文档库 最新最全的文档下载
当前位置:文档库 › 复变函数积分方法总结

复变函数积分方法总结

复变函数积分方法总结
复变函数积分方法总结

复变函数积分方法总结

经营教育

乐享

[选取日期]

复变函数积分方法总结

数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数:

z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θ? θ?称为主值-π<θ?≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式

e iθ=cosθ+isinθ。z=re iθ。

1.定义法求积分:

定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B

的一条光滑的有向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点?k 并作和式

S n =∑f(?k )n k?1(z k -z k-1)= ∑f(?k )n k?1?z k 记?z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k≤n {?S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即?k 的取法如何,S n

有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为:

∫f(z)dz c

=lim δ 0

∑f(?k )n

k?1?z k 设C 负方向(即B 到A 的积分记作) ∫f(z)dz c?.当C 为闭曲线时,f(z)的积分记作∮f(z)dz c

(C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。 (1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f(?k)n k?1(z k -z k-1)=b-a ∴lim n 0

Sn =b-a,即1)∫dz c =b-a.

(2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c

存在,设?k =z k-1,则

∑1= ∑Z n k?1(k ?1)(z k -z k-1) 有可设?k =z k ,则

∑2= ∑Z n k?1(k ?1)(z k -z k-1)

因为S n 的极限存在,且应与∑1及∑2极限相等。所以

S n = (∑1+∑2)= ∑k?1n z k (z k

2?z k?12)=b 2-a 2

∴ ∫2zdz c

=b 2-a 2

1.2 定义衍生1:参数法:

f(z)=u(x,y)+iv(x,y), z=x+iy 带入∫f(z)dz c 得: ∫f(z)dz c = ∫udx c - vdy + i ∫vdx c + udy 再设z(t)=x(t)+iy(t) (α≤t ≤β)

∫f(z)dz c =∫f(z(t))z(t)?dt β

α

参数方程书写:z=z 0+(z 1-z 0)t (0≤t ≤1);z=z 0+re i θ,(0≤θ≤2π) 例题1: ∫z 2

dz 3+i 0

积分路线是原点到3+i 的直线段

解:参数方程 z=(3+i )t ∫z 2

dz 3+i 0

=∫[(3+i)t]2

[(3+i)t]′dt 1

=(3+i)3∫t 2dt 1

0 =6+26

3

i

例题2: 沿曲线y=x 2计算∫(x 2

+iy )dz 1+i

解: 参数方程 {x =t

y =t 2 或z=t+it 2 (0≤t ≤1) ∫(x

2+iy )dz 1+i 0=∫(t 2+it 2

)(1+2it)dt 1

=(1+i)[∫(t 2dt )dt 1

0 + 2i ∫t 3dt 1

] =-16+5

6

i

1.3定义衍生2 重要积分结果: z=z 0+ re i θ ,(0≤θ≤2π) 由参数法可得:

∮dz

(z?z 0)c =∫

ire iθ

e i (n+1)θr n+12π0d θ=i r ∫

e ?inθ1+i 0

d θ ∮dz (z?z 0)

n+1c

={

2πi n =0

0 n ≠0

例题1:∮dz z?2|z |=1 例题2:∮dz

z?1

|z |=1

解: =0 解 =2πi

2.柯西积分定理法:

2.1

柯西-古萨特定理:若f(z)dz 在单连通区域B 内解析,则对B 内

的任意一条封闭曲线有:

∮f(z)dz c

=0 2.2定理2:当f 为单连通B 内的解析函数是积分与路线无关,仅由积分

路线的起点z 0与终点z 1来确定。

2.3闭路复合定理:设函数f(z)在单连通区域D 内解析,C 与C 1是D

内两条正向简单闭曲线,C 1在C 的内部,且以复合闭路Γ=C+C 1所围成的多连通区域G 全含于D 则有:

∮f(z)dz Γ=∮f(z)dz c +∮f(z)dz c

1

=0 即∮f(z)dz c =∮f(z)dz c

1

推论: ∮

f(z)dz c

=∑∮f(z)dz c

k

n k=1 例题:∮

2z?1z ?z

dz c

C 为包含0和1的正向简单曲线。

解: 被积函数奇点z=0和z=1.在C 内互不相交,互不包含的正向曲线c 1和c 2。

∮2z?1z ?z

dz c

=∮2z?1z (1?z)

dz c1

+∮2z?1z (1?z)

dz c2

=∮1z?1

+1z dz c1+∮1z?1

+1

z

dz c2

=∮1

z?1

dz c1

+∮1z

dz c1+∮1z?1

dz c2+∮1z

dz c2

=0+2πi+2πi+0

=4πi

2.4原函数法(牛顿-莱布尼茨公式):

定理2.2可知,解析函数在单连通域B 内沿简单曲线C 的积分只与起点z 0与终点z 1有关,即

∫f(?)c d ? = ∫f(?)z1

z

d ? 这里的z 1和z 0积分的上下限。当下限z 0

固定,让上限z 1在B 内变动,则积分∫f(?)z1

z

d ?在B 内确定了一个单值函数F(z),即F(z)= ∫f(?)z1

z

d ? 所以有 若f(z)在单连通区域B 内解析,则函数F(z)必为B 内的解析函数,且

F(z) ?=f(z).根据定理2.2和2.4可得∫f(z)z 1

z

dz = F(z 1) - F(z 0). 例题:求∫zcosz 1

dz 解: 函数zcosz 在全平面内解析

∴∫zcosz 1

0dz =zsinz |0i -∫sinz 1

dz = isin i+cosz |0i =isin i+cos i-1 =i

e ?1?12i

+

e ?1+12i

-1=e -1-1

此方法计算复变函数的积分和计算微积分学中类似的方法,但是要注意复变适合此方法的条件。 2.5柯西积分公式法:

设B 为以单连通区域,z 0位B 中一点,如f(z)在B 内解析,则函数

f(z)z?z 0

z0不解析,所以在B内沿围绕z0的闭曲线C的积分∫f(z)

z?z0dz

c

一般不为零。取z0位中心,以δ>0为半径的正向圆周|z?z0|=δ位积分曲线cδ,由于f(z)的连续性,所以

∫f(z)

z?z0dz

c =∫f(z)

z?z0

dz

=2πif(z0)

:若f(z)在区域D内解析,C为D内任何一条正向简单闭曲线,它的内部完全含于D,z0为C内的任一点,有:

f(z0)=1

2πi ∮f(z)

z?z0

dz

例题:1)

∮|z|2)∮z

(9?z2)(z+i)

dz |z|=2

解:=2π isin z|z=0=0 解:=∮z9?z2

z?(?i)dz

|z|=2

=2πi z

9?z2|z=-i=π

5

2.6解析函数的高阶导数:

解析函数的导数仍是解析函数,它的n阶导数为

f(n)(z0)=n!

2πi ∮f(z)

(z?z0)n+1

dz(n=1,2…)

其中C为f(z)的解析区域D内围绕z0的任一条正向简单闭曲线,而它的内部全含于D.

例题:∮e z

z5dz

c

C:|Z|=1

解:由高阶导数的柯西积分公式:

原式=2πi?1

4!(e z)(4)|z=π

2

=πi

12

3.解析函数与调和函数:

定义:(1)调和函数:如果二元实函数φ(x,y)在区域D内具有二阶连续函

数,且满足拉普拉斯方程:

?2φ?x2+?2φ

?y2

=0,则称φ(x,y)为区域D内的调和函数。若f(z)=u+iv为解析函数,

则u和v都是调和函数,反之不一定正确

(2)共轭调和函数:u(x,y)为区域内给定的调和函数,我们把是u+iv 在D内构成解析函数的调和函数v(x,y)称为u(x,y)的共轭调和函数。若v是u的共轭调和函数,则-u是v的共轭调和函数

关系:任何在区域D内解析的函数,它的实部和虚部都是D内的调和函数;且虚部为实部的共轭调和函数。

3.1求解方法:

(1)偏积分法:若已知实部u=u(x,y),利用C-R方程先求得v的偏导数

?u ?x =?v

?y

,两边对y积分得v=∫?u

?x

dy+g(x).再由?u

?y

=??v

?x

又得

? ?x ∫?v

?x

dy+g(x)?=-?u

?y

从而g(x)=∫[??u

?y

??

?x

∫?u

?x

dy]dx + C

v=∫?u

?x dy+ ∫[??u

?y

??

?x

∫?u

?x

dy]dx + C同理可由v(x,y)求u(x,y).

3.2不定积分法:

因为f(z)?=U x+i V x= U x-iU y= V y+iV X

所以f(z)=∫U(z)dz+c f(z)=∫V(z)dz+c 3.3线积分法:

若已知实部u=u(x,y),利用C-R方程可得的dv=?v

?x dx+?v

?y

dy=-?u

?y

dx+∫?u

?x

dy

故虚部为

v=∫??u

?y dx+

(x,y)

(x

0,y

0,

?u

?x

dy+C

该积分与路径无关,可自选路径,同理已知v(x,y)也可求u(x,y).

例题:设u=x2-y2+xy为调和函数,试求其共轭函数v(x,y)级解析函数

f(z)=u(x,y)+iv(x,y) 解:利用C-R 条件

?u ?x

=2x+y

?u ?y

=-2y+x

?2u ?x 2

=2

?2u ?y 2

=-2

所以满足拉普拉斯方程,有

?v ?x

=?

?u ?y

=2y-x

?v ?y

=

?u ?x

=2x+y

所以v=∫(2y ?x)dx +φ(y)=2xy- x 22

+φ(y)

?v ?y

=2x+φ(y)

?=2x+y φ(y)?=y φ(y)=y 2

2

+c v(x,y)=2xy- x 22

+y 2

2

+c

f(z)=u(x,y)+iv(x,y)=12

(2-i)z 2+iC

4.留数求积分:

留数定义:设z 0为函数f(z)的一个孤立奇点,即f(z)在去心邻域、 0<|z ?z 0|<δ ,我们把f(z)在z 0处的洛朗展开式中负一次幂项系数c -1称为f(z)在z 0处的留数,记为Res[f(z),z 0]即Res[f(z),z 0]=c -1 或者Res[f(z),z 0]=

1

2πi

∮f (z )dz c C 为0<|z ?z 0|<δ 4.1留数定理:设函数f(z)在区域D 内除有限个孤立奇点z 1z 2…z n,

其中z k 表示函数f (z )的孤立奇点

4.2孤立奇点:

定义:如果函数f (z )在z 0不解析,但在z 0某个去心邻域0<|z ?z 0|<δ内解析,则称z 0为f (z )的孤立奇点。 例如1

z 、e 1

z

都是以z=0为孤立奇点函数

1

(z+1)(z+2)

以z=-1、z=2为孤立奇点..........

在孤立奇点z=z 0的去心邻域内,函数f (z )可展开为洛朗级数 f (z )=∑c n ∞n=?∞(z

?z 0)n

洛朗级数中负幂项是否存在,若存在是有限项还是无限项,这对f(z)在z 0处的奇异性将起着决定性的作用。讨论孤立奇点z 0的类型:

:若函数f(z)在孤立奇点z 0的去心邻域内的洛朗展开式中不含负幂项,即对一切n<0有c n =0,则称z 0是f(z)的可去奇点

因为没有负幂项,即c -n =0,(n=1,2.....)故c -1=0。遇到函数f(z)的奇点类型是可去奇点 ,一般对函数f (z )求积分一般为零

判断可去奇点方法:⑴函数f (z )在某个去心邻域0<|z ?z 0|<δ内解析,则z 0

是f (z )的可去奇点的充要条件是存在极限lim z→z 0

f (z )=c 0,其中c 0是一复常

数; ⑵在⑴的假设下,z 0是f(z)可去奇点的充要条件是:存在r ≤δ,使得f(z)在0<|z ?z 0|

若函数f(z)在孤立奇点z 0的去心邻域内洛朗级数展开式中只有有限个负幂项,即有正整数m ,c -m ≠0,而当n<-m 时c -n =0 则称z 0是f(z)的m 级极点。 其洛朗展开式是:f(z)=c ?m

(z?z 0)

m +

c ?m +1(z?z 0)

m+1+…+

c ?1z?z 0

+c 0+c 1(z-z 0)n+m +…

+c 0(z-z 0)n +…

这里c -m ≠0,于是在 0<|z ?z 0|<δ有f(z)=[c ?m (z?z 0)

m

+

c ?m +1(z?z 0)

m+1

+…

+

c ?1z?z 0

+c 0+c 1(z-z 0)n+m +…+c 0(z-z 0)n +…]=1

(

z?z 0)m

φ(z). *

φ(z)一个在0<|z ?z 0|<δ解析,同时φ(z)≠0,则z 0是f(z)的m 级极点。

判断定理:(1)f(z)在z0的去心邻域0<|z?z0|<δ解析,z0是f(z)的m级极点的充要条件是可以表示成*的形式。(2)z0是f(z)的m级极点的充要条件是lim

z→z0

f(z)=∞.

:若函数f(z)在孤立奇点z0的去心邻域内洛朗级数展开式中只有无限个负幂项,则称z0是f(z)的本性奇点

判断方法:孤立奇点是本性奇点的充要条件是不存在有限或无穷的极限

lim

z→z0

f(z)。

4.3函数在极点的留数:

准则一:若z0为一级极点,则

Res[f(z),z0]=lim

z→z0

f(z)(z?z0)

准则二:做z0为m级极点,则

Res[f(z),z0]=1

(m?1)!lim

z→z0

d m?1

dz m?1

{(z-z0)m f(z)}

准则三:设f(z)=P(Z)

Q(Z)

,P(z)以及Q(z)都在z0解析,如果P(z0)=0,

Q(z0)≠0,则z0是f(z)的一级极点,而且:

Res[f(z),z0]=P(Z0)

Q(Z0)

?

4.4无穷远处的留数:

定义:扩充z平面上设z=∞为f(z)上的孤立奇点,即f(z)在R<|z|<+∞内解析,C为圆环绕原点z=0的任一条正向简单闭曲线,则积分值

1 2πi ∮f(z) c?1

dz

称为f(z)在z=∞处的留数,记作

Res[f(z), ∞]=1

2πi ∮f(z)

c?1

dz

如果f(z),在R<|z|<+∞内的洛朗展开式为

f(z),=∑c n z n

∞n=?∞ 则有Res[f(z), ∞]=-c -1

4.4.1

如果f(z)在扩充复平面上只有有限个孤立奇点(包括无穷远处在内)

设为z 1,z 2,…,z n ,∞则f(z)在各奇点的留数总和为零,即

∑Res[f(z)dz]n k=1+Res[f(z), ∞]=0;

4.4.2 Res[f(z), ∞]=-Res[f(1z )? 1z

2,0]

例题:求下列Res[f(z), ∞]的值 (1)f(z)=

e z z 2?1

(2)f(z)=

1

z (z+1)4(z?4)

解:(1)在扩充复平面上有奇点:±1,∞ ,而±1为f(z)的一级极点且Res[f(z),1]=lim z→1

(z ?1)f(z)=lim

z→1e z

z+1=1

2

e

Res[f(z),-1]= lim z→?1

(z ?1)f(z)=lim

z→1e z

z?1

=-1

2

e ?1

∵Res[f(z), ∞] + Res[f(z),1] + Res[f(z),-1]=0得

∴Res[f(z), ∞]=-{ Res[f(z),1]+ Res[f(z),-1]}= 1

2

(e ?1+e )=-sh1 (2) 由公式Res[f(z), ∞]=-Res[f(1

z

)? 1

z

2,0],而1

z

2f(1

z

)=

1z (z+1)4(z?4)

以z=0为可去奇点,所以 Res[f(z), ∞]= -Res[f(1

z

)? 1

z 2,0]=0

4.5用留数定理计算积分: 4.

5.1

如∫R(cosθ,sinθ)2π0

d θ的定积分计算;其中R(cosθ,sinθ)为

cos θ与sinθ的有理函数。

故解这类题是就会联想到复变函数与三角变换的相关知识--欧拉公式,令z=e iθ,dz=izd θ=i e iθ d θ d θ=dz iz

sin θ=1

2i (e iθ?e

?iθ

)=

z 2?12iz

cos θ(e iθ

+e

?iθ

)=

z 2+12iz

则∫R(cosθ,sinθ)2π0d θ=∮R[z 2+12iz ,z 2?12iz ]|z |dz

iz =∮f (z )dz |z |

其中f(z)= R[

z 2+12iz

,

z 2?12iz

]

1iz

然后又留数定理求的积分值为

2πi ∑Res[f (z ),z k ]n k=1 其中z k (k=1,2, …n )为f(z)在单位圆周内的所有孤立奇点。

4.5.2

形如∫R(x)dx +∞

?∞

的积分计算。其中R(x)为x 的有理函数,且分母的

次数至少比分子的高二次,R(x)在实轴上无孤立奇点。则

∫R(x)dx +∞

?∞=2πi ∑Res [R(z),z k ],z k 为上半平面的所有奇点

4.5.3

形如∫R(x)e iax dx +∞?∞

=2πi ∑Res [R (x )e iax ,z k ] 其中k 为上半平面的所有奇点

5.总结:以上只是粗略的列举了计算复变积分的方法,还有许多细节性

的问题没有一一列举。复变积分的算法对比实函数积分的计算方法,有很多相似的地方,较实函数积分要复杂些。复变的积分变换多是理解性的问题,多做题目可以提高思维的多样性,但容易造成思维定势。理解才是主要解题之道!

复变函数积分方法总结

复变函数积分方法总结
[键入文档副标题]
acer [选取日期]

复变函数积分方法总结
数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新
形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,
也就会有相应的积分函数求解方法。就复变函数:
z=x+iy i2=-1 ,x,y 分别称为 z 的实部和虚部,记作
x=Re(z),y=Im(z)。 arg z=θ? θ?称为主值 -π<θ?≤π ,
Arg=argz+2kπ 。利用直角坐标和极坐标的关系式 x=rcosθ ,
y=rsinθ,故 z= rcosθ+i rsinθ;利用欧拉公式 eiθ=cosθ+isinθ。
z=reiθ。
1.定义法求积分:
定义:设函数 w=f(z)定义在区域 D 内,C 为区域 D 内起点为 A 终点
为 B 的一条光滑的有向曲线,把曲线 C 任意分成 n 个弧段,设分点为
A=z0 ,z1,…,zk-1,zk,…,zn=B,在每个弧段 zk-1 zk(k=1,2…n)上任
取一点?k 并作和式 Sn=
(zk-zk-1)=
?zk 记?zk= zk-
zk-1,弧段 zk-1 zk 的长度 =
{?Sk}(k=1,2…,n),当
0 时,
不论对 c 的分发即?k 的取法如何,Sn 有唯一的极限,则称该极限值为
函数 f(z)沿曲线 C 的积分为:
=
?zk
设 C 负方向(即 B 到 A 的积分记作)
.当 C 为闭曲线时,f(z)
的积分记作
(C 圆周正方向为逆时针方向)
例题:计算积分
,其中 C 表示 a 到 b 的任一曲

复变函数与积分变换重点公式归纳

复变函数与积分变换复习提纲 第一章 复变函数 一、复变数和复变函数 ()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续 极限 A z f z z =→)(lim 0 连续 )()(lim 00 z f z f z z =→ 第二章 解析函数 一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。 二、柯西——黎曼方程 掌握利用C-R 方程?????-==x y y x v u v u 判别复变函数的可导性与解析性。 掌握复变函数的导数: y x y x y y x x v iv iu u v iu y f i iv u x f z f +==-=+-=??=+=??= ΛΛ1)(' 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 1、幂函数与根式函数 θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数 n k z i n n e r z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数 2、指数函数:)sin (cos y i y e e w x z +== 性质:(1)单值.(2)复平面上处处解析,z z e e =)'((3)以i π2为周期 3、对数函数 ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……) 性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:k k z z 1 )'(ln = 。 4、三角函数:2cos iz iz e e z -+= i e e z iz iz 2sin --= 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 5、反三角函数(了解) 反正弦函数 )1(1 sin 2z iz Ln i z Arc w -+= =

多重积分的方法总结

多重积分的方法总结 引言: 高等数学是一门严密的学科,在学习高数过程中,我认为应用最为广泛的是积分,高数中积分包含了曲面积分、曲线积分、二重积分和三重积分等,它们在许多学科中、生活中应用比较广泛,比如,要计算某个不规则物体的体积就可以运用积分来求解,很多方面均可以转化成微积分的面积,体积的思维来求,这就是它的优点,这种面积和体积是一种抽像的概念了,到了更多重积分又会有更多和意义。那么,下面我将以二重积分和三重积分的定义、计算方法、主要应用公式和二重积分与三重积分的关系为核心来介绍多重积分。(其中计算方法将通过例题来解释) 二重积分 定义: 设二元函数z=f(x,y)定义在有界闭区域D 上,将区域D 任意分成n 个子域Δδi(i=1,2,3,…,n),并以Δδi 表示第i 个子域的面积.在Δδi 上任取一点(ξi,ηi),作和lim n →+∞ (n/i=1 Σ(ξi,ηi)Δδi).如果当各个子域的直径中的最大值λ趋于零时,此和式的极限存在,则称此极限为函数f(x,y)在区域D 上的二重积分,记为∫∫f(x,y)d δ,即 ∫∫f(x,y)d δ=lim n →+∞ (Σf(ξi,ηi)Δδi ) 这时,称f(x,y)在D 上可积,其中f(x,y)称被积函数,f(x,y)d δ称为被积表达式,d δ称为面积元素, D 称为积分域,∫∫称为二重积分号. 同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。 二重积分的计算方法 1直角坐标系中累次积分法 对于直角坐标系下的二重积分主要是对于区域的划分,可以分为如下两类区域来计算。平面点集D={}(,)|1()2(),x y y x y y x a x b ≤≤≤≤为x 型区域;平面点集D= {}(,)|1()2(),x y x y x x y c y d ≤≤≤≤为y 型区域。 x 型区域:若(,)f x y 在x 型区域D 上连续,其中[]1(),2(),y x y x a b 在上连续,则 ??D d y x f σ),(=2()(,)1()b y x dx f x y dy a y x ?? 试计算:I= 2 2y D x e d σ-??的值。 解:画出区域图1只能用先对x 后先对积y 分,则 I=21200y y dy x e dx -??=21 30 13y y e dy -? 由分部积分法,即可算得:

高等数学重积分总结

第九章二重积分 【本章逻辑框架】 【本章学习目标】 ⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。 ⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。 ⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。 9.1 二重积分的概念与性质 【学习方法导引】 1.二重积分定义 为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。

在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ???的分法要任意,二是在每个小区域i σ?上的点(,)i i i ξησ∈?的取法也要任意。有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。 2.明确二重积分的几何意义。 (1) 若在D 上(,)f x y ≥0,则(,)d D f x y σ??表示以区域D 为底,以 (,)f x y 为曲顶的曲顶柱体的体积。特别地,当(,)f x y =1时,(,)d D f x y σ ??表示平面区域D 的面积。 (2) 若在D 上(,)f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(,)d D f x y σ??的值是负的,其绝对值为该曲顶柱体的体积 (3)若(,)f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d D f x y σ??表示在这些子区域上曲顶柱体体积的代数和 (即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积). 3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。有序性常用于比较两个二重积分的大小,估值不等式常用于估计一个二重积分的取值范围,在用估值不等式对一个二重积分估值的时候,一般情形须按求函数 (,)f x y 在闭区域D 上的最大值、最小值的方法求出其最大值与最小 值,再应用估值不等式得到取值范围。

复变函数积分方法总结

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θ? θ?称为主值-π<θ?≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有

向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点?k 并作和式S n =∑f (?k )n k ?1(z k -z k-1)= ∑f (?k )n k ?1?z k 记?z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k ≤n {?S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即?k 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为: ∫ f (z )dz c =lim δ 0 ∑ f (?k )n k ?1 ?z k 设C 负方向(即B 到A 的积分记作) ∫f (z )dz c ?.当C 为闭曲线时,f(z)的积分记作∮f (z )dz c (C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。 (1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f (?k )n k ?1(z k -z k-1)=b-a ∴lim n 0 Sn =b-a,即1)∫dz c =b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设?k =z k-1,则 ∑1= ∑Z n k ?1(k ?1)(z k -z k-1) 有可设?k =z k ,则 ∑2= ∑Z n k ?1(k ?1)(z k -z k-1) 因为S n 的极限存在,且应与∑1及∑2极限相等。所以

多重积分的方式总结

多重积分的方法总结 专业:水文与水资源工程 姓名:赵兆 学号:201103325 任课教师:王银霞

多重积分的方法总结 二重积分和三重积分的概念都有实际的几何或物理的背景,定义分为四个步骤用构造的方法给出,最终表现为“黎曼和”的极限.故多重积分具有极限的基本性质,如唯一性,线性性质等.定义给出了概念的一个准确描述方法,进而从定义出发可以从纯逻辑上考察概念具有的性质以及计算方法.和定积分的概念对应,多重积分和定积分的定义及性质一致,其定义和性质都不难理解.把握这里的概念,需要大家从这几个角度来理解:1. 几何和物理背景;2. 定义形式;3.概念的性质;4.计算方法;5.应用. 计算根据被积区域和被积函数的形式要选择适当的方法处理,这里主要是看被积区域的形式来选择合适的坐标形式,并给区域一个相应的表达,从而可以转化多重积分为多次的积分形式.具体的一些作法在下面给出. 一.二重积分的计算 重积分的计算主要是化为多次的积分.这里首先要看被积区域的形式, 选择合适的坐标系来进行处理.二重积分主要给出了直角坐标系和极坐标系的计算方法.我们都可以从以下几个方面把握相应的具体处理过程:1.被积区域在几何直观上的表现(直观描述,易于把握);2.被积分区域的集合表示(用于下一步确定多次积分的积分次序和相应的积分限);3.化重积分为多次积分. 1. 在直角坐标下:(a) X-型区域 几何直观表现:用平行于y 轴的直线穿过区域内部,与边界的交点最多两 个.从而可以由下面和上面交点位于的曲线确定两个函数和; 1()y y x =2()y y x =被积区域的集合表示:; 12{(,),()()}D x y a x b y x y y x =≤≤≤≤二重积分化为二次积分: . 21() ()(,)(,)b y x a y x D f x y dxdy dx f x y dy =?? ?? (b) Y-型区域 几何直观表现:用平行于x 轴的直线穿过区域内部,与边界的交点最多两 个.从而可以由左右交点位于的曲线确定两个函数和; 1()x x x =2()x x x =被积区域的集合表示:; 12{(,),()()}D x y c y d x x x x x =≤≤≤≤二重积分化为二次积分: . 21() () (,)(,)d x y c x y D f x y dxdy dx f x y dx =??? ? 2. 在极坐标下: 题,而且可保障各类管路习题负荷下高中资料试卷调控试验;对设料试卷总体配置时,需要在最大限度

复变函数与积分变换重要知识点归纳

复变函数复习重点 (一)复数的概念 1.复数的概念:z = x ? iy , x, y 是实数,x = Rez,y = lmz.r-_i. 注:一般两个复数不比较大小,但其模(为实数)有大小 2.复数的表示 1)模:z =y/x2+y2; 2)幅角:在z = 0时,矢量与x轴正向的夹角,记为Arg z (多值函数);主值arg z是位于(-二,二]中的幅角。 3)arg z与arctan y之间的关系如下: x y 当x 0, argz=arctan工; x [ y y - 0,arg z = arctan 二当x : 0, x y y :: 0,arg z = arctan 「愿 L x 4)三角表示:z = z COST i sinv ,其中二-arg z ;注:中间一定是“ +"号 5)指数表示:z = z e旧,其中日=arg z。 (二)复数的运算 仁加减法:若z1= x1iy1, z2= x2 iy2,贝寸乙 _ z2 = % _ x2i 比 _ y2 2.乘除法: 1 )若z^x1 iy1 ,z2=x2iy2,则 ZZ2 二XX2 —y』2 i X2% X』2 ; 乙x iy1 % iy1 X2 —iy2 xg yy ?- 丫2为 -- = --------- = ----------------------- = -------------- T i -------------- Z2 x? iy2 X2 iy2 x? - iy? x;y;x;y f 2)若乙=乙e°,z2= z2e°, _则 3.乘幂与方根e i "'2 ; 土評匀) Z2 Z2

1)若z =|z (cos日+isin 日)=|z e旧,则z"=上"(cosnT +i sin 用)=上"d吩。 2)若z =|z (cos日+isin 日)=|ze吩,贝U 阪=z n.'cos日+2" +i si肆+2" )(k =0,1,2[|I n—1)(有n个相异的值)l n n丿 (三)复变函数 1?复变函数:w = f z,在几何上可以看作把z平面上的一个点集D变到w平面上的一个点集G的映射. 2?复初等函数 1)指数函数:e z=e x cosy - isin y ,在z平面处处可导,处处解析;且e z= e z。 注:e z是以2二i为周期的周期函数。(注意与实函数不同) 3)对数函数:Lnz=lnz i(argz 2^:)(k=0, _1,_2[|[)(多值函数); 主值:In z = ln z +iargz。(单值函数) * 1 Lnz的每一个主值分支In z在除去原点及负实轴的z平面内处处解析,且Inz z 注:负复数也有对数存在。(与实函数不同) 3)乘幂与幂函数:a b= e bLna(a = 0);z b= e bLnz(z = 0) 注:在除去原点及负实轴的z平面内处处解析,且z b二bz b‘。 iz -iz iz -iz e -e e e sin z cosz 4)三角函数:sin z ,cos z ,t gz , ctgz = 2i 2 cosz si nz sin z,cos z 在z 平面内解析,且sin z 二cosz, cosz =—si nz 注:有界性sin z兰1, cosz兰1不再成立;(与实函数不同) z -z z - z e -e e +e 4)双曲函数shz ,chz二 2 2 shz奇函数,chz是偶函数。shz, chz在z平面内解析,且shz 二chz, chz = shz。 (四)解析函数的概念 1 ?复变函数的导数

复变函数的积分及其计算方法

复变函数的积分及其计算方法 石睿 (北京林业大学工学院自动化10-1班,学号:101044118) 摘要:复变函数的积分是研究解析函数的一个重要工具,解析函数的很多重要性质都是通过复积分证明的。本文主要介绍柯西定理和柯西积分公式。 关键词:柯西定理;柯西积分公式 引言:首先介绍复积分的概念、性质和计算法,然后介绍解析函数积分的柯西积分定理及其推广——复合闭路定理. 在此基础上,建立柯西积分公式,然后利用这一重要公式证明解析函数的导数仍然是解析函数这一重要结论. 复积分的概念: 设C 是平面上一条光滑的简单曲线,其起点为A ,终点为B 。函数f(z)在C 上有定义。把曲线C 任意分成n 个小弧段。设分点为A=z 0,z 1,…,z n-1,z n =B,其中z k =x k +iyl k (k=0,1,2,…,n),在每个弧段 zk-1zk 上任取一点ζ k =ξ k +i η k ,做合式k n k k n k k k k n Δz )f(ζ)z (z )f(ζ S ∑∑==-?=-?= 1 1 1,其中 k k k k k y i x z z z ?+?=-=?-1 。 记 当λ→0时,如果和式的极限存在,且此极限值不依赖与ζk 的选择,也不依赖对 C 的分法,那么就称此极限值为f(z)沿曲线C 自A 到B 的复积分,记作 复积分的计算方法: 复积分可以通过两个二元实变函数的线积分来计算 设 ???==,)(,)(:t y y t x x C .βα≤≤t 则???'+'+'-'=β α β α t t y t y t x u t x t y t x v i t t y t y t x v t x t y t x u z z f C d )}()](),([)()](),([{d )}()](),([)()](),([{d )( ?'+'+= β αt t y i t x t y t x iv t y t x u d )}()()]}{(),([)](),([{ |,|max 1k n k z ?=≤≤λ.)(lim d )(1 0k n k k C z f z z f ??=∑ ? =→ζλ

复变函数与积分变换公式

复变函数与积分变换公 式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值 ()arg z 是位于(,]ππ- 中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数积分方法总结定稿版

复变函数积分方法总结精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。 arg z=θ θ称为主值-π<θ≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有

向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)上任取一点k 并作和式S n =∑f ( k )n k ?1(z k -z k-1)= ∑f ( k )n k ?1z k 记z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max 1≤k ≤n {S k }(k=1,2…,n),当 δ→0时,不论对c 的分发即k 的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C 的积分为: ∫ f (z )dz c =lim δ 0 ∑ f ( k )n k ?1 z k 设C 负方向(即B 到A 的积分记作) ∫f (z )dz c ?.当C 为闭曲线时,f(z)的积分记作∮f (z )dz c (C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。 (1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f (k )n k ?1(z k -z k-1)=b-a ∴lim n 0 Sn =b-a,即1)∫dz c =b-a. (2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设k =z k-1,则 ∑1= ∑Z n k ?1(k ?1)(z k -z k-1) 有可设k =z k ,则 ∑2= ∑Z n k ?1(k ?1)(z k -z k-1) 因为S n 的极限存在,且应与∑1及∑2极限相等。所以

复变函数与积分变换公式

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.2 1i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ- 中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数与积分变换重点公式归纳

复变函数与积分变换 第一章 复变函数 一、复变数和复变函数 ()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续 极限 A z f z z =→)(lim 0 连续 )()(lim 00 z f z f z z =→ 第二章 解析函数 一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。 二、柯西——黎曼方程 掌握利用C-R 方程?????-==x y y x v u v u 判别复变函数的可导性与解析性。 掌握复变函数的导数: y x y x y y x x v iv iu u v iu y f i iv u x f z f +==-=+-=??=+=??= 1)(' 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 1、幂函数与根式函数 θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数 n k z i n n e r z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数 2、指数函数:)sin (cos y i y e e w x z +== 性质:(1)单值.(2)复平面上处处解析,z z e e =)'((3)以i π2为周期 3、对数函数 ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……) 性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:k k z z 1 )'(ln = 。 4、三角函数:2cos iz iz e e z -+= i e e z iz iz 2sin --= 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 5、反三角函数(了解) 反正弦函数 )1(1 sin 2z iz Ln i z Arc w -+== 反余弦函数 )1(1 cos 2-+= =z z Ln i z Arc w

重积分的计算方法

重积分的计算方法 重积分包括二重积分和三重积分,它是定积分的推广;被积函数由一元函数f(x)推广为二元函数f(x,y),三元函数(fx,y,z);积分范围由数轴上的区域推广为平面域(二重积分)和空间域(三重积分)。我个人在学习与复习多重积分这一块时,感到多重积分的计算比较繁琐,而在日常生活中多重积分有着很多的应用。通过在图书馆查阅资料、以及老师的指点,重积分的计算方法还是有规律可循的。为了更好的应用重积分,本人结合前人的经验,在这里介绍几种常用的重积分计算方法,以及一些小技巧。着重介绍累次积分的计算与变量代换。一.二重积分的计算 1.常用方法 (1)化累次积分计算法 对于常用方法我们先看两个例子

对于重积分的计算主要采用累次积分法,即把一个二重积分表达为一个二次积分,通过两次定积分的计算求得二重积分值,分析上面的例子累次积分法其主要步骤如下: 第一步:画出积分区域D的草图; 第二步:按区域D和被积函数的情况选择适当的积分次序,并确定积分的上、下限; 第三步:计算累次积分。 需要强调一点的是,累次积分要选择适当的积分次序。积分次序的不同将影响计算的繁简,有些题这两种次序的难易程度可以相差很大,甚至对一种次序可以“积出来”,而对另一种次序却“积不出来”。所以,适当选择积分次序是个很重要的工作。 选择积分次序的原则是:尽可能将区域少分块,以简化计算过程;第一次积分的上、下限表达式要简单,并且容易根据第一次积分的结果作第二次积分。 (2)变量替换法 着重看下面的例子:

在计算定积分时,求积的困难在于被积函数的原函数不易求得。从而适当地在计算重积分时,求积的困难来自两个方面,除了被积函数的原因以外还在而且,有时候其积分区域往往成为困难的主要方面。 利用换元法的好处是可以把被积函数的形状进行转化,以便于用基本求积公式。 于积分区域的多样性。为此,针对不同的区域要讨论重积分的各种不同算法。 (3)极坐标变换公式(主要是∫∫f(x,y)dxdy=∫∫f(pcosθ,psinθ)pdpdθ)

复变函数与积分变换重点公式归纳解析

复变函数与积分变换复习提纲 第一章 复变函数 一、复变数和复变函数 ()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续 极限 A z f z z =→)(lim 0 连续 )()(lim 00 z f z f z z =→ 第二章 解析函数 一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。 二、柯西——黎曼方程 掌握利用C-R 方程?????-==x y y x v u v u 判别复变函数的可导性与解析性。 掌握复变函数的导数:y x y x y y x x v iv iu u v iu y f i iv u x f z f +==-=+-=??=+=??= 1)(' 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 1、幂函数与根式函数 θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数 n k z i n n e r z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数 2、指数函数:)sin (cos y i y e e w x z +== 性质:(1)单值.(2)复平面上处处解析,z z e e =)'((3)以i π2为周期 3、对数函数 ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……) 性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:k k z z 1)'(ln =。 4、三角函数:2cos iz iz e e z -+= i e e z iz iz 2sin --= 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 5、反三角函数(了解) 反正弦函数 )1(1sin 2z iz Ln i z Arc w -+= =

复变函数积分方法总结

复变函数积分方法总结 [键入文档副标题] acer [选取日期]

复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作 x=Re(z),y=Im(z)。 arg z=θ?θ?称为主值 -π<θ?≤π, Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。z=re iθ。1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0,z1,…,z k-1,z k,…,z n=B,在每个弧段z k-1 z k(k=1,2…n)上任取一点ξk并作和式S n=ξ(z k-z k-1)=ξ?z k记?z k= z k- z k-1, 弧段z k-1 z k的长度=,n),当0时,不论对c的分发即ξk的取法如何,S n有唯一的极限,则称该极限值为函数f(z) 沿曲线C的积分为: =ξ?z k 设C负方向(即B到A的积分记作).当C为闭曲线时,f(z)的积分记作 (C圆周正方向为逆时针方向) 例题:计算积分 ,其中C表示a到b的任一曲线。(1)解:当C为闭合曲线时,=0.

∵f(z)=1 S n=ξ(z k-z k-1)=b-a ∴ =b-a,即 =b-a. (2)当C为闭曲线时,=0. f(z)=2z;沿C连续,则积分存在,设ξk=z k-1,则 ∑1= ( )(z k-z k-1) 有可设ξk=z k,则 ∑2= ( )(z k-z k-1) 因为S n的极限存在,且应与∑1及∑2极限相等。所以 S n= (∑1+∑2)==b2-a2 ∴=b2-a2 1.2 定义衍生1:参数法: f(z)=u(x,y)+iv(x,y), z=x+iy带入得: = - vdy + i + udy 再设z(t)=x(t)+iy(t) (≤t≤) = 参数方程书写:z=z0+(z1-z0)t(0≤t≤1);z=z0+re iθ,(0≤θ≤2π) 例题1:积分路线是原点到3+i的直线段 解:参数方程 z=(3+i)t =′ =(3+i)3 =6+i 例题2:沿曲线y=x2计算( )

重积分及其计算和多重积分

三重积分和多重积分方法 在第三节中我们讨论了二重积分,本节将之推广到一般的n 维空间中去. 类似于第三节,我们先定义一个R 3中集合的可求体积性. 同样可以给出一列类似的结论. 读者自己推广. 这里将不再赘述. 一、 引例 设一个物体在空间R 3中占领了一个有界可求体积的区域V ,它的点密度为()z y x f ,,,现在要求这个物体的质量.假设密度函数是有界的连续函数,可以将区域V 分割为若干个可求体积的小区域n V V V ,...,,21,其体积分别是n V V V ???,...,,21,直径分别是n d d d ,...,,21,即},||sup{|i i V Q W W Q d ∈=, (i =1,2,…,n ), |WQ|表示W, Q 两点的距离.设 },...,,max{21n d d d =λ,则当λ很小时,()z y x f ,,在i V 上的变化也很小.可以用这个小 区域上的任意一点()i i i z y x ,,的密度()i i i z y x f ,,来近似整个小区域上的密度,这样我们可以求得这个小的立体的质量近似为()i i i i V z y x f ?,,,所有这样的小的立体的质量之和即为这个物体的质量的一个近似值.即 ()i i i i n i V z y x f M ?≈∑=,,1 . 当0→λ时,这个和式的极限存在,就是物体的质量.即 ()i i i i n i V z y x f M ?=∑=→,,lim 1 λ. 从上面的讨论可以看出,整个求质量的过程和求曲顶柱体的体积是类似的,都是先分割,再求和,最后取极限.所以我们也可以得到下面一类积分. 二、 三重积分的定义 设()z y x f ,,是空间3 R 中的一个有界可求体积的闭区域V 上的有界函数,将V 任意分割 为若干个可求体积的小闭区域n V V V ,...,,21,这个分割也称为V 的分划,记为P : n V V V ,...,,21. Φ=?o o j i V V (空, j i ≠), 其体积分别是n V V V ???,...,,21,直径分别是n d d d ,...,,21.设 },...,,max{21n d d d =λ,或记为||P ||. 在每个小区域中任意取一点()i i i i V z y x ∈,,,作和 ()i i i i n i V z y x f ?∑=,,1 (称为Riemann 和),若当0→λ时,这个和式的极限存在,则称其极

复变函数与积分变换重要学习知识重点归纳

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

三重积分的计算方法小结与例题

三重积分的计算方法介绍: 三重积分的计算是化为三次积分进行的。其实质是计算一个定积分(一重积分)和一个二重积分。从顺序看: 如果先做定积分?2 1),,(z z dz z y x f ,再做二重积分??D d y x F σ),(,就是“投 影法”,也即“先一后二”。步骤为:找Ω及在xoy 面投影域D 。多D 上一点(x,y )“穿线”确定z 的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D 上的二重积分,完成“后二”这一步。σd dz z y x f dv z y x f D z z ??????Ω =2 1]),,([),,( 如果先做二重积分??z D d z y x f σ),,(再做定积分?2 1 )(c c dz z F ,就是“截面 法”,也即“先二后一”。步骤为:确定Ω位于平面21c z c z ==与之间,即],[21c c z ∈,过z 作平行于xoy 面的平面截Ω,截面z D 。区域z D 的边界曲面都是z 的函数。计算区域z D 上的二重积分??z D d z y x f σ),,(,完成 了“先二”这一步(二重积分);进而计算定积分?2 1 )(c c dz z F ,完成“后 一”这一步。dz d z y x f dv z y x f c c D z ]),,([),,(2 1σ??????Ω = 当被积函数f (z )仅为z 的函数(与x,y 无关),且z D 的面积)(z σ容易求出时,“截面法”尤为方便。 为了简化积分的计算,还有如何选择适当的坐标系计算的问题。可以按以下几点考虑:将积分区域Ω投影到xoy 面,得投影区域D(平面) (1) D 是X 型或Y 型,可选择直角坐标系计算(当Ω的边界曲

归纳二重积分的计算方法

归纳二重积分的计算方法 摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 前言 二重积分的概念和计算是多元函数微积分学的重要部分,在几何\物理\力学等方面有着重要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧. 1. 预备知识 1.1二重积分的定义]1[ 设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数 ε ,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和 都有 ()1 ,n i i i i f J ξησ ε=?-<∑, 则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作 (),D J f x y d σ=??, 其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域. 1.2二重积分的若干性质 1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),D kf x y d σ??(),D k f x y d σ=??.

1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且 ()()[,,]D f x y g x y d σ±??()(),,D D f x y d g x y d σσ=±????. 1.23 若(),f x y 在1D 和2D 上都可积,且1D 与2D 无公共内点,则(),f x y 在12D D 上也可积,且 ()12 ,D D f x y d σ?? ()()1 2 ,,D D f x y d f x y d σσ=±???? 1.3在矩形区域上二重积分的计算定理 设(),f x y 在矩形区域D [][],,a b c d =?上可积,且对每个[],x a b ∈,积分(),d c f x y dy ?存 在,则累次积分(),b d a c dx f x y dy ??也存在,且 (),D f x y d σ?? (),b d a c dx f x y dy =??. 同理若对每个[],y c d ∈,积分(),b a f x y dx ?存在,在上述条件上可得 (),D f x y d σ?? (),d b c a dy f x y dx =?? 2.求的二重积分的几类理论依据 二重积分类似定积分,可看成一个函数在有界区域内的积分,它计算的主要思路是把重积分化为我们学过的累次积分的计算,在这思想下如何化为更容易求的累次积分成为问题关键,下文介绍了把区域化为简单的X -型\Y -型区域及把复杂的函数通过变量变换化为简单函数的几种计算技巧,另外还列举几类特殊二重积分的简单求法. 2.1在直角坐标系下,对一般区域二重积分的计算 X -型区域: ()()(){}12 ,,D x y y x y y x a x b =≤≤≤≤ Y -型区域: ()()(){}1 2 ,,D x y x y x x y c y d = ≤≤≤≤ 定理:若(),f x y 在X -区域D 上连续,其中()1y x ,()2y x 在[],a b 上连续,则 (),D f x y d σ??()()() 21,b y x a y x dx f x y dy =?? 即二重积分可化为先对y ,后对x 的累次积分. 同理在上述条件下,若区域为Y -型,有

相关文档