文档库 最新最全的文档下载
当前位置:文档库 › 基本初等函数Ⅰ的图像与性质

基本初等函数Ⅰ的图像与性质

基本初等函数Ⅰ的图像与性质
基本初等函数Ⅰ的图像与性质

基本初等函数Ⅰ的图像与性质

一、指数与对数

1.根式的概念:

①定义:若一个数的n 次方等于),1(*

∈>N n n a 且,则这个数称a 的n 次方根.即,若

a x n =,则x 称a 的n 次方根)1*∈>N n n 且,

1)当n 为奇数时,n a 的次方根记作n a ;

2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作)0(>±a a n .

②性质:1)a a n

n =)(; 2)当n 为奇数时,a a n n

=;

3)当n 为偶数时,???<-≥==)

0()

0(||a a a a a a n

2.幂的有关概念:

①规定:1)∈???=n a a a a n ( N *, 2))0(10

≠=a a , n 个 3)∈=-p a

a

p p

(1

Q ,4)m a a a n m n m

,0(>=、∈n N * 且)1>n ②性质:1)r a a

a a s

r s

r

,0(>=?+、∈s Q ),2)r a a a s

r s r ,0()(>=?、∈s Q ),

3)∈>>?=?r b a b a b a r

r

r

,0,0()( Q )(注)上述性质对r 、∈s R 均适用. 3.对数的概念:

①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是N a b

=,那么数b 称以a 为底N 的对数,记作,log b N a =其中a 称对数的底,N 称真数.

1)以10为底的对数称常用对数,N 10log 记作N lg ,

2)以无理数)71828.2( =e e 为底的对数称自然对数,N e log 记作N ln ②基本性质:

1)真数N 为正数(负数和零无对数), 2)01log =a , 3)1log =a a , 4)对数恒等式:N a

N

a =log

③运算性质:如果,0,0,0,0>>≠>N M a a 则

1)N M MN a a a log log )(log +=;2)N M N

M

a a a log log log -=; 3)∈=n M n M

a n

a (log log R ).

④换底公式:),0,1,0,0,0(log log log >≠>≠>=

N m m a a a

N

N m m a

1)1log log =?a b b a , 2).log log b m

n

b a n

a m = 二、指数函数的图象与性质

y=a x a>1

0

图象

定义域 R

值域 (0,+∞)

性质

(1)过定点(0,1) (2)当x>0时,y>1; x<0时,0

(2) 当x>0时,01

(3)在(-∞,+∞)上是增函数 (3)在(-∞,+∞)上是减函数

三、对数函数的图像与性质 1、对数的概念 (1)对数的定义

如果(01)x

a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log N

a x =,其中a 叫做对数的底数,N 叫做真数。 2、对数函数的图象与性质

图象

1a >

01a <<

质 (1)定义域:(0,+∞)

(2)值域:R

(3)当x=1时,y=0即过定点(1,0)

(4)当01x <<时,(,0)y ∈-∞; 当1x >时,(0,)y ∈+∞ (4)当1x >时,(,0)y ∈-∞; 当01x <<时,(0,)y ∈+∞ (5)在(0,+∞)上为增函数

(5)在(0,+∞)上为减函数

(三)幂函数的图像与性质 1、幂函数的定义

形如y=x α

(a ∈R )的函数称为幂函数,其中x 是自变量,α为常数

注:幂函数与指数函数有本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置。 2、幂函数的图象

幂函数的性质

y=x y=x 2

y=x 3

12

y x =

y=x -1

定义域 R R R [0,+∞) {}|0x x R x ∈≠且

值域 R [0,+∞) R [0,+∞) {}|0y y R y ∈≠且

奇偶性 奇 偶

非奇非偶 奇

单调性

x ∈[0,+∞)时,增; x ∈(,0]-∞时,减

增 增

x ∈(0,+∞)时,减; x ∈(-∞,0)时,减

定点 (1,1)

不等式的解法

1、一元一次不等式

2、一元二次不等式

3、指数与对数类不等式

4、分式不等式

5、高次不等式

6、含绝对值不等式

函数的定义域与值域

求函数定义域时,一般遵循以下原则: a.f(x)是整式时,定义域是全体实数。

b.f(x)是分式函数时,定义域是使分母不为零的一切实数。

c.f(x)是为偶次根式时,定义域是使被开方式为非负值时的实数的集合。

d.对数函数的真数大于零;当对数或指数函数的底数中含变量时,底数须大于零且不等于1。

e.y=tanx 中,x ≠kπ+2

π

(k ∈Z); f.零指数幂的底数不能为零。 练习:

1.函数f (x )=x

21-的定义域是

( ) A .(-∞,0] B .[0,+∞)

C .(-∞,0)

D .(-∞,+∞)

2.函数)

34(log 1

)(22-+-=

x x x f 的定义域为

( )

A .(1,2)∪(2,3)

B .),3()1,(+∞?-∞

C .(1,3)

D .[1,3]

3.函数x

x x x f -+=

0)1()(的定义域是( )

A.{}0|

B. {}0|>x x

C. {}10|-≠

D. {}10|-≠≠x x x 且 4.x

x x f -+

+=

21

1)(的定义域是( ) A.),1[+∞- B. ),2[+∞ C. )2,1(- D. {}21|≠-≥x x x 且

5.2

38

4)(3

-+=

x x x f 的定义域是( )

A.),3

2[+∞ B. ?

??

?

??≠

32|x x C. ),2[+∞ D. ]1,(--∞ 6. 函数2

456

x y x x -=

-+-的定义域是( )

(A ){x |x >4} (B)}32|{<3} (D) }3,2,|{≠≠∈x x R x x

7.设21

()32

x f x x x +=

-+的定义域为T ,全集U =R ,则U C T =( )

A .}21|{≥≤x x x 或 B. {1,2} C.{-1,1,2} D.{x |x <1}或12}

8.函数2

1

lg(2)

y x x =

-的定义域是( ) A.(0,2) B. 1(,)2

+∝ C.(0,1)∪(1,2) D. 1

(,2)2

9.函数2

21

x y x x +=

-

+的定义域是( ) A.{x ︳x ≠-1} B.{x|x ≠-2} C.{x|x ≠2且x ≠-1} D.{x|x ≠-2且x ≠1且x ≠-1} 10.函数y=(21)log x -23-x 的定义域是( )

A.(

32,1) (1,+∞)B.(21,1) (1,+∞)C.(32,+∞)D.(2

1

,+∞) 11.函数1

()lg(1)1f x x x

=++-的定义域是( )

A .(,1)-∞-

B .(1,+∞)

C .(-1,1)∪(1,+∞)

D .(-∞,+∞)

12.若12

1

()log (21)

f x x =

+,则()f x 的定义域为( )

A.1(,0)2-

B.1(,)2-+∞

C.1(,0)(0,)2-?+∞

D.1

(,2)2

- 13.函数(1)y x x x =

-+的定义域为 ( )

A.{x|x ≥0}

B.{x|x ≥1}

C.{x|x ≥1}∪{0}

D.{x|0≤x ≤1} 14.函数0.51

log (43)

y x =

-的定义域为

A.(

3

4

,1) B(

3

4

,∞) C (1,+∞) D. (

3

4

,1)∪(1,+∞) 15.函数2

lg(2)32

x y x x -=

-+的定义域是( )

A .(2,2)-

B .(2,1)-

C .(1,2)

D .(0,1) 16.函数12

2

y x

x -=+的定义域是( )

A .[0,)+∞ B.(0,)+∞ C.(,0)(0,)-∞+∞ D.R 17.函数2

16y x x

=

--的定义域是 .

18.函数f (x )=lg 1-x 2

的定义域为_________ 19.函数20.5log (43)y x x =

-的定义域为_______________

集合

1.集合:某些指定的对象集在一起成为集合。

(1)集合中的对象称元素,若a 是集合A 的元素,记作A a ∈;若b 不是集合A 的元素,

记作A b ?;

(2)集合中的元素必须满足:确定性、互异性与无序性;

确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立;

互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;

无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法;

列举法:把集合中的元素一一列举出来,写在大括号内;

描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 (4)常用数集及其记法:

非负整数集(或自然数集),记作N ; 正整数集,记作N *或N +; 整数集,记作Z ; 有理数集,记作Q ; 实数集,记作R 。 2.集合的包含关系:

(1)集合A 的任何一个元素都是集合B 的元素,则称A 是B 的子集(或B 包含A ),记作A ?B (或B A ?);

集合相等:构成两个集合的元素完全一样。若A ?B 且B ?A ,则称A 等于B ,记作A =B ;若A ?B 且A ≠B ,则称A 是B 的真子集,记作A B ; (2)简单性质:1)A ?A ;2)Φ?A ;3)若A ?B ,B ?C ,则A ?C ;4)若集合A 是n 个元素的集合,则集合A 有2n 个子集(其中2n -1个真子集); 3.全集与补集:

(1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U ;

(2)若S 是一个集合,A ?S ,则,S C =}|{A x S x x ?∈且称S 中子集A 的补集; (3)简单性质:1)S C (S C )=A ;2)S C S=Φ,ΦS C =S 。

4.交集与并集:

(1)一般地,由属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集。交集}|{B x A x x B A ∈∈=?且。

(2)一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集。}|{B x A x x B A ∈∈=?或并集。 练习:

1.(2010年高考广东卷文科1) 若集合A ={0,1,2,3},B ={1,2,4},则集合A B = A .{0,1,2,3,4} B .{1,2,3,4} C .{1,2} D .{0}

2.(06安徽理,1)设集合{}22,A x x x R =-≤∈,{}

2|,12B y y x x ==--≤≤,则

()R C A B 等于( )

A .R

B .{}

,0x x R x ∈≠ C .{}0 D .? 3.(2010年高考宁夏卷文科1) 已知集合{}

2,R A x x x =≤∈,{

}

4,Z B x

x x =≤∈

则A B =

(A )()0,2 (B )[]0,2 (C ){}0,2 (D ){}0,1,2

4.﹙2011湖北﹚已知U =﹛y|y =log 2x ,x>1﹜,P =????

??y|y =1

x ,x>2,则C U P =( )

A.??????12,+∞

B.? ????0,12

C.()0,+∞

D.(]-∞,0∪????

??12,+∞ 5.(广东理2)已知集合{(,)|,A x y x y =为实数,且22

1}x y +=,{(,)|,B x y x y =为实数,且y x =,则A B ?的元素个数为 A .0 B .1 C .2 D .3 6.(2000广东,1)已知集合A ={1,2,3,4},那么A 的真子集的个数是( )

A .15

B .16

C .3

D .4 7.(2003上海春,5)已知集合A ={x ||x |≤2,x ∈R },B ={x |x ≥a },且A B ,则实数a 的取值范围是____ _。 8.(1996全国理,1)已知全集I =N *,集合A ={x |x =2n ,n ∈N *

},B ={x |x =4n ,n ∈N },则( ) A .I =A ∪B B .I =(I C A )∪B C .I =A ∪(I C B ) D .I =(I C A )∪(I C B ) 9.(2010年高考天津卷文科7)设集合{}

{}|1,,|15,A x x a x R B x x x R =-<∈=<<∈,若A B ?=?,则实数a 的取值范围是 A {}|06a a ≤≤ B {}|2,4a a a ≤≥或

C {}|0,6a a a ≤≥或

D {}|24a a ≤≤

作业:

1.已知全集{}1,2,3,4U =,集合{}{}2,3,4,1,2P Q ==,则()

U P Q = e A .? B. {}1 C. {}2 D. {}1,2 2.已知集合{|11,}M x x x Z =-≤≤∈,{0,1,2}N =,则M N 为

A. {1}

B. {0,1,2}

C. {|01}x x ≤≤

D. {0,1} 3.函数1

()ln(2)

f x x =

- 的定义域为 .

4.设集合}5,4,3,2,1{=U ,}2,1{=A ,}4,3,2{=B ,则 )(B A U

等于

A .}2{

B .}5{

C .}4,3,2,1{

D .}5,4,3,1{ 5. 已知集合2{cos0,sin 270},{|0}A B x x x ==+= 则A B 为 ( )

A .{0,1}-

B .{1,1}-

C . {1}-

D .{0} 6. 若集合A ={1,2 , 3},若集合B A ?,则满足条件的集合B 有( )个

A .3

B .7 C.8 D.9

7.函数23

()log (2)

x f x x -=

-的定义域是( )

A.(2,)+∞

B. (2,3)(3,)?+∞

C. [3,)+∞

D. (3,)+∞ 8.设全集{1,2,3,4,5,6,7},{1,2,3,4,5},{3,4,5,6,7},U P Q === ()U P C Q 则=( )

A .{1,2}

B .{3,4,5}

C .{1,2,6,7}

D .{1,2,3,4,5} 9.设集合{

}

{}

2

9,14M x x N x x =>=-<<,则M N 等于( ) A. {}31x x -<<- B.{}34x x << C. {}13x x -<< D. {}34x x -<< 10.已知集合{

}

3|2

≥=x x M ,下列实数a 中,符合M a ?的是 A .2-=a B .1-=a C .2=a D .3=a 11.函数()()lg 43

x f x x -=

-的定义域为_____

12.设集合A={x ln(1)y x =-},集合B={y

2y x =},则A B = ( ).

A .[0,1]

B .[0,1)

C .(,1]-∞

D .(,1)-∞ 13.设U R =,2

{|0}M x x x =-≤,函数1

()1f x x =-的定义域为N ,则M ∩N=( ) A .[0,1)

B .(0,1)

C .[0,1]

D .{}1

14. 已知全集U =R ,集合{}

2

|230A x x x =-->,{}|24B x x =<<,那么集合

(C )

U A B = ( ) A .{}|14x x -≤≤ B . {}|23x x <≤ C . {}|23x x ≤< D .{}|14x x -<<

正切函数的性质与图像教学设计

《正切函数的性质与图像》的教学设计 一.教材分析 1.地位与作用 《正切函数的性质与图像》是高中《数学》必修4第一章第四节内容。在学习了正弦函数、余弦函数的图像与性质,研究正切函数的图象与性质过程不仅是对正、余弦曲线研讨方法的一种再现,更是一种提升。 2.教材处理 教材采用探究的方法引导学生注意正切函数与正弦函数在研究方法上类似,我采用以提问的方式,让学生回忆如何由正弦线得到正弦曲线的作图过程与方法,进而启发、引导学生发现作正切曲线的一种方法。设计问题一步步引导学生注意画正切曲线的细节。我把空间留给学生,采用让学生自己设计一个得到正切曲线的方法。这样,不仅发挥了学生的能动性,增强动脑、动手绘图的能力。二.学情分析 通过对正弦函数图像与性质的研究,学生已经具备了一定的绘图技能,类比推理画出图象,并通过观察图象,总结性质的能力。但在画正切函数图象时,还有许多需要注意的地方,比如定义域,函数区间等问题。这又提升了学生分析问题的能力及严密认真的态度。 三.教学目标确定 正切函数是继正、余弦之后的又一个三角函数,三者在研究方法与研究内容上类似,但某些性质有所不同,这就养成学生在画图时必须全面考虑问题。本着课改理念,养成学生对知识的勇于探索精神,学生亲自体会正切曲线的获得过程,这样学生的动手实践能力有了提高,又体会到学习数学的乐趣,根据教学要求及学生现有的认知水平,现制定以下教学目标: 1.知识目标: 1)、能用单位圆中的正切线画出正切函数的图像。 2)、熟练根据正切函数的图像推导出正切函数的性质。 3)、掌握利用数形结合思想分析问题、解决问题的技能。 2.能力目标: 1)、通过类比,联系正弦函数图像的作法 2)、能学以致用,结合图像分析得到正切函数的诱导公式和正切函数的性质。3、德育目标: 使同学们对正切函数的概念有一定的体会;会用联系的观点看问题,建立数形结合的思想,激发学习的学习积极性;培养学生分析问题、解决问题的能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。 4.重点与难点 重点:正切函数的图象及其主要性质。 难点:熟练运用诱导公式和性质分析问题、解决问题 教学模式:启发、探究式发现教学. 四.流程设计 (一).复习引入: (1)问题:如何用正弦线作正弦函数图像呢? (2)类比:利用正切线得到正切函数x 的图像 y tan

(完整版)六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m y x f x x x x g ? ? ?=1)(

高考数学专题17 三次函数的图像与性质(原卷版)

专题17 三次函数的图像与性质 一、例题选讲 题型一 运用三次函数的图像研究零点问题 遇到函数零点个数问题,通常转化为两个函数图象交点问题,进而借助数形结合思想解决问题;也可转化为方程解的个数问题,通过具体的解方程达到解决问题的目的.前者由于是通过图形解决问题,故对绘制的函数图象准确度和细节处要求较高,后者对问题转化的等价性和逻辑推理的严谨性要求较高.下面的解法是从解方程的角度考虑的. 例1、(2017南通、扬州、泰州、淮安三调)已知函数3()3 .x x a f x x x x a ?=?-,求()y g x =的单调增区间. 例4、(2018无锡期末) 若函数f(x)=(x +1)2|x -a|在区间[-1,2]上单调递增,则实数a 的取值范围是________.

(完整版)基本初等函数图像及其性质表

函数名 一次函数 二次函数 反比例函数 指数函数 解析式 )0()(≠+=a b ax x f )0()(≠= k x k x f 图像 定义域 R R {}0|≠x x R 值域 R ) ,(∞+0 必过点 )(b ,0 ) ,(c 0 ) 1,(1,--k k ) ( ) (1,0 周期性 不是周期函数 不是周期函数 不是周期函数 不是周期函数 单调性 在R 上单增 )2-a b -∞,(为减 ),2+∞-a b (为增 )为减,(0-∞)为减,(∞+0 为减 为增,101<<>a a 最大最小值 在R 不存在最大最小值 开口向上有最小值 a b a c y 442min -= 不存在最大最小值 在R 上不存在最大最小值 奇偶性 非奇非偶函数 为奇函数00≠=b b 偶函数 为非奇非为偶函数,00≠=b b 奇函数 非奇非偶函数 对称性 为常数。 对称, 函数图像关于直线任何一点对称;关于图像上t t x a y +=1 - 对称 直线函数图像关于 a b x 2-= 函数图像关于原点对称; 对称。 直线和关于 对称,直线图像关于x y x y -== 既不成中心对称也不成轴对称。 渐近线 无 无 . 00==y x 直线或者直线 .0=y 直线 ) 0()(2≠++=a c bx ax x f ) 10()(≠=a a a x f x 且>0>a >a 0 >k ) ,44[ 2 +∞-a b a c ),(),(∞+?∞00-x a y =) 10(<a x y O 1

函数名 对数函数 幂函数的一个例子 双钩函数 含绝对值函数 解析式 ) 10(log ≠>=a a y x a 且 ) 0(≥=x x y b a b x a x y <-+-=设为了研究方便 图像 O 1 y x ) 10(log <<=a y x a ) 1(log >=a y x a O y x x y =1 1 定义域 ()∞+,0 [)∞+,0 0}x |{x ≠ R 值域 R [) ∞+,0 (][) ∞+∞,,ab ab 22--Y [)+∞-,a b 必过点 )(0,1 () 1,1 )2,(2,ab a b ab a b -- )( ) ,(,a b b a b a --)( 周期性 不是周期函数 不是周期函数 不是周期函数 不是周期函数 单调性 单调递减。 单调递增。,, 101<<>a a 为增函数 定义域内 递增。递减,,递减,递增,,???? ??+∞???? ????? ? ? ????? ??∞,00,---a b a b a b a b (][)函数。 上为常值为增函数。 为减函数。 ,],[,-b a b a +∞∞ 最大最小值 无最大最小值 最小值为 0min =y ,无最 大值 无最大最小值 a b y -=min 奇偶性 非奇非偶 非奇非偶 奇函数 对称性 既不是轴对称也不是中心对称 既不是轴对称也不是中心对称 关于原点成中心对称 关 于 直 线 2 b a x += 对称。 渐近线 直线x=0 ax y =和0=x O y x a b a b -ab 2ab 2-O y x a b a b -的情况 只了解中学研究方便通常 ) (00>>+=b a x b ax y 为偶函数0=+b a

三次函数性质总结

三次函数性质的探索 我们已经学习了一次函数,知道图象是单调递增或单调递减,在整个定义域上不存在 最大值与最小值,在某一闭区间取得最大值与最小值.那么,是什么决定函数的单调性呢? 利用已学过的知识得出:当k>0时函数单调递增;当k<0时函数单调递增;b决定函数与y轴相交的位置. 其中运用的较多的一次函数不等式性质是: 在上恒成立的充要条件 接着,我们同样学习了二次函数, 利用已学知识归纳得出:当时(如图1) ,在对称轴的左侧单调递减、右侧单调递增, 对称轴 上取得最小值; 当时(图2) ,在对称轴的左侧单调递增、右侧单调递减, 对称轴 上取得最大值. 在某一区间取得最大值与最小值. 其中决定函数的开口方向,同时决定对称轴,决定函数与轴相交的位置. 总结:一次函数只有一个单调性,二次函数有两个单调性,那么三次函数是否就有三个单调性呢? 三次函数专题 一、定义 定义1 形如的函数,称为“三次函数”(从函数解析式的结构上命名)。 定义 2 三次函数的导数 ,把叫做三次函数导函数的判 别式。 由于三次函数的导函数是二次函数,而二次函数是高中数学中的重要内容,所以三次函数的问题,已经成为高考命题的一个新的热点和亮点。 系列探究1: 从最简单的三次函数开始 反思1 :三次函数的相关性质呢? 反思2 :三次函数的相关性质呢? x y O

反思3 :三次函数的相关性质呢? 例题 1.(2012天津理4) 函数在区间内的零点个数是( ) (A)0 (B)1 (C)2 (D)3 探究一般三次函数的性质: 先求导 1、单调性: (1 )若,此时函数() f x在R上是增函数; (2 )若 ,令两根为 12 ,x x 且, 则 在 上单调递增,在上单调递减。 导函数 图 象 极值点 个数 2 0 2 0 2、零点 (1) 若0 3 2≤ -ac b,则恰有一个实根; (2) 若,且,则恰有一个实根; (3) 若,且,则有两个不相等的实根; (4) 若,且,则有三个不相等的实根. 说明: (1)(2) 有一个实根的充要条件是曲线与轴只相交一次,即在上为单调函数或两极值 同号. x x1x 2 x0x x1x2 x x0 x

必修4正弦函数和余弦函数的图像与性质

必修4正弦函数和余弦函数的图像与性质 例1 用五点法做出下列函数的图像 11(1)2sin ,[0,2];(2)cos(),[,]666 y x x y x x ππππ=-∈=+∈- 例2 求下列函数的定义域和值域 (1)lgsin ;(2)y x y == 练:求函数sin ()log (12cos )x f x x =+的定义域。 例3 已知函数()y f x =的定义域是1 [0,]4 ,求下列函数的定义域 221(1)(cos );(2)(sin )2 f x f x - 例4 求下列函数的最大值与最小值 22(1)2sin();(2)2cos 5sin 4;42(3)3cos 4cos 1,[,]33 y x y x x y x x π ππ=--=+-=-+∈

例5 设1 sin sin 3x y +=,求2sin cos M x y =-的最小值和最大值 例6 求下列函数的值域 2cos 2sin cos (1);(2)2cos 11sin x x x y y x x ==++ 例7已知a 是实数,则函数f (x )=1+asinax 的图象不可能是( ) A . B . C . D . 例8 求下列函数的周期。 (1)|sin ||cos |;(2)cos |2|(3)cos()6y x x y x y x π =+==-- 例9 判断函数7())2f x x π =+的奇偶性 例10 判断函数()lg(sin f x x =+的奇偶性

例11求函数1sin 2 x y π-=的单调区间 提升训练题 1.下列四个函数的图像中关于y 轴对称的是( ) .sin ;.cos ;.1sin ;.cos()2 A y x B y x C y x D y x π ==-=-=- 2.函数sin 2x y =的单调增区间是( ) 3.[2,2]();.[2,2]()2222 .[2,2]();.[2,2]()A k k k Z B k k k Z C k k k Z D k k k Z π πππππππππππππ- +∈++∈-∈+∈ 3.下列函数中是奇函数的是( ) .|sin |;.sin(||);.sin ||;.sin ||A y x B y x C y x D y x x =-=-== 4.sin()3y x π =-的单调减区间是( ) 55.[,]();[2,2]()666677.[,]();.[2,2]();6666A k k k Z B k k k Z C k k k Z D k k k Z ππππππππππππππππ-+ ∈-+∈--∈--∈ 5.函数2cos 3cos 2y x =-+的最小值为______________________ 6.函数|sin |2x y =的最小正周期____________________ 7.cos1,cos2,cos3的大小关系____________________ 8.函数3cos 1cos 2 x y x += +的值域是____________________

6类基本初等函数的图形及性质(考研数学基础)_完美版

基本初等函数及图形 (1) 常值函数(也称常数函数) y =c (其中c 为常数) (2) 幂函数 μ x y =,μ是常数; (3) 指数函数 x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ; (4) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; 1. 当u 为正整数时,函数的定义域为区间) ,(+∞-∞∈x ,他们的图形都经过原点,并当 u>1时在原点处与X 轴相切。且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称; 2. 当u 为负整数时。函数的定义域为除去x=0的所有实数。 3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n 图形于x 轴相切,如果m1时函数为单调增,当a<1时函数为单调减. 2. 不论x 为何值,y 总是正的,图形在x 轴上方. 3. 当x=0时,y=1,所以他的图形通过(0,1)点. 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方, 在区间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数. a<1在实用中很少用到/

正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y , 余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y , 正切函数 x y tan =, 2π π+ ≠k x ,k Z ∈,),(+∞-∞∈y , 余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;

高三数学三次函数图象和性质与四次函数问题

三次函数与四次函数 大连市红旗高中王金泽 wjz9589@https://www.wendangku.net/doc/8b14006116.html, 在初中,已经初步学习了二次函数,到了高中又系统的学习和深化了二次函数,三次函数是继二次函数后接触的新的多项式函数类型,它是二次函数的发展,和二次函数类似也有“与x轴交点个数”等类似问题。三次函数是目前高考尤其是文科高考的热点,不仅仅如此,通过深化对三次函数的学习,可以解决四次函数问题。2008年高考有多个省份出现了四次函数高考题,本文的目的就是,对三次函数做个重点的归纳,并且阐述在四次函数中的应用 第一部分:三次函数的图象特征、以及与x轴的交点个数(根的个数)、极值情况 三次函数图象说明 a对图象 的影响 可以根据极限的思想去分析 当a>0时,在x→+∞右向上 伸展,x→-∞左向下伸展。 当a<0时,在x→+∞右向下 伸展,x→-∞左向上伸展。 (可以联系二次函数a对开口的影 响去联想三次函数右侧伸展情况) 与x轴有三 个交点 若0 3 2> -ac b,且 ) ( ) ( 2 1 < ?x f x f,既两个极 值异号;图象与x轴有三个交点 与x轴有二 个交点 若0 3 2> -ac b,且 ) ( ) ( 2 1 = ?x f x f,既有一 个极值为0,图象与x轴有两个 交点 与x轴有一 个交点 1。存在极值时即0 3 2> -ac b, 且0 ) ( ) ( 2 1 > ?x f x f,既两个 极值同号,图象与x轴有一个交点。 2。不存在极值,函数是单调函数 时图象也与x轴有一个交点。

1.()0f x =根的个数 三次函数d cx bx ax x f +++=23)( 导函数为二次函数:)0(23)(2/≠++=a c bx ax x f , 二次函数的判别式化简为:△=)3(412422ac b ac b -=-, (1) 若032 ≤-ac b ,则0)(=x f 恰有一个实根; (2) 若032>-ac b ,且0)()(21>?x f x f ,则0)(=x f 恰有一个实根; (3) 若032>-ac b ,且0)()(21=?x f x f ,则0)(=x f 有两个不相等的实根; (4) 若032>-ac b ,且0)()(21-ac b ,且0)()(21>?x f x f ). (3)0)(=x f 有两个相异实根的充要条件是曲线)(x f y =与X 轴有两个公共点且其中之一为切点,所以 032>-ac b ,且0)()(21=?x f x f . (4)0)(=x f 有三个不相等的实根的充要条件是曲线)(x f y =与X 轴有三个公共点,即)(x f 有一个极大值,一个极小值,且两极值异号.所以032 >-ac b 且0)()(21++=a c bx ax x f , 二次函数的判别式化简为:△=)3(412422ac b ac b -=-, (1) 若032 ≤-ac b ,则)(x f 在),(+∞-∞上为增函数; (2) 若032>-ac b ,则)(x f 在),(1x -∞和),(2+∞x 上为增函数,)(x f 在),(21x x 上为减函数,其中 a ac b b x a a c b b x 33,332221-+-= ---=. 证明:c bx ax x f ++=23)('2, △=)3(41242 2ac b ac b -=-, (1) 当0≤? 即032 ≤-ac b 时,0)('≥x f 在 R 上恒成立, 即)(x f 在),(+∞-∞为增函数.

正弦函数的图像和性质(一)

正弦函数的图像和性质(一) 【使用说明】1.课前认真完成预习学案的问题导学及例题、深化提高; 2.认真限时完成,规范书写,课上小组合作探讨,答疑解惑。 【重点难点】重点:正弦函数的图像 难点:图像的画法 一、学习目标 1.了解正弦曲线的画法,能用五点法画出正弦函数的图像; 2.能通过函数图像对函数的性质做简单分析; 3.通过从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,培养学生从不同角度观察、研究问题的思维习惯。 二、问题导学 1、函数的图像的画法: 描点法 步骤:列表→描点→连线 补全上述表格,并根据表格中数据在直角坐标系中画出的图像。 几何法 阅读教材25—26页内容,试借助于单位圆,利用正弦函数的定义画出的图像。 五点法

观察的图像,发现有五个点起着关键的作用,它们是图像与轴的交点和图像的最高点及最低点: ______,________,_________,________,__________. 因此,在精度要求不高的情况下,我们通常在直角坐标系中描出这起关键作用的五个点,然后用光滑的曲线连接,做出图像的简图。 请同学们用五点法画出的图像。 2、 因为正弦函数是以为周期的周期函数,所以函数在区间上的图像与在区间上的图像形状完全一样,只是位置不同,因此我们只需将函数的图像向左、向右平行移动(每次移动个单位)就可以得到的图像,正弦函数的图像叫做___________ 请同学们在几何法做出的图像的基础上,画出正弦曲线。 3、 合作探究 例1、用五点法画出下列函数在区间上的简图。 (1) (2) 例2、在上,利用的图像求满足下列不等式的的取值范围。 (1) (2)

基本初等函数图像及性质大全

一、一次函数与二次函数 (一)一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

定义域 (),-∞+∞ 对称轴 2b x a =- 顶点坐标 24,24b ac b a a ??-- ??? 值域 24,4ac b a ??-+∞ ? ?? 24,4ac b a ??--∞ ? ?? 单调区间 ,2b a ? ?-∞- ? ? ?递减 ,2b a ??- +∞ ??? 递增 ,2b a ? ?-∞- ? ? ?递增 ,2b a ?? - +∞ ??? 递减 ①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 二、幂函数 (1)幂函数的定义 叫做幂函数,其中x 为自变量,α是常数. (2

二次函数的图像和性质第二课时教案

22.1 二次函数(第二课时) 教学目标: 1.会用描点法画出形如y = ax 2 的二次函数图象,了解抛物线的有关概念; 2.通过观察图象,能说出二次函数y = ax 2 的图象特征和性质; 3.在类比探究二次函数y = ax 2 的图象和性质的过程中,进一步体会研究函数图象和性质的基本方法和数形结合的思想 教学重点:会用描点法画出二次函数y=ax2的图象,观察图象,得出二次函数y = ax 2 的图 象特征和性质。 教学难点:抛物线的图像特征。 教学过程: 一、问题引新 1,同学们可以回想一下,一次函数的性质是什么? 2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢? 3.一次函数的图象是什么?二次函数的图象是什么? 二、学习新知 1、例1、画二次函数y=2x2与y=2x2的图象。(有学生自己完成) 解:(1)列表:在x的取值范围内列出函数对应值表: (2)描点(3)连线 x …-3 -2 -1 0 1 2 3 … y …9 4 1 0 1 4 9 … 找一名学生板演画图 提问:观察这个函数的图象,它有什么特点? (让学生观察,思考、讨论、交流,) 2、归纳: 抛物线概念:像这样的曲线通常叫做抛物线。抛物线与它的对称轴的交点叫做抛物线的 顶点.顶点坐标(0,0) 3、运用新知 (1).观察并比较两个图象,你发现有什么共同点?又有什么区别? (2).课件出示:在同一直角坐标系中,y=2x2与y=-2x2的图象,观察并比较 (3).将所画的四个函数的图象作比较,你又能发现什么?(课件出示) 让学生观察y=x2、y=2x2的图象,填空; 当a>0时,抛物线y=ax2开口______,在对称轴的左边,曲线自左向右______;在对称 轴的右边,曲线自左向右______,______是抛物线上位置最低的点。 当X<0时,函数值y随着x的增大而______,当X>O时,函数值y随X的增大而______; 当X=______时,函数值y=ax2 (a>0)取得最小值,最小值y=______

正弦函数的图像和性质(一)

x y 等分圆 平移三角函数线作正弦函数的图像 三角函数线 圆 O O 正弦函数的图像和性质(一) 【使用说明】1.课前认真完成预习学案的问题导学及例题、深化提高; 2.认真限时完成,规范书写,课上小组合作探讨,答疑解惑。 【重点难点】重点:正弦函数的图像 难点:x y sin =图像的画法 一、学习目标 1.了解正弦曲线的画法,能用五点法画出正弦函数x y sin =的图像; 2.能通过函数图像对函数的性质做简单分析; 3.通过从单位圆和图像两个不同的角度去观察和研究正弦函数的变化规律,培养学生从不同 角度观察、研究问题的思维习惯。 二、问题导学 1、函数] 2,0[ sinπ ∈ =x x y,的图像的画法: 补全上述表格,并根据表格中数据在直角坐标系中画出] 2,0[ sinπ ∈ =x x y,的图像。 ②几何法阅读教材25—26页内容,试借助于单位圆,利用正弦函数的定义画出 ] 2,0[ sinπ ∈ =x x y,的图像。 ③五点法 观察] 2,0[ sinπ ∈ =x x y,的图像,发现有五个点起着关键的作用,它们是图像与x轴的 交点和图像的最高点及最低点:______,________,_________,________,__________. 因此,在精度要求不高的情况下,我们通常在直角坐标系中描出这起关键作用的五个点,然 后用光滑的曲线连接,做出图像的简图。 请同学们用五点法画出] 2,0[ sinπ ∈ =x x y,的图像。 2、因为正弦函数是以π2为周期的周期函数,所以函数x y sin =在区间 )0 ] )1 2, 2[≠ ∈ +k Z k k k且 ( (π π上的图像与在区间] 2,0[π上的图像形状完全一样,只是位置 不同,因此我们只需将函数] 2,0[ sinπ ∈ =x x y,的图像向左、向右平行移动(每次移动π2 个单位)就可以得到R sin∈ =x x y,的图像,正弦函数的图像叫做___________ 请同学们在几何法做出的图像的基础上,画出正弦曲线。 三、合作探究 例1、用五点法画出下列函数在区间] 2,0[π上的简图。 (1)x y sin 3 =(2)x y sin -1 =

正弦函数和余弦函数图像与性质

6、1正弦函数与余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T 、 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α= ===; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角与它的正弦值(或余弦值)之间就是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值; 步骤2:描点——平移定点,即描点()x x sin ,; 步骤3:连线——用光滑的曲线顺次连结各个点 小结:几何描点法作图精确,但过程比较繁。 【方案2】——五点法 步骤1:列表——列出对图象形状起关键作用的五点坐标;

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质 一、常值函数(也称常数函数) y =C (其中C 为常数); α 1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果m

除x=0以外的一切实数。 三、指数函数x a y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

二次函数的图像和性质知识点与练习

第二节 二次函数的图像与性质 1.能够利用描点法做出函数y =ax 2 ,y=a(x-h)2,y =a(x-h)2 +k 和c bx ax y ++=2 图象, 能根据图象认识和理解二次函数的性质; 2.理解二次函数c bx ax y ++=2 中a 、b 、c 对函数图象的影响。 一、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定 其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们 选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 例1. 在同一平面坐标系中分别画出二次函数y =x 2 ,y =-x 2 ,y =2x 2 ,y =-2x 2 ,y =2(x-1)2 的图像。 一、二次函数的基本形式 1. y =ax 2 的性质: x y O

2. y=ax2+k的性质:(k上加下减) 3. y=a(x-h)2的性质:(h左加右减) 4. y=a (x-h)2+k的性质: 5. y=ax2+bx+c的性质:

二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式() 2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字 “左加右减,上加下减”. 方法二:

7.3.4 正切函数的性质与图像2019(秋)数学 必修 第三册 人教B版(新教材)改题型

7.3.4正切函数的性质与图像 课标要求素养要求 1.了解正切函数图像的画法,理解正切函数的性质. 2.能利用正切函数的图像及性质解决问题. 通过对正切函数的图像与性质的学习,体会数学抽象和直观想象素养. 教材知识探究 孔子东游,见两小儿辩斗,一儿曰:“日初出沧沧凉凉,及其日中如探汤,此不为近者热而远者凉乎?”,事实上,中午的气温较早晨高,主要原因是早晨太阳斜射大地,中午太阳直射大地.在相同的时间、相等的面积里,物体在直射状态下比在斜射状态下吸收的热量多,这就涉及太阳光和地面的角度问题. 那么这与正切函数的性质与图像有什么联系呢? 问题类比y=sin x ,y=cos x的图像与性质. (1)y=tan x是周期函数吗?有最大(小)值吗? (2)正切函数的图像是连续的吗? 提示(1)y=tan x是周期函数,且T=π,无最大,最小值.(2)正切函数的图像在定义域上不是连续的. 函数y=tan x的图像和性质性质是根据图像得到的结论

解析式 y =tan x 图像 定义域 {x |x ∈R ,且x ≠π 2+k π,k ∈Z } 值域 R 周期 π 奇偶性 奇函数 单调性 在区间(k π-π2,k π+π 2)(k ∈Z )都是增函数 对称中心 ? ???? k π2,0(k ∈Z ) 零点 x =k π(k ∈Z ) 教材拓展补遗 [微判断] 1.函数y =tan x 在其定义域上是增函数.(×) 提示 y =tan x 在区间(k π-π2,k π+π 2)(k ∈Z )上是增函数,但在其定义域上不是增函数. 2.函数y =tan 2x 的周期为π.(×) 提示 y =tan 2x 的周期为π2. 3.正切函数y =tan x 无单调递减区间.(√) 4.函数y =2tan x ,x ∈??? ???0,π2的值域是[0,+∞).(√) [微训练] 与函数y =tan ? ? ???2x +π4的图像不相交的一条直线是 ( ) A .x =π2 B .x =-π 2 C .x =π4 D .x =π 8 解析 ∵2x +π4≠π 2+k π(k ∈Z ), ∴x ≠π8+k π 2(k ∈Z ),故选D.

正切函数的图像和性质 公开课教案

1.4.2 正切函数的性质与图象 考纲要求:能画出y=tanx 的图象,了解三角函数的周期性.,理解正切函数在区间 ()的单调性. 教学目的 知识目标: 了解利用正切线画出正切函数图象的方法; 了解正切曲线的特征,能利用正切曲线解决简单的问题; 掌握正切函数的性质。 能力目标: 掌握正弦函数的周期性,奇偶性,单调性,能利用正切曲线解决简单的 问题。 情感目标: 在借鉴正弦函数的学习方法研究正切函数图象、性质的过程中体 会类比的思想。 教学重点:正切函数的图象形状及其主要性质 教学难点:1、利用正切线得到正切函数的图象 2、对正切函数单调性的理解 教学方法:探究,启发式教学 教学过程 复习导入: 1. 正切函数的定义及几何表示,正切函数tan y x =的定义域是什么? 2. 正弦曲线是怎样画的? 讲授新课: 思考1:能否类比正弦函数图象的作法,画出正切函数的图象呢? 画正切函数选取哪一段好呢?画多长一段呢? 思考2:正切函数是不是周期函数?若是,最小正周期是什么? 思考3. 诱导公式 体现了正切函数的哪种性质? (一)作tan y x =,x ∈??? ? ?- 2,2ππ的图象 tan()tan x x -=-

说明: (1)根据正切函数的周期性,把上述图象向左、右扩展,得到正切函数 R x x y ∈=tan ,且()z k k x ∈+≠ ππ 2 的图象,称“正切曲线” 。 (2)由图象可以看出,正切曲线是由被相互平行的直线()2 x k k Z π π=+∈所隔开的 无穷多支曲线组成的。 (二)正切函数的性质 引导学生观察,共同获得: (1)定义域:? ?? ? ??∈+≠ z k k x x ,2|ππ ; (2)周期性:π=T ; (3)奇偶性:由()x x tan tan -=-知,正切函数是奇函数; (4)单调性: 思考:正切函数在整个定义域内是增函数吗? 引导学生观察正切曲线,小组讨论的形式。 师举例说明:

正切函数的图像与性质说课稿

《正切函数图象与性质》说课稿 各位评委老师好! 今天我说课的课题是《正切函数的图象和性质》,下面我将从教材分析、教学策略、学情分析、教学程序四个方面进行说课,不足的地方希望老师能给予指出。 一.教材分析 1、教材的地位和作用 本节课是在学生学习了正弦余弦函数图像及基本性质的基础上对又一个具体三角函数的学习,其研究方法与前面正余弦函数图像与性质的研究方法类似,是对学生所学知识的融通和运用,也是学生对学习函数规律的总结和探索。正确理解和熟练掌握正切函数的图像和性质也是之后学好《已知三角函数求值》的关键。 2、教学目标 (一)知识和技能目标: 1、理解并掌握正切函数图像的推导思路及画法,即“正弦函数图像类比推导法” 2、准确写出正切函数的性质,并通过练习体验正切函数基本性质的应用. (二)过程与方法目标: 1、通过学生自己动手作图,调动学生的积极性和情感投入,培养学生数形结合的思想方法; 2、培养学生类比、归纳的数学思想; 3、培养学生发现数学规律,实践第一的观点,增强学习数学的兴趣。 3.重点、难点与疑点 (一)、教学重点:正切函数的图象和性质。 1、我打算用类比正弦函数图像类比推导法,单位圆中的正切线作正切函数图象法,引导学生作出正切函数图,并探索函数性质; 2、学会画正切函数的简图,体会与x轴的交点以及渐近线x=π/2 +kπ,k∈Z在确定图象形状时所起的关键作用。 (二)、教学难点:体验正切函数基本性质的应用, (三)、教学疑点:正切函数在每个单调区间是增函数,但由于定义域的不连续性并非整个定义域内的增函数; 二.教学策略 在本节课中,我以“矛盾冲突”为主线撞击学生的思维,比如: 1、在得到正切函数的概念之后,提出如何研究这一具体函数的性质,启发学生可以“类比”研究正余弦函数图像和性质的方法; 2、在得到正切函数的部分性质之后,提出如何能“丰满”正切函数的性质,启发学生可以借助图像进行研究,让学生感受“数缺形少直观,形缺少数难入微”的精妙. 三.学情分析 本节课是研究了正弦、余弦函数的图像与性质后,对又一具体三角函数的学习。学生已经掌握了角的正切,正切线和与正切有关的诱导公式,对三角函数性质的讨论方法已经有了一个比较清晰的认识,这为本节课的学习提供了知识的保障. 四.教学程序 1、复习引入 (一)、复习 问题:1、什么是正切?正切有关的诱导公式?

1.5正弦函数的图像与性质基础练习题

1.5正弦函数的图像与性质基础练习题 一、单选题 1.已知函数()sin 022f x x ππ??????=+<< ???????的图象过点0,2? ?? ,则()f x 图象的一个对称中心为( ) A .1,03?? ??? B .()1,0 C .4,03?? ??? D .()2,0 22sin 0x -≥成立的x 的取值集合是( ) A .()32244x k x k k Z ππππ?? +≤≤+∈???? B .()72244x k x k k Z ππππ?? +≤≤+∈???? C .()52244x k x k k Z π πππ?? -≤≤+∈???? D .()572244x k x k k Z π πππ?? +≤≤+∈???? 3.函数π ()sin(2)3f x x =+的最小正周期为( ) A .4π B .2π C .π D .π 2 4.函数sin 26y x π?? =+ ???的最小正周期是( ) A .2π B .π C .2π D .4π 5.函数1sin y x =-的最大值为( ) A .1 B .0 C .2 D .1- 6.已知函数()()sin 2f x x ?=+的图像关于直线3x π =对称,则?可能取值是( ). A .2π B .12π - C .6π D .6π- 7.函数sin 26y x π? ? =+ ???的一条对称轴是( ) A .6x π =- B .0x = C .6x π = D .3x π =

8.函数2sin y x =的最小值是( ) A .2- B .1- C .1 D .2 9.已知集合{}20M x x x =-≤, {}sin ,N y y x x R ==∈,则M N =( ) A .[]1,0- B .()0,1 C .[]0,1 D .? 10.已知函数()sin()()2f x x x R π =-∈,下面结论错误的是( ) A .函数()f x 的最小正周期为2π B .函数()f x 在区间0, 2π??????上是增函数 C .函数()f x 的图像关于直线0x =对称 D .函数()f x 是奇函数 11.函数()sin 4f x x π? ?=+ ??? 图象的一条对称轴方程为( ) A .4πx =- B .4x π = C .2x π = D .x π= 12.函数12sin()24y x π=+ 的周期,振幅,初相分别是( ) A .,2,44ππ B .4,2,4π π-- C .4,2,4π π D .2,2,4π π 二、填空题 13.函数sin 2y x =的最小正周期为_____________ 14.函数1sin 223y x π??=+ ?? ?的最小正周期是_______ 15.y =3sin 26x π??- ???在区间0,2π?? ????上的值域是________. 三、双空题 16.设函数()sin f x A B x =+,当0B <时,()f x 的最大值是 32,最小值是12-,则A =_____,B =_____. 17.函数sin 24y x π??=+ ???的对称轴为_________,对称中心为_____________. 四、解答题 18.已知函数2sin 23y x π? ?=+ ??? .

相关文档
相关文档 最新文档