文档库 最新最全的文档下载
当前位置:文档库 › DSP研究性学习报告滤波器设计

DSP研究性学习报告滤波器设计

DSP研究性学习报告滤波器设计
DSP研究性学习报告滤波器设计

《数字信号处理》课程研究性学习报告

数字滤波器设计专题研讨

【目的】

(1) 掌握IIR和FIR数字滤波器的设计方法及各自的特点。

(2) 掌握各种窗函数的时频特性及对滤波器设计的影响。

(3) 培养学生自主学习能力,以及发现问题、分析问题和解决问题的能力。

【研讨题目1】

设计一个IIR数字低通滤波器,其能取代下列指标的模拟低通滤波器(系统的抽样频率为44.1kHz)

f p=2kHz,f s=10kHz , A p=0.5dB, A s=50dB

(1) 分别用双线性变换和冲激响应不变法设计一个BW 型数字低通滤波器,并进行比较。 (2) 用双线性变换分别设计Chebyshev I 型Chebyshev II 型和椭圆型数字低通滤波器,并进行比较。

【温磬提示】

在数字滤波器的设计中,不管是用双线性变换法还是冲激响应不变法,其中的参数

T 的取值对设计结果没有影响。但若所设计的数字滤波器要取代指定的模拟滤波器时,则抽样频率(或抽样间隔T )将对设计结果有影响。

【设计步骤】

由已知数字滤波器指标确定相应的模拟滤波器指标,然后设计原型模拟滤波器,再将其变换为相应的数字滤波器

【仿真结果】 双线性不变法

Ap= 0.2445 As= 50.0000

00.10.20.30.4

0.50.60.70.80.91

-300

-250

-200

-150

-100

-50

Ω/π

幅值

脉冲响应不变法: Ap=0.4618 As=60.4050

0.1

0.2

0.3

0.4

0.50.6

0.7

0.8

0.9

1

-100

-90-80-70-60-50-40

-30-20-10

0Ω/π

幅值

Chebyshev I 型 Ap= 0.4999 As= 71.0563

00.10.20.30.4

0.50.60.70.80.91

-400

-300-200-100

0Ω/π

幅值

-3

-2

-1

01

2

3

-1

-0.500.5

1Real Part

I m a g i n a r y P a r t

Chebyshev II 型 Ap= 0.5000 As= 53.0577

-100

-50

Ω/π

幅值

-1

-0.500.51

Real Part

I m a g i n a r y P a r t

椭圆型滤波器

Ap= 0.5000 As= 51.2355

00.10.20.30.4

0.50.60.70.80.91

-400

-300-200-100

0Ω/π

幅值

-3

-2

-1

01

2

3

-1

-0.500.5

1Real Part

I m a g i n a r y P a r t

【结果分析】

双线性变换和冲激响应不变法所设计的滤波器的性能有什么不同。

BW 型、Chebyshev I 型、Chebyshev I I 型和椭圆型滤波器的零极点分布各有什么特点 由图得脉冲响应不变法的主要优点是模拟频率与数字频率之间的关系是线性的,主要缺点是存在频谱混叠,使得阻带衰减不满足条件,不适合设计高通和带阻滤波器。双线性变换法主要优点是避免了频谱混叠,其缺点是模拟频率与数字频率之间的关系是非线性的。

由Chebyshev I 型、Chebyshev II 型和椭圆型滤波器的仿真结果可以知道零极点分布的特点。在相同的设计指标下,BW 型滤波器的阶数最高,椭圆滤波器的阶数最低。而阶数相等,它们的裕量也不同。零极点分布都是关于虚轴对称且都在单位圆内。总体来

看,BW型滤波器最容易实现,而椭圆滤波器不易实现。

【自主学习内容】

利用matlab实现脉冲响应不变法和双线性变换法的程序语言

【阅读文献】

《数字信号处理》陈后金

【问题探究】

研讨探究的是双线性变换法和脉冲响应不变法以及BW型、Chebyshev I型、Chebyshev II型和椭圆型滤波器的特点;

双线性变换法的优缺点

优点:不会产生频谱混叠

缺点:数字滤波器和模拟滤波器的频率关系非线性

脉冲响应不变法的优缺点

优点:数字滤波器和模拟滤波器的频率关系为线性

缺点:存在频谱混叠,不能用脉冲响应不变法设计高通、带阻等滤波器。

BW型、Chebyshev I型、Chebyshev I I型和椭圆型滤波器的特点;

1.在相同的设计指标下,一般来说,BW型滤波器的阶数最高,椭圆滤波器的阶数最低。即使阶数相等,它们的裕量也不同。

2.在滤波器的实现过程中,

BW型滤波器最容易实现,而椭圆滤波器不易实现(因为它的系统函数H(s)的极点离jw轴最近)。

Cheby2型做的幅度响应在ws之后没有波动

【仿真程序】

双线性变换法

>> clear;

>> FS=44100; fp=2000;fs=10000;

>> Ap=0.5;As=50;

>> wp=fp*2*pi; ws=fs*2*pi; wp1=wp/FS; ws1=ws/FS;

>> OmegaP=2*FS*tan(wp1/2);

>> OmegaS=2*FS*tan(ws1/2);

>> [N,wc]=buttord(OmegaP,OmegaS,Ap,As,'s');

>> [bt,at]=butter(N,wc,'s');

>> [bz,az]=bilinear(bt,at,FS);

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 1.167808e-024. > In bilinear at 89

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 1.167808e-024. > In bilinear at 90

>> w=linspace(0,pi,512); h=freqz(bz,az,w); norm=max(abs(h)); >> bz=bz/norm;

>> plot((w/pi),20*log10(abs(h)/norm));

>> xlabel('Ω/π');ylabel('幅值');

>> w=[wp1 ws1]; h=freqz(bz,az,w);

>> fprintf('Ap= %.4f\n',-20*log10(abs(h(1))));

Ap= 0.2445

>> fprintf('As= %.4f\n',-20*log10(abs(h(2))));

As= 50.0000

>> grid on;

脉冲响应不变法

>> clear;

>> FS=44100;

>> fp=2000;fs=10000;

>> ws=fs*2*pi;

>> wp=fp*2*pi;

>> Ws=ws/FS;Wp=wp/FS;

>> Ap=0.5;As=50;

>> N=buttord(wp,ws,Ap,As,'s');

>> fprintf('N=%.0f\n',N);

N=10

>> wc=wp/10^(0.1*Ap-1)^(1/N/2);

>> [n,d]=butter(N,wc,'s');

correct/robust.

Coeffs of B(s)/A(s) are real, but B(z)/A(z) has complex coeffs. Probable cause is rooting of high-order repeated poles in A(s). > In impinvar at 122

>> w=linspace(0,pi,512);

>> h=freqz(n,d,w);

>> norm=max(abs(h));

>> n=n/norm;

>> plot(w/pi,20*log10(abs(h)/norm));

>> xlabel('Ω/π');ylabel('幅值');

>> w=[Wp Ws];

>> h=freqz(n,d,w);

>>fprintf('Ap=%.4f\n',-20*log10(abs(h(1))));fprintf('As=%.4f\n',-20*log10(abs(h(2)))); Ap=0.4618

As=60.4050

>> grid on;

Chebyshev I型

>> clear;

>> FS=44100;

>> fp=20000;fs=10000;

>> Ap=0.5;As=50;

>> wp=fp*2*pi;

>> ws=fs*2*pi;

>> wp1=wp/FS;

>> ws1=ws/FS;

>> OmegaP=2*FS*tan(wp1/2);

>> OmegaP=2*FS*tan(ws1/2);

>>[N,wc]=cheb1ord(OmegaP,OmegaS,Ap,As,'s');

>>[bt,at]=cheby1(N,Ap,wc,'s');

>>[bz,az]=bilinear(bt,at,FS);

>>w=linspace(0,pi,512);

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 9.975559e-023. > In bilinear at 89

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 9.975559e-023. > In bilinear at 90z

>> h=freqz(bz,az,w);

>>norm=max(abs(h));

>>bz=bz/norm; subplot(2,1,1);

>>plot((w/pi),20*log10(abs(h)/norm));

>>xlabel('Ω/π');ylabel('幅值');

>>[r,p,k]=residuez(bz,az);

>>subplot(2,1,2);

>>zplane(bz,az);

>>w=[wp1 ws1];

>>h=freqz(bz,az,w);

>>fprintf('Ap=%.4f\n',-20*log10(abs(h(1))));

Ap= 0.4999

>>fprintf('As= %.4f\n',-20*log10(abs(h(2))));

As= 71.0563

Chebyshev I I型

>> clear;

>> FS=44100;

>> fp=20000;fs=10000;

>> Ap=0.5;As=50;

>> wp=fp*2*pi;

>> ws=fs*2*pi;

>> wp1=wp/FS;

>> ws1=ws/FS;

>> OmegaP=2*FS*tan(wp1/2);

>> OmegaP=2*FS*tan(ws1/2);

>>[N,wc]=cheb2ord(OmegaP,OmegaS,Ap,As,'s');

>>[bt,at]=cheby2(N,As,wc,'s');

>>[bz,az]=bilinear(bt,at,FS);

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 1.956853e-024. > In bilinear at 89

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 1.956853e-024.

> In bilinear at 90

>>w=linspace(0,pi,512);

>>h=freqz(bz,az,w);

>>norm=max(abs(h));

>>bz=bz/norm;

>>subplot(2,1,1);

>> plot((w/pi),20*log10(abs(h)/norm));

>> xlabel('Ω/π');ylabel('幅值');

>>[r,p,k]=residuez(bz,az);

>>subplot(2,1,2);

>> zplane(bz,az);

>>w=[wp1 ws1];

>>h=freqz(bz,az,w);

>> fprintf('Ap= %.4f\n',-20*log10(abs(h(1)))); fprintf('As= %.4f\n',-20*log10(abs(h(2))));

Ap= 0.5000

As= 53.0577

椭圆型滤波器

>> clear;

>> FS=44100;

>> fp=20000;fs=10000;

>> Ap=0.5;As=50;

>> wp=fp*2*pi;

>> ws=fs*2*pi;

>> wp1=wp/FS;

>> ws1=ws/FS;

>> OmegaP=2*FS*tan(wp1/2);

>> OmegaP=2*FS*tan(ws1/2);

>> [N,wc]=ellipord(OmegaP,OmegaS,Ap,As,'s');

>> [bt,at]=ellip(N,Ap,As,wc,'s');

>> [bz,az]=bilinear(bt,at,FS);

>> w=linspace(0,pi,512);

>> h=freqz(bz,az,w);

>> norm=max(abs(h));

>> bz=bz/norm;

>> subplot(2,1,1);

>> plot((w/pi),20*log10(abs(h)/norm));

>> xlabel('Ω/π');ylabel('幅值');

>> [r,p,k]=residuez(bz,az);

>> subplot(2,1,2);zplane(bz,az);

>> w=[wp1 ws1];

>> h=freqz(bz,az,w);

>>fprintf('Ap=%.4f\n',-20*log10(abs(h(1)))); >> fprintf('As= %.4f\n',-20*log10(abs(h(2))));

Ap= 0.5000

As= 51.2355

【研讨题目2】

用窗函数法设计FIR数字高通滤波器,分别利用矩形窗、汉纳窗、哈明窗、布莱克曼窗、凯泽窗截断。讨论用窗函数法设计FIR数字高通滤波器时如何确定滤波器的指标,比较相同过渡带时用矩形窗、汉纳窗、哈明窗、布莱克曼窗、凯泽窗设计滤波器的阶数。

【温馨提示】

窗函数法设计FIR滤波器的基本思想是在时域逼近理想滤波器的单位脉冲响应。首先根据待逼近的理想滤波器的频率响应H d(e j),由IDTFT求出理想滤波器的单位脉冲响应h d[k],再将无限长的h d[k] 加窗截断得到有限长序列h[k]。为了获得线性相位FIR

滤波器,在窗函数法设计FIR滤波器的过程中,需要将线性相位因子e j(0.5M加入理想滤波器的频率响应H d(e j)。

常用窗函数除矩形窗外,还有Hann(汉纳)窗、Hamming(哈明)窗、Blackman(布莱克曼)窗、Kaiser(凯泽)窗等,这些窗函数的在频域的特征(主瓣宽度、旁瓣幅度)不同,使得所设计的滤波器过渡带宽度和阻带衰减也不同。

【设计步骤】

设计了下列指标的线性相位FIR高通滤波器:

Wp=0.67π,Ws=0.53π,Ap=0.3dB,As=50dB

使用不同的窗进行加窗截断: 采用矩形窗加窗截断 采用Hamming 窗加窗截断, 采用blackman 窗加窗截断 采用hanning 窗加窗截断 采用凯泽窗加窗截断

【仿真结果】 N=51

采用矩形窗加窗截断 Ap ≈0dB As ≈21dB

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-90-80-70-60-50-40-30-20-100

10

采用Hamming 窗加窗截断

Ap ≈0dB As ≈54 dB

-120

-100

-80

-60

-40

-20

20

采用blackman 窗加窗截断 Ap≈0dB As≈75dB

0.10.20.30.40.50.60.70.80.91

-140

-120-100-80-60-40-20020

采用hanning 窗加窗截断 Ap≈0d B As≈44dB

00.10.20.30.40.50.60.70.80.91

-140

-120-100-80-60-40-200

20

采用凯泽窗加窗截断

Ap≈0dB As≈52dB

00.10.20.30.40.50.60.70.80.91

-140

-120-100-80-60-40-200

20

【结果分析】

矩形窗设计出的FIR 滤波器阻带衰减最小,布莱克曼窗阻带衰减最大 矩形窗、汉纳窗、哈明窗、布莱克曼窗比较

【自主学习内容】

用matlab实现设计窗函数,部分窗函数的调用形式为

W=hanning(N)

W=hamming(N)

W=blackman(N)

W=baiser(N)

其中N是窗函数的参数,返回的w是一个长度为N的列向量,给出了窗函数N点的取值。

【阅读文献】

《数字信号处理》陈后金

【问题探究】

矩形窗的过渡带最窄,但设计出的FIR滤波器的阻带衰减最小。利用布莱克曼窗设计出的FIR滤波器阻带衰减最大,但其过渡带也最宽。所以过渡带宽度与阻带衰减是一对矛盾。工程应用中,在满足阻带衰减的前提下,尽可能地选择主瓣宽度较小的窗函数,对二者进行折中权衡处理。

【仿真程序】

矩形窗

>> Wp=0.67*pi;Ws=0.53*pi;Ap=0.3;As=50;

>> N=ceil(7*pi/(Wp-Ws));

>> N=mod(N+1,2)+N;

>> M=N-1;

>> fprintf('N=%.0f\n',N);

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1 理论分析 (3) 1.2 电路组成 (4) 1.3 一阶无源RC低通滤波电路性能测试 (5) 1.3.1 正弦信号源仿真与实测 (5) 1.3.2 三角信号源仿真与实测 (10) 1.3.3 方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2 电路组成 (22) 2.3 二阶无源LC带通滤波电路性能测试 (23) 2.3.1 正弦信号源仿真与实测 (23) 2.3.2 三角信号源仿真与实测 (28)

2.3.3 方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1 结论 (39) 3.2 误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1 RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

低通滤波器实验报告

(科信学院) 信息与电气工程学院 电子电路仿真及设计CDIO三级项目 设计说明书 (2012/2013学年第二学期) 题目: ____低通滤波器设计____ _____ _____ _ 专业班级:通信工程 学生姓名: 学号: 指导教师: 设计周数:2周 2013年7月5日 题目: ____低通滤波器设计____ _____ _____ _ (1)

第一章、电源的设计 (2) 1.1实验原理: (2) 1.1.1设计原理连接图: (2) 1. 2电路图 (5) 第二章、振荡器的设计 (7) 2.1 实验原理 (7) 2.1.1 (7) 2.1.2定性分析 (7) 2.1.3定量分析 (8) 2.2电路参数确定 (10) 2.2.1确定R、C值 (10) 2.2.2 电路图 (10) 第三章、低通滤波器的设计 (12) 3.1芯片介绍 (12) 3.2巴特沃斯滤波器简介 (13) 3.2.1滤波器简介 (13) 3.2.2巴特沃斯滤波器的产生 (13) 3.2.3常用滤波器的性能指标 (14) 3.2.4实际滤波器的频率特性 (15) 3.3设计方案 (17) 3.3.1系统方案框图 (17) 3.3.2元件参数选择 (18) 3.4结果分析 (20) 3.5误差分析 (23) 第四章、课设总结 (24) 第一章、电源的设计 1.1实验原理: 1.1.1设计原理连接图:

整体电路由以下四部分构成: 电源变压器:将交流电网电压U1变为合适的交流电压U2。 整流电路:将交流电压U2变为脉动的直流电压U3。 滤波电路:将脉动直流电压U3转变为平滑的直流电压U4。 稳压电路:当电网电压波动及负载变化时,保持输出电压Uo的稳定。 1)变压器变压 220V交流电端子连一个降压变压器,把220V家用电压值降到9V左右。 2)整流电路 桥式整流电路巧妙的利用了二极管的单向导电性,将四个二极管分为两组,根据变压器次级电压的极性分别导通。见变压器次级电压的正极性端与负载电阻的上端相连,负极性端与负载的电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。单项桥式整流电路,具有输出电压高,变压器利用率高,脉动系数小。

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

有源带通滤波器设计报告

有源带通滤波器设计报告 学生姓名崔新科 同组者王霞吴红娟 指导老师王全州

摘要 该设计利用模拟电路的相关知识,设定上线和下限频率,采用开环增益80dB 以上的集成运算放大器,设计符合要求的带通滤波器。再利用Multisim 仿真出滤波电路的波形和测量幅频特性。通过仿真和成品调试表明设计的有源滤波器可以基本达到所要求的指标。其主要设计内容: 1.确定有源滤波器的上、下限频率; 2.设计符合条件的有源带通滤波器;- 3.测量设计的有源滤波器的幅频特性; 4.制作与调试; 5. 总结遇到的问题和解决的方法。 关键词:四阶电路有源带通滤波器极点频率 The use of analog circuit design knowledge, on-line and set the lower limit frequency, the use of open-loop gain of 80dB or more integrated operational amplifier designed to meet the requirements of the bandpass filter. Re-use Multisim circuit simulation waveform and filter out the measurement of amplitude-frequency characteristics. Finished debugging the simulation and design of active filters that can basically meet the required targets. The main design elements: 1. Determine the active filter, the lower limit frequency; 2. Designed to meet the requirements of the active band-pass filter; - 3. Designed to measure the amplitude-frequency characteristics of active filters; 4. Production and commissioning; 5 summarizes the problems and solutions. Keywords: fourth-order active band-pass filter circuit pole frequency

数字图像处理实验报告.docx

谢谢观赏 数字图像处理试验报告 实验二:数字图像的空间滤波和频域滤波 姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26 日 1.实验目的 1. 掌握图像滤波的基本定义及目的。 2. 理解空间域滤波的基本原理及方法。 3. 掌握进行图像的空域滤波的方法。 4. 掌握傅立叶变换及逆变换的基本原理方法。 5. 理解频域滤波的基本原理及方法。 6. 掌握进行图像的频域滤波的方法。 2.实验内容与要求 1. 平滑空间滤波: 1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一 图像窗口中。 2) 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要 求在同一窗口中显示。 3) 使用函数 imfilter 时,分别采用不同的填充方法(或边界选项,如零填 充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图 像。 4) 运用 for 循环,将加有椒盐噪声的图像进行 10 次,20 次均值滤波,查看其特点, 显 示均值处理后的图像(提示:利用fspecial 函数的’average’类型生成均值滤波器)。 5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要 求在同一窗口中显示结果。 6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。 2. 锐化空间滤波 1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1] 对其进行滤波。 2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 的拉普拉斯算子,如5 ×5的拉普拉斯算子 w = [ 1 1 1 1 1 1 1 1 1 1 1 1 -24 1 1 1 1 1 1 1 1 1 1 1 1] 3) 分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对blurry_moon.tif 谢谢观赏

有源低通滤波器设计报告要点

课程设计(论文)说明书 题目:有源低通滤波器 院(系):信息与通信学院 专业:通信工程 学生姓名: 学号: 指导教师: 职称: 2010年 12 月 19 日

摘要 低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零。有源滤波器是指由放大电路及RC网络构成的滤波器电路,它实际上是一种具有特定频率响应的放大器。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络节数越多,元件参数计算越繁琐,电路的调试越困难。根据指标,本次设计选用二阶有源低通滤波器。 关键词:低通滤波器;集成运放UA741;RC网络 Abstract Low-pass filter is a component which can only pass the low frequency signal and attenuation or inhibit the high frequency signal . Ideal frequency response of the filter circuit in the pass band should have a certain amplitude and linear phase shift, and amplitude of the resistance band to be zero. Active filter is composed of the RC network and the amplifier, it actually has a specific frequency response of the amplifier. Higher the order of the filter, the rate of amplitude-frequency characteristic decay faster, but more the number of RC network section, the more complicated calculation of device parameters, circuit debugging more difficult. According to indicators ,second-order active low-pass filter is used in this design . Key words:Low-pass filter;Integrated operational amplifier UA741;RC network,

滤波器设计的实验报告

实验三滤波器设计 一、实验目的: 1、熟悉Labview的软件操作环境; 2、了解VI设计的方法和步骤,学会简单的虚拟仪器的设计; 3、熟悉创建、调试VI; 4、利用Labview制作一个滤波器,实现低通、高通、带通、带阻等基本滤波功能,并调节截止频率实现滤波效果。 二、实验要求: 1、可正弦实现低通、高通、带通、带阻等基本滤波功能,并图形显示滤波前后波形; 2、可调节每种滤波器的上限截止频率或者下限截止频率; 3、给出每种滤波器的幅频特性; 三、设计原理: 1、利用LABVIEW中的数字IIR、FIR数字滤波器实现数字滤波功能,参数可调;

2、将两路不同频率的信号先叠加,然后通过滤波,将一路信号滤除,而保留有用信号,Hz f Hz f 100,2021==; 3、叠加即将两个信号相加,用到一个数学公式; 4、信号进入case 结构,结构中有两路分支,每路分支均有一个滤波模块,其中一个为IIR 滤波器,另一个为FIR 滤波器,通过按钮可选择IIR 或是FIR.每个滤波模块都可通过外部按钮对其参数进行调整,各个过程的波形都用波形图显示出来; 5、将IIR 、FIR 滤波器的“滤波信息”接线端用控件按名称解除捆绑接入波形图,观察波形的幅度和相位; 6、用一个while 循环实现不重新启动既可以改参数。 四、设计流程: 1、前面板的设计:

2、程序框图的设计: 五、实验结果: 1、低通滤波功能:将100Hz的信号滤除,保留20Hz的信号 用IIR巴特沃斯滤波器,将低截止频率设置为25Hz。

用FIR滤波器,拓扑类型选择Windowed FIR,将最低通带设置为50。 用IIR巴特沃斯滤波器,将低截止频率设置为90Hz。

低通滤波器设计实验报告

低通滤波器设计实验报 告 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

低通滤波器设计 一、设计目的 1、学习对二阶有源RC 滤波器电路的设计与分析; 2、练习使用软件ORCAD (PISPICE )绘制滤波电路; 3、掌握在ORCAD (PISPICE )中仿真观察滤波电路的幅频特性与相频特性曲线 。 二、设计指标 1、设计低通滤波器截止频率为W=2*10^5rad/s; 2、品质因数Q=1/2; 三、设计步骤 1、考虑到原件分散性对整个电路灵敏度的影响,我们选择 R1=R2=R,C1=C2=C ,来减少原件分散性带来的问题; 2、考虑到电容种类比较少,我们先选择电容的值,选择电容 C=1nF; 3、由给定的Wp 值,求出R 12121C C R R Wp ==RC 1=2*10^5 解得:R=5K? 4、根据给定的Q ,求解K Q=2121C C R R /K)RC -(1+r2)C1+(R1= K -31 解得:K=3-Q 1= 5、根据求出K 值,确定Ra 与Rb 的值

Ra=2 K=1+ Rb Ra=Rb 这里取 Ra=Rb=10K?; 四、电路仿真 1、电路仿真图: 2、低通滤波器幅频特性曲线 3、低通滤波器相频特性曲线 注:改变电容的值:当C1=C2=C=10nF时 低通滤波器幅频特性曲线 低通滤波器相频特性曲线 五、参数分析 1、从幅频特性图看出:该低通滤波器的截止频率大约33KHz, 而我们指标要求设计截止频率 f= Wp/2?= 存在明显误差; 2、从幅频特性曲线看出,在截至频率附近出现凸起情况,这是二阶滤波器所特有的特性; 3、从相频特性曲线看出,该低通滤波器的相频特性相比比较好。 4、改变电容电阻的值,发现幅频特性曲线稍有不同,因此,我们在设计高精度低误差的滤波器时一定要注意原件参数的选择。 六、设计心得:

fir低通滤波器设计(完整版)

电子科技大学信息与软件工程学院学院标准实验报告 (实验)课程名称数字信号处理 电子科技大学教务处制表

电 子 科 技 大 学 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间:14-18 一、实验室名称:计算机学院机房 二、实验项目名称:fir 低通滤波器的设计 三、实验学时: 四、实验原理: 1. FIR 滤波器 FIR 滤波器是指在有限范围内系统的单位脉冲响应h[k]仅有非零值的滤波器。M 阶FIR 滤波器的系统函数H(z)为 ()[]M k k H z h k z -==∑ 其中H(z)是k z -的M 阶多项式,在有限的z 平面内H(z)有M 个零点,在z 平面原点z=0有M 个极点. FIR 滤波器的频率响应 ()j H e Ω 为 0 ()[]M j jk k H e h k e Ω -Ω ==∑ 它的另外一种表示方法为 () ()()j j j H e H e e φΩΩΩ=

其中 () j H e Ω和()φΩ分别为系统的幅度响应和相位响应。 若系统的相位响应()φΩ满足下面的条件 ()φαΩ=-Ω 即系统的群延迟是一个与Ω没有关系的常数α,称为系统H(z)具有严格线性相位。由于严格线性相位条件在数学层面上处理起来较为困难,因此在FIR 滤波器设计中一般使用广义线性相位。 如果一个离散系统的频率响应 ()j H e Ω 可以表示为 ()()()j j H e A e αβΩ-Ω+=Ω 其中α和β是与Ω无关联的常数,()A Ω是可正可负的实函数,则称系统是广义线性相位的。 如果M 阶FIR 滤波器的单位脉冲响应h[k]是实数,则可以证明系统是线性相位的充要条件为 [][]h k h M k =±- 当h[k]满足h[k]=h[M-k],称h[k]偶对称。当h[k]满足h[k]=-h[M-k],称h[k]奇对称。按阶数h[k]又可分为M 奇数和M 偶数,所以线性相位的FIR 滤波器可以有四种类型。 2. 窗函数法设计FIR 滤波器 窗函数设计法又称为傅里叶级数法。这种方法首先给出()j d H e Ω, ()j d H e Ω 表示要逼近的理想滤波器的频率响应,则由IDTFT 可得出滤波器的单位脉冲响应为 1 []()2j jk d d h k H e e d π π π ΩΩ-= Ω ? 由于是理想滤波器,故 []d h k 是无限长序列。但是我们所要设计的FIR 滤波 器,其h[k]是有限长的。为了能用FIR 滤波器近似理想滤波器,需将理想滤波器的无线长单位脉冲响应 []d h k 分别从左右进行截断。 当截断后的单位脉冲响应 []d h k 不是因果系统的时候,可将其右移从而获得因果的FIR 滤波器。

fir低通滤波器设计报告

滤波器设计原理 本文将介绍数字滤波器的设计基础及用窗函数法设计FIR 滤波器的方法,运用MATLAB 语言实现了低通滤波器的设计以及用CCS软件进行滤波效果的观察。读取语音文件,并加入一定的随机噪声,最后使用窗函数滤波法进行语音滤波,将加噪后的语音文件转换为.dat文件使其能和ccs软件链接,输出个阶段的时域和频域波形。 根据数字滤波器冲激响应函数的时域特性。可将数字滤波器分为两种,即无限长冲激响应( IIR) 滤波器和有限长冲激响应(FIR) 滤波器。IIR 滤波器的特征是具有无限持续时间的冲激响应;FIR 滤波器冲激响应只能延续一定时间。其中FIR 滤波器很容易实现严格的线性相位,使信号经过处理后不产生相位失真,舍入误差小,稳定等优点。能够设计具有优良特性的多带通滤波器、微分器和希尔伯特变换器,所以在数字系统、多媒体系统中获得极其广泛的应用。FIR数字滤波器的设计方法有多种,如窗函数设计法、最优化设计和频率取样法等等。而随着MATLAB软件尤其是MATLAB 的信号处理工具箱和Simulink 仿真工具的不断完善,不仅数字滤波器的计算机辅助设计有了可能而且还可以使设计达到最优化。 FIR滤波器的窗函数法的设计 采用汉明窗设计低通FIR滤波器 使用b=fir1(n,Wn)可得到低通滤波器。其中,0Wn1,Wn=1相当于0.5。其语法格式为 b=fir1(n,Wn); 采用:b=fir1(25, 0.25); 得到归一化系数:

或者在命令行输入fdatool进入滤波器的图形设置界面,如下图所示 得到系数(并没有归一化) const int BL = 26; const int16_T B[26] = { -26, 33, 126, 207, 138, -212, -757, -1096, -652, 950, 3513, 6212, 7948, 7948, 6212, 3513, 950, -652, -1096, -757, -212, 138, 207, 126, 33, -26 }; FIR滤波器的设计(Matlab) 技术指标为:采用25阶低通滤波器,汉明窗(Hamming Window)函数,截止频率为1000Hz,采样频率为8000Hz,增益40db。 下面的程序功能是:读取语音文件,并加入一定的随机噪声,最后使用窗函数滤波法进行语音滤波,将加噪后的语音文件转换为.dat文件使其能和ccs软件链接,输出个阶段的时域和频域波形。

二阶低通滤波器课程设计报告昌航版

二阶低通滤波器课程设计报告昌航版

课程设计说明书 课程设计名称:模拟电子技术课程设计课程设计题目:二阶低通滤波器的设计学院名称:信息工程学院 专业:电子信息工程班级: 学号:姓名: 评分:教师: 20 12 年 3 月日

模拟电子技术 课程设计任务书 20 10 -20 11 年 第 2 学期 第 1 周- 3 周 注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。 2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交题目 二阶低通滤波器的设计 内容及要求 (1)分别用压控电压源和无限增益多路反馈两种方法设计电路 (2)截止频率kHz 2f p = (3) 增益2A v = 进度安排 第1周:周一至周三查资料,完成原理图设计及仿真; 第1周:周四至第2周周二,完成系统的制作、调试; 第2周:周三设计结果检查。 学生姓名: 指导时间 指导地点: 楼 室 任务下达 20 年 月 日 任务完成 20 年 月 日 考核方式 1.评阅 □ 2.答辩 □ 3.实际操作□ 4.其它 □ 指导教师 系(部)主任

院教务存档。 摘要 低通滤波器是一个经过低频信号而衰减或抑制高频信号的部件。理想滤波器电路的频响在通带内具有一定幅值和线性相移,而在阻带内幅值应为零。有源滤波器是指由放大电路及RC网络构成的滤波器电路,它实际上是一种具有特定频率相应的放大器。滤波器的阶数越高,幅频特性的速率越快,但RC网络节数越多,元件参数计算越繁琐,电路的调试越困难。根据指标,本次设计选用二阶有源低通滤波器。 该电路主要采用了uA741运放,而且在一阶的基础上增加一节RC网络,加大幅频特性衰减斜率,以达到在给定的频段内,让信号无衰减的经过电路,而通带外的其它信号将受到很大的衰减,从而提高滤波效率。 关键词:低通滤波器集成运放uA741 RC网络

低通滤波器的设计

低通滤波器的设计 模拟滤波器在各种预处理电路中几乎是必不可少的,已成为生物医学仪器中的基本单元电路。有源滤波器实质上是有源选频电路,它的功能是允许指定频段的信号通过,而将其余频段上的信号加以抑制或使其急剧衰减。各种生物信号的低噪声放大,都是首先严格限定在所包含的频谱范围之内。 最常用的全极点滤波器有巴特沃斯滤波器和切比雪夫滤波器。就靠近ω=0处的幅频特性而言,巴特沃斯滤波器比切比雪夫滤波器平直,即在频率的低端巴特沃斯滤波器幅频特性更接近理想情况。但在接近截止频率和在阻带内,巴特沃斯滤波器则较切比雪夫滤波器差得多。本设计中要保证低频信号不被衰减,而对高频要求不高,因此选择了巴特沃斯滤波器。巴特沃思滤波电路(又叫最平幅度滤波电路)是最简单也是最常用的滤波电路,这种滤波电路对幅频响应的要求是:在小于截止频率ωc。的范围内,具有最平幅度响应,而在ω>ωc。后,幅频响应迅速下降。 因为本设计中要保证低频信号不被衰减,而对高频要求不高,所以选择 二阶滤波器即可。本系统采用二阶Butterworth低通滤波器,截止频率f H=100HZ,其电路原理图如1: 图1 低通滤波器图 根据matlab软件算得该设计适合二阶低通滤波器,FSF=628选Z=10000,则

Z R R FSF Z ?=?=的归一值的归一值 C C 3.2脉象信号的的前置放大 由于人体信号的频率和幅度都比较低,很容易受到空间电磁波以及人体其它生理信号的干扰,因此在对其进行变换、分析、存储、记录之前,应该进行一些预处理,以保证测量结果的准确性。因此需要对信号进行放大,“放大”在信号预处理中是第一位的。根据所测参数和所用传感器的不同,放大电路也不同。用于测量生物电位的放大器称为生物电放大器,生物电放大器比一般放大器有更严格的要求。 在本研究中放在传感器后面的电路就是前置放大电路,由于从传感器取得的信号很微弱,且混杂了一些其他的干扰信号。因此前置放大电路的主要功能是,滤除一些共模干扰信号,同时进行一定的放大。该电路由4部分构成:并联型双运放仪器放大器,阻容耦合电路,由集成仪用放大器构成的后继放大器和共模信号取样电路。并联型双运放仪器放大器的优点是不需要精密的匹配电阻,理论上它的共模抑制比为无穷大,且与其外围电阻的匹配程度无关。集成仪用放大器将由并联型双运放仪器放大器输出的双端差动信号转变为单端输出信号,并采用阻容耦合电路隔离直流信号,可以使集成仪用放大器取得较高的差模增益,从而得到很高的共模抑制比。共模取样驱动电路由两个等值电阻和一只由运放构成的跟随器构成,能够使共模信号不经阻容耦合电路的分压直接加在集成放大器的输入端,避免了由于阻容耦合电路的不匹配而降低电路整体的共模抑制比。此电路中也采用了右腿驱动电路来抑制位移电流的影响。前置放大电路参数选择:此部分总的增益取为1000,其中并联型双运放仪器放大器的增益为5,集成仪用放大器的增益为200。具体设计电路如图2所示

基于巴特沃斯的低通滤波器的设计原理

课程设计报告 ——基于虚拟仪器的幅频特性自动测试系统的实现 2010年12月25日 一、实验内容 基于虚拟仪器的幅频特性自动测试系统的实现 二、实验目的 1、通过对滤波器的设计,充分了解测控电路中学习的各种滤波器的工作原理以及工作机制。学习幅频特性曲线的拟合,学会基本MATLAB操作。 2、进一步掌握虚拟仪器语言LabVIEW设计的基本方法、常用组件的使用方法和设计全过程。以及图形化的编程方法;学习非线性校正概念和用曲线拟合法实现非线性校正;练习正弦波、方波、三角波产生函数的使用方法;掌握如何使用数据采

集卡以及EIVIS产生实际波形信号。了解图形化的编程方法;练习DIO函数的使用方法;学习如何使用数据采集卡以及EIVIS产生和接受实际的数字信号。3、掌握自主化学习的方法以及工程设计理念等技能。 三、实验原理 滤波器是具有频率选择作用的电路或运算处理系统。滤波处理可以利用模拟电路实现,也可以利用数字运算处理系统实现。滤波器的工作原理是当信号与噪声分布在不同频带中时,可以在频率与域中实现信号分离。在实际测量系统中,噪声与信号的频率往往有一定的重叠,如果重叠不严重,仍可利用滤波器有效地抑制噪声功率,提高测量精度。 任何复杂地滤波网络,可由若干简单地、相互隔离地一阶与二阶滤波电路级联等效构成。一阶滤波电路只能构成低通和高通滤波器,而不能构成带通和带阻。可先设计一个一阶滤波电路来熟悉电路设计思路以及器件使用要求和软件地进一步学习。 滤波器主要参数介绍: ①通带截频f p=w p/(2π)为通带与过渡带边界点的频率,在该点信号增益下降到一个人为规定的下限。 ②阻带截频f r=wr/(2π)为阻带与过渡带边界点的频率,在该点信号衰耗(增益的倒数)下降到一人为规定的下限。 ③转折频率f c=w c/(2π)为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,常以fc作为通带或阻带截频。 ④固有频率f0=w0/(2π)为电路没有损耗时,滤波器的谐振频率,复杂电路往

有源滤波器实验报告

有源滤波器实验报告文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

实验七集成运算放大器的基本应用(Ⅱ)—有源滤波器 一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 (a)低通(b)高通 (c) 带通(d)带阻 图7-1 四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图7-1所示。 具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。 1、低通滤波器(LPF) 低通滤波器是用来通过低频信号衰减或抑制高频信号。

如图7-2(a )所示,为典型的二阶有源低通滤波器。它由两级RC 滤波环节与同相比例运算电路组成,其中第一级电容C 接至输出端,引入适量的正反馈,以改善幅频特性。图7-2(b )为二阶低通滤波器幅频特性曲线。 (a)电路图 (b)频率特性 图7-2 二阶低通滤波器 电路性能参数 1 f uP R R 1A + = 二阶低通滤波器的通带增益 RC 2π1 f O = 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 uP A 31 Q -= 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形状。 2、高通滤波器(HPF ) 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图7-2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图7-3(a)所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照LPH 分析方法,不难求得HPF 的幅频特性。

有源滤波器实验报告

实验七 集成运算放大器的基本应用(n )—有源滤波器 一、 实验目的 i 熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、 实验原理 (a )低通 (b )高通 (c)带通 (d )带阻 图7—1四种滤波电路的幅频特性示意图 由RC 元件与运算放大器组成的滤波器称为 RC 有源滤波器,其功能是让一定频率范围内的信号通过, 抑制或急剧衰减此频率范围以外的信号。 可用在信息处理、数据传输、 抑制干扰等方面,但因受运算放 大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通 (LPF)、高通 (HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图 7— 1所示。 具有理想幅频特性的滤波器是很难实现的, 只能用实际的幅频特性去逼近理想的。 一般来说,滤波 器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高 ,幅频特性衰减的速率越快,但 RC 网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶 RC 有 滤波器级联实现。 1、低通滤波器(LPF ) 低通滤波器是用来通过低频信号衰减或抑制高频信号 如图7— 2 (a )所示,为典型的二阶有源低通滤波器。它由两级 RC 滤波环节与同相比例运算电路 组成,其中第一级电容 C 接至输出端,弓I 入适量的正反馈,以改善幅频特性。图 7—2 (b )为二阶低 通滤波器幅频特性曲线。 (a) 电路图 图7—2二阶低通滤波器 电路性能参数 ―1奈二阶低通滤波器的通带增益 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 (b)频率特性 1 2 T RC

等波纹低通滤波器的设计及与其他滤波器的比较

燕山大学 课程设计说明书题目:等波纹低通滤波器的设计 学院(系):里仁学院 年级专业:仪表10-2 学号: 学生姓名: 指导教师: 教师职称:

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位:自动化仪表系 2013年7月5日

摘要 等波纹最佳逼近法是一种优化设计法,它克服了窗函数设计法和频率采样法的缺点,使最大误差(即波纹的峰值)最小化,并在整个逼近频段上均匀分布。用等波纹最佳逼近法设计的FIR数字滤波器的幅频响应在通带和阻带都是等波纹的,而且可以分别控制通带和阻带波纹幅度。这就是等波纹的含义。最佳逼近是指在滤波器长度给定的条件下,使加权误差波纹幅度最小化。与窗函数设计法和频率采样法比较,由于这种设计法使滤波器的最大逼近误差均匀分布,所以设计的滤波器性能价格比最高。阶数相同时,这种设计法使滤波器的最大逼近误差最小,即通带最大衰减最小,阻带最小衰减最大;指标相同时,这种设计法使滤波器阶数最低。实现FIR数字滤波器的等波纹最佳逼近法的MATLAB信号处理工具函数为remez和remezord。Remez函数采用数值分析中的remez多重交换迭代算法求解等波纹最佳逼近问题,求的满足等波纹最佳逼近准则的FIR数字滤波器的单位脉冲响应h(n)。由于切比雪夫和雷米兹对解决该问题做出了贡献,所以又称之为切比雪夫逼近法和雷米兹逼近法。 关键词:FIR数字滤波器 MATLAB remez函数 remezord函数等波纹

目录 摘要---------------------------- ----------------------------------------------------------------2 关键字------------------------------------------------------------------------------------------2 第一章第一章数字滤波器的基本概-------------------------------------------------4 1.1滤波的涵义----------------------------------------------------------------------4 1.2数字滤波器的概述-------------------------------------------------------------4 1.3数字滤波器的实现方法-------------------------------------------------------4 1.4 .数字滤波器的可实现性------------------------------------------------------5 1.5数字滤波器的分类-------------------------------------------------------------5 1.6 FIR滤波器简介及其优点----------------------------------------------------5- 第二章等波纹最佳逼近法的原理-------------------------------------------------------5 2.1等波纹最佳逼近法概述-------------------------------------------------------9 2.2.等波纹最佳逼近法基本思想-------------------------------------------------9 2.3等波纹滤波器的技术指标及其描述参数介绍---------------------------10 2.3.1滤波器的描述参数-----------------------------------------------------10 2.3.2设计要求-----------------------------------------------------------------10 第三章matlab程序------------------------------------------------------------------------11 第四章该型滤波器较其他低通滤波器的优势及特点--------------------12 第五章课程设计总结---------------------------------------------------------------------15 参考文献资料-------------------------------------------------------------------------------15

低通滤波器设计课题研究报告

1、 课题背景 滤波器是具有一定传输选择特性的、对信号进行加工处理的装置,它允许输入信号中的一些成分通过,抑制或衰减另一些成分。其功能是将输入信号变换为人们所需要的输出信号。 滤波器按照处理的信号不同可分为模拟滤波器和数字滤波器;按功能不同可分为低通、高通、带通和带阻。 本次课设是完成低通滤波器的设计,目前常用的方法有模拟滤波器设计的巴特沃斯和切比雪夫滤波器以及数字滤波器设计的冲激响应不变法和双线性变换法。 巴特沃斯滤波器的频率特性曲线,无论在通带还是阻带都是频率的单调减函数。因此,当通带边界处满足指标要求时,通带内肯定会有较大富余量。因此,更有效的设计方法应该是将逼近精确度均匀地分布在整个通带内,或者均匀分布在整个阻带内,或者同时均匀分布在两者之内。这样,就可以使滤波器阶数大大降低。 切比雪夫滤波器的幅频特性就具有这种等波纹特性。它有两种形式: 振幅特性在通带内是等波纹的、在阻带内是单调下降的切比雪夫Ⅰ型滤波器; 振幅特性在通带内是单调下降、在阻带内是等波纹的切比雪夫Ⅱ型滤波器。 脉冲响应不变法的优点是频率变换关系是线性的,即ω=ΩT ,如果不存在频谱混叠现象,用这种方法设计的数字滤波器会很好地重现原模拟滤波器的频响特性。另外一个优点是数字滤波器的单位脉冲响应完全模仿模拟滤波器的单位冲激响应波形,时域特性逼近好。但是,有限阶的模拟滤波器不可能是理想带限的,所以,脉冲响应不变法的最大缺点是会产生不同程度的频率混叠失真,其适合用于低通、带通滤波器的设计,不适合用于高通、带阻滤波器的设计。 双线性变换法的优点:避免了频率响应的混叠,数字域频率与模拟频率之间是单值映射。缺点:除了零频附近外,数字域频率与模拟频率之间存在严重非线性。 2、 方案设计 2.1、模拟滤波器 具有单调下降的幅频特性 1、由技术指标要求确定滤波器阶次 对于本次课设,已经要求是三阶,故此步可省略 2、由阶次确定归一化后的表达式 对于3阶的归一化表达式为:1221 )(23+++=p p p p H (1)

实验报告基于MATLAB的数字滤波器设计

实验7\8基于MATLAB勺数字滤波器设计实验目的:加深对数字滤波器的常用指标和设计过程的理解。 实验原理:低通滤波器的常用指标: 1 一6P 兰G(e^) ≤ 1 + 6P , for 国≤ ωP G(J") ≤ 6s, for 国s ≤ ⑷≤ ∏ 通带边缘频率:'P ,阻带边缘频率:'s, 通带起伏:J P,通带峰值起伏: C(P= —20 IOg io (^-OP )【d B 】阻带起伏.冠S PaSSband StOPband Tran Siti on band Fig 7.1 TyPiCaI magn itude SPeCifiCati On for a digital LPF :S = -20 log ιo(r)[dB 】 O 数字滤波器有IIR和FlR两种类型,它们的特点和设计方法不同。 在MATLAB^,可以用[b , a]=butter ( N,Wr)等函数辅助设计IIR数字滤波器,也可以用b=fir1(N,Wn, 'type ')等函数辅助设计FIR数字滤波器。 实验内容:利用MATLAB编程设计一个数字带通滤波器,指标要求如下: 通带边缘频率:??P1=0.45^,?? P2=0?65 二,通带峰值起伏:[dB】O 阻带边缘频率:'s1 0.3…,'s2 0.75…,最小阻带衰减:-S 4°[dB] O 分别用IIR和FlR两种数字滤波器类型进行设计。 实验要求:给出IIR数字滤波器参数和FIR数字滤波器的冲激响应,绘出它们的幅度和相位频响曲线,讨论它们各自的实现形式和特点。 实验内容: IRR代码: wp=[0.45*pi,0.65*pi]; ws=[0.3*pi,0.75*pi]; Ap=1; A S=40; [N,Wc]=buttord(wp∕pi,ws∕pi,Ap,As); [b,a]=butter(N,Wc)%[b,a] = butter( n, Wn,'ftype') 最小阻带衰减:

相关文档
相关文档 最新文档