文档库 最新最全的文档下载
当前位置:文档库 › 氨氮的测定及注意事项

氨氮的测定及注意事项

氨氮的测定及注意事项
氨氮的测定及注意事项

测定水中氨氮时应注意的问题

1 实验室环境

进行氨氮分析的实验室,室内不应有扬尘,铵盐类化合物,不要与硝酸盐氮等分析项目同时进行,因为硝酸盐氮测试中必须使用氨水,而氨水的挥发性很强,纳氏试剂吸收空气中的氨而导致测试结果偏高。所使用的试剂、玻璃器皿等实验用品要单独存放,避免交叉污染,影响空白值。

2 无氨水的制备

实验过程对水的要求很高,普通的蒸馏水往往达不到实验要求,需进行二次加工得到无氨水。根据实际工作经验,在用蒸馏法制备无氨水时,应弃去前一部分馏出液和后一部分镏出液,只取中间部分馏出液于密封玻璃瓶中保存,这样制取的无氨水空白值低,但二次加工制取无氨水费时费力,也不经济。用复合树脂交换柱制得新鲜去离子水代替无氨水进行氨氮的测定,空白吸光度能达到实验要求。

3 试剂的配制3.1纳氏试剂纳氏试剂的配制有两种方法,第一种方法利用KI、HgCI2、KOH配制。第二

种方法用KI、HgI2、NaOH配制,两种方法都可产生显色基团[Hgl4]2-,第二种方法配制纳氏试剂比较简单,但实验空白值比第一种方法配制的纳氏试剂空白值高近一倍多,一般常采用第一种方法配制。该方

法关键在于把握HgCI2的加入量,这决定着获得显色基团含量的多少,显色液中HgCI2的含量越高则空

白值越高,进而影响方法的灵敏度。但方法没给出HgCI2的确切用量,需根据试剂配制过程中的现象加

以判断,经验性强,因而较难把握。依据反应原理和经验,HgCI2与KI最佳用量比为0.4l:l(即8.2克HgCI2溶于:20克KI溶液中)以这种比例配制的纳氏试剂经多次实验检验,灵敏度能达到实验要求。但

配制过程中,HgCl2溶解较慢,可进行低温加热缩短反应时间,同时可防止HgI2红色沉淀提前出现。在

加入HgCI2时,KI溶液的温度可稍高些(40度左右)这样检出限较低,反应灵敏。配制好的纳氏试剂应保

存在聚乙烯瓶中,放冰箱低温冷藏,以防颜色逐渐加深,确保空白值稳定性。3.2 酒石酸钾纳酒石酸

钾纳在实验中是为掩蔽水样中Ca2+,Mg2+ ,Fe3+,Na+等金属离子对显色剂的干扰.酒石酸钾纳配制

方法很简单,但市售分析纯酒石酸钾纳有时氨盐含量较高,直接加热煮沸配制往往空白实验值很高,解

决的办法有两种:(1)向定容后的酒石酸钾纳溶液中加入5ml纳氏试剂,沉淀后取上层清液使用。(2)向

酒石酸钾纳溶液中加少量碱,煮沸蒸发至50ml左右后,冷却定容至100ml。依经验第二种方法优于第

一种方法,即使氨盐含量很高的酒石酸钾纳,经处理后空白值也能满足要求。

4 反应条件的控制

4.1 反应温度

温度影响纳氏试剂与氨氮反应的速度,并显著影响溶液颜色。当反应温度为25℃时,显色反应完全;5—15℃时吸光度无显著改变,但显色不完全,温度为30℃时,溶液褪色,吸光度明显偏低。因而实验温度应控制在20—25℃,这样可保证分析结果可靠性。

4.2 反应时间

反应时间在lOmin之前,溶液显色不完全,10—30min,颜色较稳定;30—45mi n颜色有加深趋势;45min后颜色减退。因而显色时间应控制在10—30min以尽快的速度进行比色分析。

4.3 反应体系pH

在分析样品时,样品的酸碱度对氨氮的测定结果有明显影响,DH太低,显色不完全;太高时溶液可能出现浑浊,当pH=13时,显色较完全,且无浑浊,因此溶液pH宜选为l3。

5 其它

5.1对于清洁的地表水、地下水中氨氮的测定,水样需进行絮凝沉淀、过滤的预处理,而过滤使用的滤纸一般都含有可溶性氨氮,尤其是定量滤纸,实际操作中最好选用含可溶性氨氮低的定性滤纸或超细玻纤滤膜过滤,滤前应用无氨水少量多次充分洗涤以除去可溶性氨氮,减少测定误差,提高方法准确度、灵敏度。5.2 向过滤后的水样中加入酒石酸钾钠,样品出现浑浊,但标准曲线组未出现此现象,这可能是酒石酸钾钠中含有较多的Ca2+,Mg2+杂质。当加入的酒石酸钾钠时,其中的Ca2+,Mg2+与水样中的Ca2+,Mg2+相迭加,产生较多量的酒石酸钙或酒石酸镁析出,使水样浑浊。而标准曲线组是用无氨水配制,其Ca2+,Mg2+痕量,则无浑浊现象,这表明酒石酸钾钠不合格,非水样干扰问题,此时应更换酒石酸钾钠。

5.3当水样显色后,发现显色颜色很深(氨氮浓度大于/L),吸光度值超出测定范围时,可直接用无氨水定量稀释、测定。这种方法所测结果与取样时直接稀释所测结果进行比对,无显著性差异,相对误差满足环境分析要求,这种稀释方法特别适合大批量样品的分析。

6 总结

纳氏试剂光度法测定氨氮时应注意:①首先要选购合格的试剂。②试剂的正确配制决定着方法灵敏度,特别要掌握好纳氏试剂的配制要领。③对实验用水、试剂空白、滤纸要注意检查,降低空白值可提高实验精密度。④要控制反应温度、时

间、体系pH等在最佳条件下进行。⑤对大批样品进行分析时,可直接采用显色后再稀释测定的方法,结果能够满足分析要求。

水中氨氮的测定(纳氏试剂比色法)

一、原理

碘化汞和碘化钾的碱性溶液与氨反应生成淡黄棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410—425nm范围内测其吸光度,计算其含量。本法最低检出浓度为L(光度法),测定上限为2mg/L。

二、仪器

1.50mL具塞比色管。

2.分光光度计。

3.pH计。

三、试剂

配制试剂用水均应为无氨水。

1.无氨水:可用一般纯水通过强酸性阳离子交换树脂或加硫酸和高锰酸钾后,重蒸馏得到。

2.25%的NaOH溶液。

3. 10%硫酸锌溶液。

4.纳氏试剂:称取16g氢氧化钠,溶于50mL水中,充分冷却至室温。

另称取7g碘化钾和碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中。用水稀释至100mL,贮于聚乙烯瓶中,密塞保存。

5.酒石酸钾钠溶液:称取50g酒石酸钾钠(KNaC4H4O6·4H2O)溶于100mL水中,加热煮沸以除去氨,放冷,定容至100mL。

6.铵标准贮备溶液:称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000mL容量瓶中,稀释至标线。此溶液每毫升含氨氮。

7.铵标准使用溶液:移取铵标准贮备液于500mL容量瓶中,用水稀释至标线。此溶液每毫升含氨氮。

四、测定步骤

1.水样预处理:无色澄清的水样可直接测定;色度、浑浊度较高和含干扰物质较多的水样,需经过蒸馏或混凝沉淀等预处理步骤。

水样预处理絮凝沉淀法:

取100ml水样(进水、出水、无氨水)+1ml 10%硫酸锌溶液+25%的NaOH溶液,调节pH至左右,混匀,静置沉淀。过滤(弃去初滤液20ml)

2.标准曲线的绘制:吸取0 、、、、、和铵标准使用液于50mL比色管中,加水至标线,加酒石酸钾钠溶液,混匀。加纳氏试剂,混匀。放置10min后,在波长420nm处,用光程10mm比色皿,以水为参比,测定吸光度。

由测得的吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的标准曲线。

3.水样的测定:取适量经预处理后的水样(使氨氮含量不超过),加入50ml 比色管中,稀释至标线,加酒石酸钾钠溶液,混匀,加的纳氏试剂,混匀,放置

10min后,在波长420nm处,用光程10mm比色皿,以蒸馏水为参比,测量吸光度。

4.空白试验:以无氨水代替水样,作全程序空白测定。

五、计算

由水样测得的吸光度减去空白实验的吸光度后,从标准曲线上查得氨氮含量(mg)。

氨氮(N,mg/L)=m×1000/V

式中:m ——由校准曲线查得样品管的氨氮含量(mg);

V——水样体积(mL)。

六、注意事项

1、纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。

2、滤纸中常含痕量铵盐,使用时注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中氨的沾污。

水样氨氮的测定方法

氨氮的测定 氨氮的测定方法,通常有纳氏比色法、苯酚—次氯酸盐(或水杨酸—次氯酸盐)比色法和电极法等。纳氏比色法具有操作简便、灵敏等特点,但钙、镁、铁等金属离子、硫化物、醛、酮类,以及水中色度和混浊等干扰测定,需要相应的预处理。以下是纳氏试剂比色法的测定方法。 一、纳氏试剂比色法的原理 碘化钾和碘化汞的碱性溶液与氨反应生成淡红棕色胶态化和物,其色度与氨氮含量成正比,通常可在410-425nm范围内测其吸光度,计算其含量。 本法最低检出浓度为0.025mg/L(光度法),测定上限为2 mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地面水、地下水、工业废水和生活污水。 二、仪器 1、带氮球的定氮蒸馏装置:500 mL凯氏烧瓶、氮球、直形冷凝 管。 2、分光光度计 3、PH计 三、试剂 做次实验配制试剂均应用无氨水配制。 1、无氨水。配制可选用以下任意一种方法制备: (1)蒸馏法:每升蒸馏水中加0.1mL硫酸,在全玻璃蒸馏器中重蒸

馏,弃去50mL初馏液,接取其余馏出液于具塞磨口的玻璃瓶中,密塞保存。 (2)离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 2、1mol/L的盐酸溶液 3、1mol/L的氢氧化钠溶液 4、轻质氧化镁:将氧化镁在500℃下加热,以除去碳酸盐。 5、0.05%溴百里酚蓝指示计(PH6.0-7.6)。 6、防沫剂:如石蜡碎片 7、吸收剂:①硼酸溶液:称取20g硼酸溶于水,稀释至1L。②0.01mol/L硫酸溶液。 8、纳氏试剂。可选用下列方法之一制备: (1)称取20g碘化钾溶于约25mL水中,边搅拌边分次加入少量的二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色不易降解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250mL,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液中,用水稀释至400mL,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2)称取16g氢氧化钠,溶于50mL水中,充分冷却至室温。 另称取7g碘化钾和碘化汞溶于水,然后将次溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100mL,贮于聚乙烯瓶中,密塞保存。

实验室各种安全注意事项

实验室各种安全注意事项 一、实验室防火安全 1.实验室内必须存放一定数量的消防器材,消防器材必须放置在便于取用的明显位置,指定专人管理,全体人员要爱护消防器材,并且按要求定期检查更换。 2.实验室内存放的一切易燃、易爆物品(如氢气、氮气、氧气等)必须与火源、电源保持一定距离,不得随意堆放。使用和储存易燃、易爆物品的实验室,严禁烟火。 3.不得乱接乱拉电线,不得超负荷用电,实验室内不得有裸露的电线头,严禁用金属丝代替保险丝;电源开关箱内不得堆放物品。4.电器设备和线路、插头插座应经常检查,保持完好状态,发现可能引起火花、短路、发热和绝缘破损、老化等情况必须通知电工进行修理。电加热器、电烤箱等设备应做到人走电断。 5.使用电烙铁,要放在非燃隔热的支架上,周围不应堆放可燃物,用后立即拨下电源插头。 6.可燃性气体钢瓶与助燃气体钢瓶不得混合放置,各种钢瓶不得靠近热源、明火,要有防晒措施,禁止碰撞与敲击,保持油漆标志完好,专瓶专用。使用的可燃性气瓶,一般应放置室外阴凉和空气流通的地方,用管道通入室内,氢、氧和乙炔不能混放一处,要与使

用的火源保持10m以上的距离。所有钢瓶都必须有固定装置固定,以防倾倒 7.实验室内未经批准、备案,不得使用大功率用电设备,以免超出用电负荷。 8.严禁在楼内走廊上堆放物品,保证消防通畅通。 二、实验室化学药品安全 1.各级各类实验室所用化学药品的必须由学校统一组织购置,任何实验室和个人不得私自购置。购置剧毒类和易制毒类药品需经公安部门许可,持许可证方可购置。 2.化学药品要分类存放,相互作用的药品不能混放,必须隔离存放。所有药品都必须有明确的标签,贮存室和柜必须保持整齐清洁。有特殊性质的药品必须按其特性要求存放。无名物、变质过期的药品要及时清理销毁。实验室内不得存放剧毒类药品。 3.危险化学药品容器应有清晰的标识或标签。遇火、遇潮容易燃烧、爆炸或产生有毒气体的危险化学药品,不得在露天、潮湿、漏雨和低洼容易积水的地点存放;受阳光照射易燃烧、易爆炸或产生有毒气体的危险化学药品应当在阴凉通风地点存放。危险化学药品的存放区域应设置醒目的安全标志。

氨氮测定的影响因素及解决办法

氨氮测定的影响因素及解决办法 吴纯真(汕头市自来水总 公司广东汕头515041) 摘要:水中氨氮的含量是饮用水水质的一个重要指标,同时,源水氨氮的含量对饮用水水处理也有一定的影响,本文综述如何提高氨氮测定的精密度和准确度,以便更好指导饮用水的生产,确保安全、优质供水。 关键词:源水饮用水氨氮水扬酸盐分光光度法影响因素精密度准确度 1 氨氮的特性 1.1 概述氨氮(NH3-N)以离子铵(NH4)和非离子态氨(NH3-)两种形式存在于水中。两者组成比取决于水的PH值和水温。非离子态氨所占的比例随着水温和PH值的升高而急剧增加。 1.2 感官性状水中氨氮是影响感官水质指标因素之一。氨氮的浓度与有机物的含量,溶解氧的大小有着相关性,标志着水污染的程度。世界卫生组织在《饮用水水质准则》编制说明中,指出氨在水中的嗅阀值约为 1.5mg/l,铵离子在水中的味阀值为35mg/l。同时,氨氮是水质富营养化的重要因素。 1.3 来源水中氨氮主要来源于生活污水中含氮有机物。含氮有机物经氨化菌分解生成氨,如氨基酸的分解;其次是来源于某些工业废水,如焦化厂废水,氮肥废水以及农田排查;再次是缺氧条件下硝酸盐在反硝化菌作用下还原为氨。地表水由于受到污染程度不同,氨氮的含量差异较大。饮用水氨氮的含量,除直接受原水影响外,也与氯胺消毒有关。 1.4 对人体健康的影响氨只有在摂入量超过人体解毒能力时才对健康人体有毒性。氨本身不是一种致癌物质,但氨在水处理过程(特别是滤池过滤)和管道中,经亚硝化菌作用,生成亚硝酸盐。亚硝酸盐进入体内与仲胺结合,生成致癌物二甲基硝胺。因而氨在间接上对人体健康带来一定的危害。 1.5 测定意义水中氨氮太多时表示水源不久前受过污染,水中如果仅含NO3-而无NH3与NO2-表示污染物中有机物质分解完了,在这种过程中,水中致病微生物也逐渐消除,所以测定各类氮素化合物,有利于探讨水体受有机污染的情况、了解水体的自净能力和对水质进行卫生评价。 2 实验部分 2.1 仪器及试剂 2.1.1 具塞比色管(10ml) 2.1.2 Tu-1800紫外分光光度计; 2.1.3 亚硝基铁氰化钠溶液(10g/l)氢氧化钠溶液(280g/l) 柠檬酸钠溶液(400g/l)含氯缓冲液水杨酸—柠檬酸盐溶液氨氮标准使用液。 2.2 实验原理在亚硝基铁氰化钠存在下,氨氮在碱性溶液中与水扬酸盐-次氯酸盐生成蓝色化合物,用柠檬酸纳作掩蔽剂,在655nm 波长处比色定量。 2.3 实验方法与步骤测定氨氮的方法有纳氏试剂分光光度法、酚盐分光光度法、水杨酸盐分光光度法。本文选择的是水杨酸盐分光光度法,灵敏度较高。 2.3.1 试剂空白的制备:吸取0.4ml含氯缓冲液加到10ml纯 水

水质氨氮的测定

水质氨氮的测定 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值和水温。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例高,水温则相反。 氨氮的测定方法主要有纳氏比色法、气相分子吸收法、苯酚——次氯酸盐(或水杨酸——次氯酸盐)比色法和电极法等。本节将主要介绍纳氏比色法和蒸馏——酸滴定法。 当水样带色或浑浊以及含有其他一些干扰物质,影响氨氮的测定。为此,在分析时需作适当的预处理。对较清洁的水,可采用絮凝沉淀法(加适量的硫酸锌于水样中,并加氢氧化钠使成碱性,生成氢氧化锌沉淀,再经过滤除去颜色和浑浊);对污染严重的水或工业废水,则用蒸馏法消除干扰(调节水样的pH值使在6.0-7.4的范围,加入适量氧化镁使成微碱性,蒸馏释放出的氨被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定法时,以硼酸溶液为吸收液;采用水杨酸——次氯酸盐比色法时,则以硫酸溶液为吸收液)。 本实验的主要目的: 1 掌握水样预处理的方法; 2 掌握氨氮的测定原理及测定方法的选择 3 掌握分光光度计的使用方法,学习标准系列的配制和标准曲线的制作 一、纳氏试剂光度法(A1) 1 实验原理 碘化汞和碘化钾与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长内具强烈吸收。通常测量用410~425nm范围。 2 实验仪器 2.1 分光光度计 2.2 pH计 2.3 20mm比色皿 2.4 50mL比色管 1本方法与GB7479-87等效。

3 实验试剂 3.1 纳氏试剂:可任择以下两种方法中的一种配制。 3.1.1 称取20g碘化钾溶于约100ml水中,边搅拌边分次少量加入二氯化汞结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不易溶解时,停止滴加二氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250ml,充分冷却至室温后,将上述溶液在搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜。将上清液移入聚乙烯瓶中,密塞保存待用。 3.1.2 称取16g氢氧化钠,溶于50ml水中,充分冷却至室温。 另称取7g碘化钾和10g碘化汞溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存待用。 3.2 酒石酸钾钠溶液:称取50g酒石酸钾钠(KNaC4H4O6·4H2O)溶于100ml水中,加热煮沸以去除氨,放冷,定容100ml。 3.3 铵标准贮备溶液:称取3.819g经100℃干燥过的优级纯氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 3.4 铵标准使用液:移取5.00ml铵标准贮备液(3.3)于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 4 实验步骤 4.1 标准曲线的制作 4.1.1 吸取0、0.50、1.00、3.00、 5.00、7.00和10.00ml铵标准使用液(3.4)于50ml 比色管中,加水至标线,加1.0ml酒石酸钾钠溶液(3.2),摇匀。加1.5ml纳氏试剂(3.1.1或3.1.2),混匀。放置10min后,在波长420nm出,用光程20mm比色皿,以水为参比,测量吸光度。 4.1.2 由测得的吸光度减去空白的吸光度后,得到校正吸光度,以氨氮含量(mg)对校正吸光度的统计回归标准曲线。 4.2 水样的测定 4.2.1 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml 比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。以下同标准曲线的制作(4.1)。 4.2.2 分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢

实验室注意事项

实验室注意事项 实验过程中的坏习惯有哪些? 样品称量或者测定的时候,把数据先记录在草稿纸上,样品做完在抄到记录本上去; 有时候实验完毕才统一填写记录; 仪器还没降到限度以下,就开始关仪器; 气相色谱分析的时候,注射器针头直接用手指蹭下,不用滤纸擦拭。 实验前处理过程的坏习惯 称量样品时,多次重复使用称量纸; 配置酸碱时不在通风橱内进行; 有时候不戴手套进行称量或其他操作; 定容最后环节不采用滴管,而是直接用洗瓶,定容得不太准确,常常是静置后会超出刻度线; 称量前,不校正,不看水平气泡是否在中心地带。 用药匙取料,多余的药品仍返回瓶内。 实验完成后的坏习惯 实验室废液直接倒入下水池,而不是处理回收; 实验完成之后不顾台面的整洁; 使用天平完毕后,不关闭天平门。 影响他人的坏习惯 最主要的是一些实验操作规范的问题,像试剂的节约、仪器的爱护等等,轻者是自己的实验出问题,重者是影响到实验室的风气问题。比如:实验完成后不及时清理现场,总留给别人一个烂摊子;2.长时间占用实验室公用电脑,上网聊天游戏,妨碍他人查资料;3.公用仪器不爱惜,损坏后隐瞒不报,推卸责任。 1.瓶子不做标记,不知道里面装的是什么。 2.标准溶液瓶上的配置信息偷懒不更新。 3.频繁无计划的开冰箱,并且冰箱门大开进行某些操作。导致冰箱温度的不稳定,影响了其他的放置物品的冻存效果。乱翻其中放置的物品,使后来人要费很大的劲才能找到自己的物品。 4.打开细胞培养箱门的幅度过大,过频,不及时关闭,导致培养箱温度及二氧化碳浓度降低。未经他人同意,而私自观察他人培养的细胞。有时候,细胞正需要绝对的静止,而他人的私自查看,可能就影响了细胞的贴壁。 5.他人消毒后的物品,没有在超净台中而私自打开。后不告知而又重新包装上。 6.穿在手上,并且粘有有毒物质(如EB、PMSF等物质)的手套乱摸,包括门把手、键盘等。导致他人裸手而间接粘上此类有毒物质。 7.粘有有毒物质的瓶子不给予特殊处理,而同其他的瓶子放到一起。 8.在公用试剂的标签上乱写,标明自己的剂量,而影响后人的使用。 9.使用完毕离心机、显微镜等,不关机就离开。

水质监测中氨氮测定的影响因素分析

水质监测中氨氮测定的影响因素分析 发表时间:2019-03-04T16:03:18.327Z 来源:《防护工程》2018年第35期作者:马明慧 [导读] 这样就可以很好的提升水质监测效率,使得水体质量得到显著的提高。 无锡市惠山区环境监测站 214171 摘要:随着我国经济的快速发展,各行各业都取得了非常大的成就,人们的生活水平得到了显著的提升,人们对美好生活的追求变得越来越强烈,人们的需求也变得越来越多,经济发展的同时对环境造成了非常严重的污染,国家越来越重视环境保护,水资源的保护在我国环境保护工作当中扮演着非常重要的角色,水是人们日常生活当中最重要的资源,因此对它的监测工作是非常具有意义的,所以它的质量的监测工作也是一个非常严谨的工作。水质里边对水污染造成特别大的影响的核心就是氨氮的含量,所以就要开展水质里边氨氮的监测工作。本文着重对水质里边氨氮的测定方法做出了详细的研究,并对氨氮测定影响比较大的因素做出了详细的研究,这样就可以很好的提升水质监测效率,使得水体质量得到显著的提高。 关键词:水质监测;氨氮测定;影响因素 现阶段,随着我国经济的迅速发展,带来了非常多的问题,环境遭到了严重破坏,水体污染也比较严重,这就给人们的生活带来了非常不利的影响。就在这个时候,特别多的有毒有害气体、废水被没有经过处理就排放出来,这就对特别多的水资源造成了严重的污染。所以,我国特别看重现在的情况,并且做出了一些努力,很好的研究了怎么去处理氨氮废水,研究出来水质里边氨氮测定好的办法。以下就是对水质监测工作里边氨氮测定的真实情况做出详细的研究。 1 水质监测中氨氮测定的重要性 在水环境监测工作当中,氨氮对水质污染比较大,人们必须对氨氮做出很好的监测才能够把水质监测工作做到最好,这样就可以很好的知道水质的污染情况。所以,对水质进行监测是非常重要的事情,其重要性表现在如下几个方面。 1.1 有效监测水体污染物 凭借对水质里边的氨氮做出很好的监测,就能够很好的知道水质污染情况,这样就可以知道污染物里边的氨氮含量,进一步对水质做出详细的研究,这样就符合了相关要求,它在水资源保护工作当中起着举足轻重的作用。 1.2 分析水体污染物成分 凭借对水质里边的氨氮做出很好的监测,就能够很好的知道水质污染情况,然后在进行一些相关化学操作就可以很好的知道污染物的情况,这样就可以使得水质监测工作被做好。 1.3 提高水质监测准确性 可以把氨氮测定的相关方法很好的用到水质监测工作当中,这样就可以很好的知道污染物的大致组成情况,进一步使得水质监测水平可以得到显著的提高。在对水体污染物做出详细的研究以后,人们就能够采取一些切实可行的方案来解决这样的问题。 2 水质监测中氨氮测定的具体方法 水质监测工作主要就是对氨氮进行测定,所以,就必须保证氨氮的测定要务必准确。现阶段,我国的氨氮测定方法有非常多。一是利用目视比色和分光光度法测定,即通过与纳氏试剂的颜色反应程度来确定水质中氨氮的具体含量。氨氮元素以游离的状态存在,它与纳氏试剂发生化学作用,生成黄色的络合物,根据生成黄色络合物的颜色深浅,可以确定氨氮的含量高低。颜色越深,氨氮的含量越高。这种利用目视比色的方法测量氨氮含量的浓度范围为 0.02 ~ 2.00 mg/L。此外,也可以用分光光度法测定氨氮含量,其监测浓度范围为 0.05 ~2.00 mg/L。二是在水质检测的过程中,要尽量选用良好的滤料来消除酸碱度对测定的影响。在检测过程中酸碱度应控制在合理的范围内,一般情况大约是 10.5 。因为pH过高就会使得溶液更加的不清晰,太低又会使得颜色比较模糊不定。所以,一定要对 pH 值做出很好的控制,这样就可以使得测量结果比较准确。 3 氨氮含量测定的影响因素 水质里边的成分非常的多,污染物里边的成分是不容易被分析的。就在这个时候,氨氮元素含量测定工作非常的不容易,因为对它的影响因素非常的多,所以就会造成非常多的不确定性。所以,要想提高氨氮含量测定的准确性,增强水质监测的科学性,必须要针对影响氨氮含量测定的因素进行全面分析。从目前我国水质监测的实际情况来分析,影响水质氨氮测定的主要因素有如下几种。 3.1 光波波长的影响 氨氮含量测定中最常用的方法是光波监测,其中光波波长的长短直接影响水质中氨氮测定的结果。因此,在应用光波测定法时,要选择合适的光波长度,以尽量消除光波波长对氨氮含量测定造成的影响,这样才能确保氨氮测定的准确性和有效性。其中,光波波长对氨氮测定的影响。在光波长为 400 ~ 435 nm 时,显色剂的空白吸光度数值都比较小。而与此对比,标准液的显色吸光度较大并且相对稳定。在 420 nm 光波长处,显色剂空白吸光度和标准液显色吸光度均达到最大。由此可以看出,在水质监测的氨氮含量测定中,选用光波长为420 nm 测定结果较为精确。 3.2 盐度的影响 在进行江河出海口的水质氨氮监测时,由于地处海水和淡水交界处,其含盐量受到潮汐和水流量的影响,长期处于不断变化中。因此,需要测定河水含盐量对水质氨氮测定结果的影响,当检测点的含盐量高于20 j 时,会出现轻微正偏差,可在做标准曲线时加入相应的氯化钠进行调节。而当监测点的含盐量低于20 j 时,含盐量对水质监测结果并没有影响。对于含盐量对水质氨氮元素含量的影响,人们应该有一个全面的认识,以确保监测效果的可靠性。从目前情况来看,水质成分中的含盐量在氨氮含量测定中的影响主要表现为:含盐量会对氨氮测定产生具体、有规律的影响,只有归纳出含盐量的影响规律并提出消除这一影响的办法,才能提高水质监测效果;含盐量对水质中的氨氮元素的含量产生影响,使其发生变化。 3.3 气泡的影响 在氨氮检测进样的过程中,会不可避免地产生很多小气泡。这些小气泡积累增大,会影响测定结果的准确性和稳定性。在这种情况

氨氮的测定纳氏试剂法

实验4 水中氨氮的测定(纳氏试剂比色法) HJ535-2009代替GB 7479-87 一.实验目的 1.了解水中氨氮的测定意义。 2.掌握水中氨氮的测定方法和原理。 二.实验原理 氮是蛋白质、核酸、酶、维生素等有机物中的重要组分。纯净天然水体中的含氮物质是很少的,水体中含氮物质的主要来源是生活污水和某些工业废水。当含氮有机物进入水体后,由于微生物和氧的作用,可以逐步分解或氧化为无机氨(NH 3)、铵(NH 4+)、亚硝酸 盐(NO 2-)和最终产物(NO 3-)。 氨和铵中的氮称为氨氮(Ammonia nitrogen 简称NH 3-N )。水中氨氮的含量在一定程度 上反映了含氮有机物的污染情况。在污水综合排放标准(GB8978-1996)和地表水环境质量标准(GB3838-2002)中,氨氮都是重要的监测指标。 以游离态的氨或铵离子等形式存在的氨氮与纳氏试剂反应生成淡红棕色络合物,该络合物的吸光度与氨氮含量成正比,于波长420 nm 处测量吸光度。 氨氮与纳氏试剂反应生成棕色胶态化合物, 干扰及消除:水样中含有悬浮物、余氯、钙镁等金属离子、硫化物和有机物时会产生干扰,含有此类物质时要作适当处理,以消除对测定的影响。 若样品中存在余氯,可加入适量的硫代硫酸钠溶液去除,用淀粉-碘化钾试纸检验余氯

是否除尽。在显色时加入适量的酒石酸钾钠溶液,可消除钙镁等金属离子的干扰。若水样 浑浊或有颜色时可用预蒸馏法或絮凝沉淀法处理。 三. 仪器与试剂 1.尤尼柯WFJ7200型可见分光光度计,具20mm比色皿。 2.纳氏试剂(碘化汞-碘化钾-氢氧化钠(HgI 2 -KI-NaOH)溶液): 称取 16.0g氢氧化钠(NaOH),溶于50ml水中,冷却至室温。称取7.0g碘化钾(KI) 和10.0g碘化汞(HgI 2 ),溶于水中,然后将此溶液在搅拌下,缓慢加入到上述50ml氢氧化钠溶液中,用水稀释至100ml。贮于聚乙烯瓶内,用橡皮塞或聚乙烯盖子盖紧,于暗处存放,有效期1年。 3.酒石酸钾钠溶液:称取50.0g酒石酸钾钠(KNaC 4H 4 O 6 ·4H 2 O)溶于100mL水中,加热煮 沸以驱除氨,充分冷却后稀释至100ml。 4.氨氮标准贮备溶液(1000μg/ml):称取3.8190g氯化铵(NH 4 Cl,优级纯,在100~105℃干燥2h),溶于无氨水中,移入1000ml容量瓶中,稀释至刻度,摇匀。可在2~5℃保存1个月。 5.氨氮标准工作溶液(10μg/mL):吸10.00ml氨氮标准贮备溶液于1000ml容量瓶内,用无氨水稀释至刻度,摇匀。临用前配制。 以下为水样需预处理时所需试剂 6. 硫代硫酸钠溶液(3.5g/L):称取3.5g硫代硫酸钠(Na 2S 2 O 3 )溶于水中,稀释至1000ml。

实验室安全操作注意事项

. 实验室安全操作注意事项 每次做完实验,都要及时的分析实验数据,以便总结上次实验的经验与体会,为下一次实验方法的进一步完善提供理论依据。切勿等全部实验做完再来分析,此时才发现这样或那样的不足,造成人力与财力、时间的浪费,盲目地做实验是不足取的。 1 实验安全常识 在化学实验室里,安全是非常重要的,它常常潜藏着诸如发生爆炸、着火、中毒、灼伤、割伤、触电等事故的危险性,如何来防止这些事故的发生以及万一发生又如何来急救。 1.1 安全用电常识 违章用电常常可能造成人身伤亡,火灾,损坏仪器设备等严重事故。物理化学实验室使用电器较多,特别要注意安全用电。为了保障人身安全,一定要遵守实验室安全规则。 (1)防止触电 ①不用潮湿的手接触电器。 ②电源裸露部分应有绝缘装置(例如电线接头处应裹上绝缘胶布)。 ③所有电器的金属外壳都应保护接地。 ④实验时,应先连接好电路后才接通电源。实验结束时,先切断电源再拆线路。 ⑤修理或安装电器时,应先切断电源。 ⑥不能用试电笔去试高压电。使用高压电源应有专门的防护措施。 ⑦如有人触电,应迅速切断电源,然后进行抢救。 (2)防止引起火灾 ①使用的保险丝要与实验室允许的用电量相符。 ②电线的安全通电量应大于用电功率。 ③室内若有氢气、煤气等易燃易爆气体,应避免产生电火花。继电器工作和开关电闸时,易产生电火花,要特别小心。电器接触点(如电插头)接触不良时,应及时修理或更换。 ④如遇电线起火,立即切断电源,用沙或二氧化碳、四氯化碳灭火器灭火,禁止用水或泡沫灭火器等导电液体灭火。 (3)防止短路 ①线路中各接点应牢固,电路元件两端接头不要互相结触,以防短路。 ②电线、电器不要被水淋湿或浸在导电液体中,例如实验室加热用的灯泡接口不要浸在水中。 (4)电器仪表的安全使用 ①在使用前,先了解电器仪表要求使用的电源是交流电还是直流电;是三相电还是单相电以及电压的大小(380V、220V、110V或6V)。须弄清电器功率是否符合要求及直流电器仪表的正、负极。 ②仪表量程应大于待测量。若待测量大小不明时,应从最大量程开始测量。

氨氮的测定(1)

氨氮的测定(1) 氨氮的测定方法,通常有纳氏试剂比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具有操作简便、灵敏等特点,但钙、镁、铁等金属离子、硫化物、醛、酮类,以及水中色度和混浊等干扰测定,需要 相应的预处理。苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方 法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优 点。氨氮含量较高时,可采用蒸馏-酸滴定法。 1、掌握氨氮测定最常用的三种方法-纳氏试剂比色法;电极法和滴定法。 了解氨气敏电极使用。 2、复习第二章含氮化合物测定的有关内容。 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410—425nm范围内测其吸光度,计算其含量。 本法最低检出浓度为0.025mg/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地面水、地下水、工业废水和生活污水。 1、带氮球的定氮蒸馏装置:500mL凯氏烧瓶、氮球、直形冷凝管。 2、分光光度计。 3、pH计。 配制试剂用水均应为无氨水。 1、无氨水。可选用下列方法之一进行制备:

(1)蒸馏法:每升蒸馏水中加0.1mL硫酸,在全玻璃蒸馏器中重蒸馏,弃去50mL初馏液,接取其余馏出液于具塞磨口的玻璃瓶中,密塞保存。 (2)离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 2、1mol/L盐酸溶液。 3、1mol/L氢氧化纳溶液。 4、轻质氧化镁(MgD):将氧化镁在500?下加热,以除去碳酸盐。 5、0.05%溴百里酚蓝指示液(pH6.0—7.6)。 6、防沫剂:如石蜡碎片。 7、吸收液:?硼酸溶液:称取20g硼酸溶于水,稀释至1L。?0.01mol/L硫酸溶液。 8、纳氏试剂。可选择下列方法之一制备: (1)称取20g碘化钾溶于约25mL水中,边搅拌边分次少量加入二氧化汞 (HgCl)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和2 二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加氯化 汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250mL,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液中,用水稀释至400mL,混匀。静置过夜,将上清液移入 聚乙烯瓶中,密塞保存。 (2)称取16g氢氧化钠,溶于50mL水中,充分冷却至室温。 另称取7g碘化钾和碘化汞(HgI)溶于水,然后将此溶液在搅拌下徐徐注2 入氢氧化钠溶液中。用水稀释至100mL,贮于聚乙烯瓶中,密塞保存。

实验三 氨氮的测定

实验三氨氮的测定 氨氮的测定方法,通常有纳氏试剂比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具有操作简便、灵敏等特点,但钙、镁、铁等金属离子、硫化物、醛、酮类,以及水中色度和混浊等干扰测定,需要相应的预处理。苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,可采用蒸馏-酸滴定法。 一、实验目的和要求 1、掌握氨氮测定最常用的三种方法-纳氏试剂比色法;电极法和滴定法。了解氨气敏电极使用。 2、复习第二章含氮化合物测定的有关内容。 二、纳氏试剂比色法 (一)、原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410—425nm范围内测其吸光度,计算其含量。 本法最低检出浓度为0.025mg/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地面水、地下水、工业废水和生活污水。 (二)、仪器 1、带氮球的定氮蒸馏装置:500mL凯氏烧瓶、氮球、直形冷凝管。 2、分光光度计。 3、pH计。 (三)、试剂 配制试剂用水均应为无氨水。 1、无氨水。可选用下列方法之一进行制备:

(1)蒸馏法:每升蒸馏水中加0.1mL硫酸,在全玻璃蒸馏器中重蒸馏,弃去50mL初馏液,接取其余馏出液于具塞磨口的玻璃瓶中,密塞保存。 (2)离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 2、1mol/L盐酸溶液。 3、1mol/L氢氧化纳溶液。 4、轻质氧化镁(MgD):将氧化镁在500℃下加热,以除去碳酸盐。 5、0.05%溴百里酚蓝指示液(pH6.0—7.6)。 6、防沫剂:如石蜡碎片。 7、吸收液:①硼酸溶液:称取20g硼酸溶于水,稀释至1L。②0.01mol/L 硫酸溶液。 8、纳氏试剂。可选择下列方法之一制备: (1)称取20g碘化钾溶于约25mL水中,边搅拌边分次少量加入二氧化汞(HgCl2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250mL,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液中,用水稀释至400mL,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2)称取16g氢氧化钠,溶于50mL水中,充分冷却至室温。 另称取7g碘化钾和碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中。用水稀释至100mL,贮于聚乙烯瓶中,密塞保存。 9、酒石酸钾钠溶液:称取50g酒石酸钾钠(KNaC4H4O6·4H2O)溶于100mL 水中,加热煮沸以除去氨,放冷,定容至100mL。 10、铵标准贮备溶液:称取3.819g经100℃干燥过的氯化铵(NH Cl)溶于 4 水中,移入1000mL容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 11、铵标准使用溶液:移取5.00mL铵标准贮备液于500mL容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 (四)、测定步骤

氨氮检测方法

氨氮是指水中以游离氨(NH3)和铵离子(NH4)形式存在的氮。动物性有机物的含氮量一般较植物性有机物为高。同时,人畜粪便中含氮有机物很不稳定,容易分解成氨。因此,水中氨氮含量增高时指以氨或铵离子形式存在的化合氨。 氨氮主要来源于人和动物的排泄物,生活污水中平均含氮量每人每年可达2.5~4.5公斤。 雨水径流以及农用化肥的流失也是氮的重要来源。 另外,氨氮还来自化工、冶金、石油化工、油漆颜料、煤气、炼焦、鞣革、化肥等工业废水中。 当氨溶于水时,其中一部分氨与水反应生成铵离子,一部分形成水合氨,也称非离子氨。 非离子氨是引起水生生物毒害的主要因子,而氨离子相对基本无毒。国家标准Ⅲ类地面水,非离子氨的浓度≤0.02毫克/升。 氨氮是水体中的营养素,可导致水富营养化现象产生,是水体中的主要耗氧污染物,对鱼类及某些水生生物有毒害。 纳氏试剂比色法 1 原理 碘化汞和碘化钾的碱性溶液与氨反映生成淡红棕色胶态化合物,其色 度与氨氮含量成正比,通常可在波长410~425nm范围内测其吸光度,计算其含量. 本法最低检出浓度为0.025mg/L(光度法),测定上限为2mg/L.采用目视比色法,最低检出浓度为0.02mg/L.水样做适当的预处理后,本法可用于地 面水,地下水,工业废水和生活污水中氨氮的测定. 2 仪器 2.1 带氮球的定氮蒸馏装置:500mL凯氏烧瓶,氮球,直形冷凝管和导管. 2.2 分光光度计 2.3 pH计 3 试剂 配制试剂用水均应为无氨水 3.1 无氨水可选用下列方法之一进行制备:

3.1.1 蒸馏法:每升蒸馏水中加0.1mL硫酸,在全玻璃蒸馏器中重蒸馏,弃去50mL初馏液,按取其余馏出液于具塞磨口的玻璃瓶中,密塞保存. 3.1.2 离子交换法:使蒸馏水通过强酸型阳离子交换树脂柱. 3.2 1mol/L盐酸溶液. 3.3 1mol/L氢氧化纳溶液. 3.4 轻质氧化镁(MgO):将氧化镁在500℃下加热,以出去碳酸盐. 3.5 0.05%溴百里酚蓝指示液:pH6.0~7.6. 3.6 防沫剂,如石蜡碎片. 3.7 吸收液: 3.7.1 硼酸溶液:称取20g硼酸溶于水,稀释至1L. 3.7.2 0.01mol/L硫酸溶液. 3.8 纳氏试剂:可选择下列方法之一制备: 3.8.1 称取20g碘化钾溶于约100mL水中,边搅拌边分次少量加入二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改写滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液. 另称取60g氢氧化钾溶于水,并稀释至250mL,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液中,用水稀释至400mL,混匀.静置过夜将上清液移入聚乙烯瓶中,密塞保存. 3.8.2 称取16g氢氧化纳,溶于50mL水中,充分冷却至室温. 另称取7g碘化钾和碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化纳溶液中,用水稀释至100mL,贮于聚乙烯瓶中,密塞保存. 3.9 酒石酸钾纳溶液:称取50g酒石酸钾纳KNaC4H4O6·4H2O)溶于100mL水中,加热煮沸以除去氨,放冷,定容至100Ml. 3.10 铵标准贮备溶液:称取3.819g经100℃干燥过的优级纯氯化铵(NH4Cl)溶于水中,移入1000mL容量瓶中,稀释至标线.此溶液每毫升含 1.00mg氨氮. 3.11 铵标准使用溶液:移取5.00mL铵标准贮备液于500mL容量瓶中,用水稀释至标线.此溶液每毫升含0.010mg氨氮. 4 测定步骤 4.1 水样预处理:取250mL水样(如氨氮含量较高,可取适量并加水至250mL,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,家数滴溴百里酚蓝指示液,用氢氧化纳溶液或演算溶液调节至pH7左右.加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导 管下端插入吸收液液面下.加热蒸馏,至馏出液达200mL时,停止蒸馏,定容至250mL. 采用酸滴定法或纳氏比色法时,以50mL硼酸溶液为吸收液;采用水杨酸-次氯酸盐比色法时,改用50mL0.01mol/L硫酸溶液为吸收液.

微生物实验注意事项

微生物实验注意事项 1.实验过程中要及时详细标清除产物和日期,实验做完以后要对以前的过度产品做个清 理,以免东西积累过多。 2.实验后的DNA和RNA要及时放回冰箱,以免时间长降解,特别是用水溶解的时候。 3.要及时甘油保存你鉴定出的细菌,每个细菌保存两份,存放在-80度冰箱里。 4.实验用的酶类虽然在室温下放一段时间也没什么问题,但还是要及时放回冰箱,以免 活性降低。 5.要及时清理实验台面,保持干净,整洁,有序。 6.无菌操作台用后及时清理干净,操作真菌和细菌等最好不要交叉使用。 7.培养基使用的时候要注意无菌操作,移液器不要插入培养基中,之准许无菌枪头进入 瓶子腔体,如培养基较少,可以倾斜瓶子,移液器取液体最好不要用到最大量程,以免吸液过猛导致与移液器接触。 8.灭好的培养基标签一定要写好,包括名称,日期,是否加抗生素,是否加抗生素非常 重要,特别是在共用培养基的实验室。 9.实验用过的试剂盖子一定要盖好,以免挥发。特别是有毒的物品,如氯仿,苯酚等, 用完后的瓶子及时拿出实验室。 10.带手套接触有毒物品后,要及时处理掉手套。不管是否接触过有毒物品,,不要戴着 手套乱接触其他东西,如开窗等。 11.做实验过程中不要接电话,说话,考虑其他事情。特别是PCR和配溶液的时候。做PCR 和配溶液的时候要把所用的试剂找全,一字排开,加完一种东西就把这种东西放到一边,可防止自己少加错东西。 12.同时作几个实验的时候一定要有定时器,防止自己忘记,特别是在煮东西,加热溶化 溶液等危险操作的时候,切忌。 13.饭前,有活动前不要做实验,这时候匆匆忙忙非常容易出错,特别是作有危险的实验, 更要注意。 14.作好试验记录,不管有没有结果,一定要坚持。还有点用图片,测序结果等,如果不 清楚记录东西多了,就乱了,混了。这个一定要认真做好。 15.要随时写下自己的想法,因为有些想法稍纵即逝。

氨氮测定方法

氨氮 氮是有好几个指标:氨氮,总氮,硝酸盐氮,亚硝酸盐氮,凯式氮等 氨氮比较简便准确,精密度尚可的就是纳氏试剂比色法,不过一般根据水样浑浊程度,确定采用哪种预处理方法,一般较浑浊的用蒸馏法预处理,较清洁的用絮凝沉降预处理。预处理过的水样,测定氨氮一般用纳氏试剂法测定,含量高点也 可以用滴定法。都是国标。 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1.方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测

量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH<2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预处理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮凝沉淀法 概述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪器 100ml具塞量筒或比色管。 试剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。(2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。 (3)硫酸ρ=。 步骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和— 25%

实验操作注意事项

实验操作注意事项 一.使用温度计测量水温(三年级下册) 1.手拿温度计时正确的位置是提环,不要触摸到玻璃泡位置。 2.测量时温度计玻璃泡应放置于液体中间位置,不要碰到容器壁或容器底部。 3.当温度计放置液体中大约一分钟,温度计液柱稳定不再上升时才能读数,读数时温度计 仍放置在液体内,视线应平视,切记不能仰视或俯视。 二、量筒量液体体积。(三年级下) 1.先弄清楚每一小格的单位体积。 2.量筒放置于水平台上,当测量液体较多时应先用烧杯慢慢加液体,当接近要求测量的体积时,再改用滴管慢慢添加,不要一开始就一直用滴管加。 3,读数时视线应与液体的凹处平视。 三、食盐的溶解实验(四年级上) 1、定量的水,加食盐时用药匙慢慢添加,不要一次添加太多,避免食盐过多时无法溶解完。 2、为了加快溶解使用玻璃棒慢慢搅拌,尽量不要碰到容器壁。 四、酒精灯的使用 1.使用时首先揭开灯帽,灯帽应立放在桌面,避免灯帽滚落。点酒精灯只能用火柴点,不能用燃着的酒精灯去点另一盏酒精灯。 2、熄灭酒精灯时不能用嘴吹,只能用灯帽盖灭,当盖灭以后应将灯帽揭开再重新盖一次。3,使用酒精灯加热物体时应使用外焰加热,因为外焰温度最高。 五、天平的使用。(五年级上) 1、准备测量前,用双手托住底座把天平放在水平台上,使用前弄清楚测量的最大值(天平底座标有),标尺上每一小格所表示的质量值。读游码应看游码左侧对的刻度线。

2、准备测量时先取下两边托盘下的橡胶垫,游码放在标尺左端零刻度线处,再调节平衡螺母,使指针指在分度盘的中线处,(如果指针偏向左侧,螺母向右拧:指针偏向右,则螺母向左拧。) 3、测量物体放左盘(如果测量物体是化学药剂类应用纸垫),砝码放右盘。添加砝码遵循先重后轻,不足再用游码补足,直至再次平衡为止。添加砝码时不能用手拿,必须要用镊子夹。 4、物体的质量是砝码加上游码读数。 六、简单电路连接(四年级下) 1.电池盒放电池时,注意分清正负极。 2、连接开关时,开关应是断开状态,当整个电路连接好时才能闭上开关。(使用开关控制电流时,手不能触摸到金属部分) 3、当连接好整个电路时,闭上开关但是小灯泡不亮时,要会找原因。首先检查连接处是否连接好,小灯泡是否是坏的等等。 七、食盐与水的分离实验(四年级上) 1、注意正确使用酒精灯。 2、加热后期为了防止结出食盐晶体飞溅,用玻璃棒不停搅拌。 八、过滤实验(四年级上) 1、三靠:1、漏斗口靠紧烧杯壁。 2、玻璃棒靠紧滤纸最厚处。 3、倒液体时,烧杯口靠紧玻璃棒。 2,、两低:滤纸低于漏斗边缘;液面低于滤纸边缘。 3、一贴:滤纸紧贴漏斗壁。(可以用水打湿)

氨氮的测定及注意事项

测定水中氨氮时应注意的问题 1 实验室环境 进行氨氮分析的实验室,室内不应有扬尘,铵盐类化合物,不要与硝酸盐氮等分析项目同时进行,因为硝酸盐氮测试中必须使用氨水,而氨水的挥发性很强,纳氏试剂吸收空气中的氨而导致测试结果偏高。所使用的试剂、玻璃器皿等实验用品要单独存放,避免交叉污染,影响空白值。 2 无氨水的制备 实验过程对水的要求很高,普通的蒸馏水往往达不到实验要求,需进行二次加工得到无氨水。根据实际工作经验,在用蒸馏法制备无氨水时,应弃去前一部分馏出液和后一部分镏出液,只取中间部分馏出液于密封玻璃瓶中保存,这样制取的无氨水空白值低,但二次加工制取无氨水费时费力,也不经济。用复合树脂交换柱制得新鲜去离子水代替无氨水进行氨氮的测定,空白吸光度能达到实验要求。 3 试剂的配制 3.1纳氏试剂 纳氏试剂的配制有两种方法,第一种方法利用KI、HgCI2、KOH配制。第二种方法用KI、HgI2、Na OH配制,两种方法都可产生显色基团[Hgl4]2-,第二种方法配制纳氏试剂比较简单,但实验空白值比第 一种方法配制的纳氏试剂空白值高近一倍多,一般常采用第一种方法配制。该方法关键在于把握HgCI2 的加入量,这决定着获得显色基团含量的多少,显色液中HgCI2的含量越高则空白值越高,进而影响方 法的灵敏度。但方法没给出HgCI2的确切用量,需根据试剂配制过程中的现象加以判断,经验性强,因 而较难把握。依据反应原理和经验,HgCI2与KI最佳用量比为0.4l:l(即8.2克HgCI2溶于:20克K I溶液中)以这种比例配制的纳氏试剂经多次实验检验,灵敏度能达到实验要求。但配制过程中,HgCl2 溶解较慢,可进行低温加热缩短反应时间,同时可防止HgI2红色沉淀提前出现。在加入HgCI2时,KI 溶液的温度可稍高些(40度左右)这样检出限较低,反应灵敏。配制好的纳氏试剂应保存在聚乙烯瓶中,放冰箱低温冷藏,以防颜色逐渐加深,确保空白值稳定性。 3.2 酒石酸钾纳 酒石酸钾纳在实验中是为掩蔽水样中Ca2+,Mg2+ , Fe3+,Na+等金属离子对显色剂的干扰.酒石 酸钾纳配制方法很简单,但市售分析纯酒石酸钾纳有时氨盐含量较高,直接加热煮沸配制往往空白实验 值很高,解决的办法有两种:

水质监测中氨氮测定影响因素及其控制分析

水质监测中氨氮测定影响因素及其控制分析 离子铵(NH 4)和非离子氨(NH 3-)是水中存在氨氮(NH 3-N)的主要形式。水质监测标准中氨氮含量过高表示最近水源受到污染;如果水中仅含有NO3而不是NH3和NO2,则表示污染物的有机物已分解。在这一过渡过程中,众多致病微生物也逐渐消失在水中,因此各种氮化合物的测定有助于了解受污染水的有机污染情况,评价水的自我净化能力和水环境卫生。为此,本文研究了水质监测中氨氮测定的影响因素及其控制分析。 标签:水质监测;氨氮测定;影响控制 引言 现阶段,随着我国经济社会的持续发展和进步,城市化进程持续进行,环境问题日益突出。其中水污染事件频繁发生,对人们的正常生活产生了巨大的不利影响。如果有毒气体和废水随意排放到河里,氨氮废水排放会对水体环境造成各种危害。因此,氨氮测定是水质监测的重要内容,通过科学有效的监测方法,深入分析水质中氨氮含量在合理范围内影响氨氮测定的因素,确保水质监测工作稳定有序。 1水质监测中氨氮测定的主要内容 氨氮测定是水质监测的重要组成部分,是研究水污染的主要方法。利用氨氮测定,可以准确分析和测定水中氨氮的具体含量,分析水污染的主要原因,从而为防止水污染提供重要保证。一般来说,氨氮的测定主要是用发色剂对比法进行的,主要是水中游离存在的氨氮离子对试剂发生化学反应,从而形成黄褐色复合物。通过观察黄褐色复合物的颜色浓度等,可以准确判断水体中氨氮含量的高低。配合物的含量与氨氮含量成正比。一般比色法测定的氨氮含量大部分在0 . 02到2 . 00mg/l之间。为了更准确地测定氨氮含量,可以用范围为0 . 05 ~2 . 00mg/的分光光度计来测定。 2水资源中氨氮含量过高的原因 经济发展使一些非法工厂等为了谋求利益,不惜破坏环境,向河流海洋排放废水,造成了环境污染。资料显示,工厂生活废水中氨氮含量超过极度,排放到河里,河水中的水生动植物受到严重影响,导致严重死亡现象;废水排放还会导致水体富营养化,威胁人类的使用,破坏生态平衡。因此,在水质监测中测定氨氮含量至关重要。水中氨氮含量过高会严重影响环境,破坏生态平衡。水资源中含有的氨氮主要存在于自由氨和离子氨中,这些氨氮自然界不能产生如此多的量,而工厂、发电厂、肥料厂等排放的废水中含有大量氨和氮的有机物,这些含有氨和氮的有机物在废水排放过程中接触到微生物,会被微生物分解,从而产生水质和对环境造成严重污染的氨氮。这就是水中氨氮产生的主要原因。

相关文档