文档库 最新最全的文档下载
当前位置:文档库 › 05第五节二阶线性微分方程解的结构

05第五节二阶线性微分方程解的结构

05第五节二阶线性微分方程解的结构
05第五节二阶线性微分方程解的结构

第五节二阶线性微分方程解的结构

内容分布图示

★二阶线性微分方程的概念

二阶线性方程的解的性质

★定理1

★函数的线性相关和线性无关

★定理2 ★定理3 ★定理4

★定理5 ★例1

★内容小结★课堂练习

★习题8-5

★返回

内容要点:

一、二阶线性微分方程解的结构

二阶线性微分方程的一般形式是

,(6.1)

其中、及是自变量的已知函数,函数称为方程(6.1)的自由项. 当时, 方程(6.1)成为

,(6.2)

这个方程称为二阶齐次线性微分方程,相应地,方程(6.1)称为二阶非齐次线性微分方程. 定理1 如果函数与是方程(6.2)的两个解, 则

(6.3)

也是方程(6.2)的解,其中是任意常数.

定理2 如果与是方程(6.2)的两个线性无关的特解,则

就是方程(6.2)的通解,其中是任意常数.

定理3 设是方程(6.1)的一个特解,而是其对应的齐次方程(6.2)的通解,则

(6.4)

就是二阶非齐次线性微分方程(6.1)的通解.

定理4 设与分别是方程

的特解,则是方程

(6.5)

的特解.

定理5 设是方程

(6.6)

的解,其中为实值函数,为纯虚数. 则与分别是方程

的解.

例1 已知是某二阶非齐次线性微分方程的三个特解:

(1) 求此方程的通解;

(2) 写出此微分方程;

(3) 求此微分方程满足的特解.

课堂练习

1.下列函数组在其定义域内哪些是线性无关的?

2.给出n阶线性微分方程的n个解, 问能否写出这个微分方程及其通解?

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法 从微分方程学中知道,在满足某些条件下,可以用幂级数来表示一个函数。因此,自然想到,能否用幂级数来表示微分方程的解呢? 例1、求方程 ''0y xy -=的通解 解:设2012n n y a a x a x a x =+++++…… 为方程的解,这里(0,1,2,,,)i a i n =……是待定常系数,将它对x 微分两次,有 ''212312132(1)(1)n n n n y a a x n n a x n na x --+=?+?++-+++ 将y ,'y 的表达式代入方程,并比较的同次幂的系数,得到 x -∞<<∞2210a ?=,30320,a a ?-= 41430,a a ?-= 52540,a a ?-= 或一般的可推得 32356(31)3k a a k k = ?????-? , 1 3134673(31) k a a k k += ??????+ , 320k a += 其中1a ,2a 是任意的,因而代入设的解中可得: 36347 01[1][] 2323562356(31)33434673(31) n x x x x x y a a x n n n n =+++++++++?????????-????????+ 这个幂级数的收敛半径是无限大的,因而级数的和(其中包括两个任意常数0a 及1a )便是所要求的通解。

例6 求方程'''240y xy y --=的满足初值条件(0)0y =及'(0)1y =的解。 解 设级 2012n n y a a x a x a x =+++++……为方程的解。首先,利用初值 条件,可以得到 00a =, 11a =, 因而 2323'2123''223123232(1)n n n n n n y x a x a x a x y a x a x na x y a a x n n a x --=+++++=+++++=+?++-+ 将y ,'y ,''y 的表达式带入原方程,合并x 的各同次幂的项,并令各项系数等于零,得到 21422 0,1,0,,,1 n n a a a a a n -==== - 因而 567891111 ,0,,0,,2!63!4! a a a a a = ===== 最后得 21111 (1)!! k a k k k += ?=- , 20k a =, 对一切正整数k 成立。 将i a (0,1,2,)i = 的值代回2012n n y a a x a x a x =+++++……就得到 521 3 2!! k x x y x x k +=+++++ 2 422 (1),2!! k x x x x x xe k =++++ += 这就是方程的满足所给初值条件的解。 是否所有方程都能按以上方式求出其幂级数解?或者说究竟方程应该满足什么条件才能保证它的解可用幂级数来表示呢?级数的

一阶线性微分方程组

第4章 一阶线性微分方程组 一 内容提要 1. 基本概念 一阶微分方程组:形如 ??? ????? ???===) ,,,,( ),,,,(),,,,(2121222111 n n n n n y y y x f dx dy y y y x f dx dy y y y x f dx dy (3.1) 的方程组,(其中n y y y ,,,21 是关于x 的未知函数)叫做一阶微分方程组。 若存在一组函数)(,),(),(21x y x y x y n 使得在[a,b]上有恒等式 ),,2,1))((,),(),(,() (21n i x y x y x y x f dx x dy n i i ==成立,则 )(,),(),(21x y x y x y n 称为一阶微分方程组(3.1)的一个解 含有n 任意常数n C C C ,,,21 的解 ?????? ?===) ,,,,( ),,,,(),,,,(21321222111n n n n C C C x y C C C x y C C C x y ??? 称为(3.1)通解。如果通解满方程组 ???????=Φ=Φ=Φ0 ),,,,,,,,( 0),,,,,,,,(0),,,,,,,,(21212121221211n n n n n n n C C C y y y x C C C y y y x C C C y y y x 则称这个方程组为(3.1)的通积分。 满足初始条件,)(,,)(,)(0020021001n n y x y y x y y x y === 的解,叫做初值问题的解。 令n 维向量函数 Y )(x =? ??? ?? ??????)( )()(21x y x y x y n ,F (x ,Y )=????????????),,,,( ),,,,(),,,,(21212 211n n n n y y y x f y y y x f y y y x f

二阶线性微分方程解的结构

二阶线性微分方程解的结构

————————————————————————————————作者: ————————————————————————————————日期: ?

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++= (A.1) 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(A.1),则称其为常微分方程(A.1)在 I 上的一个解。,()f x 称为方程(A.1)的自由项,当自由项()0f x ≡时方程(A.1)称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 A.1 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. (A.2) 当()0f x ≡,方程退化为 '()0y p x y +=, (A.3) 假设()y x 不恒等于零,则上式等价于

'()y p x y =- 而()'ln 'y y y =,从而(A.3)的通解为 ()d ()p x x y x Ce -?= ( A.4) 对于非齐次一阶线性常微分方程(A .2),在其两端同乘以函数()d p x x e ? ()d ()d ()d '()()p x x p x x p x x e y p x e y e f x ???+= 注意到上面等式的左端 ()d ()d ()d ''()p x x p x x p x x e y p x e y e y ?????+= ??? ‘ 因此有 ()d ()d '()p x x p x x e y e f x ????= ??? ‘ 两端积分 ()d ()d ()d p x x p x x e y C e f x x ??=+?‘ 其中C 是任意常数。进一步有 ()d ()d ()d p x x p x x y e C e f x x -????=+ ??? ?‘ 综上有如下结论 定理A.1 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程(A.1)的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --???=+?‘ (A.5)

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

二阶线性微分方程的解法

二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常 系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是 式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解. 2.线性相关、线性无关的概念

设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的 两个解,且≠=x y y tan 2 1常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子, 根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r , 使rx e y =满足方程(2).

二阶线性微分方程解的结构

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++=L (A.1) 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(A.1),则称其为常微分方程(A.1)在 I 上的一个解。,()f x 称为方程(A.1)的自由项,当自由项()0f x ≡时方程(A.1)称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 A.1 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. (A.2) 当()0f x ≡,方程退化为 '()0y p x y +=, (A.3) 假设()y x 不恒等于零,则上式等价于 而()'ln 'y y y =,从而(A.3)的通解为 ()d ()p x x y x Ce -?= ( A.4) 对于非齐次一阶线性常微分方程(A.2),在其两端同乘以函数()d p x x e ?

注意到上面等式的左端 因此有 两端积分 其中C 是任意常数。进一步有 综上有如下结论 定理A.1 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程(A.1)的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --? ??=+?‘ (A.5) 其中C 是任意常数。 观察(A.4)式和(A.5)式,我们发现一阶线性非齐次常微分方程(A.1)的解等于 一阶线性齐次常微分方程( A.2)的通解()d p x x Ce -?加上函数()d ()d *()()d p x x p x x y x e e f x x -??=?。容易验证,*()y x 是方程(A.1)的一个特解。这符合线性方程解的结构规律。 例1 求解一阶常微分方程 解 此时()2()1p x f x =-=,,由(A.5)式,解为 其中C 是任意常数。 A.2 二阶线性常微分方程 将具有以下形式的方程 "()'()()y p x y q x y f x x I ++=∈,, (A.6) 称为二阶线性常微分方程,其中(),(),()p x q x f x 都是变量x 的已知连续函数。称 "()'()0y p x y q x y x I ++=∈,, (A.7) 为与(A.6)相伴的齐次方程. A .2.1 二阶线性微分方程解的结构 首先讨论齐次方程(A.7)解的结构。

二阶线性微分方程解的结构

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++= (A.1) 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(A.1),则称其为常微分方程(A.1)在 I 上的一个解。,()f x 称为方程(A.1)的自由项,当自由项()0f x ≡时方程(A.1)称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 A.1 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. (A.2) 当()0f x ≡,方程退化为 '()0y p x y +=, (A.3) 假设()y x 不恒等于零,则上式等价于 '()y p x y =-

而()'ln 'y y y =,从而(A.3)的通解为 ()d ()p x x y x Ce -?= ( A.4) 对于非齐次一阶线性常微分方程(A.2),在其两端同乘以函数()d p x x e ? ()d ()d ()d '()()p x x p x x p x x e y p x e y e f x ???+= 注意到上面等式的左端 ()d ()d ()d ''()p x x p x x p x x e y p x e y e y ?????+= ??? ‘ 因此有 ()d ()d '()p x x p x x e y e f x ????= ??? ‘ 两端积分 ()d ()d ()d p x x p x x e y C e f x x ??=+?‘ 其中C 是任意常数。进一步有 ()d ()d ()d p x x p x x y e C e f x x -??? ?=+ ??? ?‘ 综上有如下结论 定理A.1 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程(A.1)的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --???=+?‘ (A.5) 其中C 是任意常数。 观察(A.4)式和(A.5)式,我们发现一阶线性非齐次常微分方程(A.1) 的解等于一阶线性齐次常微分方程(A.2)的通解()d p x x Ce -?加上函数

第三章一阶线性微分方程组第二讲一阶线性微分方程组的一般概念及理论

第二讲 一阶线性微分方程组的一般概念与 一阶线性齐次方程组的一般理论(4课时) 一、 目的与要求: 了解一阶线性微分方程组的一般概念与一阶线性齐次方程组的一般理论, 掌握一阶线性齐次方程组的通解结构, 理解基本解矩阵, Wronsky 行列式等概念. 二、重点:一阶线性齐次方程组的通解结构, 基本解矩阵, Wronsky 行列式. 三、难点:基本解矩阵, Wronsky 行列式. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1. 一阶线性微分方程组的一般概念 如果在一阶微分方程组(3.1)中, 函数12(,,,,)(1,2,,)i n f x y y y i n =, 关于12,,,n y y y 是线性的, 即(3.1)可以写成 1111122112211222221122()()()()()()()()()()()() n n n n n n n nn n n dy a x y a x y a x y f x dx dy a x y a x y a x y f x dx dy a x y a x y a x y f x dx ?=++ ++???=++++?????=++++? ?

(3.6) 则称(3.6)为一阶线性微分方程组. 我们总假设(3.6)的系数()(,1,2,,)ij a x i j n = 及()(1,2,,)i f x i n = 在某个区间I R ? 上连续. 为了方便, 可以把(3.6)写成向量形式. 为此, 记 1112121 22212()()()()()()()()()()n n n n nn a x a x a x a x a x a x A x a x a x a x ??????=?????? 及 12()()()()n f x f x F x f x ???? ??=?????? 根据第13讲的记号, (3.6)就可以写成向量形式 ()()dY A x Y F x dx =+ (3.7) 如果在I 上, ()0F x ≡,方程组(3.7)变成 ()dY A x Y dx = (3.8)

线性方程组解的判定与解的结构

***学院数学分析课程论文 线性方程组解的判定与解的结构 院系数学与统计学院 专业数学与应用数学(师范) 姓名******* 年级 2009级 学号200906034*** 指导教师 ** 2011年6月

线性方程组解的判定与解的结构 姓名****** (重庆三峡学院数学与计算机科学学院09级数本?班) 摘 要:线性方程组是否有解,用系数矩阵和增广矩阵的秩来刻画.在方程组有解且有 多个解的情况下,解的结构就是了解解与解之间的关系. 关键词:矩阵; 秩; 线性方程组; 解 引言 通过系数矩阵和增广矩阵的秩是否相同来给出判定线性方程组的解的判别条件.在了解了线性方程组的判别条件之后,我们进一步讨论解的结构.对于齐次线性方程组,解的线性组合还是方程组的解.在线性方程组有无穷个解时可用有限多个解表示出来.另外以下还涉及到线性方程组通解的表达方式. 1 基本性质 下面我们分析一个线性方程组的问题,导出线性方程组有解的判别条件. 对于线性方程组 1111221121122222 1122n n n n s s sn n s a x a x a x b a x a x a x b a x a x a x b ++???+=??++???+=???????++???+=? (1) 引入向量 112111s αααα??????=?????????,122222s αααα??????=?????????,…12n n n sn αααα??????=????????? ,12s b b b β?? ?? ??=??????? ?? 方程(1)可以表示为 1122n n x x x αααβ++???+= 性质 线性方程组⑴有解的充分必要条件为向量β可以表成向量组α1,α2,…,αn 的线性组合. 定理1 线性方程组⑴有解的充分必要条件为它的系数矩阵

一阶线性偏微分方程

第七章 一阶线性偏微分方程 研究对象 一阶线性齐次偏微分方程 0),,,(),,,() ,,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X 1基本概念 1) 一阶线性齐次偏微分方程 形如 0),,,(),,,(),,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X (7.1) 的方程,称为一阶线性齐次偏微分方程,其中n x x x ,,,21 是自变量,u 是n x x x ,,,21 的未知函数,n X X X ,,,21 是域n R D ?内的已知函数,并设n X X X ,,,21 在域D 内不同时为零。 2) 一阶拟线性偏微分方程 形如 );,,,();,,,();,,,(21211211z x x x Z x z z x x x Y x z z x x x Y n n n n n =??++?? (7.2) 的方程,称为一阶拟线性偏微分方程,其中Z Y Y Y n ;,,,21 是1+n 个变元z x x x n ;,,,21 的已知函数。n Y Y Y ,,,21 在其定义域1+?'n R D 内不同时为零。 所谓“拟线性”是指方程仅对未知函数的各个一阶偏导数是线性的,以下总设n Y Y Y ,,,21 和Z 在域D '内连续可微。 3) 特征方程组 常微分方程组 n n X dx X dx X dx === 2211 (7.3) 称为一阶线性齐次偏微分方程(7.1)的特征方程组。 常微分方程组

阶线性微分方程解的结构

阶线性微分方程解的结 构 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

附录A 线性常微分方程 本课程的研究内容与常微分方程理论有非常密切的联系,因此在本附录里,我们将对线性常微分方程的知识——包括解的存在性、解的结构和求解方法做一些回顾和总结。 把包含未知函数和它的j 阶导数()j y (的方程称为常微分方程。线性常微分方 程的标准形式 ()(1)110()()'()()n n n y p x y p x y p x y f x --++++= () 其中n 称为方程的阶数,()j p x 和()f x 是给定的函数。可微函数()y y x =在区间 I 上满足方程(),则称其为常微分方程()在 I 上的一个解。,()f x 称为方程()的自由项,当自由项()0f x ≡时方程()称为是齐次方程,否则称为非齐次方程。一般来说常微分方程的解是不唯一的,我们将方程的全部解构成的集合称为解集合,解集合中全部元素的一个通项表达式称为方程的通解,而某个给定的解称为方程的特解。 在本附录里,我们重点介绍一阶和二阶常微分方程的相关知识。 一阶线性常微分方程 一阶线性常微分方程表示为 '()()y p x y f x x I +=∈,. () 当()0f x ≡,方程退化为 '()0y p x y +=, ()

假设()y x 不恒等于零,则上式等价于 而()'ln 'y y y =,从而()的通解为 ()d ()p x x y x Ce -?= ( ) 对于非齐次一阶线性常微分方程(),在其两端同乘以函数()d p x x e ? 注意到上面等式的左端 因此有 两端积分 其中C 是任意常数。进一步有 综上有如下结论 定理 假设()()p x f x I 和在上连续,则一阶线性非齐次常微分方程()的通解具有如下形式 ()d ()d ()d ()()d p x x p x x p x x y x Ce e e f x x --???=+?‘ () 其中C 是任意常数。 观察()式和()式,我们发现一阶线性非齐次常微分方程()的解等于一阶线性齐次常微分方程()的通解()d p x x Ce -?加上函数 ()d ()d *()()d p x x p x x y x e e f x x -??=? 。容易验证,*()y x 是方程()的一个特解。这符合线性方程解的结构规律。 例1 求解一阶常微分方程

第三章 一阶线性微分方程组 第四讲 常系数线性微分方程组的解法(1)

第四讲 常系数线性微分方程组的解法(4课时) 一、目的与要求: 理解常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念, 掌 握常系数线性微分方程组的基本解组的求法. 二、重点:常系数线性微分方程组的基本解组的求法. 三、难点:常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 新课引入 由定理3.6我们已知道,求线性齐次方程组(3.8)的通解问题,归结到求其基本解组. 但是对于一般的方程组(3.8),如何求出基本解组,至今尚无一般方法. 然而对于常系数线性齐次方程组 dY AY dx = (3.20) 其中A 是n n ?实常数矩阵,借助于线性代数中的约当(Jordan)标准型理论或矩阵指数,可以使这一问题得到彻底解决. 本节将介绍前一种方法,因为它比较直观. 由线性代数知识可知,对于任一n n ?矩阵A ,恒存在非奇异的n n ?矩阵T ,使矩阵 1T AT -成为约当标准型. 为此,对方程组(3.20)引入非奇异线性变换 Y TZ = (3.21) 其中()(,1,2,,),ij T t i j n == det 0T ≠,将方程组(3.20)化为 1dZ T ATZ dx -= (3.22) 我们知道,约当标准型1 T AT -的形式与矩阵A 的特征方程 11121212221 2 det()0n n n n nn a a a a a a A E a a a λ λλλ ---= =-

的根的情况有关. 上述方程也称为常系数齐次方程组(3.20)的特征方程式.它的根称为矩阵 A 的特征根. 下面分两种情况讨论. (一) 矩阵A 的特征根均是单根的情形. 设特征根为12,,,,n λλλ 这时 12 1 00 n T AT λλλ-????? ?=?????? 方程组(3.20)变为 11122 200n n n dz dx z dz z dx z dz dx λλλ?????????????? ????????= ???????????????? ?????? (3.23) 易见方程组(3.23)有n 个解 1110(),00x Z x e λ????????=???????? 220010(),,()0001n x x n Z x e Z x e λλ???????????? ????==???????????????? 把这n 个解代回变换(3.21)之中,便得到方程组(3.20)的n 个解 12()i i i i x x i i ni t t Y x e e T t λλ?? ????==?????? (1,2,,)i n =

二阶线性偏微分方程的分类与小结

第六章 二阶线性偏微分方程的分类与小结 一 两个自变量的二阶线性方程 1 方程变换与特征方程 两个自变量的二阶线性偏微分方程总表示成 f cu u b u b u a u a u a y x yy xy xx =+++++212212112 ① 它关于未知函数u 及其一、二阶偏导数都是线性的,其中f u c b b a a a ,,,,,,,21221211都是自变量y x ,的已知函数,假设它们的一阶偏 导数在某平面区域D 内都连续,而且221211a a a ,,不全为0 。 设),(000y x M 是D 内给定的一点,考虑在0M 的领域内对方程进行简化。取自变量变换 ),(y x ξξ=,),(y x ηη= 其中它们具有二连续偏导数,而且在0M 处的雅可比行列式。 = ??),(),(y x ηξy x y x ηηξξ =x y y x ηξηξ- 根据隐函数存在定理,在0M 领域内存在逆变换, ),(ηξx x =,),(ηξy y = 因为 x x x u u u ηξξξ+=,y y y u u u ηξξξ+=

xx xx x x x x xx u u u u u u ηξηηξξηξηηξηξξ++++=222 yy yy y y y y yy u u u u u u ηξηηξξηξηηξηξξ++++=222 xy xy y x x y y x x x xy u u u u u u ηξηηηξηξξξηξηηξηξξ+++++=)( 将代入①使其变为 F Cu u B u B u A u A u A =+++++ηξηηξηξξ212212112 经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以221211,,A A A 不全为0。并可验证 222112122211212))((x y y x a a a A A A ηξηξ--=- 这表明,在可逆变换下2 22112 12A A A -与22112 12 a a a -保持相同的正负号。 定理 在0M 的领域内,不为常数的函数),(y x ?是偏微分方程022*******=++y y x x a a a ????之解的充分必要条件是: C y x ≡),(?是常微分方程的 0)(2)(22212211=++dx a dxdy a dy a 通解。 2 方程的类型及其标准形式 根据以上结论简化方程的问题归结为寻求其特征曲线。为此将特征方程分解成两个方程: 11 22 11 2 12 12 a a a a a dx dy -+=,11 22 11 2 12 12 a a a a a dz dy --= (1) 若在0M 的邻域内022112 12>-a a a 时,方程可以化为

线性方程组解的结构

线性方程组解的结构 11111221n n b a x a x a x =++???+ 22112222n n b a x a x a x =++???+ 33113223n n b a x a x a x =++???+ ………………………………… 1122n n n nn n b a x a x a x =++???+ 表示从变量12 ,n x x x ???到变量12,n b b b ???的线性变换,其中ij a 是常数。确 定了线性变换,它的系数所构成的矩阵(系数矩阵)也就确定,线性变换根矩阵是一一对应的关系。 上式可以表示为以向量x 为未知元的向量方程: Ax=b 线性方程组如果是有解的,称它是相容的,否则称为不相容。 一、 定理4:N 元线性方程组Ax=b (1) 无解的充要条件是R(A)

(2) 若R(A)=R(B),则进一步把B 化成最简型,而对于齐次线性 方程组,则把系数矩阵A 化成最简型。 (3) 设R(A)=R(B)=r ,把行最简型中r 个非0行的非0首个元素所对应的未知数取做非自由未知数,其他的元素取做自由未知数。带入原方程,就可以得到一个关于自由为未知量的表达式。 三、 齐次线性方程组求解步骤:Ax=0 (1) 根据R(A)与n (变量个数)来判断解的结构: A. R(A)

常系数线性微分方程的解的结构分析

常系数线性微分方程的解的结构分析 【 摘要】在参考和总结了许多场系数线性微分方程的解法的基础上,本文总结了一些常系数微分方程的解的解法,并针对一类常系数线性微分方程的已有结论给予证明,以解给予一些结论证明思路,以及一些实例,并向高阶推广。 【关键词 】常系数 线性 微分方程 结构 一阶常系数齐次线性微分方程 0=+ax dt dx , (1.1) 的求解 上式可以改写为 adt x dx -= , (1.2) 于是变量x 和t 被分离,再将两边积分得 c at x +-=ln , (1.3) 这里的c 为常数。又由对数的定义,上式可以变为 at ce x -= , (1.4) 其中c= , 因为x=0也是方程的解,因此c 可以是任意常数。 这里首先是将变量分离,然后再两边积分,从而求出方程的解。这便要方程式可以分离变量的,也就是变量分离方程。 一阶常系数微分方程 )()(x Q y x P dx dy += , (2.1) 其中P (x ),Q(x)在考虑的区间上式连续函数,若Q (x )=0 ,上式就变为 y x P dx dy )(= , (2.2) 上式为一阶齐次线性微分方程。还是变量分离方程我们可以参考上面变量分离方程的解法,先进行变量分离得到 dx x P y dy )(= , (2.3) 两边同时积分,得到 ? =dx x p ce y )( , (2.4) 这里c 是常数。 若Q (x )≠ 0 , 那么上式就变成了 一阶非齐次线性微分方程。 我们知道一阶齐次线性微分方程是一阶常微分方程的一种特殊情况,那么可以设想将一阶

齐次线性微分方程的解 ? =dx x p ce y )( , (2.5) 中的常数c 变易成为待定的函数c (x ),令 ?=dx x p e x c y )()( , (2.6) 微分之,就可以得到 ?+?=dx x p dx x p e x P x c e dx x dc dx dy )()()()()( , (2.7) 以(2.7),(2.6)代入2.1,得到 )()()()()()()()()(x Q e x c x p e x P x c e dx x dc dx x p dx x p dx x p +?=?+?,(2.8) 即 ?=-dx x p e x Q dx x dc )()() (, 积分后得到 c (x )=c dx e x Q dx x p +?? -)()( , (2.9) 这里c 是任意常数,将上式代入(2.6)得到方程(2.1)的通解 ))(()()(c dx e x Q e y dx x p dx x p +? ? =?- (2.91) 在上面的一阶线性微分方程中,是将一阶齐次线性微分方程中的通解中的常数c 变成c(x) ,常数变易法一阶非齐次线性微分方程的解, 感觉这个方法之所以用x 的未知函数u(x)替换任意常数C,是因为C 是任意的,C 与x 形成函数关系,要确定C,需要由初始条件确定,一个x,确定一个C,也就形成一对一或多对多的映射,也就是函数关系,而这里的C 是任意的,也就可以用一个未知的,也就是任意的函数u(x)来代替,进而求得非齐次线性微分方程的解。这种将常数变异为待定函数的方法,我们通常称为常数变易法。常数变易法实质也是一种变量变换的方法,通过变换(2.6可将方程(2.1)化为变量分离方程。 二阶常系数线性微分方程 (1)二阶常系数线性齐次方程 022=++qy dx dy p dx y d (3.1) 其中p 、q 是常数,我们知道,要求方程(3.1)的通解,只要求出其任意两个线性无关的特 解y 1,y 2就可以了,下面讨论这样两个特解的求法。 我们先分析方程(3.1)可能具有什么形式的特解,从方程的形式上来看,它的特点是22dx y d ,

(整理)一阶线性偏微分方程.

第七章 一阶线性偏微分方程 例7-1 求方程组 ()()()yz B A Cdz xz A C Bdy yz C B Adx -=-=- 通积分,其中C B A ,,为互不 相等的常数。 解 由第一个等式可得 xyz ydy A C B xyz xdx C B A -=-, 即有 0=---ydy A C B xdx C B A , 两边积分得方程组的一个首次积分 122,C y A C B x C B A z y x Φ=---= ),(。 由第二个等式可得 xyz zdz B A C xyz ydy A C B -=-, 即有 0=---zdz B A C ydy A C B , 两边积分得方程组的另一个首次积分 222,C z B A C y A C B z y x Ψ=---= ),(。 由于,雅可比矩阵 ? ???? ?????------=????? ???? ????ψ??ψ??ψ ??Φ??Φ ??Φ ?=?ψΦ?z B A C y A C B y A C B x C B A y y x z y x z y x 002),,(),( 的秩为2,这两个首次积分相互独立,于是原方程组的通积分为 122C y A C B x C B A =--- 222C z B A C y A C B =--- 。

评注:借助于方程组的首次积分求解方程组的方法称为首次积分法。要得到通积分需要求得n 个独立的首次积分,n 为组成方程组的方程个数。用雅可比矩阵的秩来验证首次积分的独立性。 例7-2 求方程组 () () ???????-+--=-+-=11d 222 2y x y x dt dy y x x y dt x 的通解。 解 由原方程组可得 )1)((2222-++-=+y x y x dt dy y dt dx x 即 dt y x y x y x d )1)((2)(2 2 2 2 2 2 -++-=+ 这个方程关于变量t 和2 2 y x +是可以分离的,因此易求得它的通积分为 122 2221),,(C e y x y x t y x t =+-+=Φ 这是原方程组的一个首次积分。 再次利用方程组,得到 )(22y x dt dx y dt dy x +-=-, 即有 1arctan -=?? ? ?? x y dt d 由此得到原方程组的另一个首次积分 2arctan ),,(C t x y t y x =+=ψ 。 由于,雅可比矩阵为 ()( ) ???? ? ?????? ?++-++=????????? ????ψ??ψ ??Φ??Φ ?=?ψΦ?2222 222 222 2222),(),(y x x y x y e y x y e y x x y x y x y x t t ,

一阶偏微分方程基本知识

一阶偏微分方程基本知识 这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分。 1一阶常微分方程组的首次积分 1.1首次积分的定义 从第三章我们知道,n 阶常微分方程 ()()() 1,,'',',-=n n y y y x f y , ( 1.1) 在变换 ( ) 1'12,,,,n n y y y y y y -=== ( 1.2) 之下,等价于下面的一阶微分方程组 ()()()1 112221212,,,,,,,,,,,,,,. n n n n n dy f x y y y dx dy f x y y y dx dy f x y y y dx ?=?? ?=???? ?=? ? ( 1.3) 在第三章中,已经介绍过方程组( 1.3)通解的概念和求法。但是除了常 系数线性方程组外,求一般的( 1.3)的解是极其困难的。然而在某些情况下,可以使用所谓“可积组合”法求通积分,下面先通过例子说明“可积组合”法,然后介绍一阶常微分方程组“首次积分”的概念和性质,以及用首次积分方法来求解方程组( 1.3)的问题。先看几个例子。 例1 求解微分方程组 ()()22221,1.dx dy y x x y x y x y dt dt =-+-=--+- ( 1.4) 解:将第一式的两端同乘x ,第二式的两端同乘y ,然后相加,得到 ()() 12222-++-=+y x y x dt dy y dt dx x , ()()()2222221 12 d x y x y x y dt +=-++-。 这个微分方程关于变量t 和()22x y +是可以分离,因此不难求得其解为 122 2221C e y x y x t =+-+, ( 1.5) 1C 为积分常数。( 1.5)叫做( 1.4)的首次积分。

相关文档
相关文档 最新文档