学考试要点
细胞生物学考试要点

四、名词解释:

1、☆细胞周期:指细胞从上次分裂结束到下次分裂终了所经历的过程。Cell cycle is a period of time in which cell prepares for cell division until new cell produces.

2、细胞周期检测点(cell cycle checkpoint):是保证细胞周期正常运转的一个控制系统。可对细胞周期发生的重要事件及出现的故障加以检测。Cell cycle checkpoints are control mechanisms that ensure the fidelity of cell division.

3、☆细胞分化:Cell differentiation is the process by which descendants of a single cell produce structural and functional specializations .细胞分化是指个体发育过程中,同一来源的细胞结构与功能产生差异的过程。

4、全能性细胞(totipotent cell):哺乳动物受精卵和桑椹胚期的8细胞期前任一细胞。均能在一定条件下分化发育成为完整个体

5、☆细胞决定(Cell determination)是指在个体发育过程中,在出现可识别的分化特征之前,细胞内部已经发生的某些稳定的变化,这些变化确定了该细胞未来的命运,即只能向某特定方向分化。Cell determination is the process in which a previously undifferentiated cell is already programmed to become a specific cell type by following a specified path towards cell differentiation.

6、☆luxury gene(奢侈基因):A gene that codes for specialized cell products and is expressed abundantly. 编码细胞特异性蛋白(和分化细胞的特异性状密切相关,但不是细胞基本生命活动必不可少的)的基因。

7、☆house keeping gene(持家基因):The genes which are expressed in all cells and which code for molecules that are necessary for basic maintenance and essential cellular functions. 编码细胞生命活动所必需、各类细胞所共有蛋白质的基因。

8、干细胞:在多细胞机体中存在的,具有自我更新与分化潜能的未分化或低分化细胞。Stem cells are cells found in most multi-cellular organisms, which have the ability to renew themselves and differentiate into a diverse range of specialized cell types.

9、核孔(nuclear pore):又称核孔复合体(在内外核膜的融合之处形成的环状开口称为核孔,多种蛋白质在此以特定的方式排列形成的复合结构为核孔复合体(NPC)),代谢旺盛的细胞核孔数多。10.内膜系统(endomembrane system ):指细胞内那些在结构、功能以及发生上相互密切关联的膜性结构细胞器的总称11、分子伴侣(molecule chaperone):能特异地识别新生肽链或部分折叠的多肽并与之结合,帮助多肽链进行转运、折叠和组装的结合蛋白,但其本身并不参与最终产物的形成。12、细胞的社会性:细胞与细胞、细胞外环境乃至整个机体的相互依存、相互作用、相互制约

五、简答题

1、如何理解线粒体是半自主性的细胞器?线粒体内含有DNA分子和完整的遗传信息传递和表达体系,即线粒体内能够进行遗传信息的复制、转录和翻译,体现了线粒体的自主性;线粒体内遗传信息的传递过程几大部分功能

活动受线粒体基因组和核基因组

两套遗传体系的控制,因此线粒

体是一种半自主性细胞器。2、细

胞凋亡的意义:a.细胞凋亡与个

体发育,发育过程中清除多余的

细胞。b.细胞凋亡与免疫:形成自

身抗原耐受、防止过高的免疫应

答。前T、B淋巴细胞的清除。c.

细胞凋亡与衰老:通过凋亡可及时

清除衰老细胞,降低机体癌变的

危险。d.细胞凋亡与损伤修复:

当DNA损伤不可逆转时,可通过

细胞凋亡清除损伤细胞。e.细胞

凋亡与肿瘤:细胞增殖与凋亡的速

度平衡失调可造成肿瘤的发生。

3、干细胞的分类:①按潜能分:

全能Totipotent、多能

Pluripotent、专能Unipotent。②

按来源分:胚胎干细胞、成体干

细胞、肿瘤干细胞、诱导的多潜

能干细胞4.线粒体核编码蛋白质

的转运:①基质导入序列

(matrix-targeting sequence

MTS):又称导肽,约含20-80

个氨基酸残基,富含带正电荷的

碱性氨基酸,位于将被转运入线

粒体的前体蛋白的N-末端,具有

识别、牵引作用,可将蛋白质准

确导入线粒体内的一定部位。②

分子伴侣蛋白的协助:前体蛋白

转运过程中伴有蛋白的去折叠、

穿膜和重新折叠,这一过程需要

某些蛋白质的协助,后者称为分

子伴侣。③前体蛋白(核基因组

编码,在细胞质中合成)在线粒

体外保持非折叠状态:参与的分

子伴侣:新生多肽相关复合物

(NAC),作用:增加蛋白转运的准

确性;热激活蛋白70(HSP70),

作用:防止前体蛋白形成不可解

开的构象;防止已松弛的前体蛋

白聚集。参与的因子:前体蛋白

的结合因子(PBF):增加HSP70

对线粒体蛋白的转运;线粒体输

入刺激因子(MSF):单独发挥

ATP酶的作用,为聚集蛋白的解

聚提供能量。④分子运动产生的

动力协助多肽链穿过线粒体膜

(布朗棘轮模型)。⑤多肽链在线

粒体基质中的重新折叠:基质作

用蛋白酶MPP;mthsp70起折叠

因子的作用;最后折叠还需要另

外一套分子伴侣hsp60、hsp10

的协助。5、微管的功能:a.微管

构成细胞内的网状支架,支持和

维持细胞的形态b.参与中心粒、

纤毛和鞭毛的形成c.参与细胞内

物质运输,由微管马达蛋白(介导

细胞内物质沿细胞骨架运输的蛋

白)完成,由ATP提供能量,马达

蛋白分三种:胞质动力蛋白

(dynein)、驱动蛋白(kinesin)和肌

球蛋白(myosin),dynein、kinesin

以微管作为运行轨道Myosin以

肌动蛋白纤维为运输轨道。驱动

蛋白:介导沿微管的(-)极向(+)

极的运输;动力蛋白:介导从微

管的(+)极向(-)极的运输d.

维持细胞内细胞器的定位和分布

e.参与染色体的运动,调节细胞

分裂f.参与细胞内信号转导微管

的组装(3个步骤):a.成核期(延

迟期):先由α和β微管蛋白聚合成

一个短的寡聚体结构,即核心形

成。为微管聚合的限速过程。b.

聚合期:微管蛋白聚合速度大于

解聚速度,微管延长;c.稳定期:

游离微管蛋白浓度下降,达到临

界浓度,微管的组装与去组装速

度相等,微管长度相对恒定。微

管的体外组装:装条件:微管蛋

白异二聚体达到临界浓度、有

Mg2+存在(无Ca2+)、pH6.9、

37℃、异二聚体即组装成微管,

同时需要由GTP提供能量。极性

装配:装配快的一端(β微管蛋白)

为(+)极,装配慢的一端(α微

管白)为(-)极。两个模型:踏

车现象:组装和去组装达到平衡。

微管组装的动态调节---非稳态动

力学模型:该模型认为,微管组

装过程不停地在增长和缩短两种

状态中转变,表现动态不稳定性

(dynamic instability)。微管在体

外组装时,游离微管蛋白的浓度

和GTP水解成GDP的速度决定

微管的稳定性。6、染色质组装成

染色体压缩8000-10000倍:

①核小体(nucleosome)为染色

质的一级结构(基本结构单位),

约200个bp的DNA分子,核小

体串珠使DNA分子压缩约7倍。

②螺线管:在H1的参与下形成染

色质的二级结构;每圈6个核小

体,螺线管使核小体串珠结构压

缩约6倍。③多级螺线管模型:

由螺线管进一步盘绕形成,直径

400nm,压缩近40倍。染色体骨

架-放射环模型(scaffold-radial

loop structure model)染色质纤

维折叠成的袢环构成,并与染色

单体非组蛋白(骨架)相连。④

染色单体:(四级结构)超螺线管

或袢环的再一次折叠形成染色单

体,压缩5倍。

7、亲核蛋白输入细胞核的过程:

①亲和蛋白NLS识别核输入受体

a与输入的受体a/b异二聚体结

合形成转运复合物②在核输入受

体b的介导下,转运复合物与核

孔复合物的胞质纤维结合③转运

复合物在核孔复合物中移动,从

胞质面转移到核质面④转运复合

物在核质面与RAN-GTP结合,

导致复合物解离,亲和蛋白释放

⑤受体的亚基与结合的

RAN-GTP返回细胞质,在胞质内

的RAN-GTP水解形成

RAN-GDP并与核输入受体b解

离,RAN-GDP返回核内,再转

换成RAN-GTP状态。8、

yclinB-Cdk(MPF,成熟促进因

子,有丝分裂促进因子)复合物

对G2/M期转换及M期的调节:

MPF为cyclinB与Cdk1复合物,

在启动M期起着关键作用。其活

性增加,进入M期;达到高峰(中

期),染色单体分开;下降,退出

M期。作用方式:a.M期的前、

中期磷酸化组蛋白H1上与有丝

分裂相关的特殊位点诱导染色质

凝集,启动有丝分裂;b.核纤层

蛋白是MPF的催化底物之一,

lamin(核纤层蛋白)经MPF作

用后,核纤层纤维结构解体,核

膜崩裂成小泡;c.修饰黏连蛋白

(cohesin)促中期向后期的转换

(姐妹染色单体分离);d.MPF也

能对多种微管结合蛋白进行磷酸

化,进而调节细胞周期中微管的

动态变化,使微管发生重排,促

进纺锤体的形成。9.核基质的作

用:a.参与DNA复制:(1)核

基质上锚定DNA复制复合体(2)

核基质上结合新合成的DNA(3)

核基质上DNA的复制效率提高。

b.参与基因的转录和加工:(1)

核基质与基因转录活性相关(2)

核基质参与RNA的加工修饰。c.

参与染色体构建。d.与细胞分化

有关。2、核纤层作用:为核被膜

提供支架,维持核孔位置以及核

被膜形状;与核膜崩解和重建有

关;在间期锚定染色质,分裂期

与染色体凝集有关;参与DNA的

复制。

六、问答题

1、减数分裂前期I的特点:前期

I (prophase I ):包括Leptotene

(细线期)Zygotene(偶线期)

Pachytene(粗线期);Diplotene

(双线期);Diakinesis(终变期)。

细线期:特点:复制的染色质开

始凝集,仍呈细线状;细线状染

色体通过其端粒附着于核膜上;

同源染色体配对;核及核仁的体

积增大。偶线期:特点:染色体

进一步凝集,同源染色体配对,

出现四分体(二价体)。★联会复

合体(synaptonemal complex,

SC):在联会的同源染色体之间临

时生成的沿纵轴方向存在的特殊

结构,同源染色体之间部分片段

紧密相贴。包括:侧生成分,中

央成分,横向纤维,(看看书)进

行同源染色体交换。其装配最早

发生于细线期,在粗线期完成,

双线期解聚,与同源染色体间的

配对过程密切相关。粗线期:染

色体呈粗线状,同源染色体在重

组小结发生DNA交换和重组。双

线期:同源染色体相互分开,非

姐妹染色单体某些部位残留接触

点,形成交叉。交叉向染色体臂

的端部移行,称为端化;某些生

物此期持续时间长。终变期:染

色体进一步凝集,核仁消失,纺

锤体形成,核膜破裂,染色体开

始向赤道面移动。

2、分泌蛋白合成分泌:

a.信号肽引导核糖体到内质网

膜:蛋白质合成开始于细胞质中

的核糖体,通过新生肽链上的信

号肽将核糖体引导到内质网膜

上,并在内质网中完成蛋白质的

合成,而信号肽本身则在蛋白质

合成完成之前就被内质网腔的信

号肽酶切除b.新生肽链到内质网

腔的跨膜转运:多肽链通过内质

网膜进入内质网腔是和翻译同步

进行的,即协同翻译转运c.蛋白

质在内质网腔的折叠:需要分子

伴侣的参与,它们能特异性的识

别新生肽链或部分折叠的多肽并

与之结合,帮助这些多肽折叠d.

蛋白质在内质网腔的糖基化:在

内质网合成的大部分蛋白质都需

要进行糖基化,形成糖蛋白,在

内质网腔中进行的糖基化是N-连

接的寡糖糖基化。

3、细胞凋亡与死亡的区别

细胞凋亡是细胞有序的自然程序

性死亡过程,是个体发育必不可

少的。它与细胞坏死的区别主要

有以下三点:(1)细胞凋亡是程

序性死亡,由基因控制,而细胞

坏死是由外界因素如物理、化学

损伤和微生物侵袭所引发;(2)

细胞凋亡能保持完整的细胞外

形,细胞膜结构一直保持完整,

内容物不释放直到被邻近细胞吞

噬、消化,而细胞坏死则会导致

细胞膜通透性增加、细胞器变形、

细胞膜破裂和胞浆外溢等现象;

(3)细胞凋亡过程中无炎症反应

发生,而细胞坏死过程中则有炎

症反应发生。

1、O-连接的寡糖链主要在高尔基

复合体内合成

在内质网腔内合成的N-连接的寡

糖蛋白还必须在高尔基复合体内

进一步的修饰;

2、溶酶体内部是酸性环境;主要

靠溶酶体膜上的质子泵维持,质

子泵实际上是一种特殊的转运蛋

白,可利用水解时放出的能量把

质子泵入溶酶体内,从而维持溶

酶体内的PH值为5.0

外膜:是一层单位膜,含多种转

运蛋白,可通过分子量在10000

以下的物质;

内膜:是一层单位膜,将线粒体

内分两部分,被内膜直接包裹的

是内腔,也叫基质腔;内外膜之

间的腔称为外腔或膜间腔;内膜

上有很多向内腔突起的折叠,形

成嵴,嵴与嵴之间的内腔部分称

为嵴间腔,由于嵴向内突起造成

外腔向内伸入的部分称为嵴内空

间;内膜内表面有基粒,每个基

粒由头部、柄部和基片三部分组成,基粒又称为A TP酶复合体;内膜的通透性小,具有高度的选择通透性,膜上的转运蛋白控制内外腔的物质交换;

线粒体内腔含有可溶性蛋白质和脂肪等,多种酶等

核膜的出现是细胞核与细胞质区域性的分工产生的基础。

在原核细胞中,因无核膜,DNA 分子位于胞质中,RNA的转录及蛋白质的合成均发生于细胞质,在RNA转录尚未结束时,蛋白质的合成即已进行,RNA转录本在进行翻译以前,因时间及空间的缺乏,不能被有效地被剪切、修饰。

3、核膜的出现对于细胞核与细胞质区域性的分工有何意义?

核膜的区域化作用使转录及翻译在时空上分离(2分)。

在真核细胞中,核膜的出现将胞核物质和胞质物质限定在各自特定的区域,这首先对于稳定胞核内的物质有重要意义,可形成相对稳定的内环境,避免DNA分子的损伤,保证遗传信息正常传递(2分)。其次,核膜可使RNA转录及蛋白质合成两个过程在时间及空间上能够相互隔离,保证了RNA转录后产生的前体在被翻译成为蛋白质以前,能在胞核内被加以有效的剪切、加工(3分),遗传信息由此可被完整、准确地传递及高效地表达,遗传信息表达的调控过程也更为精确(2分),细胞可以更大的多样性来适应外界环境的变化(1分)。

细胞膜、内膜系统、生物膜、单位膜的概念各是什么,细胞膜和内膜系统各有何功能?

细胞膜是围绕在细胞最外层的一层薄膜,又称质膜。主要是由脂质和蛋白质构成(1分)。主要功能有(2分):(1)它将细胞质与外环境分开,使细胞形成相对独立的内环境,(2)通过它使细胞与外环境保持联系,参与细胞与外环境物质的跨膜运输(3)能量交换及信息传递。膜使细胞功能区室化;膜使细胞的多种结构协同工作;膜参与完成物质;(4)细胞膜参与细胞间的相互作用。质膜和细胞内膜系统总称为生物膜(1分)。

生物膜在透射电镜下呈现“两暗夹一明”的三层结构,内外两个电子致密的“暗”层中间夹着电子密度低的“亮”层。称为单位膜(1分)。

把细胞内那些在结构、功能乃至发生上相互密切关联的所有膜性结构细胞器统称为内膜系统(1分)。其主要包括:内质网、高尔基复合体、溶酶体、过氧化物酶体、各种转运囊泡及核膜等功能结构(1分)。如参加蛋白质合成、加工、运输、分选(1分)

内膜系统不仅有效地增加了细胞内有限空间的表面积,而且形成的区室化效应,使得细胞内不同的生理、生化过程能够彼此相对独立、的区域中进行,各细胞器间相互依存、高度协调,极大地提高了细胞的代谢水平和功能效率(2分)。

1、有被小泡:A.网格蛋白有被小泡——负责protein从GolgiTGN 向,质膜胞内体或溶酶体和植物液泡运输。B.CopⅡ有被小泡——负责内质网到高尔基体的物质运输。C.CopⅠ有被小泡——负责将protein从高尔基体返回

2、分泌蛋白的运输过程:

a.核糖体阶段:包括分泌型蛋白质的合成和protein跨膜转送。

b.内质网运输阶段:包括分泌蛋白腔内运输,protein糖基化等粗加工和贮存。

c.细胞质基质运输阶段:分泌蛋白以小泡形式脱离粗面ER移向高尔基体,与其顺面膜表融合。

d.高尔基体复合体加工修饰阶段:分泌蛋白在Goli complex 的扁平膜内进行加工,然后以大囊泡的形式进入细胞质基质。

e.细胞内腔阶段:大囊泡发育成分泌泡,向质膜移动,等待释放。

f.肚吐阶段:分泌泡与质膜融合,将分泌蛋白释放出胞外。3、线粒体外膜标志酶为单胺氧化酶,线粒体内膜标志酶细胞色素氧化酶,膜间隙中标志酶为腺苷酸激酶,线粒体的基质为苹果酸激酶

4、核被膜功能:a.构成核、质之间的天然选择性屏障;b.避免生命活动的彼此干扰;c.保护DNA不受细胞骨架运动所产生的机械力的损伤;d.核质之间的物质交换,与信息交流。

细胞生物学考试重点

第一章:绪论 细胞学说:施来登和施旺提出 主要内容:◆所有生物都是由一个或多个细胞组成的 ◆细胞是所有生物结构和功能的基本单位 ◆一切细胞产自于已存在的细胞 意义:对细胞与生物有机体的关系及其在生物体中的作用和地位有了明确的科学理论的概括,把动植物等生物有机体在细胞水平上统一起来。对生物科学的发展起到重大推动作用。 第二章:细胞的统一性和多样性 细胞的基本共性: 1、相似的化学组成 2、脂-蛋白体系的生物膜 3、相同的遗传装置:核酸和蛋白质分子构成的遗传信息的复制与表达系统 4、一分为二的分裂方式 原核细胞主要代表:支原体、细菌、蓝藻 真核细胞的基本结构体系: 1、以脂质及蛋白质成分为基础的生物膜结构系统:质膜、细胞核、细胞质 主要功能:选择性的物质跨膜运输与信号转导 2、遗传信息表达系统: 包括细胞核和核糖体 DNA与组蛋白构成了染色质与染色体的基本结构—核小体(nucleosome) 核小体装配成染色质,继而在细胞分裂阶段形成染色体 3、细胞骨架系统:是由一系列特异的结构蛋白装配而成的网架系统。分为胞质骨架和核骨架。 (胞质骨架:由微丝、微管与中等纤维等构成的网络体系。核骨架:包括核纤层和核基质。)器官的大小主要决定于细胞的数量,与细胞的数量成正比,而与细胞的大小无关,把这种现象为“细胞体积的守恒定律”。 细胞的体积受什么因素控制? 答:与各部分细胞的代谢活动及细胞功能有关;受外界环境条件的影响;细胞的核与质之间有一定的比例关系;细胞的“比面值”与细胞内外物质的交换及细胞内物质交流的关系 原核细胞与真核细胞、植物与动物细胞的比较: 功能上的共同点:都是生命的基本结构单位;都能进行分裂;都能遗传 结构上的共同点:都有细胞膜;都有DNA和RNA;都有核糖体

医学细胞生物学 课后思考题

课后思考题 1.请描述细胞的发现与“细胞学说”的主要内容 1604年荷兰眼镜商詹森发明了第一台显微镜 1665年英国物理学家虎克最早观察到细胞 1675年荷兰生物学家列文虎克发现活细胞 细胞学说:施来登和施旺 1、一切生物都是由细胞组成的 2、细胞是生物体形态结构和功能活动的基本单位 3、“细胞来源”:一切细胞只来源于原来的细胞,一切病理现象都基于细胞的损伤 2. 如何理解细胞生物学说在医学科学中的作用地位 细胞生物学是现代医学的重要基础理论。细胞生物学的研究有助于医学重大课题的解决,治病机理的阐明、诊断、治疗、预防都依赖于(分子)细胞生物学的发展 4.简述DNA的结构特点和功能 结构特点: (1)两条脱氧核苷酸组成双链,为右手螺旋。两条单链走向相反,一条由5'-3',另一条由3'-5' (2)亲水的脱氧核糖——磷酸位于螺旋的外侧。 (3)双螺旋内侧碱基互补配对:A=T;C≡T;A+G=C+T(嘌呤数等于嘧啶数) (4)碱基平面垂直螺旋中心轴,每10对碱基螺旋一周,螺距 功能: (1)携带和传递遗传信息——遗传信息的载体; (2)表达:产生生物的遗传性状——作为模版转录RNA,从而控制蛋白质的合成 (3)突变:产生变异,引导进化

6.试比较DND和RNA的异同 相同点: (1)其基本单位都由一分子五碳糖,一分子磷酸和一分子碱基构成 (2)都含有磷酸二酯键 不同点: (1)两者基本单位的五碳糖不同,DNA的是脱氧核糖,RNA的是核糖 (2)DNA的碱基为腺嘌呤、鸟嘌呤、胞嘧啶和胸腺嘧啶;RNA的碱基为腺嘌呤、鸟嘌呤、胞嘧啶和尿嘧啶 (3)DNA为双链,RNA为单链 7.试描述蛋白质的各级结构特征 (1)蛋白质的一级结构:组成蛋白质的氨基酸种类、数目和排列顺序 (2)蛋白质的二级结构:局部或某一段肽链的空间结构,由氢键维持。有以下几种构象单元: 1.α-螺旋:右手螺旋,每一周有3.6个氨基酸,螺距0.54nm 2.β-折叠:锯齿状,不同肽链间由氢键维系 3.其余有β-转角、无规则卷曲、π螺旋等 (3)蛋白质的三级结构:在二级结构的基础上,整条肽链中全部氨基酸残基的相对空间位置,主要依靠R基团(侧链)间的相互作用维持 (4)蛋白质的四级结构:两条或两条以上的多肽链所组成的蛋白质中各亚基的空间排列和相互接触的布局 8.简述膜脂和膜蛋白的类型以及各自的特点 膜脂: (1)磷脂:是细胞膜中最重要的脂类,通常大于膜脂总量的50%,磷脂酰碱基+甘油基团(鞘氨醇)+脂肪酸,前二者为极性头部(亲水),后者为非极性尾部(疏水) A 甘油磷脂:以甘油为骨架的磷脂类,因丙三醇柔性好,故甘油磷脂分子较柔软; B 鞘磷脂:以鞘氨醇为骨架的磷脂类。鞘氨醇分子刚性强,故鞘磷脂分子较硬(2).胆固醇,有极性头部(羟基)、非极性的固醇环和烃链。散布于磷脂分子间,其功能是增加膜的稳定性,调节膜的流动性 (3).糖脂:寡糖+鞘氨醇+脂肪酸 由糖基和脂类组成,占膜脂总量的5%以下。在神经细胞膜上糖脂含量较高,约占5-10%,糖脂也是两性分子。其结构与SM相似,只是由一个或多个糖残基代替了磷脂酰胆碱而与鞘氨醇的羟基结合 膜蛋白: 1.内在蛋白(整合蛋白):占膜蛋白的70-80%,是膜功能的主要承担者(运输蛋白、酶、受体等)。不同程度地镶嵌在类脂双分子层中,有的为跨膜蛋白。以疏水键和共价键镶嵌在膜内,与膜结合紧密

《细胞生物学》考试

名解 1 内膜系统:相对于质膜而言,细胞内在结构、功能乃至发生上相关的膜性结构的总称。包括内质网、高尔基复合体、溶酶体、过氧化物酶体、各种转运小泡及核膜等。 2 核孔复合体:核孔及其周围由一组蛋白颗粒以特定方式排列而形成的复杂结构。 3 线粒体半自主性:①线粒体有自己的DNA分子和蛋白质合成系统,即有独立的遗传系统,故有一定的自主性。②mtDNA 分子量小、基因数目少,只编码线粒体蛋白质的10%,而绝大多数线粒体蛋白质(90%)是由核基因编码,在细胞质中合成后转运到线粒体中的。③线粒体遗传系统受控于细胞核遗传系统。 4胚胎干细胞:存在于早期胚胎中,具有多分化潜能的细胞—多能干细胞。 5液态镶嵌模型:1. 流动的脂双分子层构成生物膜的连续主体。2.球形的膜蛋白以各种形式镶嵌在脂双分子层中或附着在膜表面。3.强调了膜的流动性和不对称性。 问答 2 分泌蛋白的合成加工转运 3 细胞坏死与细胞凋亡的差别 细胞坏死细胞凋亡 1.性质病理性,非特异性生理性或病理性,特异性 2.诱导因素强烈刺激,随机发生较弱刺激,非随机发生 3.生化特点被动过程,无新蛋白合成,不耗能主动过程,有新蛋白合成,耗能 4.形态变化细胞结构全面溶解、破坏、细胞肿胀胞膜及细胞器相对完整细胞皱 缩,核固缩5.DNA电泳随意降解,电泳呈弥散状DNA片段化(180-200bp),

电泳呈“梯”状条带 6.炎症反应溶酶体破裂,局部炎症反应溶酶体相对完整,局部无炎症反应 7.凋亡小体无有,形成一个或多个 8.分子机制无基因调控由凋亡相关基因调控 4 小分子及离子的转运方式及特点:简单扩散—不需能量载体蛋白,顺浓度梯度,离子通道扩散—不需能量,需通道蛋白顺浓度梯度,易化扩散—不需能量,需载体蛋白,顺浓度梯度,离子泵—能量蛋白逆,伴随扩散—能量蛋白逆 填空 1 增殖分化 2 核小体组蛋白H2A H2B H 3 H4 3 溶酶体跨膜蛋白的高度糖基化 极性细胞器:高尔基复合体 4 有丝分裂器:纺锤体染色体中心粒星体 5 微管微丝的组成:微管:微管蛋白—a-螺旋蛋白,b-螺旋蛋白;微管结合蛋白—微管相关蛋白质,微管聚合蛋白 微丝:肌动蛋白—球状肌动蛋白(肌动蛋白单体),纤维状肌动蛋白(肌动蛋白聚合体);肌动蛋白结合蛋白—原肌球蛋白,肌球蛋白,肌钙蛋白,非肌细胞中肌动蛋白结合蛋白

医用细胞生物学知识点

医用细胞生物学知识点 细胞生物学 (cell biology ):细胞生物学是以细胞为研究对象,经历了从显微水平到亚显微和分子水平 的发展过程,成为今天在分子层次上研究细胞精细结构和生命活动规律的学科。 医学细胞生物学 (medical cell biology):医学细胞生物学以揭示人体各种细胞在生理和病理过程中 的生 命活动规律为目的,期望能对人体各种疾病的发病机制予以深入阐明,为疾病的诊断、治疗和预防提 供理论依据和策略。 对细胞概念理解的五个角度: ①细胞是构成有机体的基本单位; ②细胞是代谢与功能的基本单位; ③ 细胞是有机体生长与发育的基础; ④细胞是遗传的基本单位; ⑤没有细胞就没有完整的生命。 生物界划分的三个类型:原核细胞、古核细胞和真核细胞。 原核细胞与真核细胞的比较: p13 表 2-1 生物大分子:是由有机小分子构成的,大约有 3000种,分子量从 10000到 1000000。 核酸 (nucleic acid ) 的基本单位 :核苷酸。 核苷酸:核苷的戊糖羟基与磷酸形成酯键,即成为核苷酸。 DNA 分子的双螺旋结构模型( p18图 2-8):DNA 分子由两条相互平行而方向相反的多核苷酸链组成, 即一条链中磷酸二酯键连接的核苷酸方向是 5'→3',另一条是 3'→ 5',两条链围绕着同一个中心轴 以右手方向盘绕成双螺旋结构。 基因组:细胞或生物体的一套完整的单倍体遗传物质称为基因组。 动物细胞内含有的主要 RNA 种类及功能: p20 表 2-3 核酶 (ribozyme ) :核酶是具有酶活性的 RNA 分子。 蛋白质 ( protein )的基本单 位:氨基酸。 肽键:肽键是一个氨基酸分子上的 羧基 与另一个氨基酸分子上的 氨基经脱水缩合 而成的化学键。 肽 (peptide) :氨基通过肽键而连接成的化合物称为肽。 蛋白质分子的二级结构: α -螺旋, β-片层。 酶 (enzyme):酶是由生物体细胞产生的具有催化剂作用的蛋白质。 酶的特性:高催化效率,高度专一性,高度不稳定性。 光学显微镜的种类:普通光学显微镜,荧光显微镜,相差显微镜,暗视野显微镜,共聚焦激光扫描显 微镜。 细胞培养:细胞培养是指细胞在体外的培养技术,即无菌条件下,从机体中取出组织或细胞,模拟机 体内正常生理状态下生存的基本条件,让它在培养器皿中继续生存、生长和繁殖的方法。 细胞膜 (cell membrane ):细胞膜是包围在细胞质表面的一层薄膜,又称质膜 ( plasma membrane ) 生物膜 ( biomembrane ):目前把 质膜 和细胞内膜系统 总称为生物膜。 细胞膜的组成:主要由脂类、蛋白质和糖类组成 磷脂 (phospholipid)可分为两类:甘油磷脂 由于磷脂分子具有亲水头和疏水 尾,故称为 膜蛋白可分为三种基本类型:膜内在蛋白 蛋白 (lipid anchored protein) 。 细胞外被 ( cell coat ):在大多数真核细胞表面有富含糖类的周缘区,称为细胞外被或糖萼。 细胞外被的基本功能: 保护细胞抵御各种物理、化学性损伤 ,如消化道、呼吸道等上皮细胞的细胞外 被有助于润滑、防止机械损伤,保护黏膜上皮不受消化酶的作用。 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 19. 20. 21 . 22 . 23 . 24 . 25 . 26. 27. 28. (phosphoglycerides )和鞘磷脂 (sphingomyelin,SM) 。 两亲性分子 或兼性分子 。 intrinsic protein )、膜外在蛋白 (extrinsic

细胞生物学考试重点-终极版

2012年细胞生物学复习提纲 一名词解释(10分,5题)G蛋白偶联蛋白受体细胞融合 1、细胞学说:生物科学的重要学说之一,包括三个基本内容:所有生命体均由单个或多个 细胞组成;细胞是生命的结构基础和功能单位;细胞只能由原来的细胞产生。 2、古细菌:古细菌是一些生长在极端特殊环境中(高温或高盐)的细菌,包括酸化嗜热菌、 极端嗜盐菌及甲烷微生物等。 3、病毒:病毒是由一个核酸分子(DNA或RNA)与蛋白质构成的非细胞形态的生命体,个体 微小,专营细胞内寄生生活。 朊病毒仅由有感染性的蛋白质构成。 类病毒仅由一个有感染性的RNA构成。 4、细胞系:从肿瘤组织培养建立的细胞群或培养过程中发生突变或转化的细胞,在培养条 件下可无限繁殖。 5、细胞株:从原代培养细胞群中筛选出的具有特定性质或标志的细胞群,能够繁殖50代左 右,在培养过程中其特征始终保持。 6、原代培养:指从机体组织中取材后接种到培养基中所进行的细胞培养,即直接取材于机 体组织的细胞培养。 原代细胞:指从机体取出后立即培养的细胞。 7、传代培养:将培养细胞从培养器中取出,把一部分移至新的培养器中再进行培养的方式 称为传代培养。 传代细胞:适应在体外培养条件下持续传代培养的细胞称为传代细胞。 8、原位杂交:用标记的核酸探针通过分子杂交确定特异核苷酸序列在染色体上或在细胞中 的位置的方法称原位杂交。 9、非细胞体系:来源于细胞,而不具有完整的细胞结构与组分,但包含了正常生物学反应 所需的物质(供能系统和酶反应体系等)组成的体系即为非细胞体系。 10、脂质体:脂质体是根据磷脂分子可在水相中形成稳定的脂双层膜的趋势而制备的人工膜。 11、细胞外被:也称糖被或糖萼,指细胞质膜外表面覆盖的一层含糖类物质的结构,由构成 质膜的糖蛋白和糖脂伸出的寡糖链组成,实质上是质膜结构一部分。 12、细胞外基质:细胞外基质是由动物细胞合并并分泌到细胞外,分布在细胞表面或细胞之 间的大分子,主要是一些多糖和蛋白,或蛋白聚糖。 13、细胞连接:在细胞质膜的特化区域,通过膜蛋白,细胞支架蛋白或者细胞外基质形成的 细胞与细胞之间,或者细胞与胞外基质之间的连接结构。 14、主动运输:主动运输是由载体蛋白所介导的物质逆浓度梯度或电化学梯度,由低浓度一 侧向高浓度一侧进行跨膜运输的方式。 15、第二信使:第一信使分子(激素或其他配体)与细胞表面受体结合后,在细胞内产生或释放到细胞内的小分子物质,如:cAMP、cGMP、DAG、IP3等,有助于信号向细胞内进行传递。 16、分子开关:细胞通信转导过程中,通过结合GTP和水解GTP,或者通过蛋白质磷酸化与 去磷酸化而开启或关闭蛋白质的活性。 17、信号转导:细胞将外部信号转变成为自身应答反应的过程。 18、细胞识别:细胞通过其表面的受体与胞外信号物质分子(配体)选择性地相互作用,进 而导致胞内一系列生理生化变化,最终表现为细胞整体的生物学效应的过 程。

细胞生物学复习全资料1

细胞生物学复习资料 第一章绪论 1.什么叫细胞生物学 细胞生物学是研究细胞基本生命活动规律的科学,它是在不同层次(显微、亚显微与分子水平)上以研究细胞结构与功能、细胞增殖、分化、衰老与凋亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等为主要容。核心问题是将遗传与发育在细胞水平上结合起来。 第二章细胞基本知识概要 一、名词解释 1.古核细胞:也称古细菌,是一类很特殊的细菌,多生活在极端的生态环境中。具有原核生物的某些特征,如无核膜及膜系统;也有真核生物的特征。 2.含子:是基因不编码蛋白质的核苷酸序列,不出现在成熟的RNA分子中,在转录后通过加工被切除。大多数真核生物的基因都有含子。在古细菌中也有含子。 3.外显子:指真核细胞的基因在表达过程中能编码蛋白质的核苷酸序列。 二、简答 1.真核细胞的三大基本结构体系 (1)以脂质及蛋白质成分为基础的生物膜结构系统; (2)以核酸(DNA或RNA)与蛋白质为主要成分的遗传信息表达系统 (3)由特异蛋白分子装配构成的细胞骨架系统。 2.细胞的基本共性 (1)所有的细胞都有相似的化学组成 (2)所有的细胞表面均有由磷脂双分子层与镶嵌蛋白质构成的生物膜,即细胞膜。 (3)所有的细胞都含有两种核酸:即DNA与RNA作为遗传信息复制与转录的载体。 (4)作为蛋白质合成的机器─核糖体,毫无例外地存在于一切细胞。 (5)所有细胞的增殖都以一分为二的方式进行分裂。 3.病毒与细胞在起源与进化中的关系并说出证明 病毒是非细胞形态的生命体,它的主要生命活动必须要在细胞实现。病毒与细胞在起源上的关系,目前存在3种主要观点: 生物大分子→病毒→细胞 病毒 生物大分子→ 细胞 生物大分子→细胞→病毒(最有说服力) 认为病毒是细胞的演化产物的观点,其主要依据和论点如下: (1)由于病毒的彻底寄生性,必须在细胞复制和增殖,因此有细胞才能有病毒 (2)有些病毒(eg腺病毒)的核酸和哺乳动物细胞DNA某些片段的碱基序列十分相似。病毒癌基因起源于细胞癌基因 (3)病毒可以看做DNA与蛋白质或RNA与蛋白质的复合大分子,与细胞核蛋白分子有相似之处

细胞生物学复习题 含答案

1.简述细胞生物学的基本概念,以及细胞生物学发展的主要阶段。 以细胞为研究对象,经历了从显微水平到亚显微和分子水平的发展过程,研究细胞结构与功能从而探索细胞生长发育繁殖遗传变异代谢衰老及进化等各种生命现象的规律的科学;主要阶段:①细胞的发现与细胞学说的创立②光学显微镜下的细胞学研究③实验细胞学研究 ④亚显微结构与分子水平的细胞生物学. 2.简述细胞学说的主要内容。 施莱登和施旺提出一切生物,从单细胞生物到高等动物和植物均有细胞组成,细胞是生物形态结构和功能活动的基本单位.魏尔肖后来对细胞学说作了补充,强调细胞只能来自原来的细胞。 3.简述原核细胞的结构特点。 1). 结构简单 DNA为裸露的环状分子,无膜包裹,形成拟核。 细胞质中无膜性细胞器,含有核糖体. 2). 体积小直径约为1到数个微米。 4.简述真核细胞和原核细胞的区别。 5.简述DNA的双螺旋结构模型. ① DNA分子由两条相互平行而方向相反的多核苷酸链组成。②两条链围绕着同一个中心轴 以右手方向盘绕成双螺旋结构。③螺旋的主链由位于外侧的间隔相连的脱氧核糖和磷酸组

成,内侧为碱基构成。④两条多核苷酸链之间依据碱基互补原则相连螺旋内每一对碱基均位于同一平面上并且垂直于螺旋纵轴,相邻碱基对之间距离为0。34nm,双螺旋螺距为3。4nm。 6.蛋白质的结构特点。 以独特的三维构象形式存在,蛋白质三维构象的形成主要由其氨基酸的顺序决定,是氨基酸组分间相互作用的结果。一级结构是指蛋白质分子氨基酸的排列顺序,氨基酸排列顺序的差异使蛋白质折叠成不同的高级结构。二级结构是由主链内氨基酸残基之间氢键形成,有两种主要的折叠方式a-螺旋和β—片层。在二级结构的基础上进一步折叠形成三级结构,不同侧键间互相作用方式有氢键,离子键和疏水键,具有三级结构既表现出了生物活性。三级结构的多肽链亚单位通过氢键等非共价键可形成更复杂的四级结构。 7.生物膜的主要化学组成成分是什么? 膜脂(磷脂,胆固醇,糖脂),膜蛋白,膜糖 8.什么是双亲性分子(兼性分子)?举例说明。 既含有亲水头部又含有疏水的尾部的分子,如磷脂一端为亲水的磷酸基团,另一端为疏水的脂肪链尾. 9.膜蛋白的三种类型。 膜内在蛋白(整合蛋白),膜外在蛋白,脂锚定蛋白 10.细胞膜的主要特性是什么?膜脂和膜蛋白的运动方式分别有哪些? 细胞膜的主要特性:膜的不对称性和流动性;膜脂翻转运动,旋转运动,侧向扩散,弯曲运动,伸缩和振荡运动。膜蛋白旋转运动和侧向扩散. 11.影响膜脂流动的主要因素有哪些? ①脂肪酸链的饱和程度,不饱和脂肪酸越多,相变温度越低其流动性也越大。 ②脂肪酸链的长短,脂肪酸链短的相变温度低,流动性大。 ③胆固醇的双重调节,当温度在相变温度以上时限制膜的流动性起稳定质膜的作用,在相变 温度以下时防止脂肪酸链相互凝聚,干扰晶态形成。 ④卵磷脂与鞘磷脂的比例,比值越大流动性越大. ⑤膜蛋白的影响,嵌入膜蛋白越多,膜脂流动性越小 ⑥膜脂的极性基团、环境温度、pH值、离子强度及金属离子等均可对膜脂的流动性产生一 定的影响。 12.简述生物膜流动镶嵌模型的主要内容及其优缺点。 膜中脂双层构成膜的连贯主体,他们具有晶体分子排列的有序性,又有液体的流动性,膜中蛋白质以不同的方式与脂双层结合.优点,强调了膜的流动性和不对称性.缺点,但不能说明具有流动性性的质膜在变化过程中怎样保持完整性和稳定性,忽视了膜的各部分流动性的不均匀性。 13.小分子物质的跨膜运输方式有哪几种? 被动运输:简单扩散,易化扩散,离子通道扩散.主动运输:ATP直接供能,ATP间接供能。 14.简述被动运输与主动运输的区别。 被动运输不消耗细胞能量,顺浓度梯度或电化学梯度。主动运输逆电化学梯度运输,需要消耗能量,都有载体蛋白介导。 15.大分子和颗粒物质的跨膜运输方式有哪几种? 胞吞作用(吞噬作用,胞饮作用,受体介导的胞吞作用)。胞吐作用(连续性分泌作用,受调性分泌作用) 16.简述小肠上皮细胞吸收葡萄糖的过程. 小肠上皮细胞顶端质膜中的Na+/葡萄糖协同运输蛋白,运输2个Na+的同时转运1个葡萄糖分子,使胞质内产生高葡萄糖浓度;质膜基底面和侧面的葡萄糖易化扩散运输蛋白,转运葡萄糖离开细胞,形成葡萄糖的定向转运.Na+—K+泵将回流到细胞质中的Na+转运出细胞,维持Na+穿膜浓度梯度。

医学细胞生物学知识点归纳

线粒体: 1.呼吸链(电子传递链)Respiratory chain一系列能够可逆地接受和释放H+和e-的化学物质所组成的酶体系在线粒体内膜上有序地排列成互相关联的链状。 2.化学渗透假说(氧化磷酸化偶联机制):线粒体内膜上的呼吸链起质子泵的作用,利用高能电子传递过程中释放的能量将H+泵出内膜外,造成内膜内外的一个H+梯度(严格地讲是离子的电化学梯度),A TP合酶再利用这个电化学梯度来合成A TP。 3.电子载体:在电子传递过程中与释放的电子结合并将电子传递下去的物质称为电子载体。参与传递的电子载体有四种∶黄素蛋白、细胞色素、铁硫蛋白和辅酶Q,在这四类电子载体中,除了辅酶Q以外,接受和提供电子的氧化还原中心都是与蛋白相连的辅基。 4.阈值效应:突变所产生的效应取决于该细胞中野生型和突变型线粒体DNA的比例,只有突变型DNA达到一定数量(阈值)才足以引起细胞的功能障碍,这种现象称为阈值效应。 5.导向序列:将游离核糖体上合成的蛋白质的N-端信号称为导向信号,或导向序列,由于这一段序列是氨基酸组成的肽,所以又称为转运肽。 6.信号序列:将膜结合核糖体上合成的蛋白质的N-端的序列称为信号序列,将组成该序列的肽称为信号肽。 7.共翻译转运:膜结合核糖体上合成的蛋白质通过定位信号,一边翻译,一边进入内质网,由于这种转运定位是在蛋白质翻译的同时进行的,故称为共翻译转运。 8.蛋白质分选:在膜结合核糖体上合成的蛋白质通过信号肽,经过连续的膜系统转运分选才能到达最终的目的地,这一过程又称为蛋白质分选。 核糖体: 1.原核生物mRNA中与核糖体16S rRNA结合的序列称为SD序列(SD sequence) 。 2.核酶:将具有酶功能的RNA称为核酶。 3.N-端规则(N-end rule): 每一种蛋白质都有寿命特征,称为半衰期(half-life)。研究发现多肽链N-端特异的氨基酸与半衰期相关,称为N-端规则。 4.泛素介导途径:蛋白酶体对蛋白质的降解通过泛素(ubiquitin)介导,故称为泛素降解途径。蛋白酶体对蛋白质的降解作用分为两个过程:一是对被降解的蛋白质进行标记,由泛素完成;二是蛋白酶解作用,由蛋白酶体催化。 细胞核: 1.核内膜:有特有的蛋白成份(如核纤层蛋白B受体),膜的内表面有一层网络状纤维蛋白质,即核纤层(nuclear lamina),可支持核膜。 核外膜:靠向细胞质的一层,是内质网的一部分,胞质面附有核糖体 核周隙:内、外膜之间有宽20~40nm的腔隙,与粗面内质网腔相通 核孔复合体:内、外膜融合处,物质运输的通道 核纤层:内核膜内表面的纤维网络,支持核膜,并与染色质、核骨架相连。 2.核孔复合体:是细胞核内外膜融合形成的小孔,直径约为70 nm,是细胞核与细胞质间物质交换的通道。 3.核孔蛋白:参与构成核孔的蛋白质,可能在经核孔的主动运输中发挥作用。 核运输受体:参与物质通过核孔的主动运输。 核周蛋白: 是一类与核孔选择性运输有关的蛋白家族,相当于受体蛋白。 5.输入蛋白:核定位信号的受体蛋白, 存在于胞质溶胶中, 可与核定位信号结合, 帮助核蛋白进入细胞核。 输出蛋白:存在于细胞核中识别并与输出信号结合的蛋白质, 帮助核内物质通过核孔复合

《细胞生物学》考试大纲.doc

《细胞生物学》考试大纲 一、大纲综述 细胞生物学作为现代生命科学发展的分支学科,是高等院校本科生物学各专业的必修专业基础课,是生命科学重要的基础学科之一。通过细胞生物学的学习,要求全面系统地掌握细胞生物学的基本内容和主要研究方法,并从分子水平上了解细胞的各基本生命活动过程及其调控。本考试大纲主要根据北京林业大学本科生物科学、生物技术专业《细胞生物学》教学大纲编制而成,适用于报考北京林业大学硕士学位研究生的考生。 二、考试内容 (1)绪论 细胞生物学的主要研究内容;当前细胞生物学研究的总趋势与重点领域;细胞的发现与细胞学说的建立及其所起的承前启后的重要作用,细胞学与细胞生物学发展简史。 (2)细胞的统一性与多样性 细胞相关的概念、细胞的基本共性;最小、最简单的细胞——支原体、原核细胞的两个重要代表:细菌与蓝藻;真核细胞的基本结构体系、细胞的大小及其分析、细胞形态结构与功能的关系、原核细胞与真核细胞的比较、植物细胞与动物细胞的比较。 (3)细胞生物学研究方法 细胞形态结构的观察方法和相关仪器的原理和应用范围、细胞化学组成及其定位和动态分析技术的原理和应用范围、细胞培养类型和方法、细胞工程的主要成就以及用于细胞生物学研究的模式生物。 (4)细胞质膜 生物膜的化学组成及结构模型、膜蛋白的种类及跨膜方式、膜的流动性和不对称性、细胞质膜的功能、膜骨架的结构与功能。 (5)物质跨膜运输 物质跨膜运输的主要方式、运输的基本过程及特征;胞饮作用和吞噬作用的过程及异同、受体介导的胞吞作用、组成型外排与调节型外排的过程及异同。 (6)细胞的能量转换——线粒体和叶绿体 线粒体的形态结构、化学组成、酶的定位和线粒体的功能;氧化磷酸化的分子基础、偶联机制和ATP 合成酶的作用机制;叶绿体的形态、结构、主要功能——光合作用;半自主性细胞器的概念;线粒体和叶绿体的蛋白质合成、运送与装配;线粒体和叶绿体的增殖、起源。 (7)真核细胞内膜系统、蛋白质分选与膜泡运输 细胞质基质的涵义、主要功能;细胞内膜系统的组成、动态结构特征与功能;高尔基体的极性及其与细胞内的膜泡运输;溶酶体的发生及其与过氧化物酶体的差异;信号假说与蛋白质分选信号;蛋白质分选

细胞生物学复习要点

一、名词解释 细胞生物学,外在蛋白,内在蛋白,血影,脂筏,脂质体,细胞外被(cell coat),简单扩散,协同扩散,主动运输,被动运输,微粒体,细胞通讯,细胞骨架,终端分化细胞,踏车行为(踏车现象),分辨率,紧密连接,锚定连接,间隙连接,桥粒,半桥粒,黏合带,黏合斑绪论:细胞学说是由Schleiden和Schwann,内容 第二章:细胞是生命活动的基本单位;真核细胞亚显微水平的三大基本结构体系,病毒与细胞起源的关系 第三章:形态结构观察的方法,组分分析的方法,相差显微镜的原理(实验:液泡系活体染色剂,线粒体的专性活体染色剂) 第四章:生物膜结构模型,膜的组成成分和及各自的作用;细胞膜的最显著特性, 第十五章:细胞连接的类型,锚定连接的不同形式;紧密连接的概念和作用;间隙连接的基本单位和功能;细胞外基质的组成 第五章:物质跨膜运输的方式,协同运输的种类;胞吞作用类型;Na+-K+泵的结构及作用机理;Ca2+泵的分布和功能 第六章:线粒体与叶绿体的半自主性,内共生假说 第七章:内质网的功能,合成的蛋白质类型,转移方式;高尔基体结构;蛋白质的糖基化修饰的类型及与内质网高尔基体的关系;溶酶体的结构、功能和发生过程(M6P);膜泡运输(不同类型的有被小泡的物质运输作用) 第八章:细胞膜表面受体类型;G蛋白分子开关,结构组成,变化;由G蛋白偶联的受体介导的信号转导系统的构成及信号通路(cAMP和IP3);细胞内受体介导的NO信号转导机制(硝酸甘油治疗心绞痛机理) 第九章:微丝和微管的功能、组装和特异性药物,纤毛摆动的机理,中间纤维的组装,三种细胞质骨架比较 第十章:细胞核核被膜特征;核孔复合体的结构组分,功能;核定位序列(信号)的概念和组成特点;核纤层蛋白的类型,与核膜解体的关系;核仁超微结构组成 第十二章:细胞周期的不同时相,细胞周期的长短,DNA含量变化;MPF的组成、MPF的活化及其在细胞周期调控中的作用 第十三章:细胞衰老结构变化;细胞凋亡最主要的生化特征 第十四章:细胞分化的实质

细胞生物学复习要点整理

春2周细胞膜 1.细胞膜的化学组成及其特性:膜脂;膜蛋白;膜糖。 2.细胞膜的分子结构模型:流动镶嵌模型,脂筏模型。 3.细胞膜的生物学特性:不对称性;流动性(膜流动性的影响因素)。 1.脂质体(liposome):当脂质分子被水环境包围时,自发聚集,疏水尾在,亲水 头在外,出现两种存在形式:球状分子团、形成双分子层,为防止两端尾部与水接触,游离端自动闭合,形成充满液体的球状小泡称为脂质体。 2.细胞外被(cell coat)或糖萼(glycocalyx):质膜中的糖蛋白和糖脂向外表面延 伸出的寡糖链构成的糖类物质。 3.脂筏(lipid raft):膜双层含有特殊脂质和蛋白质组成的微区,微区中富含胆固 醇和鞘脂,其中聚集一些的特定种类的膜蛋白。由于鞘脂的脂肪酸尾部比较长,这一区域比膜的其他部分厚,更有秩序且较少流动,称脂筏。 1.细胞膜的基本结构特征与生理功能? 1)脂类:包括磷脂、胆固醇、糖脂,构成细胞膜主体,与膜流动性有关。 2)蛋白质:可分为在蛋白和外在蛋白,是膜功能的主要体现者,如物质运输、信 号转导等。 3)糖类:包括糖脂和糖蛋白,对细胞有保护作用,在细胞识别起作用。 2.影响膜脂流动性的因素? 1)脂肪酸链的饱和程度(不饱和流动性大)。 2)脂肪酸链的长短(短链流动性大)。 3)胆固醇的双重调节(相变温度以上降低,相变温度以下提高)。 4)卵磷脂和鞘磷脂的比值(比值高的流动性大)。 5)膜蛋白的影响(膜蛋白越多,流动性越差)。 6)极性基团、环境温度、pH、离子强度。 春3、4周细胞膜系统、囊泡转运 1.细胞膜系统的概念、组成。 2.粗面质网功能:蛋白质的合成;蛋白质的折叠装配;蛋白质的糖基化;蛋白质 的胞运输。 3.滑面质网的功能:参与脂质物质的合成运输;参与糖原代谢;参与解毒;参与 储存和调节Ca2+;参与胃酸、胆汁的合成分泌(质网以葡萄糖-6-磷酸酶为标志酶)。 4.信号肽假说:新生肽链N端有独特序列称为信号肽,细胞基质中存在SRP能 识别并结合信号肽,SRP另一端与核糖体结合,形成复合结构,然后向质网膜移动,与质网膜上SRP-R识别结合,并附着于移位子上,然后SRP解离,肽链延伸。当肽链进入质网腔时,信号肽序列会被质网腔信号肽酶切除,肽链继续延伸至终止。 5.高尔基体是高度动态、具有极性的细胞器,以糖基转移酶为标志酶,主要功能 有:糖蛋白合成;参与脂质代谢;是大分子转运枢纽;加工成熟蛋白。 6.溶酶体酶的形成:①在质网中合成、折叠和N-连接糖基化修饰,形成N-连接 的甘露糖糖蛋白,运送至高尔基体;②溶酶体酶蛋白在高尔基体中加工时甘露糖残基磷酸化为甘露糖-6-磷酸(M-6-P),为分选重要信号;③溶酶体酶分选并以出芽方式转运到前溶酶体。 7.溶酶体以酸性磷酸酶为标志酶,主要功能为:细胞的消化作用;细胞营养功能; 机体防御和保护;激素分泌的调控;个体发生和发育的调控。 8.过氧化物酶体(peroxisome)又称微体,特点:①有尿酸氧化酶结晶,称作类 核体;②模表面界面可见一条称为边缘板的高电子致密度条带状结构。以过氧化物酶为标志酶。主要功能:清除细胞代谢所产生的H2O2及其他毒物;对细胞氧力的调节作用;参与脂肪酸等高能分子物质的代谢。 9.三种了解最多的囊泡:①网格蛋白有被囊泡:来源于反面高尔基体网状结构和 细胞膜,介导蛋白质从反面高尔基网状结构向胞体、溶酶体和细胞膜运输;在受体介导的胞吞作用过程中,介导物质从细胞膜向细胞质或从胞体向从溶酶体运输;②COP Ⅰ有被囊泡:主要产生于高尔基体顺面膜囊,主要负责回收、转运质网逃逸蛋白返回质网及高尔基体膜蛋白的逆向运输;③COP Ⅰ有被囊泡:产生于粗面质网,主要介导从质网到高尔基体的物质转运。

细胞生物学期中考试题(师范类)

一、名词解释(每题2分,共20分) 1、细胞骨架 2、模式生物 3、激光共聚焦显微镜 4、反向协同转运 5、Ras蛋白 6、信号识别颗粒 7、动力蛋白 8、细胞学说 9、朊病毒 10、蛋白激酶 二、判断题(判断并写出理由。对用T表示,错用F表示。每题2分,共20分) 1、水是细胞的主要成分,并且多以结合水的形式存在于细胞中。() 2、Na+/K+泵是真核细胞质膜中普遍存在的一种主动运输方式。() 3、在有丝分裂的不同时期,膜的流动性是不同的:M期流动性最大,S期流动性最小。() 4、胞内受体一般处于受抑制状态,细胞内信号的作用是解除抑制。() 5、IP3是直接由PIP2产生的,PIP2是从肌醇磷脂衍生而来的,肌醇磷脂没有掺入另外的磷酸基团。() 6、钙调蛋白调节细胞内钙的浓度。() 7、M6P受体蛋白是高尔基体反面网络上特有的受体蛋白,主要起到分拣溶酶体的酶的作用。() 8、所有在细胞内的运输小泡,其膜上必定有v-SNARE蛋白。() 9、鞭毛微管蛋白水解GTP,引起鞭毛的弯曲。() 10、组成型分泌活动存在于所有的细胞中,有两个特点:不需要分选信号,并且不需要触发。() 三、简答题(每题5分,共30分) 1、细胞如何防止内质网蛋白通过运输小泡从ER逃逸进入高尔基体中? 2、如何证实细胞膜蛋白具有流动性? 3、ras基因中的一个突变(导致蛋白质中第12位甘氨酸被缬氨酸取代)会导致蛋白GTP酶活性的丧失,并且会使正常细胞发生癌变。请解释这一现象。 4、举例说明单体G蛋白的活性如何受到其他蛋白的调控。 5、紫杉醇与秋水仙碱对于分裂细胞是致命的,两者都用作抗癌药物。为什么这两种药物作用机理不同,对分裂细胞却都是有害的?

最新医用细胞生物学知识点(完整版)

医用细胞生物学知识点 By 小羊,小生(修整)友情提示:知识点很多,重点加粗,书中的表格均有,有些重点需掌握绘图(请查阅书本)。主要考点:名词解释,细胞的结构与功能。建议系统总结一下内质网,高尔基复合体,溶酶体的标志酶和各自的功能。1.细胞生物学(cell biology):细胞生物学是从细胞的显微,亚显微和分子三个水平对细胞的各种生命活动开展研究的学科。 2.对细胞概念理解的五个角度: ①细胞是构成有机体的基本单位; ②细胞是代谢与功能的基本单位; ③细胞是有机体生长与发育的基础; ④细胞是遗传的基本单位; ⑤没有细胞就没有完整的生命。 ⑥细胞具有全能性。 3.生物界划分的三个类型:原核细胞、古核细胞和真核细胞。 4.原核细胞与真核细胞的比较:p13表2-1 5.真核细胞特点的理解: ①以脂质及蛋白质成分为基础的膜相结构体系-生物膜系统 ②以核酸,蛋白质为主要成分的遗传信息表达体系-遗传信息表达系统 ③由特异蛋白质分子构成的细胞骨架体系-细胞骨架系统 ④细胞质溶胶 6.生物大分子:细胞内主要的大分子有核酸,蛋白质,多糖。 7.核酸(nucleic acid)的基本单位:核苷酸。 8.核苷酸:核苷酸由戊糖,碱基和磷酸三部分组成。 9.DNA分子的双螺旋结构模型(p18图2-8):DNA分子由两条相互平行而方向相反的多核苷酸链组成,

即一条链中磷酸二酯键连接的核苷酸方向是5’→3’,另一条是3’→5’,两条链围绕着同一个中心轴以右手方向盘绕成双螺旋结构。简而言之:DNA分子是由两条反向平行的核苷酸链组成。 10.基因组:细胞或生物体的一套完整的单倍体遗传物质称为基因组。 11.动物细胞内含有的主要RNA种类及功能:p20表2-3 12.核酶(ribozyme):核酶是具有酶活性的RNA分子。 13.蛋白质(protein)的基本单位:氨基酸。 14.肽键:肽键是一个氨基酸分子上的羧基与另一个氨基酸分子上的氨基经脱水缩合而成的化学键。15.肽(peptide):氨基酸通过肽键而连接成的化合物称为肽。 16.蛋白质分子的二级结构:α-螺旋,β-片层。 17.酶(enzyme):酶是由生物体细胞产生的具有催化剂作用的蛋白质。 18.酶的特性:高催化效率,高度专一性,高度不稳定性。 19.光学显微镜的种类:普通光学显微镜,荧光显微镜,相差显微镜,暗视野显微镜,共聚焦激光扫描显微镜。 20.细胞培养:细胞培养是指细胞在体外的培养技术,即无菌条件下,从机体中取出组织或细胞,模拟机体内正常生理状态下生存的基本条件,让它在培养器皿中继续生存、生长和繁殖的方法。

细胞生物学考试重点!!

细胞生物学:是研究细胞形态结构和功能和起源的科学。 细胞:是生命活动和结构的基本单位。其结构通常由细胞膜,细胞质,以及细胞器所构成。生活在地球上的细胞可分为:原核细胞;古核细胞和真核细胞三大类。 细胞学说: 一切生物,从单细胞生物到高等动植物都是由细胞组成的,细胞是生物形态结构功能活动的基本单位,细胞通过分裂形成组织。细胞来自于细胞。每个细胞相对独立,一个生物体内各细胞之间协同配合。 为什么说细胞是生命的基本单位? 细胞是生命的基本结构单位,所有生物都是由细胞组成的; 细胞是生命活动的功能单位,一切代谢活动均以细胞为基础; 细胞是生殖和遗传的基础与桥梁;具有相同的遗传语言; 细胞是生物体生长发育的基础; 形状与大小各异的细胞是生物进化的结果 没有细胞就没有完整的生命(病毒的生命活动离不开细胞) 细胞生物学学习方法: 【1】抽象思维与动态,立体的观点;【2】同一性(unity),多样性(diversity)联系性,开放性,历史性,发展性的观点;【3】实验科学与实验技术——细胞真知源于实验室,来源于观察,实验创新的观点;【4】化学成分,结构,和功能结合的观点;【5】尊重记忆的规律来进行学习。 细胞的大小和细胞分裂的原因 细胞如果太小,则最低限度的细胞器以及生命物质没有足够的空间存放;太大则表面积不够。有人认为,由于细胞的重量和体积的增长,造成了细胞表面积与体积的比例失调,从而触发细胞分裂。随着细胞生长,细胞体积增大,而细胞表面积和体积之比(表面积/体积)却在变小。活细胞不断进行新陈代谢,细胞表面担负着输入养分,排出废物的重任。表面积/体积比值的下降,意味着代谢速率的受限和下降。所以,细胞分裂是细胞生长过程中保持足够表面积,维持一定的生长速率的重要措施 原生质(protoplasm): 1839 Purkinje用原生质一词指细胞的全部活性物质,从现代概念来说它包括质膜、细胞质和细胞核(或拟核)。 细胞核:细胞核(nucleus)是细胞内最重要的细胞器,核 表面是由双层膜构成的核被膜(nuclear envelope),核内 包含有由DNA和蛋白质构成的染色体(chromosome)。核内1 至数个小球形结构,称为核仁(nucleolus)。细胞核中的原 生质称为核质。 细胞质(cytoplasm):质膜与核被膜之间的原生质。 细胞器:具有特定形态和功能的显微或亚显微结构称为细胞器 细胞质基质:细胞质中除细胞器以外的部分。又称为或胞质溶胶(cytosol),其体积约占细胞质的一半。 真核细胞:具有核膜,由膜围成的各种细胞器,如核膜、内质网、高尔基体、线粒体、叶绿体、溶酶体等在结构上形成了一个连续的体系,称为内膜系统。内膜系统将细胞质分隔成不同的区域,即所谓的区隔化。区隔化使细胞内表面积增加了数十倍,代谢能力增强。细胞质基质的功能:为细胞内各类生化反应的正常进行提供了相对稳定的离子环境;许多代谢过程是在细胞基质中完成的,如①蛋白质的合成;②核苷酸的合成;③脂肪酸合成;④糖酵解;⑤磷酸戊糖途径;⑥糖原代谢;⑦信号转导。供给细胞器行使其功能所需要的一切底物;控制基因的表达,与细胞核一起参与细胞的分化;参与蛋白质的合成、加工、运输、选择性降解 真核细胞的结构 细胞壁(植物细胞具有) 细胞细胞膜(质膜) 原生质体细胞质 细胞核 三大结构体系: 生物膜系统质膜、内膜系统(细胞器) 遗传信息表达系统染色质(体)、核糖体、mRNA、tRNA等等 细胞骨架系统胞质骨架、核骨架 植物细胞特有的结构:细胞壁、叶绿体、大液泡、胞间连丝 细胞形态:单细胞生物细胞的形态通常与细胞外沉积物或细胞骨架有关;高等生物细胞的形状与细胞功能及细胞间的相互作用有关 原核细胞:没有核膜,遗传物质集中在一个没有明确界限的低电子密度区,称为拟核。DNA为裸露的环状双螺旋分子,通常没有结合蛋白,没有恒定的内膜系统,核糖体为70S型。无细胞器, 无细胞骨架原核细胞构成的生物称为原核生物,均为单细胞生物。一般以二分裂的方式繁殖,也有的产生孢子。以无丝分裂或出芽繁殖 原核细胞真核细胞 细胞大小很小(1-10微米)较大(10-100微米) 细胞核无核膜、核仁(称“类核”)有核膜、核仁 遗传系统 DNA不与蛋白质结合 DNA与蛋白质结合成染色质, 一个细胞仅一条DNA 一个细胞有多条的染色体 细胞器无有 细胞分裂无丝分裂有丝分裂为主 质粒(plasmid) :除核区DNA外,可进行自主复制的遗传因子,是裸露的环状DNA分子,所含遗传信息量为2~200个基因,能进行自我复制,有时能整合到核DNA中去。质粒常用作基因重组与基因转移的载体。 细胞膜:细胞质与外界相隔的一层薄膜,又叫质膜 生物膜:细胞内由膜构成的结构其成分基本相近,因此又把细胞中的所有膜统称为生物膜。特征:流动性,不对称性 “单位膜”模型由厚约3.5nm的双层脂分子和内外表面各厚约2nm的蛋白质构成。 细胞膜的功能:1. 为细胞的生命活动提供相对稳定的内环境;2. 选择性的物质运输,包括代谢底物的输入与代谢产物的排出;3. 提供细胞识别位点,并完成细胞内外信息的跨膜传递4. 为多种酶提供结合位点,使酶促反应高效而有序地进行5. 介导细胞与细胞、细胞与基质之间的连接;6. 参与形成具有不同功能的细胞表面特化结构。 脂双层的特点:⑴自我封闭性⑵装配性⑶流动性⑷不对称性

细胞生物学复习重点 (2)

第四章细胞膜与细胞表面 1.组成细胞膜的组要化学成分就是什么?这些分子就是如何排列的? 膜脂、膜蛋白、膜糖类。膜脂排列成双分子层,极性头部朝向内外两侧,非极性尾部相对排列位于膜的内部;整合膜蛋白镶嵌于脂质双分子层中,外在膜蛋白主要分布于膜的内表面;膜糖类就是分布与细胞膜外表面的一层寡糖侧链。 2.生物膜的两个显著性特征就是什么? ①流动性:膜脂与膜蛋白都就是可运动的。②不对称性:膜的内外两层的膜脂种类、分布不同;整合膜蛋白不对称镶嵌,外在膜蛋白在内表面;膜糖类分布在外表面。 3.小分子物质跨膜运输有哪几种?各有什么特点? (1)被动运输其转运方向为顺浓度梯度,不消化代谢能。 (2)主动运输需要消化细胞的代谢能,但可以逆浓度梯度转运;包括离子泵与协同运输。①离子泵本身具有ATPase活性,在分解ATP放能的同时实现离子的逆浓度梯度转运;②协同运输在动物细胞就是借助顺浓度转运Na+,即消耗Na+梯度的同时实现溶质的逆浓度转运,就是间接地消耗ATP。 4.以钠钾泵为例,简述细胞膜的主动运输过程 ①在胞质侧结合3个钠离子;②水解ATP,本身磷酸化;③构象变化,钠离子转移到胞外侧,释放钠离子;④结合胞外2个钾离子;⑤去磷酸化;⑥构象变化,钾离子转移到胞质侧,释放钾离子。 5.以低密度脂蛋白(LDL)为例,简述受体介导的内吞作用的主要过程 ①膜外侧LDL受体与LDL结合;②膜内陷形成有被小凹;③内陷进一步形成有被小泡;④有被小泡脱衣被,与内体融合;⑤内体酸性环境下受体与LDL分离,返回膜上。、 第五章细胞信号传导 1.cAMP信号通路与磷脂酰肌醇信号通路有哪些区别与联系? 就是G蛋白偶联受体介导的主要2条信号转导通路。信号通路的前半段就是相同的:G蛋白偶联受体识别结合胞外信号分子,导致G蛋白三聚体解离,并发生GDP与GTP交换,游离的Gα-GTP处于活化状态,导致结合并激活效应器蛋白。但两条通路的效应器并不相同,因此通路后半段组成及产生的细胞效应存在差别:(1)c AMP信号通路:第一个效应器就是腺苷酸环化酶(AC),活化后产生第二信使cAMP,进而活化蛋白激酶A(PKA),导致靶蛋白磷酸化及一系列级联反应;(2)磷脂酰肌醇信号通路:第一个效应器就是磷脂酶C(PLC),活化后产生第二信使IP3与DAG,DAG锚定于质膜内侧,IP3扩散至内质网,刺激内质网释放Ca2+,至胞质Ca2+浓度升高,DAG与Ca2+活化蛋白激酶C(PKC),并进一步使底物蛋白磷酸化。 2.试述细胞内Ca2+浓度的调控机制 细胞膜与内质网膜上均有Ca2+泵与Ca2+通道,①Ca2+泵以主动运输方式将胞质中的Ca2+转运至胞外或内质网腔,使静息状态下胞质Ca2+浓度极低(10-7摩尔浓度);②当信号分子与Ca2+通道蛋白特异结合(如内质网上的Ca2+通道蛋白与IP3结合、突触后膜上的Ca2+通道蛋白与乙酰胆碱结合),会引起Ca2+通

相关文档