文档库 最新最全的文档下载
当前位置:文档库 › 金催化剂及其在化工中的应用研究进展

金催化剂及其在化工中的应用研究进展

金催化剂及其在化工中的应用研究进展
金催化剂及其在化工中的应用研究进展

金催化剂及其在化工中的应用研究进展在很长时间内,金元素因具有高度稳定性而都被认为是化学惰性的。自从1989年研究人员发现负载在过渡金属氧化物上的金催化剂对CO低温氧化表现出很高的催化活性之后,金催化剂引起了人们的极大兴趣与关注。由于黄金的价格远远低于铂和钯的价格,而且其价格比较稳定,因此开发和研究金催化剂具有明显的经济优势。自1990年以来,有关金催化剂的研究和开发日益活跃。国内研究人员先后论述了2002~2003年金催化剂在有机反应中的研究进展。近几年来,金催化剂在许多新的反应中取得了一定的研究成果,如甲醇部分氧化制氢和苯乙烯环氧化等,预示金催化剂的研究和开发将不断扩大。本文主要介绍了2003年以来金催化剂的制备及其在化工中的应用研究进展,并分析了今后的研究重点。

1 影响金催化剂活性的因素

1.1 制备方法的影响

金的催化活性是通过采用一定的制备方法将金负载在载体上而得到体现的。目前,制备金催化剂的方法很多,常用的方法主要有:浸渍法、共沉淀法和沉积-沉淀法。采用不同方法制备的金催化剂,催化活性往往差异较大。

传统浸渍法是将载体浸渍于氯金酸水溶液中,然后经过干燥、焙烧处理得到金催化剂。使用该方法制备的金催化剂由于富含氯离子而容易形成较大的金晶粒,并且分散性很差,难以得到高活性的负载型金催化剂。

共沉淀法是将HAuCl4水溶液与相应载体的硝酸盐溶液,在一定的碱溶液中进行沉淀,然后经过滤、洗涤、干燥和焙烧得到金催化剂。使用这种方法制备的金催化剂,如Au/α-Fe2O3,在-73℃下对催化氧化CO就具有良好的低温活性。

沉积-沉淀法是将载体悬浮在一定浓度的氯金酸水溶液中,采用碱液调节溶液的pH值,使金物种以氢氧化金的形式沉积在载体表面。如果悬浮液的pH值调节适当,金物种则以非常小的晶粒高度分散在载体表面,得到的金催化剂具有很好的低温活性,从而可以减少氯金酸的用量,提高金的利用率。

由于采用共沉淀法和沉积-沉淀法制备金催化剂的过程中,得到的金催化剂前体往往经过多次过滤和洗涤,可以将吸附在载体表面的氯离子去除,从而明显地减少氯离子对金催化剂的毒害作用,提高金催化剂的活性,因此用共沉淀法和沉积-沉淀法比浸渍法更加可取。共沉淀法与沉积-沉淀法相比,有研究认为后者更优于前者,因为采用

沉积-沉淀法制得的金催化剂,金晶粒都分散在载体的表面;而共沉淀法制得的金催化剂,则有大部分的金晶粒被包埋在载体内部,不能参与催化反应,所以,目前报道的大部分文献都采用沉积-沉淀法制备金催化剂。

1.2 载体的影响

研究者一致认为,氧化物载体种类对金催化剂的活性也有明显影响。如对CO氧化,负载在可还原的过渡金属氧化物(如TiO2、Co3O4、Fe2O3等)上的金催化剂比负载在不可还原的氧化物(如SiO2,Al2O3,MgO等)上的催化剂具有更优良的活性。

这与载体本身的内在性质有很大的关系,可还原的过渡金属氧化物本身就具有一定的催化氧化CO的活性,往往被称为活性载体。这些载体表面存在着一定的氧空位,由于氧空位能持续吸附气相中的氧,导致在金-载体界面处可能存在大量的O-2等表面氧物种,这些氧物种具有较好的溢流性,能够较快地扩散到金晶粒表面参与反应。因此,这类载体负载的金催化剂具有较高的活性。不可还原的氧化物本身对于CO氧化反应是不活泼的,往往被称为惰性载体。在低温下,这类载体显示很低的吸附和储存氧的能力,一般认为只是起到分散金物种的作用。

不同载体负载的金催化剂的活性差异较大,采用复合载体则可以提高金催化剂的活性。Gluhoi等用浸渍法在Al2O3中掺杂其它金属氧化物,采用沉积-沉淀法制得的Au-MO x-Al2O3(M=Ce,Mn,Co,Fe)与Au/Al2O3相比,催化丙烯氧化的活性有很大提高,活性顺序如下:

Au/CeO x-Al2O3>Au/FeO x/Al2O3>Au/MnO-Al2O3>Au/CoO x-Al2O3>Au/Al2O3。其中,Au/CeO x-Al2O3的t95(转化率为95%时的转化温度)为224℃,比Au/Al2O3的t95降低了193℃。他们认为,添加过渡金属氧化物的金催化剂,金晶粒的平均粒径对于获得高的催化活性并不十分关键。原因可能在于添加的金属氧化物有两方面的作用:1)MO x中的CeO2可以阻止金晶粒的烧结,有利于形成较小的金晶粒;2)过渡金属氧化物则可以为反应提供活性氧物种。

1.3 粒径的影响

金催化剂中金晶粒尺寸对催化活性的影响是被广泛讨论的课题之一,尽管取得了一定的进展,但至今仍不十分清楚。早期的研究表明,当金晶粒尺寸小于4 nm时,负载型金催化剂催化氧化CO的活性将大大提高。随后,研究人员发现,纳米金晶粒具有较高催化活性的原因在于量子尺寸效应。他们采用扫描隧道电镜(STM)在超高真空下考察了Au/TiO2表面金晶粒的尺寸情况。研究表明,高活性Au/TiO2的金晶粒是平

均直径约为2·6 nm,高约为0.7 nm(约2~3个原子厚)的金簇,即最佳的粒径为

2~3 nm。

研究人员等通过比较Au/MO x-Al2O3(M=Li,Rb,Mg,Ba)与Au/Al2O3催化丙烯氧化反应的活性发现,MO x(M=Li,Rb,Mg,Ba)的掺杂造成金催化剂表面的金晶粒尺寸变小,并且在焙烧时候阻止了金晶粒的烧结现象。金晶粒的平均尺寸顺序如下:

Au/BaO-Al2O3

依据催化作用的基础理论,催化剂的活性组分的几何结构和电子结构必须和反应物的几何结构和电子结构相适应,催化剂才能呈现最大的活性。当活性组分和反应物一定时,对金属催化剂而言,反应过程中涉及电子的转移,因金属晶粒大小与金属的电子逸出功有关,反应物电子结构和金属电子结构的适应性可以通过金属晶粒大小来调节。因此,对给定反应和金属催化剂而言,存在一个适宜晶粒的大小,偏离适宜晶粒大小,其反应活性均会下降。

2 金催化剂在化工中的应用

2.1CO的低温氧化

CO的催化氧化在防毒面具、封闭式CO2激光器、空气净化和汽车冷启动时CO的消除等方面具有广泛的应用前景。关于金催化剂用于低温催化氧化CO的研究报道已经很多,但很少有文献报道金催化剂的热稳定性研究。由于金的熔点(1064℃)和Tammann温度较低,而当金晶粒尺寸<2 nm时,其熔点只有300℃,要想制备出热稳定性好的金催化剂比较困难。大多数的负载型金催化剂在300℃以上焙烧时催化剂就会部分或完全失活,这在很大程度上限制了金催化剂的实际应用。

目前,已经有一些研究者开始了金催化剂的热稳定性研究工作,并且取得了一定的研究成果。最近的研究发现,将金负载在合适的介孔载体上,可以明显地提高金催化剂的热稳定性和低温活性。他们采用三嵌段共聚物聚乙醚-聚丙醚-聚乙醚(P123)为有机模板剂合成了介孔TiO2载体,用沉积-沉淀法制备金的质量分数为1%的Au/TiO2催化剂,经400℃焙烧4 h后,金的晶粒尺寸仍在1 nm ~5 nm范围内,在12℃下

表现出很好的CO氧化活性和抗热稳定性,即使在420℃焙烧,12℃下CO的转化率也在90%以上。而溶胶-凝胶法制备的TiO2和工业TiO2负载的纳米金催化剂中,金晶粒尺寸约为10 nm,催化剂的CO氧化活性和抗热稳定性较差,分别在370℃和320℃焙烧后就基本失活。介孔TiO2负载的金催化剂具有较高热稳定性的原因在于,这种采用P123制备的TiO2具有较均匀的介孔结构,其孔径(约6.1 nm)较大,金晶粒较易进入介孔孔道并在孔道内均匀分散,由于受孔道的限制,孔内的金难以形成很大的晶粒;同时,孔道外的金与孔道内的金因被TiO2孔壁隔离,焙烧时难以通过表面迁移形成大的晶粒。

2.2CO的选择性氧化

CO的选择性氧化是工业界和科技界十分关注的问题之一,如合成氨工业中微量CO 的脱除和燃料电池用富氢气体中CO的选择性氧化。目前研制的燃料电池一般利用甲醇水蒸汽重整产生氢气源,这种氢气源中往往含有75%(体积分数,下同)的H2、24%的CO2和1%的CO。这些CO可以优先吸附在Pt电极上使之中毒,严重地降低了电极的性能,消除CO可以使燃料电池在更低的温度下发挥更好的性能。对于富氢条件下选择性催化氧化CO,Au/α-Fe2O3与商业化的Pt/γ-Al2O3相比具有更高的低温活性,负载量为3.15%(质量分数)的Au/α-Fe2O3在80℃选择性催化氧化CO的转化率可达到99%以上,而Pt/γ-Al2O3达到此转化率的温度为200℃。最近的研究发现,Au/ZnO对富氢条件下CO的选择性催化氧化也表现出了优良的活性和稳定性。采用共沉淀法得到负载量为1.5%(质量分数)的Au/ZnO,可在80℃下富氢气氛中H2(50%~75%)(体积分数,下同)、

CO2(15%~25%)、CO(0·4%~5%)和O2(0·4%~5%),N2为平衡气,连续测试500 h基本不失活,选择性催化氧化CO的转化率大于92%。如果再在Au/ZnO中添加1%(质量分数)的Pt,CO的转化率大于96%,稳定性也大大提高,究其原因为适量的Pt掺杂有助于保持催化剂的比表面积,从而使其保持较高的活性和稳定性。

2.3低温水气变换反应

水气变换反应在煤化工和碳一化工中具有重要的应用,而负载型金催化剂在低温下对水气变换反应具有很高的催化活性。采用共沉淀法制备的Au/α-Fe2O3在200℃下催化CO转化率达82%,而传统的α-Fe2O3的催化转化率仅有17%。金催化剂催化水气变换反应的活性与金的晶粒大小、金含量、金的分散度以及金与载体之间的相互作用有关。研究人员采用沉积-沉淀法制备了介孔TiO2负载金催化剂,研究表明,负载量为1.63%的Au/TiO2的活性高于含4.73%的Au/TiO2,原因在于前者金的平均

金晶粒尺寸比后者小得多。金含量较小的Au/TiO2(1.63%)中金的分散度较高,小的金晶粒与载体界面处形成更加丰富的缺陷(边,角,弯,阶梯),为水气变换反应提供了更多的活性中心。而采用介孔ZrO2负载的金催化剂则与Au/TiO2不同,金含量较高的Au/ZrO2(5.74%)的平均金晶粒尺寸比Au/ZrO2(2.83%)的要小,前者的活性明显优于后者。在220℃下,催化水气变换反应的活性顺序如下:

(5.74%)Au/ZrO2>(1.63%)Au/TiO2>(4.73%)Au/TiO2>(2.83%)Au/ZrO2,这说明金与介孔ZrO2之间存在着较强的相互作用,这种相互作用阻止了金晶粒的聚集和烧结,使得Au/ZrO2具有较好的催化活性。

对于负载量为5.74%的Au/ZrO2催化剂,其活性高于世界黄金委员会提供的A 型Au/TiO2商业催化剂的活性,并且在很低的H2O/CO摩尔比、220℃下仍然具有较高的CO转化率(>84%)。经过活性测试后,活性虽有所下降,但是经过氧化处理或者采用空气和水蒸汽在200℃处理1 h,活性比新鲜催化剂有所提高,显示出较好的再生能力。CO程序升温脱附技术(CO-TPD)和CO2程序升温脱附技术(CO2-TPD)的分析结果表明,Au/ZrO2的失活是由于催化剂表面被吸附的CO和CO2覆盖所致,而并非由于金晶粒和载体的烧结以及载体的不可逆过渡还原所致,经再生处理可以使Au/ZrO2表面的沉积物种脱除,恢复其催化活性。

2.4甲醇部分氧化制氢气

近年来,燃料电池以其在交通工具方面具有广阔的应用前景而成为能源研究的热点。目前,研制的燃料电池一般利用甲醇水蒸汽重整产生氢气源由于该反应是吸热反应,需要通过向反应器供热才能使之顺利进行,而甲醇部分氧化是放热反应,不需要额外地消耗燃料给反应器供热,具有节能、环保的优点,因此采用甲醇部分氧化制取氢气具有较好的应用前景。

采用甲醇部分氧化制取氢气,最关键的是要提高H2的选择性,降低产物中CO的含量,因为CO的存在会导致Pt电极的中毒。传统的甲醇部分氧化制取氢气的催化剂一般为Cu催化剂和Pd催化剂采用这类催化剂催化甲醇部分氧化时,氢气的选择性一般为70%左右, CO的选择性达5%~15%,并且随着O2被完全消耗,甲醇分解(CH3OH→2H2+O2)、水蒸汽重整(CH3OH+H2O→3H2+CO2)、逆水煤气变换(CO2+H2→H2O+CO)等副反应随之发生,而且还产生甲醛、二甲基醚和甲酸等副产物。金催化剂具有比Cu催化剂和Pd催化剂更高的H2选择性和更低的CO选择性。

研究人员采用Au/TiO2-Fe2O3催化甲醇部分氧化制取氢气,在275℃的反应温度下,甲醇的转化率高达95%,H2的选择性为76%,CO的选择性仅为1.5%,并且不产生甲醛、二甲基醚和甲酸等。因此,采用Au/TiO2-Fe2O3作为甲醇部分氧化制氢气的催化剂,在燃料电池中具有潜在的应用前景,目前需要解决的是反应过程中金催化剂的稳定性问题。

2.5 苯乙烯环氧化

环氧苯乙烷是有机合成、制药工业的重要中间体。目前,一般采用可分离的固体催化剂,如TS-1、Ti-SiO2、TBS-2和TS-2作为苯乙烯环氧化的催化剂。然而,这些催化剂在采用H2O2作为氧化剂时,选择性很低。采用有机过氧化氢或者尿素-H2O2作为氧化剂,环氧苯乙烷的选择性很高(>80%),但是苯乙烯的转化率很低(分别为7.8%和17.7%)。有研究发现,以叔丁基过氧化氢(TBHP)为氧化剂,采用MgO或者其它碱土氧化物负载的金催化剂催化苯乙烯环氧化,具有催化活性好、选择性高和可重复利用等优点。

金催化剂催化苯乙烯环氧化的催化活性受制备方法、金晶粒大小和载体性质的影响很大。采用均相沉积-沉淀法(HDP法,以尿素作为沉淀剂)得到的7.5%的

Au/MgO,具有较小的金晶粒尺寸(7.9 nm±0.3 nm),显示出较高的催化活性和选择性,并且具有重复利用的优点。而采用沉积-沉淀法(DP法,以NaOH作为沉淀剂)得到的4.1%(质量分数)的Au/MgO,金晶粒尺寸较大(17.9 nm±3.4nm),催化活性和选择性相对较低。随后的研究发现,负载在过渡金属氧化物(如TiO2、CuO、

Cr2O3、NiO和Fe2O3等)上的金催化剂也具有良好的催化苯乙烯环氧化的活性和选择性。不同载体负载的金催化剂,其催化性能有较大的差别。其中,Au/TiO2与

Au/CuO表现出最好的活性和选择性,催化剂经过重复使用6次后,依然保持原来的催化性能,并且滤液中不含金离子。采用均相沉积-沉淀法制备的Au/Al2O3用于催化苯乙烯环氧化也取得了较好的效果。研究表明,以表面碱性位较丰富的介孔Al2O3为载体制备的金催化剂,其表面金晶粒分布较均匀且粒径(3.1~3.2nm)较小,在苯乙烯环氧化反应中催化活性和选择性最高,如表1(反应条件:压力,0.1 MPa;催化剂,0.1 g;苯乙烯,1.2mL;无水叔丁基过氧化氢,2.8 mL;苯,5 mL;反应温度,82℃~83℃;搅拌时间,12 h。)所示。

2.6葡萄糖的选择性氧化

由葡萄糖选择性氧化生成的葡萄糖酸在制药工业、食品工业以及造纸工业中具有广泛的应用。研究人员采用金溶胶浸渍法制备了活性炭负载的金催化剂,将之用于D-葡萄糖的选择性氧化,试验直接以O2为氧源,在碱性条件下获得了很好的转化率和葡萄糖酸选择性(达100%),其活性和选择性明显优于商业化的Pd/C、Pt/C催化剂,但是金催化剂循环使用的稳定性较差,经过4次循环实验后,活性下降50%。采用沉积-沉淀法制备的0.45%(质量分数)的Au/TiO2,将之用于葡萄糖氧化反应中,经过循环使用17次后,金晶粒没有发生聚集,金催化剂的活性没有下降,葡萄糖酸的选择性仍然大于99.5%,仅仅只是需要适当地延长反应时间。与其他金催化剂相比,

0.45%(质量分数)的Au/TiO2的稳定性有明显提高,具有良好的工业应用前景。

3结束语

多年来的研究表明,对于许多反应来说都需要金催化剂具有较小的金晶粒尺寸(<10 nm),由于小晶粒具有较大的表面能,有自发聚集为大晶粒的倾向,使其热稳定性差,高温下金晶粒容易烧结和聚集,偏离所涉及反应所需适宜晶粒尺度,导致活性下降或失活。因此,如何制备出分散度高、热稳定性高和活性好的负载型金催化剂是未来该领域的重要研究课题。大比表面积的介孔载体有助于提高金的分散度,因此通过某种制备方法制备出合适的大比表面积介孔载体,使金与载体之间获得较强的相互作用,提高纳米金晶粒的熔点,或者在载体中添加某种助剂抑制金晶粒的烧结和聚集,是值得尝试和探讨的新课题。

纳米金催化剂参与的反应

纳米金催化剂参与的反应 2016-05-04 12:46来源:内江洛伯尔材料科技有限公司作者:研发部 纳米金催化剂参与的 反应 纳米金用途广泛,但在当下的生活中,纳米金主要用于催化如下反应: (1) CO 催化氧化 降低燃料电池成本有效方法之一是利用甲醇重整产生的富氢气体。通常该混合物中含 75 %氢气、24 %二氧化碳和 1 %一氧化碳。CO 的存在会导致 Pt 催化剂中毒,因此需要除去 CO,而对 CO 选择性氧化是一种有效方法。同时,CO 低温(常温) 催化氧化过程,涉及空气净化、封闭式 CO2激光器、CO 传感器、防毒面具等多个 方面。目前使用的催化剂的缺点或者是稳定性太差,或者对毒物太敏感,或者反应过程中放出氯化氢造成二次污染。负载型 Au 催化剂,显示出较强的催化氧化 CO 活性和较弱的催化氧化 H2的活性,以及其它催化剂所无法比拟的抗硫中毒能力。(2)水煤气变换反应 鉴于聚合物电解燃料电池在汽车和居民电热传输系统的应用前景,近年来低温水煤气变换反应再度引起国内外学者的兴趣。与己经商业化的 Ni、Cu 基催化剂(其使用温度分别为 900 K或 600 K)相比,负载型金催化剂的使用温度低(473 K)。 (3)选择性加氢反应 Okumura等报道丁二烯在 Au/Al2O3 催化剂上选择性加氢生成丁烯,选择性为 100 %。同时,碳氧化物催化加氢反应生成甲醇是一个重要的化工过程。 (4)选择性氧化有机反应 Onal等报道了在催化氧化 D-葡萄糖成 D-葡萄糖酸反应中,在反应温度为323 K,p H 值为 9.5,Au/活性炭为催化剂时,D-葡萄糖酸的产率(83 %)最大。金粒径对催化活性影响很大,金粒子越小,反应速度越快,产率越高。 (5)乙炔氢氯化反应

金属纳米晶体的表面与其催化效应

金属纳米晶体的表面与其催化效应 沈正阳 (浙大材料系1104 3110103281) 摘要:概括纳米材料的表面与界面特性,从金属纳米晶体表面活性与结构介绍其的催化性能,简要概述金属纳米晶体形状与晶面的关系以及金属纳米晶体的成核与生长。 关键词:纳米金属;表面活性;催化;高指数晶面 1.纳米材料的表面与界面 纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。强烈的表面效应,使超微粒子具有高度的活性。如将刚制成的金属超微粒子暴露在大气中,瞬时就会氧化,若在非超高真空环境,则不断吸附气体并发生反应。[1] 纳米晶体是至少有一个维度介于1到100纳米之间的晶体。纳米材料主要由晶粒和晶粒界面2部分组成,二者对纳米材料的性能有重要影响。纳米材料微观结构与传统晶体结构基本一致,但因每个晶粒仅包含着有限个晶胞,晶格点阵必然会发生一定程度的弹性畸变,其内部同样会存在各种缺陷,如点缺陷、位错、孪晶界等。纳米金属粒子的形状、粒径、颗粒间界、晶面间界、杂质原子、结构缺陷等是影响其催化性能的重要因素。纳米材料中,晶界原子质量分数达15%~50%,晶界上的原子排列极为复杂,尤其三相或更多相交叉区,原子几乎是自由的、孤立的,其量子力学状态和原子、电子结构已非传统固体物理、晶体理论所能解释。金属纳米晶体研究中,发现面心立方结构纳米金属如 Al、Ni、Cu 和密排六方结构Co都存在孪晶和层错缺陷,Cu纳米金属中存在晶界滑移。 2.金属纳米晶体的催化性能 近年来,关于纳米微粒催化剂的大量研究表明,纳米粒子作为催化剂,表现出非常高的催化活性和选择性。这是因为纳米微粒尺寸小,位于表面的原子或分子所占的比例非常大,并随纳米粒子尺寸的减小而急剧增大,同时微粒的比表面积及表面结合能迅速增大。纳米颗粒表面原子数的增加、原子配位的不足必然导致了纳米结构表面存在许多缺陷。从化学角度看,表面原子所处的键合状态或键

稀土在石化催化剂中的应用

稀土在石化催化剂中的应用 (李才英,石油化工科学研究院,北京100083) 作者简介:炼油催化剂专家。1942年6月25日生。1964年毕业于北京理工大学。中石化石油化工科学研究院催化裂化催化剂研究室副主任、高级工程师。1972年开始从事沸石分子筛催化剂的研究,1983——1985年作为访问学者在英国帝国理工学院化学系进行沸石分子筛离子交换的研究。作为发明人之一,已经申请了20余篇专利。是自然科学突出贡献政府津贴获得者。 一、前言 石油炼制与化工是稀土应用的一个重要领域,也是使用并消耗稀土的大户之一。在石化工业中,催化技术占有极其重要的地位,稀土主要被用于制备含稀土的催化剂,应用在各种催化反应过程之中。 在石油炼制方面,由于我国的原油偏重,用蒸馏的方法只能得到约30%的轻质油。剩下的重质油可通过二次加工,进一步获得汽油和柴油等轻质油品。催化裂化是我国重油轻质化的重要二次加工手段,我国70%以上的汽油和30%以上的柴油均来自催化裂化。 催化裂化是烃类分子在酸性固体催化剂存在下进行催化反应的过程。自六十年代以来使用高活性的沸石分子筛裂化催化剂,稀土作为一个组分被引入到裂化催化剂中,从而,开创了稀土在裂化催化剂中应用的新局面。我国在七十年代也开发成功了稀土分子筛催化剂,并实现了工业规模的生产和使用。随着国民经济的发展,原油加工能力不断扩大,催化裂化的处理量已为原油加工能力的36%。裂化催化剂的产量,质量和品种也有了很大的发展,稀土在其中继续发挥着它的重要作用。本文将重点介绍近年来稀土在裂化催化剂中的应用情况,对于稀土在环保类型催化剂中我们所涉及的一些工作,也将作一简单介绍。 二、稀土在催化裂化催化剂中的应用 1.稀土可改善分子筛的稳定性和催化性能 目前,沸石分子筛是裂化催化剂中必不可少的活性组分。所用的合成分子筛, 及其它金属阳离子是一种结晶的铝硅酸钠,只有当其孔道中的钠离子被H+,NH+ 4 交换后,它才能呈现出固体酸性,具有催化作用。轻稀土(La、Ce、Pr…)离子为三价阳离子,对沸石分子筛有亲和力易于交换,且交换后的分子筛晶体结构稳定性好,活性高,对汽油的选择性好。因此,自1962年初次在工业上应用,很快

纳米催化剂

纳米催化剂

纳米催化剂进展 中国地质大学,材化学院,武汉430000 摘要:简要介绍了纳米催化剂的基本性质、其相对于其他催化剂的优势,并较详细地介绍了纳米催化剂类型、部分应用以及相对应类型催化剂例子的介绍,以及常见的制备方法及其表征手段,最后介绍了部分国内和国外纳米催化剂的应用,并对其发展方向进行一定的预测。 关键词:纳米催化剂应用制备催化活性进展 近年来, 纳米科学与技术的发展已广泛地渗透到催化研究领域, 其中最典型的 实例就是纳米催化剂(nanocatalysts—NCs)的出现及与其相关研究的蓬勃发展。NCs具有比表面积大、表面活性高等特点, 显示出许多传统催化剂无法比拟的优异特性;此外, NCs还表现出优良的电催化、磁催化等性能,已被广泛地应用于石油、化工、能源、涂料、生物以及环境保护等许多领域。本文主要就近年来NCs 的研究进展进行了综述。 1.纳米催化剂的性质 1.1表面效应 通常所用的参数是颗粒尺寸、比表面积、孔径尺寸及其分布等,有研究表明,当微粒粒径由10nm减小到1nm时, 表面原子数将从20%增加到90%。这不仅使得表面原子的配位数严重不足、出现不饱和键以及表面缺陷增加, 同时还会引起表面张力增大, 使表面原子稳定性降低, 极易结合其它原子来降低表面张力。此外,Perez等认为NCs的表面效应取决于其特殊的16种表面位置, 这些位置对外来吸附质的作用不同, 从而产生不同的吸附态, 显示出不同的催化活性。 1.2体积效应 体积效应是指当纳米颗粒的尺寸与传导电子的德布罗意波长相当或比其更小时, 晶态材 料周期性的边界条件被破坏, 非晶态纳米颗粒的表面附近原子密度减小, 使得其在光、电、声、力、热、磁、内压、化学活性和催化活性等方面都较普通颗粒相发生很大变化,如纳米级胶态金属的催化速率就比常规金属的催化速率提高了100倍。 1.3量子尺寸效应 当纳米颗粒尺寸下降到一定值时, 费米能级附近的电子能级将由准连续态分裂为分立能级, 此时处于分立能级中的电子的波动性可使纳米颗粒具有较突出的光学非线性、特异催化

纳米金催化剂及其应用

纳米金催化剂及其应用 摘要:长期以来,黄金一直被视为具有永久价值的“高贵”金属,在人类社会 象征高贵和权力,决定黄金具有这种地位的科学基础是它的化学非活泼性和优良的可加工性。但1989年 Haruta等发现负载在Fe2O3 和 TiO2 等氧化物上的金纳米粒子具有很高低温 CO 催化氧化活性。金催化剂具有其它贵金属不具有的湿度增强效应,在环境污染、燃料电池、电化学生物传感器等方面都有巨大的应用前景,开辟了金作为催化剂的新领域。本文主要纳米金催化剂制备的研究现状及其部分应用。 关键词:纳米金催化剂选择性氧化加氢环境保护 纳米金催化剂的制备: 一、沉积-沉淀法 沉积-沉淀法是将载体浸渍在 HAuCl4 的碱性(pH值为8~10)溶液中,利用带负电荷的金与载体表面间的静电相互作用实现金的沉积。制备的纳米金粒子较好地分散于载体面,但要求载体具有尽可能大的表面积,对制备低负载量 Au 催化剂非常有效。为了获得最大量金沉积,提高金的负载量,整个制备过程对溶液 pH 值有较大的依赖性,溶液的 pH 值决定了金的前体在水中的水解程度,能够直接影响到金在载体上的吸附,当pH值为8~9时,[AuCl(OH)3]-是 HAuCl4 水解产物中吸附能力最强的形式、,但不同的金属氧化物载体其最佳 pH 值有所不同,目前一般将pH值控制在7~10。在沉积-沉淀法中,尿素对控制均匀沉淀非常有效,还可实现金的最大沉积,金负载量可达到12%,但该法仅适用于等电点较高(IEP>6)的 TiO2、Al2O3、CeO2 等载体纳米金的沉积。后来有科学家研究发现,若用浸渍法对表面浸渍吸附了HAuCl4 的催化剂在高温焙烧前用氨水等碱液多次洗涤,同样也可获得与沉积-沉淀法制备的活性相当的金纳米催化剂,这种方法避免了金的流失,克服了沉积-沉淀法受载体等电点限制的缺点。 二、浸渍法 浸渍法被广泛应用于工业制备贵金属催化剂,研究表明,金和载体表面间亲和力比较弱,在制备和反应过程中容易造成金纳米粒子的聚合,使得催化活性降低,通常认为不适合高度分散纳米金催化剂的制备。后来研究发现金催化剂低温催化 CO 氧化中,沉积-沉淀法比浸渍法获得更高活性是因为该法制备过程中

纳米金催化剂及其应用

纳米金催化剂及其应用 一.纳米金催化剂的发展 早在1972年,Bond在一篇综述中就指出,第Ⅷ族金属,特别是钯、铂的催化活性都要远高于金的催化活性。金属催化剂主要使用第Ⅷ和ⅠB族的12个金属。用得最多的是3d金属元素Fe、Co、Ni、Cu,4d金属元素R h、Pd、Ag,以及5d金属元素Pt。因此在选用催化剂活性组分的时候,很少在第一时间考虑使用金。1985年Schwank的综述中则这样的评价金的催化剂性:尽管本身不具有反应活性,但金的存在,能够影响第Ⅷ族金属的活性和选择性。而到1999和2000年,Bond和Thompson就金的催化行为相继发表综述性的文章。这足以证明,金已经被作为一种具有优异催化性能的金属元素来使用。特别是在一些多相或者均相反应中,金的催化活性和选择性引起了人们的广泛注意。而这个有无到有、到丰富的过程,仅仅花了15年。在这15年的时间里,大量的研究工作彻底改变了改变了人们对金催化惰性本质的看法。 20世纪80年代中期,关于金催化剂的研究,相继出现了两个突破性进展。1985年发现,英国威尔士大学的Hutching教授,发现纳米金催化剂是催化乙炔氧氯化反应最好的催化剂:1987年,日本学士春田正毅博士发现,负载型纳米催化剂具有低温催化CO的功能。这些研究工作,在当时并没有引起高度重视,但是自从进入20世纪90年代,越来越多的人意识到将纳米金负载在氧化物载体上所产生的新的多相催化行为,对丰富催化剂的制备科学以及催化理论将产生重要影响。 20世纪90年代中期,有关纳米金的研究引起一些国家的注意。在日本美国英国以及意大利等发达国家,集中了相当的人力物力展开此方面的科学研究。有关纳米金方面的研究论文如雨后春笋般见诸各期期刊。关于金催化剂的研究呈现出不断深入逐步扩展的局面。目前,以纳米金作为主题的国际性催化会议,已经举办了三次,也进一步说明,学术界以及产业部门对金的催化作用给予极大的关注,并预示着金催化剂具有不断增长更广泛的应用前景。与此同时,我国在此方面的研究也逐步展开。 二.纳米金催化剂的性质 1.金的物理化学性质 在自然界中,金只以一种稳定的非放射性的同位素形式存在。在任何温度下,空气和氧气对金都不起氧化作用。在所有金属元素中,货币金属属于非稳定的一类,它们的稳定性按电离能力排列为金>铜>银。由于离子半径大,铜银金的金属晶体构型为立方面心晶格,具有熔点沸点高的特点。单组分金属得到的催化剂耐热性差,对使用温度的要求比较苛刻,因此,在工业上为了防止催化剂的失活,要求一定要有适当的助催化剂或载体。 金的熔点汽化热比银要大,较接近铜,这说明金原子之间的键强较强。精确测量表明,金原子金属半径比银稍小。金的电负荷性非常高,只比硫和碘稍稍电正性一点,其亲电子性比氧还强。事实上,金可以一-1价的稳定氧化态存在。另外,进容易于铜铝钛等形成一定组合的合金。 在所有元素中,金的收缩率最大,其半径比没有相对论影响的情况下收缩了15%。金的物理化学性质,可能与其特殊的6s价的电子的半径有关。由于6s价的电子的束缚能被加强,因此导致金很高的电负性和化学惰性。 2.金的催化特性 金的第一电离能力很大,很难失去电子,因此金与表面分子之间的互相作用力通常是很弱的。在低于200℃的温度下,在单晶金的表面,连极具反应活性的分子,如氢氧等,都不易吸附。由于分子在催化剂表面的吸附是催化反应的先决条件,因此可以认为单质金对氢化反应和氧化反应不具有很好的活性。金不具有很好的催化活性,事实上,金催化剂具有催化活性的前提是制备得到高分散的纳米级的金粒子。 3.纳米金粒子的吸附作用 传统方法制备的负载型金催化剂,活性较差,主要是因为它不像其它贵金属催化剂一样高分散。而现在制备得到的粒径在3mm-10mm的纳米催化剂,则显示了特别的优异的催化活性。 纳米粒子是指粒子尺寸为纳米数量级的超细粒子,它的尺寸大于原子簇,小于普通的粒子。纳米粒子是由有限数量的原子或分子组成的,是保持原来物质化学性质并处于亚稳态的原子团或分子团。纳米粒子的表面原子所处的的晶体场环境及结合能与内部原子有所不同,存在许多悬空键,具有不饱和的性质,因而极易与其它原子相结合,所以,具有很高的化学活性,同时也容易吸附其它原子发生化学反应。这种表面原子的活性,不但引起纳米粒子表面构型的变化,同时,任何发生在表面的化学反应,都会因为纳米粒子的存在而表现不同。 随着粒径的减小,金催化剂表面的化学吸附及反应活性相比块体金出现了明显变化:①表面原子的比

纳米催化剂的介绍及其制备

纳米催化剂的介绍及其制备 --工业催化剂小论文 姓名:蒋应战 班级:化工091 学号:0806044111(32号) 指导老师:宫惠峰老师 学校:邢台职业技术学院

目录 1.纳米材料作催化剂的特点 (2) 2.纳米催化剂制备……………………………….. ..2-3 3.微乳液法制备纳米催化剂………………………...4-9 4.纳米粒子催化剂的应用 (10) 5.纳米催化剂的展望................................. . (11) 参考文献................................. . .. (11)

纳米催化剂的介绍及其制备 纳米材料是指颗粒尺寸为纳米量级(1nm~l00nm)的超细粒子材料。纳米技术是当前材料学中研究的前沿和热点,纳米粒子具有比表面积大、表面晶格缺陷多,表面能高的特性,在一些反应中表现出优良的催化性能。纳米催化剂的制备已成为催化剂制备学科中的一个热点。纳米催化剂相对常规尺寸的催化剂具有更高的表面原子比和比表面积,其催化活性和选择性大大高于传统催化剂,可作为新型材料应用于化工中。 1. 纳米材料作催化剂的特点 工业生产中的催化剂应具有表面积大,稳定性好,活性高等优点。而纳米材料恰恰满足这些特点。采用纳米材料制备的催化剂比常规催化剂的催化效率选择性更高。例如,利用纳米材料可用作加氢催化剂,粒经小于0.3nm的镍和铜—锌合金的纳米材料的催化效率比常规镍催化剂高10倍。又如纳米稀土氧化物/氧化锌可作为二氧化碳选择性氧化乙烷制乙烯的催化剂,用这种纳米催化剂,乙烷和二氧化碳反应可高选择性地转化为乙烯,乙烷转化率可达60%,乙烯选择性可达90%。 1.1 纳米催化剂的表面与界面效应 纳米催化剂颗粒尺寸小,位于表面的原子占的体积分数很大,产生了相当大的表面能,随着纳米粒子尺寸的减少,比表面积急剧加大,表面原子数及所占的比例迅速增大。例如,某纳米粒子粒径为5nm时,比表面积为180/g,表面原子所占比例为50%,粒径为2nm时,比表面积为450/g,表面原子所占比例为80%,由于表面原子数增多,比表面积大,原子配位数不足,存在不饱和键,导致纳米颗粒表面存在许多缺陷,使其具有很高的活性,容易吸附其它原子而发生化学反应。这种表面原子的活性不但引起纳米粒子表面输送和构型的变化,同时也引起表面电子自旋、构象、电子能谱的变化。 1.2纳米催化剂的量子尺寸效应 当粒子的尺寸降到(1~10)nm时,电子能级由准连续变为离散能级,半导体纳米粒子存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽,此现象即量子尺寸效应,量子尺寸效应会导致能带蓝移,并有十分明显的禁带变宽现象,使得电子/空穴具有更强的氧化电位,从而提高了纳米半导体催化剂的光催化效率。 1..3纳米粒子宏观量子隧道效应 量子隧道效应是从量子力学观点出发,解释粒子能穿越比总能量高的势垒的一种微观现象。近年来发现,微颗粒的磁化强度和量子相干器的磁通量等一些宏观量也具有隧道效应,即宏观量子隧道效应。研究纳米这一特性,对发展微电子学器件将具有重要的理论和实践意义。 2. 纳米催化剂制备 目前制备纳米材料微粒的方法有很多,但无论采用何种方法,制备的纳米粒子必须符合下列要求:a.表面光洁;b.粒子形状、粒径及粒度分布可控;c.粒子不易团聚、易于收集;d.包产出率高。

石油化工催化剂

石油化工催化剂 催化剂工业中的一类重要产品,用于石油化工产品生产中的化学加工过程。这类催化剂的品种繁多,按催化作用功能分,主要有氧化催化剂、加氢催化剂、脱氢催化剂、氢甲酰化催化剂、聚合催化剂、水合催化剂、脱水催化剂、烷基化催化剂、异构化催化剂、歧化催化剂等,前五种用量较大。 2实例介绍 氧化催化剂 石油化工制造含氧产品的过程绝大多数为选择性氧化过程。选择性氧化产品占有机化工产品总量的80%; 所用的催化剂首先要求有高催化选择性。选择性氧化催化剂可分为气固相氧化催化剂和液相氧化催化剂。(见催化剂选择性) 气固相氧化催化剂 主要有?乙烯氧化制环氧乙烷用的银催化剂,以碳化硅或α,氧化铝为载体(加少量氧化钡为助催化剂)。经过对催化剂和工艺条件的不断改进,以乙烯计的重量收率已超过100%。?以钒-钛系氧化物为活性组分,喷涂于碳化硅或刚玉上制成的催化剂,用于从邻二甲苯氧化制邻苯二甲酸酐。钒,钼系氧化物活性组分喷涂于刚玉上制成的催化剂,用于苯或丁烷氧化制顺丁烯二酸酐。这类催化剂的改进是向多组分发展,已有八组分催化剂的出现。载体的形状也由球形改为环形、半圆形等以利传热。总的趋势是追求高负荷、高收率和产品的高纯度。?醇氧化成醛或酮,如甲醇氧化成甲醛用的银-浮石(或氧化铝)、氧化铁-氧化钼及电解银催化剂。?氨化氧化催化剂,20世纪60年代开发了以铋-钼-磷系复合氧化物催化组分载于氧化硅上的催化剂,在此催化剂上通入丙烯、氨、空气,可一步合成丙烯腈。为了提高选择性和收率,减少环境污染,各国均对催化剂不断改进,有的新催化剂所含元素可达15种。?氧氯化催化剂,60年代开发了氯化铜,氧化铝催化剂,在沸腾床

催化剂在工艺中的作用

催化剂在化学工艺中的作用 化学化工学院09级5班杨兴平学号:200910240535 摘要:20世纪特别是下半叶以来,由于催化科学和技术的飞速发展,使得数以 百计的工业催化剂开发成功,而数量更多的催化剂,在深刻认识的基础上,得以更新换代。新型催化剂正日益广泛和深入地渗透于石油炼制工业、化学工业、高分子材料工业、生物化学工业、食品工业、医药工业以及环境保护工业的绝大部分工艺过程中,起着举足轻重的作用。本文对催化剂在化学工艺中的作用进行一下简单介绍。 关键词:催化剂的用途;化学工业;分类;制作方法;纳米催化剂;展望 一、催化剂概述: (一) 定义 在化学反应里能改变其他物质的化学反应速率,而本身的质量和化学性质在反应前后都没有发生变化的物质叫做催化剂,又叫触媒。 (二) 基本特性 ①催化剂能够加快化学反应速率,但本身并不进入化学反应的计量。②催化剂对反应具有选择性,即催化剂对反应类型、反应方向和产物的结构具有选择性。 ③催化剂只能加速热力学上可能进行的反应,而不能加速热力学上不能进行的反应。④催化剂只能改变化学反应的速率,而不能改变化学平衡的位置。⑤催化剂不改变化学平衡,意味着对正方向有效的催化剂,对反方向的反应也有效。(三) 用途 在化工生产、科学家实验和生命活动中,催化剂都大显身手。例如,硫酸生产中要用五氧化二钒作催化剂。由氮气跟氢气合成氨气,要用以铁为主的多分组催化剂,提高反应速率。在炼油厂,催化剂更是少不了,选用不同的催化剂,就可以得到不同品质的汽油、煤油。汽车尾气中含有害的一氧化碳和一氧化氮,利用铂等金属作催化剂可以迅速将二者转化为无害的二氧化碳和氮气。酶是植物、动物和微生物产生的具有催化能力的蛋白质,生物体的化学反应几乎都在酶的催化作用下进行,酿造业、制药业等都要用催化剂催作。 1、催化剂在无机化工中的作用 在生产基本无机化工原料的领域中,主要以三酸两碱为核心,它们的产量巨大,是重要的化工原料。其中的硫酸和硝酸分别被称为“化学工业之母和炸药工业之母”,它们在工业和国防部门,都具有重要的价值。 生产硫酸过程中,SO2转化为SO3所用的催化剂,最初是NO2,但设备庞

有机催化剂的应用及发展 吴连祥

催化化学综述 综述题目:有机催化剂的应用及发展 学院:化学与化工学院_ 专业:化学_ 班级:_化学10a班__ 学号:_1008110266__ 学生姓名:__吴连祥___ 2013年 6月16日

有机催化剂的应用及发展 前言 在化学反应里能改变其他物质的化学反应速率(既能提高也能降低),而本身的质量和化学性质在化学反应前后都没有发生改变的物质叫催化剂(也叫触媒),在现代有机合成化学及化工中有着举足轻重的地位。现代化学工业产品的85%都是通过催化过程生产的,每种新催化剂的发现及催化工艺的研制成功,都会引起化学工业的重大革新。有机催化剂作为其中非常重要的一种,和我们生活的各个方面都有着联系,其发展历史也是几经波折,最终也取得了不错的成果。有机催化剂主要分为金属有机催化剂和非金属有机催化剂,其在社会生产中具有重要作用。

1.非金属有机催化剂 金属有机催化剂相反,非金属有机催化剂是指具备催化剂基本特征的一类不包含金属离子配位的低分子量有机化合物.此类非金属有机催化剂不同于通常的单纯以质子酸中心起主导作用的有机羧酸类、苯磺酸类有机催化剂,它是通过分子中所含的N,P等富电子中心与反应物通过化学键或范德华力形成活化中间体,同时利用本身的结构因素来控制产物的立体选择性。 1.1、非金属有机催化剂的种类 1、有机胺类:脯氨酸、咪唑啉酮类、金鸡纳碱类、Ⅳ杂环卡宾类、二酮哌嗪类、胍类、脲及硫脲类等; 2 、有机膦类:三烷基膦类、三芳基膦类等; 3 、手性醇类质子催化剂:如TADDOL类催化剂。 非金属有机催化剂和金属有机催化剂以及生物有机催化剂有着非常密切的联系,有的非金属有机催化剂例如叔膦本身又是金属有机催化剂很好的配体,还有些非金属有机催化剂显示出类似于酶的特性和催化机理.大量的研究发现大多数非金属催化剂有较高的催化活性,尤其是应用在不对称合成中,经其催化的反应大都有很好的收率和对映选择性,并且具有毒性低、价格低廉、容易制备、稳定性好、易于高分子固载等一系列优点,所以越来越受到各国化学家的重视。 1.2、非金属有机催化剂的应用 1.2.1.松香酯化催化剂 松香是自然界极其丰富的一种天然树脂 ,分为脂松香、浮油松香和木松香三种 ,松香具有防腐、防潮、绝缘、粘合、乳化、软化等特性 ,广泛应用于食品工业、胶粘剂工业、电子工业、医药和农药等 ,但松香性脆、易氧化、酸值较高、热稳定性差等缺点严重妨碍了它的应用。研究发现可以通过对松香进行化学改性 ,人为地赋予它各种优良性能 ,使其得到更广泛的应用。松香化学反应主要在枞酸型树脂酸分子的两个活性基团——羧基和共扼双键上进行。它的主要反应有:异构、加成、氢化、歧化、聚合、氨解、酯化、还原、成盐反应和氧化反应。松香的氢化和酯化是其中最主要的改性手段。

新型催化剂在精细化工过程中的应用

新型催化剂在精细化工过程中的应用 化工091班何宝坤学号090006050117 摘要:化工业的发展使得各种新型化工材料得到了广泛的运用,分子筛催化剂作为一种新型催化剂,其微孔结构十分均匀,并且能够让适当的分子进入内部,这种特性使得气体和液体分子分离、离子交换及催化反应在化工业生产上得到了广泛的运用,分子筛催化剂因此在化工原料中逐渐成为新型催化剂。根据实际经验和相关的化工知识本文对分子筛催化剂这种新型催化剂在精细化工过程中的应用情况进行分析。 关键词:新型脂肪醇;精细化工;运用 催化剂制备共性技术及新型催化材料的开发得到高度重视,催化剂制备精细化是改进和提高催化剂性能的重要途径,而催化新材料则是催化剂更新换代和品种多样化的物质基础。新型催化剂和相应的催化工艺的出现,往往以催化新材料和精细化制备工艺为重要前提。国际上自20世纪80年代以来,在此方面的研究十分活跃,政府和许多公司投入大量人力和物力从事研究开发,并在相关领域中长期坚持研究。如联碳公司的磷铝、磷硅铝、金属磷铝分子筛和铑催化体系的磷配体,飞马公司的ZSM分子筛、法国石油研究院的金属有机络合物、杜邦公司的白钨矿结构氧化物、海湾石油公司的层状硅酸盐和硅铝酸盐、英国石油公司的石墨插层化合物、埃克森公司的双、多金属簇团等。 随着纳米技术在催化剂领域的应用,新研制的催化剂的效能大大提高。如:粒径小于0.3nm的镍和铜-锌合金的纳米颗粒的加氢催化剂的效率比常规镍催化剂高10倍。美国科学家发现一种称为钛硅酸盐ETS-4的物质能够作为良好的分子筛。当温度升高时,ETS-4会逐渐脱水,微孔的尺寸随之减小。利用这种方法,可以在3到4埃的范围内精确地调整微孔尺寸。 在开发新材料的基础上,借助催化剂制造精细化技术,有效地调节催化剂孔结构、孔分布、晶粒尺寸、粒径分布、形貌等,并通过控制活性组分分析与载体间相互作用等方法,提高催化剂性能。由于精准控制分子筛的结构使其呈现多样性,以及工业应用取得了意想不到的辉煌成就,使人们更加注意新型催化材料和精细化制备技术的开发。目前,较为活跃的研究领域主要

金催化剂及其在化工中的应用研究进展

金催化剂及其在化工中的应用研究进展在很长时间内,金元素因具有高度稳定性而都被认为是化学惰性的。自从1989年研究人员发现负载在过渡金属氧化物上的金催化剂对CO低温氧化表现出很高的催化活性之后,金催化剂引起了人们的极大兴趣与关注。由于黄金的价格远远低于铂和钯的价格,而且其价格比较稳定,因此开发和研究金催化剂具有明显的经济优势。自1990年以来,有关金催化剂的研究和开发日益活跃。国内研究人员先后论述了2002~2003年金催化剂在有机反应中的研究进展。近几年来,金催化剂在许多新的反应中取得了一定的研究成果,如甲醇部分氧化制氢和苯乙烯环氧化等,预示金催化剂的研究和开发将不断扩大。本文主要介绍了2003年以来金催化剂的制备及其在化工中的应用研究进展,并分析了今后的研究重点。 1 影响金催化剂活性的因素 1.1 制备方法的影响 金的催化活性是通过采用一定的制备方法将金负载在载体上而得到体现的。目前,制备金催化剂的方法很多,常用的方法主要有:浸渍法、共沉淀法和沉积-沉淀法。采用不同方法制备的金催化剂,催化活性往往差异较大。 传统浸渍法是将载体浸渍于氯金酸水溶液中,然后经过干燥、焙烧处理得到金催化剂。使用该方法制备的金催化剂由于富含氯离子而容易形成较大的金晶粒,并且分散性很差,难以得到高活性的负载型金催化剂。 共沉淀法是将HAuCl4水溶液与相应载体的硝酸盐溶液,在一定的碱溶液中进行沉淀,然后经过滤、洗涤、干燥和焙烧得到金催化剂。使用这种方法制备的金催化剂,如Au/α-Fe2O3,在-73℃下对催化氧化CO就具有良好的低温活性。 沉积-沉淀法是将载体悬浮在一定浓度的氯金酸水溶液中,采用碱液调节溶液的pH值,使金物种以氢氧化金的形式沉积在载体表面。如果悬浮液的pH值调节适当,金物种则以非常小的晶粒高度分散在载体表面,得到的金催化剂具有很好的低温活性,从而可以减少氯金酸的用量,提高金的利用率。 由于采用共沉淀法和沉积-沉淀法制备金催化剂的过程中,得到的金催化剂前体往往经过多次过滤和洗涤,可以将吸附在载体表面的氯离子去除,从而明显地减少氯离子对金催化剂的毒害作用,提高金催化剂的活性,因此用共沉淀法和沉积-沉淀法比浸渍法更加可取。共沉淀法与沉积-沉淀法相比,有研究认为后者更优于前者,因为采用

催化剂在生活中的应用

催化剂在生活中的应用 参加者:李洋班级:高一(2)班地点:合肥市时间:暑假 现将此次实践活动的有关情况报告如下: 催化剂会诱导化学反应发生改变,而使化学反应变快或减慢或者在较低的温度环境下进反应。 催化剂在工业上也称为触媒。化学催化剂的应用历史很长,特别在石油化工、精细化工、有机化工和生 物化工中,可以说,催化技术已成为化学工业最关键的核心技术之一。据统计,到目前为止,人类所掌握 的化学反应80%以上必须在催化剂存在下才能实现。在化学工业生产中,最常用的催化剂是无机酸和无机 碱。催化剂对化学反应速率的影响非常大,有的催化剂可以使化学反应速率加快到几百万倍以上。催化剂 一般具有选择性,它仅能使某一反应或某一类型的反应加速进行。例如,加热甲酸发生分解反应,一半进 行脱水,一半进行脱氢。催化剂在现代化学工业中占有极其重要的地位。现在几乎有半数以上的化工产品, 在生产过程里都采用催化剂。例如,合成氨生产采用铁催化剂,硫酸生产采用钒催化剂,乙烯的聚合以及 用丁二烯制橡胶等三大合成材料的生产中,都采用不同的催化剂。 由氯酸钾分解制取氧气,除了用二氧化锰作催化剂以外,还可用氧化铁、粗食盐、氧化铜、氧化镁、氧化 铬、褐色细砂、粘土等作催化剂。但它们的催化作用,依次减弱。 燃煤催化剂一般选择最廉价的原料——废弃物。试验证明, 许多废弃物具有明显的催化燃烧作用, 且具 有环境保护的效能。常用燃煤催化剂的废气物有: 第一,煤灰。煤灰是煤中灰分在燃烧过程形成的剩余物。 煤中的灰分是内在的催化剂。灰分过多不利于燃烧, 过少也很难着火。第二, 造纸黑液。造纸厂排放的碱 性黑液含有大量K2CO3, Na2CO3, KOH, NaOH 和Ca( OH) 2 等, 它是效果较好的燃煤催化剂。将干燥的 造纸黑液适量加入煤中, 可使煤的着火温度降低30 ℃~50 ℃, 促使煤完全燃尽。另外, 它还有脱硫作用, 脱硫率可达到35%~58% , 这对环境保护是有利的。第三, 碱厂废液。碱厂废液中含有大量CaCO3 和少 量CaCl2, 适当加入这种废液有利于煤着火燃烧, 同时也具有脱硫作用, 脱硫率可达到44%以上。第四, 铁矿石粉, 铁矿开采过程中产生的铁矿石粉, 其中富含Fe2O3, 是较好的燃煤催化剂原料。有的铁矿石山 不具备开采价值, 经多年的风化, 山坡多积存大量的铁矿石粉末, 可以收集使用。第五, 草木灰。草木灰中 含有KOH , 冲水过滤后可以得到溶液, 晒干后便可从溶液中提取用作燃煤催化剂的粗品KOH。第六, 石 灰。生石灰和熟石灰均可作为燃煤催化剂原料, 其中要特别强调的是Ca2+明显具有脱硫的作用。除上述 几种之外, 其他可用作燃煤催化剂的废弃物还有很多, 例如废弃的白泥、炼铁炉炉渣、电石废渣以及某些 化工厂的废液等等。 总的来说, 燃煤催化剂提高了煤的挥发分析出速率, 降低了煤的着火温度, 缩短了点火延迟时间, 加 快了焦炭燃尽速率, 并具有脱硫脱氮的明显作用( 提高了固硫率和固氮率) 。其次, 加入催化剂后, 锅炉燃 烧趋于完全, 在锅炉蒸发量略有增大的情况下, 煤耗量有所降低, 汽煤比相对提高6.02%。尽管变化幅度 不大, 却说明催化剂能够改善锅炉燃烧工况, 提高了锅炉热效率。 ( 1) 在煤中添加某些碱金属或碱土金属化合物可不同程度地起到促进燃烧作用。燃煤催化剂在煤炭燃 烧中能有效地降低煤炭着火温度, 同时起到促进燃烧和减少污染排放的作用。催化剂为原料煤在燃烧过程 中提供了燃烧初期必需的氧气, 提高了煤炭颗粒的燃烧速度, 即使煤质不好, 通过添加催化剂, 也可以保 证锅炉的燃烧情况和出力负荷, 充分利用了煤炭资源。 ( 2) 含催化剂C 的矿粉是效率较好的催化剂, 价廉、来源广、有很好的工业应用前景; 煤脱硫助燃材 料, 适用于各种工业锅炉、电站锅炉燃煤过程中SO2 的脱除。 ( 3) 在煤燃烧以及煤中S 与N 向SO2 及NO 转化的过程中, FeCl3 既起到催化剂的作用, 同时又 起吸收剂的作用。FeCl3 催化作用表现在降低了SO2 和NO 生成反应的表观活化能。 ( 4) 煤脱硫助燃材料”内含有钙、镁和催化剂, 煤炭燃烧时, 产生的二氧化硫、三氧化硫与钙化合成亚硫 碳

大肠杆菌合成金纳米粒子复合催化剂性能研究

大肠杆菌合成金纳米粒子复合催化剂性能研究 2016-08-01 13:16来源:内江洛伯尔材料科技有限公司作者:研发部 Au@TiO2催化剂的TEM照片自上世纪八十年代Hutchings和Haruta等发现金催化剂具有高催化活性以来, 金催化剂的研究受到密切关注, 目前已取得很大进展. 但金催化剂很少用于工业应用. 原因之一是由于金粒子的聚集长大及表面碳酸盐物种的积累而导致金催化剂易于失活. 如何有效阻止金粒子的聚集, 提高金催化剂的稳定性已成为目前亟待解决的问题. 近年来, 金属纳米粒子与DNA、蛋白质、壳聚糖等生物大分子的相互作用及其自组装研究引起人们的密切关注. Baron等评述了以DNA、蛋白质等生物分子为模板合成Au、Ag纳米粒子和纳米线的研究进展. 这种材料既可以通过生物分子的识别和催化功能来改善金属纳米粒子的电学、光学和催化性能, 也可以通过改性金属纳米粒子来改善生物分子的某些性能. Horovitz等发现柠檬酸钠还原的金纳米粒子与大麦糊粉层细胞提取的蛋白质之间存在静电作用. 杨芳等研究了藻蓝蛋白对Au3+离子的原位还原和纳米Au0形成的动态过程, 发现藻蓝蛋白的紫

外特征吸收峰强度随Au3+离子浓度的增加和放置时间的延长而降低, 其荧光发射峰和荧光激发峰也呈现衰减趋势, 提出藻蓝蛋白中的半胱氨酸、胱氨酸和色氨酸可将Au3+还原为Au0. 金明善等研究了金纳米粒子和R-藻红蛋白的相互作用, 发现R-藻红蛋白对金纳米粒子有良好的稳定作用. Huang等发现壳聚糖能保护金纳米粒子. 刘克增等制备了金@壳聚糖复合材料, 发现该材料对葡萄糖空气氧化制葡萄糖酸具有良好的催化性能.另一方面, 微生物与金属纳米粒子的研究也日益增多. Gericke等详细评述了各种微生物在制备金纳米粒子方面的研究进展, 认为可以通过调变微生物的生长参数(如培养时间、pH 值、温度等)达到对金纳米粒子形貌和尺寸的控制. 某些菌体如枯草芽孢杆菌、酵母菌、真菌等能够聚集并还原金离子, 已用于金纳米粒子和纳米线的合成. 研究表明, 细胞中的羟基和氨基可作为Au3+的结合位, 而醛基可作为电子供体将Au3+还原成Au0. Kuo等利用大肠杆菌对金离子的还原作用制备了金@大肠杆菌复合材料, 发现这种材料具有很强的生物相容性,可望应用于光热治疗癌细胞方面. 傅锦坤等用细菌将Au/α-Fe2O3上的Au3+还原成Au0, 焙烧后获得的催化剂与浸渍法制备的催化剂相比有较高的CO氧化反应活性.可以看出,目前的研究主要集中于微生物对金属离子的吸附与还原作用以及金属纳米粒子的制备, 而将其用于催化领域的报道较少. 鞭毛是细菌表面的运动器官, 由单一的鞭毛蛋白组装形成螺线管状结构, 鞭毛的长短和数量可以通过改变细菌的培养条件来调控. 最近, Kumara等首次实现了Au、Ag、Cu 等金属纳米颗粒在细菌鞭毛表面的组装. 利用细菌鞭毛为模板制备二氧化钛等无机氧化物纳米管也已获成功. 但尚未见利用此法制备金催化剂的研究. 大肠杆菌为革兰氏阴性短杆菌, 为杆状结构, 具有抵抗力强、易培养等优点. Nomura等以大肠杆菌为生物模板合成了氧化硅的空心纳米管. 烟台大学化学生物理工学院索掌怀等人利用大肠杆菌(DH5α)对金属离子较强的吸附与还原能力制备了Au@DH5α, 再利用大肠杆菌的水分来水解钛酸四丁酯, 得到Au@DH5α -Ti(OH)4样品, 焙烧去除大肠杆菌后得到氧化钛包裹的纳米金粒子催化剂Au@TiO2. 以N2吸附,

石油化工产品中催化剂特点及应用

石油化工产品中催化剂特点及应用 石化催化剂催化剂工业中的一类重要产品,用于石油化工产品生产中的化学加工过程。这类催化剂的品种繁多,按催化作用功能分,主要有氧化催化剂、加氢催化剂、脱氢催化剂、氢甲酰化催化剂、聚合催化剂、水合催化剂、脱水催化剂、烷基化催化剂、异构化催化剂、歧化催化剂等,前五种用量较大。今天小七带大家一起了解这些催化剂的特点及应用情况,供大家参考!氧化催化剂 石油化工制造含氧产品的过程绝大多数为选择性氧化过程。选择性氧化产品占有机化工产品总量的80%;所用的催化剂首先要求有高催化选择性。选择性氧化催化剂可分为气固相氧化催化剂和液相氧化催化剂。 以乙二醇的生产为例,乙二醇的生产成本中,氧气和乙烯的单耗成本占成本的85-90%,而二者的单耗主要取决于催化剂的选择性。因此,乙二醇装置最核心的竞争是催化剂的竞争。高选择性催化剂不仅直接决定了乙烯、氧气等原料的单位成本,而且副产物及杂质生成量少,乙二醇和环氧乙烷产品质量更高。 气固相氧化催化剂 气固相氧化催化剂由载体碳化硅或α-氧化铝和活性组分钒-钛系氧化物组成,主要分为以下五类:

(1)乙烯氧化制环氧乙烷用的银催化剂,以碳化硅或α-氧化铝为载体(加少量氧化钡为助催化剂)。经过对催化剂和工艺条件的不断改进,以乙烯计的重量收率已超过100%。2010年10月20日,燕山分院研制的高选择性银催化剂 YS-8810率先在上海石化2号乙二醇装置实现工业化应用,取得了良好的运行效果。同时对环氧乙烷的产率有极大的提高。 (2)以钒-钛系氧化物为活性组分,喷涂于碳化硅或刚玉上制成的催化剂,用于从邻二甲苯氧化制邻苯二甲酸酐。钒-钼系氧化物活性组分喷涂于刚玉上制成的催化剂,用于苯或丁烷氧化制顺丁烯二酸酐。 邻二甲苯氧化制邻苯二甲酸酐反应 这类催化剂的改进是向多组分发展,已有八组分催化剂的出现。载体的形状也由球形改为环形、半圆形等以利传热。总的趋势是追求高负荷、高收率和产品的高纯度。 (3)醇氧化成醛或酮,如甲醇氧化成甲醛用的银-浮石(或氧化铝)、氧化铁-氧化钼及电解银催化剂。 (4)氨化氧化催化剂,20世纪60年代开发了以铋-钼-磷系复合氧化物催化组分载于氧化硅上的催化剂,在此催化剂上通入丙烯、氨、空气,可一步合成丙烯腈。 丙烯腈的合成反应为了提高选择性和收率,减少环境污染,该催化剂在不断改进,有的新催化剂所含元素可达15种。

纳米金

摘要:纳米金催化剂具有高催化活性和选择性,作为新型催化材料引起关注。尝试用胶体浸渍法 将金催化剂负载于基体材料上,以解决纳米金颗粒难于均匀负载于基体材料表面等问题,并重点对纳米金催化剂的应用进行了评述。 金历来被认为呈催化惰性,但20世纪80年代HarutaM等开创性地发现,负载于氧化物上的纳米金催化剂在CO室温氧化中表现出非常高的反应活性,纳米金作为新型催化材料引起关注,其应用涉及污染治理、化工过程和H的开发与利用(如燃料电池、选择性氧化CO、水蒸汽变换反应)等方面。纳米金催化剂显著特征是低温活性,许多催化反应都可在室温下实现高活性催化,有些反应甚至可以在0℃实现完全转化,可见金催化剂具有非常低的表观活化能;金催化剂具有好的选择性,Au/Al2O3催化剂催化丁二烯加氢反应可100%生成丁烯;同时,金催化剂比铂族催化剂廉价。本文介绍纳米催化剂的制备方法,并重点对纳米金催化剂的应用进行评述,旨在为纳米金催化剂的应用开发提供参考。1纳米金催化剂的制备 金催化剂制备方法主要是浸渍法、沉积沉淀法和共沉淀法。浸渍法虽然被广泛用于工业制备贵金属催化剂,但许多研究表明,该法不适合于金催化剂的制备,主要是因为制备的金催化剂分散性不好,金颗粒大。共沉淀法和沉积沉淀法是金催化剂制备的常用方法,但共沉淀法的最大缺陷是所需负载量大(一般认为纳米金颗粒被载体包裹,有效活性部位减少)。而沉积沉淀法解决了这个问题,制备的纳米金粒子较好地分散于载体表面,但要求载体具有尽可能大的表面积,整个制备过程对溶液pH有较大的依耐性,当pH为8~9时,[AuCl(OH)3]-是HAuCl4水解产物中吸附能力最强的形式,因此,为获得最大量金沉积,应将pH控制在8~9,沉淀剂的选择直接影响催化剂制备过程中pH的变合处理低浓度的CO。相比这些催化剂,金催化剂显化,使用的沉淀剂是NaOH和Na2CO3,采用Na2CO3具有良好的低温催化氧化CO活性,抗水性能好,比铂和钯催化剂廉价。可避免引入杂质Na+;用NaOH作沉淀剂时,溶液pH不稳定,而且金的沉积量也有限。文献报道,在沉积沉淀法中,尿素控制均匀沉淀过程非常有效,可以实现金的最大沉积。 年来,由于不同的实验需求,许多研究者开发出一些新的制备方法。IvanovaS等开发出阴离子交换法(DirectAnionicExchange,DAE),其原理是利用金络合物的OH基团与载体表面的OH基团发生置换反应,将金以氢氧化金的形式负载于载体表面。以Al2O3作载体,用DAE法制备Au/Al2O3催化剂,实验发现,不同HAuCl浓度对制备的催化剂活性有较大影响,浓度越低,负载效果越好,制备的催化剂活性越高。不同的洗涤方法对催化剂活性也有较大影响,氨水洗涤比水洗的催化活性好,因为氨水水解产生的OH与Cl发生交换,减少了催化剂表面Cl的残存。DomínguezMI等用混合氧化物制备的泡沫作基体材料,负载一层CeO后,用DAE法负载金,用于CO氧化。虽然这种制备方法操作简易,但负载的金沉积量有限,很难应用于一些需较高金沉积量的催化反应。MallickK等开发了一种新型简易金催化剂制备方法———硼氢化钠还原法。将载体氧化物悬浮于蒸馏水中,剧烈搅拌,滴入HAuCl溶液,静置,剧烈搅拌下,加入NaBH4燥,得催化剂。实验发现,该法制备的Au/TiO2催化溶液,老化,过滤,洗涤,干燥,得催化剂。实验发现,该法制备的Au/TiO催化 剂比其他方法制备的Au/TiO2催化剂具有更高的CO氧化活性。除以上几种制备方法外,用于金催化剂制备的法还有化学气相沉积法、有机金配合物固载2.2丙烯环氧化法、光化学沉积法和直流磁电管溅射法等,相比前面介绍的几种制备方法,这些制备方法对仪器设备或对金前身化合物物性要求较高。

相关文档