文档库 最新最全的文档下载
当前位置:文档库 › 澳大利亚煤层气田地面工程技术对我国煤层气田开发的启示

澳大利亚煤层气田地面工程技术对我国煤层气田开发的启示

澳大利亚煤层气田地面工程技术对我国煤层气田开发的启示
澳大利亚煤层气田地面工程技术对我国煤层气田开发的启示

沼气生产工艺流程

沼气生产工艺流程 图7-1工艺流程简图二、工艺流程简述

厌氧消化的主要粪源为项目所在地周边的养殖场的猪粪、秸秆、餐厨垃圾和园区及周边的蔬菜残余,猪粪有干清猪粪和水冲猪粪。干清猪粪、秸秆和蔬菜残余这三种原料采用固体进料系统进料,水冲猪粪和餐厨垃圾采用液体进料系统进料。 秸秆经过X-Ripper破碎机破碎后,通过铲车输送至预混池中,预混池中装有潜水搅拌机,可将破碎的秸秆和水充分混匀(TS为7.5%),混匀后的物料采用螺杆进料泵泵送至生物预处理发酵罐,生物预处理后的秸秆溢流至出料池后用螺杆泵泵送至快速混合系统。 蔬菜残余经X-Ripper破碎机破碎后,用铲车输送至固体进料系统,干清猪粪也被加到固体进料系统中,然后通过无轴螺旋输送机输送至快速混合系统,从厌氧反应器泵出的出料也被输送到快速混合系统。经预处理的秸秆、破碎的蔬菜残余、猪粪、工艺水和反应罐的出料在快速混合系统中混合并最终被输送到厌氧反应罐中。 水冲猪粪、破碎后的餐厨垃圾在混料池中混合均匀后经螺杆泵泵入厌氧反应罐中。 厌氧反应罐内设中轴搅拌装置,罐内物料呈全混状态,在适宜的碱度、温度条件下确保厌氧反应充分进行。厌氧反应产生的沼气经净化系统净化后部分供居民用气,其余部分经由净化提纯、高压储气柜储存后运送至加气站;消化罐内出来的残渣由螺杆泵输送至换热器经热交换后流入缓冲池,再由污泥泵输送入卧螺式离心分离机进行固液分离,分离后的沼渣沼液作为有机肥厂的原料,根据市场需求生产有机肥。出于安全因素的考虑,需要在变压吸附系统前设置一个沼气火炬。 设置换热器回收出料热量,进行余热利用,减少外加热量,进而减少能源消耗。设置燃煤锅炉以补充余热回收热量的不足,在厌氧消化罐内设置加热盘管,维持厌氧反应稳定运行的温度。 1、预处理工艺 秸秆单独收集,收集后先进行粉碎,然后采用生物预处理。 蔬菜残余单独收集,收集后进行破碎。 猪粪经过格栅,去除石块、塑料等大的无机物质。

2000头猪沼气工程技术方案

养猪场沼气工程方案 (2000头) 青岛三色源环保科技工程有限公司

2013 年11 月

第一章沼气工程项目设计条件和工艺方案 第一节工程规模 生猪存栏量2000 头,设计日处理混合粪污9t 的沼气集中供气工程,供斜里村村民生活炊用。项目年产沼气70956m3。 第二节可利用资源量 一、资源量因项目详细资料不全,暂按以往项目经验及理论数据进行计算,猪场运营时存栏2000 头全部按照育成猪考虑。 根据猪粪粪便排放量资料统计,育成猪猪排粪量为2 kg/d 。则本项目每日粪便资源量为:存栏育成猪粪便:2000头× 2 kg/ 头·d=4 t/d 猪粪TS为18%,每天产粪便TS为:4 t/d ×18%=t/d 因养猪场现有清粪模式不详,暂按干清粪考虑设计。考虑发酵浓度、温度及停留时间影响,按每吨TS猪粪产气270 m3计,则每天产沼气量为: t/d × 270 m3/t = m 3 二、处理后沼液、沼渣的去向 粪污经厌氧消化可作为有机肥就地消纳或外运。 第三节沼渣产量估算 物料全天输入总量为d,厌氧阶段消耗量为t/d ,该部分TS消耗是生物质能转化、沼气生产的主体。厌氧阶段TS的输出量为d。物料(TS)平衡计算见表1-1 。

按表计算结果,每天沼渣干物质产量为,见图物料()平衡图 ) 沼气t/d ()(2475m3 粪污 沼渣含水率70 %左右,沼渣干物质产量为t/d ,则沼渣产量为d 年产沼渣吨,年产沼液吨。

第二章 工艺流程设计 第一节 沼气工程工艺选 择 、沼气工程工艺路线 本沼气工程工艺路线如图 2-1 所示。 二、工艺流程说明 本沼气工程项目实行雨污分流,避免雨水进入沼气工程。混合粪污经厌氧发酵 后,产生的沼气经净化增压后通过管道给村里农民户用。锅炉用于厌氧罐增温;厌 氧发酵所产生的沼渣沼液作为有机肥就地消纳或外运。 1、预处理工艺 预处理环节由集污池和调配池组成。 (1)集污池 收集养猪场污水。 (2)调配池 将干清粪在调配池内调节到 8%浓度混合均匀后进入厌氧罐。 2、厌氧消化工艺 厌氧消化工艺包括进料单元、厌氧消化单元、保温单元等构成。 污水 农民户用 图 2-1 养猪场沼气工程工艺流程 果园等 增压风机 脱硫 脱水 集污池 猪粪 固态有 农作物、 干化床

沼气工程施工规程与验收内容、方法及标准汇总

沼气工程施工规程与验收内容、方法及标准汇总 沼气工程验收成功与否关系到沼气工程是否能顺利投入使用,实现废弃物的资源化与价值升级,是沼气工程正常运行的重要一环。本文将就大中型沼气工程主要验收内容、沼气安装工程施工规程及验收标准、沼气工程验收方法与标准进行详述! 一、大中型沼气工程验收内容 大中型沼气工程验收一般包括内业验收和外业验收两项。 1.内业验收 内业验收的内容是施工单位交付的技术文件及资料,内容包括: 1)由设计单位提出的全部设计图纸和设计变更通知单。 2)由设计、建设、施工三方有关技术人员参加的设计图纸会审记录。 3)各单项工程,特别是隐蔽工程的材质、规格、型号和施工验收记录。 4)各类建筑材料、产品的出厂合格证及材料的试验报告单,产品、设备、仪器、仪表的技术说明书和合格证。 5)砂浆、混凝土的实验室配合比报告单。 6)沼气管路的施工及打压记录。 7)施工单位的施工组织设计。 8)重大施工方案的重要会议记录。 2.外业验收 外业验收是对大中型沼气工程进行分步分项工程验收,内容包括: 1)发酵罐及附属工程的土方工程、钢筋工程、混凝土工程、砌筑工程、钢结构工程、附属装置等验收按国家的有关标准、规范执行。 2)贮气罐注水试验,检查是否漏气、漏水。用肥皂水检查气密性;进行升降试验,检查滑轮与导轨接触是否合格,安全限位装置是否好使等。 3)管道的埋深、坡度、防腐、施工工艺、气密性、仪器仪表的安装等的验收。 4)工程综合试运转。 二、沼气安装工程施工规程及验收标准

1.搪瓷拼装罐安装 1)安装前的准备需符合下列要求: a安装使用的吊装设备应根据反应器总重量经过计算配置,并满足20%以上的安全系数; b安装工具及辅料按实际需求配齐,电工工具应认真检查设备绝缘情况,配电箱应符合规范要求;c认真核对材料发货清单,不得随意更换拼装材料,对损坏或变形的拼装构件要采取更换或加固措施; d混凝土基础应达到设计强度80%以上,平整度误差在±5mm之内。 2)安装时应符合下列要求: a应从上到下采用倒装法安装,安装顶板时需按方向标志安装; b钢板紧固部位需擦拭干净,两板贴合时,定位要准确、牢固,防止孔位错位; c打胶需饱满,厚度均匀,钢板边缘挤出的胶需刮平,内部打胶厚度应盖过螺帽,并刮平,防止产生气泡; d钢板紧固程度应以橡胶带厚度被压缩1/3为度; e各工艺套管应按照设计图纸要求进行预留。 3)罐体底部防水需符合下列要求: a基层处理:基层必须平整、牢固、干净、无明水、阴阳角应做成弧形。旧层面应把原破裂、起鼓的防水层及尘土除净,低凹破损处修平、渗漏处须先进行堵漏处理,基层要平整,不得有明水; b底涂施工:将水与涂料按1:3重量比例混合、搅拌均匀后使用,使用底涂料可提高涂料对基层的渗透性、增强粘结力。 c涂抹涂料:施工采用滚、刮、刷的方法均可,宜采用薄层多涂布法,每次涂刷不能太厚,一般分为3-4次涂刷,总厚度达1.5-2.0mm,待先涂的涂层干燥后方可涂布后一遍涂料,薄弱环节宜加铺胎体增强材料。用量约2kg-3kg/m2。 4)罐体试水、打压应符合下列要求: a罐体安装完毕后需进行满水试验,满水试验应在罐体安装结束,密封胶凝固,罐底防水施工结束,防水保护层达到设计强度后进行; b满水试验时需将各工艺接口进行密封处理,向罐内注入清水,待灌满后观察罐壁及基础渗漏情况,不渗不漏为合格,同时应做好满水试验记录; c试水结束后需进行气密性试验,搪瓷顶拼装罐需用空压机向罐内增压,当压力表显示3000Pa时停止打气,半小时内压力表不降为合格;一体化反应器需在投料试车后,用沼气检测仪测量内外膜间鼓出空气,以测漏仪不报警为合格。 2.脱硫罐、脱水罐、水封罐安装 1)根据设计图纸要求及设备工艺管口位置将设备摆放合适,用垫铁调整设备的水平度及垂直度,并联安装的设备需将管口位置对齐,地脚螺栓与螺母与配套,松紧适度,无乱扣、缺丝、裂纹等现象。 2)设备就位后应符合下列要求: a中心线位置偏差不应大于±10mm; b方位允许偏差,沿底座环圆周测量,不得超过15mm; c罐体的垂直度偏差为1/1000; d塔顶外倾的偏差不得超过10mm。 3)脱硫罐内装填脱硫剂应从上口法兰装填,脱硫剂量为不超过罐容积2/3为宜,装填完毕后应封好法兰; 4)设备各接口需连接严密,不得漏气,安装结束后用发泡剂检查各连接处,不漏气为合格。 3.管道、阀门安装

气井试气地面流程探析——以长庆油田为例

气井试气地面流程探析——以长庆油田为例 【摘要】对油田进行试气是对气层进行定性的重要手段,使我们能够更好的了解油田的油气资料,并根据此数据对试井及相关地层进行评定。在地面测试中要注重数据的真实性、准确性,以便为油田勘测开发提供数据,同时注意气井相关设备安全,以及测试人员的安全等。 【关键词】气井试气地面流程 长庆油田公司(PCOC)是隶属于中国石油天然气股份有限公司(PetroChina)的地区性油田公司,目前公司总部设置在陕西省西安市,其工作区域在鄂尔多斯盆地,横跨陕、甘、宁、内蒙、晋五省区。其勘探总面积为37万平方公里,其中天然气资源量为15亿m3。近年来长庆油田公司逐渐形成油气并举的局面,先后发现靖边气田,苏里格气田,榆林气田,乌审旗气田等大型气田,其探明地质储量为8703.5亿m3,控制储量为4362.5m3。本文针对长庆油田公司苏格里气田地面试气流程进行探析。 试气是对气井进行定性评价的重要手段,其主要地目的是取得地层油气资料,并根据资料对地层进行定性评价。目前长庆油田在苏格里气田采用常规试气工艺,其工艺流程为:安装设备,通井,洗井,试压,射孔,压裂,排液,完井等。本文针对长庆油田公司苏格里气田地面试气流程进行探析。 1 气井测试流程 测试流程主要由采气井口、放喷管线、汽水分离器、临界速度流量计、防喷出口燃烧筒等组成。这种方式主要适用于不产水或产水量较小的凝析水气井。而对于气水井,则应当采用气水井测试流程,两种测试方式基本一致,主要区别在于测试流程中增加重力式气水分离器,分离后,方进行天然气临界速度测量,水则用计量罐剂量。而一般气井则使用旋风分离器进行脱水,这是因为临界速度流量计计数要求为,气体必须不含水分,因此无论气井与气水井进行临界测试时均需脱水处理后方可计数,保证数据的准确性。 气井井口装置主要作用为悬挂井下管柱、密封油管、套管,用以控制油气井生产、回注与安全运行的设备,其主要包括套管头、油管头与采油树三个部分。该装置选定原则为:额定工作压力一定要大于实际工作中井口关井最大压力,对于后期需改造的井则额定压力必须大于实际施工中最大压力,同时根据工作地点温度、采井口装置内流体温度选择温度类别,根据气井的不同情况选择合适的井口装置材料,根据环境以及硫化氢浓度等实际工作因素选择采气井口性能级别。 目前常用管道汇台有丰型与回型两种,根据井口最大关井压力预测结果来选择压力级别。选择应当遵循:井口压力<50MPa采用一级管汇台控制,压力<20MPa采用35MPa管汇,压力在20MPa—50MPa之间采用70MPa管汇,压力>50MPa采用多级节流。而对于经常需要操作的阀门则需选用密封性能好、操

凝析油开发可行性报告

凝析油开发可行性报告 凝析油(gas condensate)是指从凝析气田的天然气中凝析出来的液相组分。天然气中部分较重的烃类在油层的高温、高压条件下呈蒸气状态,采气时由于压力和温度降低到地面条件,这些较重的烃类从天然气中凝析而出,成为轻质油(称凝析油)。凝析油的主要成分是C5~C8烃类的混合物,并含有少量大于C8的烃类以及二氧化硫、噻吩类、硫醇类、硫醚类和多硫化物等杂质,它的馏分多在20℃~200℃,比重小于0.78,其重质烃类和非烃组分的含量比原油低,挥发性好。凝析油可直接用作燃料,并且是炼油工业的优质原料,通常石脑油收率在60%~80%、柴油收率在20%~40%,API度在50以上。凝析油可分为石蜡基、中间基和环烷基3种类型。石蜡基凝析油适合生产乙烯裂解料,中间基、环烷基凝析油可作为芳烃重整料。澳大利亚的LAMINARIA、印度尼西亚的BON-TANG、BRC等属于石蜡基型,澳大利亚的西北大陆架凝析油(NWS)、印度尼西亚的SENIPAH、HANDIL属于中间基、环烷基型。 全球供需呈上升趋势: 目前全球已发现的凝析油气田超过12200多个,主要分布于美国、俄罗斯、澳大利亚、哈萨克斯坦、乌兹别克斯坦及中东和亚太地区。2005年全球凝析油生产能力约670万桶/d,预计到2010年将达到873.5万桶/d。 中东及亚太地区是世界凝析油的主要生产和消费地区。近年来,中东地区产量不断提高,成为凝析油的主要生产基地,其中波斯湾地区凝析油产量增长最快,特别是沙特、卡塔尔和伊朗。目前波斯湾地区已有大量凝析油分离装置投产,2004年凝析油加工能力已达123万桶/d,2008年将增至176万桶/d,2011年将达到300万桶/d,这将使苏伊士以东地区占世界凝析油加工能力的比例从2004年的60%增至2011年的70%以上。波斯湾地区凝析油生产能力的快速提高,主要是因为该地区许多国家积极推进天然气资源的开发;其次,凝析油装置投资较少,建设周期短;第三,将凝析油分离与现有的炼厂整合,可提高轻、中馏分的产量。亚太地区的主要生产地则在澳大利亚、印度尼西亚、马来西亚、泰国等。泰国的凝析油需求量由2003年的11.8万桶/d将增至2008年的23.4万桶/d;我国预计由2003年的5.9万桶/d增至2008年的22.4万桶/d,2013年将达到27.0万桶/d。为了得到更多的石化原料和汽油等,近年亚太地区的凝析油分离装置能力也在增加。凝析油正成为炼油厂的一个重要原料来源。 随着凝析油需求量的增加,今后几年还会有一些凝析油装置投产。凝析油与液化石油气和石脑油的增加,将使中东地区油品逐渐轻质化。预计2007年轻质油占油品的份额将超过50%;燃料油、沥青和润滑油等重质油产品的份额将会下降,而中馏分油则基本保持不变。我国凝析油开发工作已起步: 目前国内凝析油产地主要分布在新疆油田、中原油田、东海油田等,尤其新疆的塔里木油田,凝析油储量占全国总储量的80%。塔里木油田的凝析油质轻、K值高、烷基性强,工业优化试验乙烯收率可达34.35%、丙烯收率18.15%。目前该油田的凝析油已引起国内乙烯界的密切关注。目前新疆地区已相继发现了牙哈、吉拉克、英买力、迪拉等13个高压凝析气田,凝析油气当量近2.8亿t,仅牙哈凝析气田就日产凝析油2190t、天然气373万m3,可以保证向西气东输管道日输气350万m3。 凝析油气藏的高效开发一直是一项世界难题,如果开采工艺和措施选择不当,会导致80%以上的凝析油滞留地下,造成巨大的资源浪费和经济损失。要提高凝析油的采收率,最有效的办法是循环注气,将凝析气采到地面后分离出凝析油和轻烃液化气,然后将不含凝析油的天然气压缩增压后重新注入地下,使凝析油一直溶解在地下气体中随气体采出。塔里木凝析气田的开发难度更大,首先,其凝析气埋藏深,在地下5000m左右,地层压力高达50MPa

沼气工程施工方案

沼气工程-施工方案 (1) 施工任务组织分工及程序安排 1.1施工部署原则 根据施工现场场地踏勘情况、建筑物的建筑情况及位置状况,结合本公司以往的施工经验,制定切实可行的施工部署。 1.1.1根据本工程既定的质量目标和施工工期目标,结合本工程实际特点,进行施工阶段分解,确定各阶段部署目标。 1.1.2加强施工过程中的动态管理,针对各工序和环节,合理安排劳动力和施工准备的投入;在确保每道工序工程质量的前提下,立足抢时间,争速度,科学地组织流水施工及交叉施工,严格遵守各项规章制度,有计划、有步骤、有目标的严格合理分配班组施工任务,严格控制关键工序的施工工期,确保按期、优质、高效地完成工程施工任务。 1.2项目组织机构 本工程项目按“项目法”组织施工,建立以项目经理为首的项目经理部进行工程项目管理。全权负责现场施工管理、物资采购供应、施工技术、工程质量、施工进度、安全生产、劳务管理、机械设备保障、文明施工、环境保护等工作见附图。 项目经理部项目经理、项目总工程师、项目质检负责人、项目副经理构成管理核心层;项目经理部下设计“五科、两室、一处”,即施工技术科、安全质量科、财务科、计划统计科、物质设备科、卫生保健室、综合办公室、保卫处构成施工管理中间层;根据本工程内容,将拟派我公司所属的3个专业施工队伍形成工程项目的现场实施层见项目管理机构框架图。项目经理部负责按施工合同内容,保质保量、保证工期完成该合同工程。

项目管理机构框架图 1.3施工程序 根据沼气工程特点如下: 1.3.1水工建筑、构筑物(水池)比较多,施工工序较多、较复杂。 1.3.2要求构筑物具有防水、抗渗、防裂、防变形等特点,针对该特点施工方案应特别考虑。 1.3.3池体基坑开挖较深,应注意将水疏干降压作好护壁。 1.3.4拟建场地地基土层结构简单,但局部有软弱层,待基础开挖后可能有部分换土。地下水无侵蚀性二氧化碳对砼无腐蚀性,PH值为7,有利于结构物的稳定。 1.4土建施工顺序: 1.4.1以CSTR厌氧反应罐与贮气一体化基础、配料池、进料池、沼液贮池基础为优先;

大中型沼气工程预处理装备技术1

大中型沼气工程预处理装备技术 作者:农业部南京农业机械化研究所陈永生朱德文曲浩丽李瑞容 摘要:欧洲沼气工程的规模大型化、操作机械化、控制自动化、产能高效化代表了当今世界沼气工程的先进水平,特别是在包括原料收集、转运、混合、匀浆、进料等环节的原料预处理过程。介绍了欧洲不同类型的原料、不同的厌氧消化工艺装置以及成熟的、标准化的装备技术。并且在借鉴欧洲沼气工程原料预处理先进工艺技术和装备技术的同时,结合国内沼气工程预处理的现状及发展提出一些建议。 关键词:原料预处理;沼气工程;装备技术 沼气工程原料预处理技术是为了满足某种工艺的特殊需要而对生物质所做的技术处理,是对天然生物质的一个优化处理。沼气原料预处理是沼气工程是否能够运行的重要环节。料液进入厌氧消化器之前称为原料的预处理阶段。原料预处理是保障厌氧发酵系统稳定运行、提高产气率和工程效益的重要环节,如秸秆预处理是提高秸秆原料利用率,加大产气量,缩短启动时间的有效手段[1]。由于沼气工程中各种原料的收集渠道和理化性状不一,各种消化工艺对原料的处理要求和输送方式不一,使得原料预处理环节不仅复杂而且难度加大。近些年随着社会主义新农村建设工程的推进,利用干稻草、青草、菜叶等农业种植废弃物替代部分畜禽粪便作为沼气发酵原料已成趋势[2]。现借鉴欧洲沼气工程原料预处理先进工艺技术和装备技术,结合国内沼气工程预处理的现状及发展提出一些建议,以促进我国沼气工程预处理技术的发展。 1 欧洲沼气工程原料预处理典型工艺 以德国为代表的欧洲沼气工程技术以高浓度有机废弃物联合消化工艺(CSTR)为主,绝大多数配备热电联产系统。CSTR工艺是先对各类畜禽粪便及其他高产气量的有机废弃物进行预处理,调整进料浓度在8%~13%范围内,进入带有机械搅拌的CSTR反应器 [3] [4]。沼气进入热电联产系统后,产生的电能并网外卖,热能用于加热原料[5]。在欧洲,大约有94%的农业废弃物沼气工程采用混合原料发酵[6],根据其主要原料来源的不同,可把原料预处理工艺分为三种类型。 1.1 能源植物为主的原料预处理工艺 以位于德国Gustrow、号称“世界上最大的沼气工厂”的Nawaro沼气工厂为例,每年原料需求量总计有45万吨,其中:青贮玉米秸秆38万吨,其他整秆植物6万吨,青草0.8万吨,谷类0.1万吨。Nawaro沼气工厂每小时可生产出10000立方的沼气,并经过提纯后向天然气管网输送,相当于每小时可产生22MW的电能。图1是以能源植物为主的原料预处理工艺图。 在欧洲,建设沼气工程以获取能源为主要目的,因此在降低运行成本的同时追求最大原料产气率是这些工程最为重要的经济指标。从原料产气率角度分析,玉米、甜菜等的干物质产气率可高达600~1000m3/t,远远高于动物粪便的产气率。由种植制度方面来看,一年一熟、连片种植的农艺制度为能源作物收获机械化创造了很好的条件,从而节省了大量的原料收集成本。就原料保障机制而言,沼气工厂与当地的农场主签订长期合作协议,农场主提供秸秆等原料,使沼气工厂有长期而稳定的原料供应渠道,而沼气工厂为农场主提供腐熟的沼渣颗粒肥料以及沼液,双方互利互惠。 针对秸秆沼气工厂的需要,以青贮玉米为主的能源作物的收获、切碎、转运全部实现机械化。联合收获机在田间就把玉米连秆带穗全部切成10mm长的碎段,并抛集到专用运草车的车箱中,再由运草车送到工厂的堆贮场地上。切碎后的秸秆堆密度提高了,减少了堆贮空间,也便于进行其他预处理。 图1 以能源植物为主的原料预处理示意图

北京市大中型沼气工程设计规范汇编

大中型沼气工程市场化运营管理模式研究项目分报告之四 北京市大中型沼气工程设计规范汇编 北京能环科技发展中心 2010年3月

目录 1 前言 (1) 2 大中型沼气工程设计规范汇编 (2) 2.1 国家标准及行业规范 (2) 2.2 北京市相关规范性文件 (4) 3 设计规范的问题分析及完善建议 (5) 3.1 设计规范的问题分析 (5) 3.2 设计规范的完善建议 (7) 4 小结 (9) 5 附件 (10)

1 前言 在社会主义新农村建设的整体部署下,北京市从2006年起开始了“亮起来、暖起来、让农业资源循环起来”的工程建设(简称“三起来”工程),其中农业资源循环起来主要通过沼气工程、粪污染治理工程等实现农业废弃物的循环利用。截止至2008年底,北京市共建大中型沼气工程111处,年产沼气1499万立方米,总供气户数达到3.8万户。 通过大中型沼气工程的建设,解决了畜禽养殖粪污和农业废弃物乱堆乱放产生的环境污染问题,大大改善了农村的生活环境;同时,通过沼气的使用,改善了北京市的农村能源消费结构,每年可节约标准煤10643吨,并有效地减少了温室气体的排放,其中减排二氧化碳28352吨,减排二氧化硫319吨,对农村生态环境的保护也起着重要作用;并且,工程产生的沼渣沼液用作有机肥施用于周边农田、果园、蔬菜大棚等,不仅改善了由于化肥过量使用造成的土壤污染状况,更重要的是有利于农作物的生长,提高农产品的品质,推动了生态农业的发展,继而带动了农民收入的增长;另外,沼气工程的兴起增加了农民就业岗位,并且带动了沼气设备、沼气工程服务等相关产业的发展,据北京市农业局统计显示,在2006年—2008年,先后有20多万农民参与了沼气工程在内的“三起来”工程建设,其中设施运转维护和服务岗位共安排了1000多人就业。 为了能够向大中型沼气工程建设提供技术标准和设计依据,推动大中型沼气工程的市场化运行,最终实现工程的长期、稳定、高效运行,在“大中型沼气工程市场化运营管理模式研究项目”的资助下,项目组对目前国内已有的沼气工程设计规范,以及北京市相关技术管理文件进行收集整理,编制了本规范,并对现有规范存在的一些问题进行分析,提出了完善建议。

小型沼气工程技术规范

DB51 四川省地方标准 DB51/ Txxx-2016 小型沼气集中供气工程运行管理规范 (初稿) 2016—X—X发布2016—X—X实施 四川省质量技术监督局发布

目次 前言 (Ⅲ) 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 基本要求 (1) 5 预处理设施运行与维护 (1) 6厌氧发酵装置运行与维护 (3) 7沼液储存池运行与维护 (4) 8沼气净化与储存运行与维护 (4) 9.增温装置运行管理 (4) 10沼气控制房管理 (5)

前言 本标准依据GB/T1.1—2009标准规定编制。 本标准由四川省农业厅提出并归口。 本标准起草单位:四川省农村能源办公室。 本标准主要起草人: 本标准首次发布,与DB/TXXX-2015,DB/TXXX-2015配套使用。

小型沼气集中供气工程运行管理规范 1 范围 本标准规定了农村小型沼气集中供气工程运行管理要求。 本标准适用供气户数30户至150户规模的小型沼气集中供气工程。 2 规范性引用文件 下列文件对本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于文件。 NY/T 1220.4 沼气工程技术规范第4部分:运行管理. NY/T 1221 规模化畜禽养殖场沼气工程运行、维护及其安全技术规范。 DB51/T XXX 小型沼气集中供气工程设计规范。 DB51/T XXX 小型沼气集中供气工程施工规范。 3 术语和定义 NY/T 1220.4 确立的术语和定义适用于本部分。 4 基本要求 4.1 小型沼气集中供气工程运行,维护及安全规定应符合本标准规定,还应符合国家现行有关标准的规定。 4.2工程运行管理人员和操作人员应熟悉沼气工程处理工艺和设施、设备的运行要求与技术指标,并持有沼气生产职业资格证书。 4.3应建立工程运行管理制度、岗位责任制度、设备操作规程和设施设备日常保养、定期维护和大修三级维护保养制度。岗位责任和操作规程应在明显位置展示。 4.4 运行管理人员和操作人员应严格执行本岗位操作规程中的各项要求,按规定认真填写运行记录。 4.5 工程运行管理人员和操作人员应进行安全和防护技能培训,并制定火警、易燃及有害气体泄露、自然灾害等突发事故的应急预案。 4.6沼气站内醒目位置应设立禁火标志,严禁烟火。

科技进步奖项目名称超深超高压复杂凝析气田开发关键技术

附件2 科技进步奖 项目名称:超深超高压复杂凝析气田开发关键技术创新及工业化提名单位:中国石油天然气集团有限公司 提名意见 凝析油气是国家急需的高端石化产品的稀缺原料。我国凝析油气资源主要集中在塔里木盆地,2005年形成了基于平衡相态理论的高压循环注气凝析气田开发技术,实现了5000m、60MPa、中高渗凝析气田的高效开发。但新发现的迪那、塔中等凝析气藏埋藏更深(>6000m)、压力更高(>105MPa)、储层更复杂(低渗透砂岩、缝洞型碳酸盐岩),效益开发属世界级难题。近十年来,国家和中石油持续立项攻关,创新了超临界凝析气非平衡相态渗流理论,研发了超深超高压低渗透凝析气田高效安全开发技术,创建了超深缝洞型碳酸盐岩凝析气藏效益开发技术,形成了超深超高压复杂凝析气田开发技术。 该项目成果在塔里木凝析气田开发中广泛应用,年产当量由486万吨上升到1000万吨以上并稳产8年,建成了世界最大的深层凝析油气开发基地。2008年以来,累计增产7709万吨,新增利税1098亿元。研究形成的技术和开发模式对国内外同类型凝析气田的开发具有重要的指导和借鉴意义,推广应用前景广阔。 研究成果共获发明专利32件、软件著作权24项,发布标准19项(其中国家标准2项、行业标准2项),出版专著10部,发表论文128篇(SCI、EI论文50篇),获省部级一等奖4项,引领了全球深层油气开发技术的发展。专家评价该成果实现了凝析气田开发技术的重大跨越,整体达到国际领先水平。 经审查,推荐材料真实有效,相关栏目填写符合要求,按照规定内容进行了公示,无异议。

提名该项目为国家科学技术进步奖一等奖。 项目简介 凝析油气富含优质烃类组分,是国家军工和民生领域急需的高端石化原料,备受世界关注。我国凝析油气资源80%集中在塔里木盆地,2005年以前揭示了高含蜡凝析气三相(气-液-固)相变规律,创新了基于平衡相态理论的高压循环注气开发技术,建立了高压(5000m、60MPa)中高渗凝析气田三种高效开发模式。但新发现的凝析气藏埋藏更深(>6000m)、压力更高(>105MPa)、储层更复杂(低渗透砂岩、缝洞型碳酸盐岩),开发理论和技术必须革新换代,关键是攻克以下世界级科学技术难题:①超高压凝析气的超临界特征导致相变渗流规律难以定量描述;②超深超高压低渗透凝析气藏裂缝活动机理复杂,自然产能差异大、开发风险极高;③超深缝洞型碳酸盐岩凝析气藏渗流规律不清、缝洞分散,难以实现效益开发。2008年以来,国家和中石油持续立项攻关,形成了超深超高压复杂凝析气田开发技术,实现了凝析气田开发理论和技术的重大跨越,年产当量超过1000万吨并稳产8年,建成了世界最大的深层凝析油气开发基地,专家评价该成果整体达到国际领先水平。 (1)创新了超临界凝析气非平衡相态渗流理论。实验明确了超高压凝析气具有气体和液体双重性质的超临界特征,建立了干气-凝析气-凝析油相间传质的非平衡理论,创建了基于非平衡相态的多相多组分重力超覆渗流模型,实现了超高压凝析油气体系扩散、渗流行为的定量描述,揭示了凝析气藏循环注气“置换-超覆-扩散”三元驱替机理,发明了注气垂直驱替提高采收率新方法。 (2)研发了超深超高压低渗透凝析气田高效安全开发技术。通过大岩样真三轴裂缝力学活动性模拟实验,揭示了裂缝渗透率与力学活动性指数成正比的规律,创建了裂缝性低渗透凝析气藏应力控产理论,创新了基于地应力与裂缝渗流耦合的井网优化和水侵预测技术,研发了140MPa全通径射孔-完井-改造一体化工艺,实现了少井高产稳产;创建了以13Cr油管抗酸防腐、环空分级管控为核心的超高压全生命周期井完整性技术,建立了国际首套陆上高温高压井完整性指南、设计准则和管理规范,实现

污水处理沼气生产工艺流程

污水处理沼气生产工艺操作流程 沼气生产工艺流程图 沼气发酵基本原理 沼气发酵又称为厌氧消化,是指有机物质(如人畜家禽粪便、秸秆、杂草等)在一定的水分、温度和厌氧条件下,通过种类繁多、数量巨大、且功能不同的各类微生物的分解代谢,最终形成甲烷和二氧化碳等混合性气体(沼气)的复杂的生物化学过程。 沼气发酵过程一般要经历三个阶段,即液化阶段、产酸阶段和产甲烷阶段。 沼气发酵过程的液化阶段 用作沼气发酵原料的有机物种类繁多,如禽畜粪便、作物秸秆、食品加工废物和废水,以及酒精废料等,其主要化学成分为多糖、蛋白质和脂类。其中多糖类物质是发酵原料的主要成分,它包括淀粉、纤维素、半纤维素、果胶质等。这些复杂有机物大多数在水

中不能溶解,必须首先被发酵细菌所分泌的胞外酶水解为可溶性糖、肽、氨基酸和脂肪酸后,才能被微生物所吸收利用。发酵性细菌将上述可溶性物质吸收进入细胞后,经过发酵作用将它们转化为乙酸、丙酸、丁酸等脂肪酸和醇类及一定量的氢、二氧化碳。在沼气发酵测定过程中,发酵液中的乙酸、丙酸、丁酸总量称为中挥发酸(TVA)。蛋白质类物质被发酵性细菌分解为氨基酸,又可被细菌合成细胞物质而加以利用,多余时也可以进一步被分解生成脂肪酸、氨和硫化氢等。蛋白质含量的多少,直接影响沼气中氨及硫化氢的含量,而氨基酸分解时所生成的有机酸类,则可继续转化而生成甲烷、二氧化碳和水。脂类物质在细菌脂肪酶的作用下,首先水解生成甘油和脂肪酸,甘油可进一步按糖代谢途径被分解,脂肪酸则进一步被微生物分解为多个乙酸。 沼气发酵过程的产酸阶段 (1)产氢产乙酸菌 发酵性细菌将复杂有机物分解发酵所产生的有机酸和醇类,除甲酸、乙酸和甲醇外,均不能被产甲烷菌所利用,必须由产氢产乙酸菌将其分解转化为乙酸、氢和二氧化碳。 (2)耗氢产乙酸菌 耗氢产乙酸菌也称同型乙酸菌,这是一类既能自养生活能异养生活的混合营养型细菌。它们既能利用H2+CO2生成乙酸,也能代谢产生乙酸。通过上述微生物的活动,各种复杂有机物可生成有机酸和H2/CO2等。 沼气发酵过程中的产甲烷阶段 (1)产甲烷菌的类群 产甲烷菌包括食氢产甲烷菌和食乙酸产甲烷菌两大类群。在沼气发酵过程中,甲烷的形成是由一群生理上高度专业化的古细菌--产甲烷菌所引起的,产甲烷菌包括食氢产甲烷菌和食乙酸产甲烷菌,它们是厌氧消化过程食物链中的最后一组成员,尽管它们具有各种各样的形态,但它们在食物链中的地位使它们具有共同的生理特性。它们在厌氧条件下将前三群细菌代谢终产物,在没有外源受氢体的情况下把乙酸和H2/CO2转化为气体产生CH4/CO2,使有机物在厌氧条件下的分解作用以顺利完成。 目前已知的甲烷产生过程由以上两组不同的产甲烷菌完成。 ①由CO2和H2产生甲烷反应为: CO2+4H2—CH4+ 2H2O ②由乙酸或乙酸化合物产生甲烷反应为: CH3COOH—CH4+CO2 CH3COONH4+ H2O—CH4+ NH4 HCO3 (2)产甲烷菌的生理特性

欧洲沼气工程技术

深度对比|欧洲沼气究竟领先我们多少? 编者按 通过对比欧洲与我国沼气工程发展现状及各自技术特点,本文提出了欧洲大型沼气工程技术国产化尝试方向,阐述了沼气工程监测技术对于促进沼气工程自动化运行的重要意义,并介绍了沼气工程监测系统在沼气工程中的应用。 一、欧洲沼气工程技术现状 欧洲沼气工程技术发展较早,始于20世纪70年代,目前已是世界上沼气厂最普及的地区。欧洲的沼气工程技术主要以高浓度有机废弃物联合消化工艺(CSTR)为主,绝大多数配备热电联产系统。 欧洲沼气工程具体的技术特点如下: ①重视原料复配,产气率高 欧洲沼气工程原料不仅包括牛粪、猪粪、鸡粪等畜禽粪便,还有玉米、马铃薯等能源作物,以及屠宰场废弃物、城市餐厨垃圾、城市污泥等。通过这些原料的混合和合理复配,可以提高原料中

的碳、氮含量,并调整出可使产气率最高的碳氮比。德国90%以上的农场沼气工程采用混合原料发酵。 ②工艺统一,热电联产,效益高 在德国和丹麦,90%以上沼气工程选用CSTR工艺,统一的工艺有利于制定统一的技术标准和管理办法,同时便于接管运营后续服务的开展。 热电联产指产出的沼气主要用于发电,33%~37%的能量转换为电能,在发电的过程中产生大量的余热,用于CSTR加热和农场或社区供热,提高了沼气的利用效率,增加了沼气工程的经济效益。 ③实现自动控制,运行管理便捷 利用厌氧消化系统专用的自动控制系统与软件,实现沼气工程的自动化管理和远程监控,节省大量人力的同时又提高了工程生产效率。比如国内一万头牧场大型沼气工程,操作管理人员达30人之多,而同等规模沼气工程中欧洲利用远程监控系统只需1~2人。 ④沼渣沼液及时还田,杜绝二次污染 沼渣、沼液贮存期约3~6个月,施于周围农田。许多农场建的沼气工程多采用2个发酵罐串联发酵,其中第一个发酵罐贮存并在其中连续产气,同时该罐还兼做沼气贮气装置。贮存在第二个发酵罐的料液经过一段时间后被排放出来,然后作为有机肥喷施到农田里,所以不存在废液二次污染问题。 此外,沼气工程配套设备与技术装备先进,如进料设备、搅拌设备、脱硫设备、沼气存储设备、热电联产设备、沼气工程监测成套设备等优良性均处于世界沼气行业的领先地位,并且沼气工程自动化程度高。沼气工程无论规模大小全部只需一人管理即可稳定运行,节省人力资源,降低运行成本。 二、我国沼气工程技术现状 中国沼气建设同样起步于20世纪70年代,至今已有30多年的发展史,中间经历了快速发展期和回落阶段,如今也已步入了新的发展局面。 我国沼气工程技术具有如下特点: ①工艺类型多,效率普遍不高

塔中Ⅰ号酸性凝析气田地面工艺技术

34 2016年5月 石 油 规 划 设 计 第27卷 第3期 * 王洪松,男,工程师。2006年毕业于中国石油大学(华东)石油工程专业,获学士学位。现在中国石油塔里木油田公司,从事油气田运行管理工作。地址:新疆维吾尔自治区库尔勒市塔里木油田塔中油气开发部塔中作业区,841000。E-mail:wanghongsong-tlm@https://www.wendangku.net/doc/8b9431045.html, 文章编号:1004-2970(2016)03-0034-04 王洪松* 张贤波 张峰 夏明明 尚浩鹏 宫景海 (中国石油塔里木油田公司) 王洪松等. 塔中Ⅰ号酸性凝析气田地面工艺技术. 石油规划设计,2016,27(3):34~37 摘要 塔中Ⅰ号气田是我国最大的碳酸盐岩酸性凝析气田,地面工程包括井口至油气处理厂 的油气集输、天然气脱硫脱水脱烃、硫磺回收、凝析油处理和各种产品外输等主体工程、辅助工程和公用工程,工艺装置复杂。介绍了塔中Ⅰ号气田油气集输工艺和油气处理工艺。气田集输采用气液混输工艺,设置了高、低压两套集气系统,较好地适应了碳酸盐岩凝析气田压力及产量衰减较快、单井生命周期短的特点;油气处理工艺采用MDEA(甲基二乙醇胺)脱硫工艺、注醇+丙烷制冷脱水脱烃工艺和CPS(中国石油硫磺回收法)硫磺回收工艺,硫磺回收率可达99%,适合塔中碳酸盐岩凝析气田中低含硫的现状,为其他同类酸性凝析气田提供了可借鉴的经验。 关键词 酸性凝析气田;集输处理;脱硫;脱水脱烃;硫磺回收 中图分类号:TE866 文献标识码:A DOI :10.3969/j.issn.1004-2970.2016.03.009 塔中Ⅰ号气田开发试验区位于塔里木盆地中部,该气田属碳酸盐岩气藏,为我国最大的奥陶系礁滩体凝析气田,于2010年9月建成投产,设计能 力10×108 m 3 /a,具有硫含量高、蜡含量高和凝固点高等特点。该试验区建成了塔里木油田第一套工艺最完整的酸性气田处理系统,包括从井口至油气处理厂的油气集输、天然气脱硫脱水脱烃、硫磺回收、凝析油处理和各种产品外输等主体工程、辅助工程 和公用工程,涉及专业广泛,工艺装置复杂[1] 。 1 油气集输工艺技术 塔中Ⅰ号气田采用多井集气与单井集气相结合的集输工艺。对于井位分布较为密集,集输半径在3~5 km 的单井采用多井集气工艺,既降低了投资,又方便维护管理。对于少数距离集气站较远但距离集气干线较近的单井,采用单井集气工艺,就近接 入集气干线。该气田包括塔中62井区、塔中82井区和塔中83井区共27口试采井,共设置23座单井站、4座集气站和1座油气处理厂。设高压集气干线4条,分别为TZ62高压集气干线、TZ82高压集气干线、TZ83高压集气干线和TZ721高压集气干线;设低压集气干线1条,为TZ62低压集气干线。高压气进处理厂压力为6.9 MPa,温度21~47 ℃;低压气进处理厂压力为1.0 MPa,温度20~50 ℃。塔中Ⅰ号气田集输系统总体流程见图1。 图1 塔中Ⅰ号气田集输系统总体流程

凝析气藏采气工程特点及技术

凝析气藏开发的特点及技术 摘要:反常凝析现象决定了凝析气藏的开发方式和开发技术不同于一般气藏,除了要保证天然气的采收率外,还需要考虑提高凝析油采收率的问题。基于凝析气藏的基本特征,综述了衰竭式开发和保持压力开发的特点,介绍了常用的保持压力开发方式,并总结了我国凝析气藏开发的成熟技术及今后的主要研究方向。 关键词:凝析气藏;采气工程;开发方式;开发技术 凝析气田在世界气田开发中占有特殊重要的地位,据不完全统计,地质储量超过1012m3的巨型气田中凝析气田占68%,储量超过1000×108m3的大型气田则占56%。世界上富含凝析气田的地区有俄罗斯、美国和加拿大,在我国凝析气田也分布很广。根据第二次全国油气资源评价结果,我国气层气主要分布在陆上中西部地区及近海海域的南海和东海,资源总量为38×1012m3,探明储量为 2.06×1012m3,可采储量为 1.3×1012m3,其中凝析油地质储量为11226.3×104t,采收率若按照36%计算,则凝析油可采储量为4082×104t。 1凝析气藏的基本特征 根据我国石油天然气行业气藏分类标准(SY/T6168-2009),产出气相中凝析油的含量大于50g/m3的气藏为凝析气藏。按照凝析油含量可进一步划分为特高、高、中、低含凝析油凝析气藏,如下表1所示。 1.1 反常凝析现象 凝析气藏是介于油藏和气藏之间的一种特殊烃类矿藏,具有反凝析的显著特点。凝析气藏中流体在原始地层状态下(绝大部分)呈单一气相存在,当地层压力降至上露点压力(又称第二露点压力)以下时,开始有凝析油析出,且凝析油的析出量随着压力的继续下降而先增加至最大值,然后又减小,直至压力降至下露点压力(又称第一露点压力)时,凝析油被全部蒸发,此即为反常凝析现象。特别是对凝析油含量高的凝析气藏采用衰竭式开采,反常凝析现象比较严重。 1.2 埋藏深、温度高、压力高 我国凝析气藏埋深一般在2000~5000m,凝析气藏的原始地层压力高于临界压力,原始地层温度介于临界温度和临界凝析温度之间,储层的温度和压力较高。凝析气藏的地层压力一般为25~56MPa,压力系数一般为1.0~1.2左右。塔里木盆地的凝析气藏埋深在4000~5000m 以上,埋藏最深的塔西南深层凝析气藏达6500m。新疆柯克亚深层凝析气藏压力高达123MPa,在世界上也是屈指可数的超高压气藏。气藏温度一般在70~100℃之间,少数凝析气藏温度高达100~145℃。因此,埋藏深、高温、高压是凝析气藏又一重要特点。 1.3 产出“四低一高”的凝析油 凝析气藏产出的凝析油具有低密度、低粘度、低初馏点、低含蜡量和高馏分的特点。

《沼气工程技术》复习提纲

第一讲 1、沼气的产生 沼气是多种有机质在一定温度、湿度、酸碱度及厌氧条件下,经微生物分解代谢所产生的一种可燃性混合气体。 沼气的产生过程称为沼气发酵,国际上统称厌氧消化。 地球上每年由光合作用生成4×1011吨有机物,其中约5%以不同形式在厌氧条件下被微生物分解生成沼气。 2、沼气工程的概念 ①最初是指以粪便、秸秆等农业废弃物为原料,以沼气生产为目标的系统工程。单纯追求能源生产。目前已拓展为以各种有机废弃物厌氧发酵为手段,以追求能源为目标,最终实现沼气、沼液、沼渣的综合利用。 ②沼气工程是以农业废弃物和有机垃圾的厌氧消化为主要技术环节,集污水处理、沼气生产、资源化利用为一体的系统工程。 3、发展沼气的意义 减少碳排放,保护生态环境;为农村(城市)提供清洁、可再生能源(资源);合理处置农业有机废弃物资源;改善农村卫生条件,提高农民生活水平;开展综合利用,调整农业生产模式,发展“生态高值”农业;减少农业生产投资,增加农民收入;带动沼气及相关产业发展;缓解能源供应紧张局面等。 第二讲 沼气发酵是一个由多种类群细菌参与完成的,通过分解有机物并产生以CH4和CO2为主要产物的,复杂的微生物学过程。 1、沼气发酵的特点 沼气发酵是一个复杂的生物化学过程,具有以下特点: (1)参与发酵微生物种类繁多,混菌发酵。 (2)发酵原料复杂,来源广泛,可处理高浓度有机废水(COD大于50000mg/L); (3)厌氧发酵自身能耗低,相同条件下仅为好氧分解的1/30~1/20; (4)沼气发酵装置(厌氧反应器)种类繁多,条件适合,均可产气; (5)产甲烷菌要求氧化还原电位-330mv以下,即严格厌氧环境。 2、参与沼气发酵的细菌(沼气发酵的微生物类群) (1)发酵性细菌 水解纤维素、蛋白质、脂类为可溶性糖类、肽、氨基酸和脂肪酸等。 水解菌(大多为厌氧菌,也有兼性菌):梭状芽孢杆菌、拟杆菌、丁酸菌、嗜热双歧杆菌、产气梭状芽孢杆菌、产琥珀酸梭状菌、北京丙酸杆菌和产氢螺旋体等。 (2)产氢产乙酸菌 将上述分解物(主要为有机酸)进一步分解为乙酸、H2和CO2 (3)耗氢产乙酸菌 将H2和CO2合成为乙酸,以及代谢糖类产生乙酸。 (4)产甲烷菌 甲烷形成是由一群生理上高度专化的细菌——产甲烷菌所引起的。产甲烷菌是厌氧消化过程中所形成的食物链中的最后一组成员。 将乙酸和H2/CO2转化为沼气。 (5)不产甲烷菌 沼气发酵系统中不直接产生甲烷的微生物,主要包括一些好氧菌、兼性厌氧菌和专性厌氧菌。 主要作用为将复杂的大分子有机物降解成简单小分子有机物。

相关文档