文档库 最新最全的文档下载
当前位置:文档库 › 同步回路

同步回路

同步回路
同步回路

同步回路

同步回路的作用是保证多个执行元件克服负载、摩擦阻力、泄漏、制造质量和结构变形上的差异,从而保证在运动上的同步。同步回路分为速度同步和位置同步两类。

1.采用流1控制间的同步回路

图7. 36(a)是两个并联的液压缸分别用调速阀控制的同步回路。两个调速阀分别调节两缸活塞的运动速度,当两缸有效面积相等时,则流量也调整得相同;若两缸面积不等时,则改变调速阀的流量也能达到同步的运动.这种回路结构简单,并且可以调速;但是调整比较麻烦,而且由于受到油温变化以及调速阀性能差异等影响,同步精度较低,一般在5%-7%。图7. 36(b)所示回路,采用分流集流阀(同步阀)代替调速阀来控制两液压缸的进人或流出的流量,可使两液压缸在承受不同负载时仍能实现速度同步.回路中单向节流阀2用来控制活塞的下降速度,液控单向阀4用来防止活塞停止时两缸因负载不同而通过分流阀的内节流孔窜油。由于同步作用靠分流阀自动调整,使用较为方便,但效率低、压力损失大,不宜用于低压系统。

2.采用串联液压缸的同步回路

图7.37是串联液压缸的同步回路。图中第一个液压缸回油腔排出的油液被送人第二个液压缸的进油腔。如果串联油腔活塞的有效面积相等时,便可实现同步运动。这种回路中两缸能承受不同的负载,但泵的供油压力要大于两缸工作压力之和。

由于泄漏和制造误差影响了串联液压缸的同步精度,当活塞往复多次后,会产生严重的失调现象,为此要采取补偿措施。在活塞下行的过程中,如液压缸6的活塞先运动到底,触动行程开关Is发信使电磁铁3YA通电,此时压力油便经过三位四通电磁阀4、液控单向阀5,向液压缸7的上腔补油,使缸7的活塞继续运动到底。如果液压缸7的活塞先运动到底触动行程开关2S,使电磁铁4YA通电,压力油便经三位

四通电磁阀4进人液控单向阀的控制油口,则液控单向阀5反向导通,使缸6能通过液控单向阀5和三位四通电磁阀4回油,使缸6的活塞继续运动到底,从而对失调现象进行补偿。

3.用同步缸或同步马达的同步回路

图7. 38(a)所示为采用同步缸的同步回路,同步缸A, B两腔的有效面积相等,且两工作缸面积也相同,能实现同步。这种同步回路的同步精度取决于液压缸的加工精度和密封性,一般可达到1%a-2%。由于同步缸一般不宜做的过大,所以这种回路仅适宜于小容量的场合。

图7.38(b)所示为采用两个同轴等排量的双向液压马达作为等流量分流装置的同步回路。液压马达把等量的液压油分别输人两个尺寸相同的液压缸中,使两液压缸实现同步。

图中的节流阀用来在行程端点消除两缸的位置误差。这种同步回路的同步精度比节流控制的要高,但由于所用马达多为容积效率较高的柱塞式马达,所以费用较高。

如果你有更多疑问,请访问东莞唯冠油压:《液压系统》,工程师也可为您在线解答

液压系统回路设计

1、液压系统回路设计 1.1、 主干回路设计 对于任何液压传动系统来说,调速回路都是它的核心部分。这种回路可以通过事先的调整或在工作过程中通过自动调整来改变元件的运行速度,但它的主要功能却是在传递动力(功率)。 根据伯努力方程: d q C x = (1-1) 式中 q ——主滑阀流量 d C ——阀流量系数 v x ——阀芯流通面积 p ?——阀进出口压差 ρ——流体密度 其中d C 和ρ为常数,只有v x 和p ?为变量。 液压缸活塞杆的速度: q v A = (1-2) 式中A 为活塞杆无杆腔或有杆腔的有效面积 一般情况下,两调平液压缸是完全一样的,即可确定1121A A =和1222A A =所以要保证两缸同步,只需使12q q =,由式(1-2)可知,只要主滑阀流量一定,则活塞杆的速度就能稳定。又由式(1-1)分析可知,如果p ?为一定值,则主滑阀流量q 与阀芯流通面积成正比即:v q x ∞,所以要保证两缸同步,则只需满足以下条件: 11p c ?=,22p c ?=且12v v x x = 此处主滑阀选择三位四通的电液比例方向流量控制阀,如图1-1所示。 图1-1 三位四通的电液比例方向流量控制阀 它是一种按输入的电信号连续地、按比例地对油液的流量或方向进行远距离控制的阀。比例阀一般都具有压力补偿性能,所以它输出的流量可以不受负载变化的

影响。与手动调节的普通液压阀相比,它能提高系统的控制水平。它和电液伺服阀的区别见表1-1。 表1-1 比例阀和电液伺服阀的比较 所以它被广泛应用于要求对液压参数进行连续远距离控制或程序控制,但对控制精度和动态特性要求不太高的液压系统中。 又因为在整个举身或收回过程中,单缸负载变化范围变化比较大(0~50T),而且举身和收回时是匀速运动,所以调平缸的功率为P Fv =,为变功率调平,为达到节能效果,选择变量泵。 综上所可得,主干调速回路选用容积节流调速回路。容积节流调速回路没有溢流损失,效率高,速度稳定性也比单纯容积调速回路好。 为保证p?值一定,可采用负荷传感液压控制,其控制原理图如图1-2所示。它主要利用负荷传感和压力补偿技术,可用单泵(或一组泵)驱动多个执行元件,各执行元件运动速度仅依赖于各节流阀开启度,而与各执行元件的负载压力和其它执行元件的工作状态无关。即使当泵的输出流量达不到实际需要时,各执行元件运动速度的比例关系仍然可以得到保持。此系统的这一特有的独立调速功能大大减少了作业中操纵者协调各执行元件动作所花费的时间,不但显著提高了作业效率,而且有效减轻了操作者的劳动强度。另外,能够以最节省能量的方式实现调速,系统无溢流损失,并以推动执行元件动作所需的最低压力供油。在工作间隙(发动机不停机,各执行元件处于无载状态,不动作),系统自动调节泵的排量到最小值。可以有效降低功率损耗、减小液压系统的温升,所以它是一种性能较好的新型液压系统。

液压传动第七章液压基本回路

思考题与习题 7-1试说明由行程阀与液动阀组成的自动换向回路的工作原理。 泵压p p、溢流功率损失ΔP y和回路效率η。⑵当A T=0.01㎝2和0.02㎝2时,若负载F=0,则泵压和缸的两腔压力p1和p2多大?⑶当F=10kN时,若节流阀最小稳定流量为50×10-3 L/min,对应的A T和缸速νmin多大?若将回路改为进油节流调速回路,则A T和νmin多大? 232

两项比较说明什么问题? 7-6能否用普通的定值减压阀后面串联节流阀来代替调速阀工作?在三种节流调速回路中试用,其结果会有什么差别?为什么? q=30L/min。不计管道和换向阀压力损失。试问:⑴欲使缸速恒定。不计调压偏差,溢流阀最小调定压力p y多大?⑵卸荷时能量损失多大?⑶背压若增加了Δp b,溢流阀定压力的增量Δp y应有多大? 7-9如图所示,双泵供油、差动快进—工进速度换接回路有关数据如下:泵的输出流量q1=16L/min,q2=16L/min,所输油液的密度ρ=900㎏/m3,运动粘度υ=20×10-6㎡/s;缸的大小腔面积A1=100cm2,A2=60 cm2;快进时的负载F=1kN;油液流过方向阀时的压力损 233

失Δpυ=0.25MPa,连接缸两腔的油管ABCD的内径d=1.8㎝,其中ABC段因较长(L=3m),计算时需计其沿程压力损失,其它损失及由速度、高度变化形成的影响皆可忽略。试求:⑴快进时缸速v和压力表读数。⑵工进时若压力表读数为8MPa,此时回路承载能力多大(因流量小,不计损失)?液控顺序阀的调定压力宜选多大? 7-10图示调速回路中,泵的排量V P=105ml/r,转速n P=1000r/min,容积效率ηvp=0.95。溢流阀调定压力p y=7MPa。液压马达排量V M=160ml/r,容积效率ηvM=0.95,机械效率ηmM=0.8,负载扭矩T=16N·m。节流阀最大开度A Tmax=0.2㎝2(可视为薄刃孔口),其流量系数C q=0.62,油液密度ρ=900㎏/m3.不计其它损失.试求: ⑴通过节流阀的流量和液压缸 ⑴缸的左腔压力p1; ⑵当负载F=0和F=9000N时的右腔压力p2; ⑶设泵的总效率为0.75,求系统的总效率。 234

液压同步回路的方法及特点

液压同步回路的方法及特点 液压缸机械结合同步回路 图1 中回路由两执行油缸和刚性梁组成,通过刚性梁联接实现两缸同步,图2 中回路由两执行油缸、齿轮齿条缸组成,通过齿轮齿条将两缸联接在一起,从而实现同步。 两液压回路液压缸的同步都是靠机械结构来保证的,这种回路特点是同步性能较可靠,但由于油缸的受力有差别时硬性的机械作用力可能对油缸有所损伤,同时对机械联接的 强度要求增加. 2 串联液压缸同步回路 图3 中回路由泵、溢流阀、换向阀、两串联缸组成,要求实现两串联缸同步。实现此串联液压缸同步回路的前提条件是:必须使用双侧带活塞杆的液压缸,或者串联的两油腔的有效作用面积相等,这样根据油缸速度为流量与作用面积的比值,油缸的速度才能相同。但是,这种结构往往由于制造上的误差、内部泄露及混入空气等原因而影响其同步性。对于负载一定时,需要的油路压力要增加,其增加的倍数为其所串联的油缸数。为了补偿因为泄 露造成的油缸不同步问题,在设计同步回路时可以采用带补油装置的同步回路,见图4。 图4 中回路较图3 增加了液压锁和控制液压锁打开的换向阀,这条油路的增加可使两串联缸更好地实现同步。同样,缸Ⅰ的有杆腔A和缸Ⅱ的无杆腔B 的受力面积相同。在工作状态,活塞杆伸出的情况下,如果缸Ⅰ先伸出到底部,限位开关的作用使电磁换向阀得电,压力油进入 B 腔补入一部分油液,使油缸Ⅱ完成全部行程;如果缸Ⅱ先伸出到底部,限位开关的作用使电磁阀得电,液控单向阀打开,使A腔放出部分油液,使油缸Ⅰ完成全部行程。

3 采用节流阀的同步回路 用节流阀来控制工作缸的同步,其结构比较简单,造价低廉,且同步效果较好,因此,是在液压同步回来设计中较常用的控制方法。

液压回路分析

6、如图所示的液压系统,可以实现快进-工进-快退-停止的工作循环要求 (1)说出图中标有序号的液压元件的名称。 (2)写出电磁铁动作顺序表。 解:(1)1-三位四通电磁换向阀,2-调速阀,3-二位三通电磁换向阀(2) 7、图示回路中,溢流阀的调整压力为5.0MPa、减压阀的调整压力为2.5MPa。试分析下列三种情况下A、B、C点的压力值。 (1)当泵压力等于溢流阀的调定压力时,夹紧缸使工件夹紧后。 (2)当泵的压力由于工作缸快进、压力降到1.5MPa时。 (3)夹紧缸在夹紧工件前作空载运动时。 解:(1)2.5MPa、5MPa、2.5MPa (2)1.5MPa、1.5MPa、2.5MPa (3)0、0、0

8、图示回路,若阀PY的调定压力为4Mpa,阀PJ的调定压力为2Mpa,回答下列问题:(1)阀PY 是()阀,阀P J是()阀; (2)当液压缸运动时(无负载),A点的压力值为()、B点的压力值为(); (3)当液压缸运动至终点碰到档块时,A点的压力值为()、B点的压力值为()。 解:(1)溢流阀、减压阀; (2)活塞运动期时P A=0,P B=0; (3)工件夹紧后,负载趋近于无穷大:P A=4MPa,P B=2MPa。 9、如图所示系统可实现“快进→工进→快退→停止(卸荷)”的工作循环。 (1)指出液压元件1~4的名称。 (2)试列出电磁铁动作表(通电“+”,失电“-”)。 解: 10、如图所示的液压回路,要求先夹紧,后进给。进给缸需实现“快进——工进——快退——停止”这四个工作循环,而后夹紧缸松开。 (1)指出标出数字序号的液压元件名称。 (2)指出液压元件6的中位机能。 (3)列出电磁铁动作顺序表。(通电“+”,失电“-”)

桥梁顶升多液压缸同步系统

万方数据

万方数据

平衡压力P的基础上都增加ap,由于各电液比例减压阀出口压力P。均大于该点的平衡压力P,且差值相等,由前面分析知各液压缸可同步上升,根据工程实际要求的顶升速度,实时调整ap大小即可达到要求。 带载下降时,各电液比例减压阀出口压力在平衡压力P的基础上减/}、Ap即可。带载上升和下降时三位四通换向阀7均处在正向供油状态,即各电液比例减压阀人I:1压力均为系统压力。由于该系统采用带先导流量稳定器的电液比例减压阀,在这种工况下主阀芯上的单向阀都处于关闭状态,液压油不能经主阀流回油箱,只能经细长先导油流道从Y口回油箱№J,保证了带载下降速度平稳。 液压缸是通过高压软管进、回油的,一旦软管受损爆裂,后果不堪设想,为了确保安全,在每个液压缸的缸体上都安装了液控单向阀,这不仅解决了安全问题,还为顶升作业带来了方便,可以允许液压缸在任意位置停留。 3.4压力、住移、应力监控系统 监控系统构成如图3所示,由上下两层构成。上层集中在总控柜,工控机(主控电脑)是动力监控系统的“心脏”,完成监控信息加工和命令发送;32路I/0卡(PcL广720+)完成操作指令输入和工作状态指示;3轴正交编码卡(PCL广833)完成位移量采集;A/D采集卡(PCI,813B)完成应力信号采集;4端口高速RS-422/485卡(PCL846B)完成下层泵站和上层工控机之间的双向通信。各板卡和工控机之间通过ISA总线通信,可以根据需要进行功能的再扩展。 姒总线昱 i一一i鼬巳..ji—i碰之一一且一一重醛乏一且一戛塑一j 图3监控系统 下层由4组欧姆龙PIE组成,主要用来完成压力信号的采集和液压动力系统的控制,水平方向上各PIE之间是相互独立的,通过上层的工控机,各PIE之间也可进行数据交换。 4工程应用 天津市某立交桥因规划原因进行改造,须将原桥7.8轴单跨板梁顶升调坡,顶升后修建临港立交桥延长线与海河大桥相接。该立交桥为板梁结构,单跨跨度16m,宽19.2111,单跨共有预制板梁12片,总重量510t左右。该跨立交桥一端顶升100mm,另一端顶升500mm,支座加高后放回新支座。由于是板梁结构,对顶升同步要求极高,同一端各缸之间的同步误差应保持在±1.5mm以内,不能破坏板梁与板梁之间的铰缝混凝土。 如图4a所示,为了增加该板梁结构的整体性,在顶升的两端分别加了三拼140”工字钢做顶升托梁,同时每端布置5个顶升点,每个顶升点放置一顶升液压缸和位移传感器,顶升点之间的最大距离为4.45m,经计算托梁最大挠度变形满足工程要求。该顶升工程使用2台泵站,每台泵站带5个液压缸,控制一端的顶升,如图4b所示。两台泵站既可同时工作,也可单独工作,满足工程顶升要求。 a)顶升点布置 b)泵站 图4工程应用 图5是在顶升过程中记录的顶升界面,从图中右侧的位移实时变化曲线可看出顶升过程中的同步性,满足工程±1.5 mln的要求。  万方数据

液压同步回路

液压同步回路 1)机械联结同步回路 用机械构件将液压缸的运动件联结起来,可实现多缸同步。本回路是用齿轮齿条机构将两缸的活塞杆联结起来,也可以用刚性梁,杆机构等联结。机械联结同步,简单、可靠,同步精度取决于机构的制造精神和刚性。缺点是偏载不能太大,否则易卡住。(2)用分流阀的同步回路 当换向阀A与C均置于左位时,两液压缸活塞同步上升,换向阀A与C均置于右位时,两缸活塞同步下降。分流阀只能保证速度同步,而不能做到位置同步。因为它是靠提供相等的流量使液压缸同步的。使用分流阀同步,可不受偏载影响,阀内压降较大,一般不宜用于低压系统。 (3)用分流集流阀的同步回路 使用分流集流阀,既可以使两液压缸的进油流量相等,也可以使两缸的回油量相等,从而液压缸往返均同步。为满足液压缸的流量需要,可用两个分流集流阀并联,本回路即是。分流集流阀亦只能保证速度同步,同步精度一般为2~5%。 (4)用计量阀的同步回路 计量阀需要电动机带动,故也称计量泵,工作原理也与柱塞泵类似。本回路用同一电动机带动两个相同的计量阀,使两个液压缸速度同步,同步精度1~2%。计量阀流量范围小,故一般只用在液压缸所需流量很小的场合。

用调速阀控制流量,使液压缸获得速度同步。本回路用两个调速阀使两个液压缸单向同步。图示位置,两液压缸右行,可做到速度同步。但同步精度受调速阀性能和油温的影响,一般速度同步误差在5~10%左右。 (6)用调速阀同步的回路之二 因调速阀只能控制单方向流量,本回路采用了液桥回路后,使两个液压缸可获得双向速度同步。活塞上升时为进油节流调速,下降时为回油节流调速,速度同步误差一般为5~10%左右。 (7)液压马达与液压缸串联的同步回路 用液压马达驱动车床主轴,液压缸驱动车床拖板进给,液压马达的转速与液压缸活塞速度成一定比例同步运行,运行速度由变量泵调节。当泵的流量一定时,调节液压马达的排量,可在进给量不变的条件下改变主轴转速。 (8)串联缸的同步回路之一 液压缸1的有杆腔与液压缸2的无杆腔有效面积相等,可实现位移同步。其同步精度高,能适应较大偏载。为保证严格同步,必须对两缸之间的油腔采取排油和补油措施。本回路当两缸活塞下行时,如缸1的活塞先到达终点,则行程开关1XK动作,使电磁阀3带电,压力油进入缸2上腔,使其活塞继续下降到端点;如果缸2的活塞先下降到终点,则行程开关2XK动作,使电磁阀4带电,液控单向阀5被打开,可使缸1活塞继续下降到端点。

液压基本回路讲解

单元六基本回路 学习要求 1、掌握各种基本回路所具有的功能,功能的实现方法 2、掌握各种基本回路的元件组成 3、能画出各种简单的基本回路 重点与难点: 本章的难点是:三种节流调速回路的速度—负载特性;液压效率的概念;三种容积调速回路的调速过程与特性;系统卸荷的卸荷方式;容积——节流调速的调速过程;同步回路中提高同步精度的补偿措施等。 第一节速度控制回路 速度控制回路是调节和改变执行元件的速度的回路,又称为调速回路;能实现执行元件运动速度的无级调节是液压传动的优点之一。速度控制回路包括调整工作行程速度的调速回路、空行程的快速运动回路和实现快慢速度切换的速度换接回路。 一、调速回路 调速是为了满足液压执行元件对工作速度的要求,在不考虑液压油的压缩性和泄漏的情况下。由液压系统执行元件速度的表达式 可知: 液压缸的运动速度为: 液压马达的转速: 所以,改变输入液压执行元件的流量q或改变液压缸的有效面积A(或液压马达的排量)均可以达到改变速度的目的。但改变液压缸工作面积的方法在实际中是不现实的,因此,只能用改变进入液压执行元件的流量或用改变变量液压马达排量的方法来调速。为了改变进入液压执行元件的流量,可采用变量液压泵来供油,也

可采用定量泵和流量控制阀,以改变通过流量阀流量的方法。 根据以上分析,液压系统的调速方法可以有以下三种: (1)节流调速:采用定量泵供油,由流量阀调节进入执行元件的流量来实现调节执行元件运动速度的方法。 (2)容积调速:采用变量泵来改变流量或改变液压马达的排量来实现调节执行元件运动速度的方法。 (3)容积节流调速:采用变量泵和流量阀相配合的调速方法,又称联合调速。(一)节流调速回路 节流调速回路的工作原理是通过改变回路中流量控制元件(节流阀和调速阀)通流截面积的大小来控制流入执行元件或从执行元件中流出的流量,以调节其运动速度。节流调速回路的优点是结构简单可靠、成本低,但这种调速方法的效率较低;所以,节流调速回路一般适用于小功率系统。根根流量阀在回路中的位置不同,分为进油节流调速、回油节流调速和旁路节流调速三种回路。 1、进油路节流调速回路 将流量阀装在执行元件的进油路上称为进油节流调速,如图6-1所以。在进油路节流调速回路中,泵的压力由溢流阀调定后,基本保持不变,调节节流阀阀口的大小,便能控制进入液压缸的流量,从而达到调速的目的,定量泵输出的多余油液经溢流阀排回油箱。

液压驱动双油缸不同步的原因与解决方法

液压驱动双油缸不同步的原因与解决方法 The Standardization Office was revised on the afternoon of December 13, 2020

液压驱动双油缸不同步的原因与解决方法 液压油缸在斗轮堆取料机、起重机械、工程机械等设备上的得到十分广泛的应用,其特点是机构简单,设计制造方便。而在大多数场合下设备俯仰机构采用的是双油缸驱动,这就带来了双油油缸不同步问题。所谓双油油缸不同步是指两个油缸在运动时活塞杆所行走的位移量不同导致被支撑结构出现被扭曲或承受扭转载荷,严重时被支撑梁会出现过大的扭转角度使得设备无法正常运行或出现被支撑梁应力过大等问题。双油缸运行不同步的原因:1、两个油缸外载荷的偏差,如两个油缸的阻力不同、摩擦力不同会导致不平衡。其中阻力小的油缸位移量就会大一些。2、内部摩擦力的不同,如每个油缸的活塞与油缸之间,活塞杆与密封件之间的摩擦里的差距导致油缸不同步。3、两个油缸的输油管路上液压油沿程阻力的不同导致油缸出现不同步。4、控制原件调整的偏差导致流量的偏差出现不同步,如每个油缸使用独立的节流阀会出现进出油的流量的差别影响到两个油缸的同步。5、被支撑件的油缸支撑点最初就已经出现偏差,即初始状态就是偏斜的。6、油缸使用时间过长后出现活塞与油缸之间内泄漏导致双油缸不同步。双油缸运行不同步的解决办法:1、机械刚性同步与机械传动同步机械刚性同步是将被驱动件制造成具有足够刚度的结构,当油缸出现不同步现象时靠其自身的较强的刚度来实现同步。这种方式只有在结构设计条件许可的条件下进行。机械传动同步是将被驱动件在条件许可时采用齿轮或齿条的附属设施实现双油缸的同步。这种同步方式需要在机构具有特定条件下实施。2、回路中使用节流采用节流阀后可以分别调整两个油缸的进出口的液压油流量,达到调整两个油缸速度的目的。最终实现两个油缸同步的调整。优

液压作业2(基本回路有答案)

《液压与气压传动》复习资料及答案 9、先导式溢流阀原理如图所示,回答下列问题: + (1)先导式溢流阀原理由哪两部分组成 (2)何处为调压部分 (3)阻尼孔的作用是什么 (4)主阀弹簧为什么可较软 解:(1)先导阀、主阀。 (2)先导阀。 (3)制造压力差。 (4)只需克服主阀上下压力差作用在主阀上的力,不需太硬。 10、容积式液压泵的共同工作原理是什么 答:容积式液压泵的共同工作原理是:⑴形成密闭工作容腔;⑵密封容积交替变化;⑶吸、压油腔隔开。 11、溢流阀的主要作用有哪些 答:调压溢流,安全保护,使泵卸荷,远程调压,形成背压,多级调压 液压系统中,当执行元件停止运动后,使泵卸荷有什么好处 答:在液压泵驱动电机不频繁启停的情况下,使液压泵在功率损失接近零的情况下运转,以减少功率损耗,降低系统发热,延长泵和电机的使用寿命。 12、液压传动系统主要有那几部分组成并叙述各部分的作用。 答:动力元件、执行元件、控制调节元件、辅助元件、传动介质——液压油。 13、容积式液压泵完成吸油和压油必须具备哪三个条件 答:形成密闭容腔,密闭容积变化,吸、压油腔隔开。 14、试述进油路节流调速回路与回油路节流调速回路的不同之处。 17、什么叫做差动液压缸差动液压缸在实际应用中有什么优点 答:差动液压缸是由单活塞杆液压缸将压力油同时供给单活塞杆液压缸左右两腔,使活塞运动速度提高。 差动液压缸在实际应用中可以实现差动快速运动,提高速度和效率。 18、什么是泵的排量、流量什么是泵的容积效率、机械效率

答:(1)泵的排量:液压泵每转一周,由其密封几何尺寸变化计算而得的排出液体的体积。 (2)泵的流量:单位时间内所排出的液体体积。 (3)泵的容积效率:泵的实际输出流量与理论流量的比值。 (4)机械效率:泵的理论转矩与实际转矩的比值。 19、什么是三位滑阀的中位机能研究它有何用处 答:(1)对于三位阀,阀芯在中间位置时各油口的连通情况称为三位滑阀的中位机能。 (2)研究它可以考虑:系统的保压、卸荷,液压缸的浮动,启动平稳性,换向精度与平稳性。 20、画出直动式溢流阀的图形符号;并说明溢流阀有哪几种用法 答:(1) (2)调压溢流,安全保护,使泵卸荷,远程调压,背压阀。 21、液压泵完成吸油和压油必须具备什么条件 答:(1)具有密闭容积; (2)密闭容积交替变化; (3)吸油腔和压油腔在任何时候都不能相通。 22、什么是容积式液压泵它的实际工作压力大小取决于什么 答:(1)液压系统中所使用的各种液压泵,其工作原理都是依靠液压泵密封工作容积的大小交替变化来实现吸油和压油的,所以称为容积式液压泵。 (2)液压泵的实际工作压力其大小取决于负载。 23、分别说明普通单向阀和液控单向阀的作用它们有哪些实际用途 答:普通单向阀 (1)普通单向阀的作用是使油液只能沿着一个方向流动,不允许反向倒流。 (2)它的用途是:安装在泵的出口,可防止系统压力冲击对泵的影响,另外,泵不工作时,可防止系统油液经泵倒流回油箱,单向阀还可用来分隔油路,防止干扰。单向阀与其他阀组合便可组成复合阀。 单向阀与其他阀可组成液控复合阀 (3)对于普通液控单向阀,当控制口无控制压力时,其作用与普通单向阀一样;当控制口有控制压力时,通油口接通,油液便可在两个方向自由流动。 (4)它的主要用途是:可对液压缸进行锁闭;作立式液压缸的支承阀;起保压作用。 24、试举例绘图说明溢流阀在系统中的不同用处: (1)溢流恒压;(2)安全限压;(3)远程调压;(4)造成背压;(5)使系统卸荷。 答:(1)溢流恒压(2)安全限压(3)远程调压

一种补偿的双杆串联液压缸新同步回路

在液压系统中,使两个或多个液压缸在运动中保持相对位置或速度不变的回路称为同步回路。在多缸液压系统中,往往由于液压缸负载、摩擦阻力、泄漏、制造精度、结构变形以及油液中的含气量等因素的差异而不能使串联的液压缸保持同步,性能良好的液压回路要尽量克服或减少这些因素的不良影响。有关带补偿措施的串联液压缸同步回路,很多研究工作者对其进行了研究与改进。长沙大学汪大鹏做了开创性的工作,提出了几种单杆串联液压缸带补偿措施的新同步回路,采用单向阀、单向阀和顺序阀、在液压缸端盖和活塞上装单向阀来消除误差,但这几种同步回路只能在液压缸下行时消除误差,反向则不行。汪大鹏又提出了双杆串联液压缸的同步回路的补偿措施,采用单向阀、单向阀与顺序阀以及在活塞上装单向阀来消除误差。这几种补偿措施虽然可以消除双向误差,但需要在液压缸和活塞上另外加工油孔,不仅使液压缸加工工序和造价增加,而且由于油孔的存在,易产生应力集中,影响液压缸和活塞寿命,特别是活塞受其影响较大。另外由于使用多个单向阀,连接比较复杂。 本文提出了几种新的带补偿装置的双杆串联缸同步回路,可以免去加工油孔及其带来的不良影响,消除误差更准确、及时,而且价格也不贵。 2 现有的单杆串联缸同步回路 教材上提到一种带补偿装置的串联缸同步回路,如图1a所示,其工作原理简介如下。 图1 同步回路工作原理 2个串联的液压缸5和6,有效工作面积相等而使进出流量相等,理论上升降可同步,实际上产生的误差都可在每一个下行运动中消除。 例如,当1Y通电,三位四通电磁换向阀2左位接人回路,液压缸5和6活塞同时下行,如果缸5活塞先到达行程端点,则挡块压下行程开关1S,1S给三位四通电磁换向阀3发信号,使电磁铁3Y通电,换向阀3左位接人回路,压力油经换向阀3和液控单向阀4进入缸6上腔,进行补油,使其活塞继续下行到达行程端点,积累误差便可消除。 如果缸6活塞先到达行程端点,则挡块压下行程开关2s,2S给三位四通电磁换向阀3发信号,使电磁铁4Y通电,换向阀3右位接人回路,由于缸6先到达行程端点,遇到阻力,缸5上腔油压升高,高压油便进人液控单向阀4的控制腔,打开阀4,缸5下腔便与油箱接通,使其活塞继续下行到达行程端点,从而消除积累误差。 已有的这种同步回路的缺点是只能在液压缸下行时消除误差,上行时则不行,作者针对这种回路进行了改进,使液压缸双向都可消除误差。 3 对单杆串联缸同步回路的改进 针对图1a我们进行了改进,图1b和图1c是改进后的新同步回路,它们不仅克服了图1a中回路上行不能消除积累误差的缺点,而且结构简单,连接方便。3.1 采用两三位四通电磁换向阀对称连接的同步回路(1)图1b是新的带补偿装置的两缸双杆串联缸同步回路,与图la相比,保持了原有的液控单向阀和换向阀,增加了两个行程开关3S、4s和一个三位四通电磁换向阀5,使换向阀4和5对称水平放置,其工作原理如下。 如当1Y通电,三位四通电磁换向阀2左位接人回路,液压缸6和7活塞同时下行,如果缸6活塞先到达行程端点,则挡块压下行程开关1S,1S给三位四通电磁换向阀3发信号,使电磁铁4Y通电,换向阀3左位接入回路,压力油便不再经过缸6,而是经换向阀3和液控单向阀5进入缸7上腔,进行补油,使其活塞继续下行到达行程端点。下行中积累误差即被消除。 如果缸7活塞先到达行程端点,则挡块压下行程开关2s,2S给三位四通电磁换向阀3发信号,使电磁铁3Y通电,换向阀3右位接入回路,由于缸7先到达行程端点,遇到阻力,缸6上腔油压升高,高压油便进入液控单向阀5的控制腔,打开阀5,液压油便由缸6下腔,经过液控单向阀5流回油箱,下行中积累误差即被消除。 如果换向阀2换向,2Y通电,右位接人回路,液压缸6和7活塞同时上行,如果缸6活塞先到达行程端点,则挡块顶起行程开关3s,3s给换向阀4发信号,使电磁铁5Y得电,换向阀4右位接人回路,压力油液压英才网用心专注、服务专业

液压基本回路

第七章液压基本回路 7-4 多缸(马达)工作控制回路 一、顺序动作回路(sequencing circuit) 1、行程控制顺序动作回路 图a所示为用行程阀控制的顺序动作回路。在图示状态下,A、B两缸的活塞均在端。当推动手柄,使阀C左位工作,缸A左行,完成动作①;挡块压下行程阀D后,缸B左行,完成动作②;手动换向阀C复位后,缸A先复位,实现动作③;随着挡块后移,阀D 复位,缸B退回实现动作④。完成一个工作循环。 图b所示为用行程开关控制的顺序动作回路。当阀E得电换向时,缸A左行完成动作①;其后,缸A触动行程开关S1使阀得电换向,控制缸B左行完成动作②;当缸B左行至触动行程开关S2使阀E失电时,缸A返回,实现动作③;其后,缸A触动S3使9断电,缸B返回完成动作④;最后,缸月触动S4使泵卸荷或引起其它动作,完成一个工作循环。 2、压力控制顺序动作回路 图所示为使用顺序阀的压力控制顺序动作回路。

当换向阀左位接入回路且顺序阀D的调定压力大于缸A的最大前进工作压力时,压力油先进入缸A左腔,实现动作①;缸行至终点后压力上升,压力油打开顺序阀D进入缸B 的左腔,实现动作②;同样地,当换向阀右位接入回路且顺序阀C的调定压力大于缸B的最大返回工作压力时,两缸按③和④的顺序返回。 3、时间控制顺序动作回路 这种回路是利用延时元件(如延时阀、时间继电器等)使多个缸按时间完成先后动作的回路。图所示为用延时阀来实现缸3、4工作行程的顺序动作回路。 当阀1电磁铁通电,左位接通回路后,缸3实现动作①;同时,压力油进入延时阀2

中的节流阀B,推动换向阀A缓慢左移,延续一定时间后,接通油路a、b,油液才进入缸4,实现动作②。通过调节节流阀开度,来调节缸3和4先后动作的时间差。当阀1电磁铁断电时,压力油同时进入缸3和缸4右腔,使两缸返向,实现动作③。由于通过节流阀的流量受负载和温度的影响,所以延时不易准确,一般都与行程控制方式配合使用。 二、同步回路(synchronizing circuit) 同步回路的功用是:保证系统中的两个或多个缸(马达)在运动中以相同的位移或相同的速度(或固定的速比)运动。在多缸系统中,影响同步精度的因素很多,如:缸的外负载、泄漏、摩擦阻力、制造精度、结构弹性变形以及油液中含气量,都会使运动不同步。为此,同步回路应尽量克服或减少上述因素的影响。 1、容积式同步回路 (1)、同步泵的同步回路:用两个同轴等排量的泵分别向两缸供油,实现两缸同步运动。正常工作时,两换向阀应同时动作;在需要消除端点误差时,两阀也可以单独动作。 (2)、同步马达的同步回路:用两个同轴等排量马达作配流环节,输出相同流量的油液来实现两缸同步运动。由单向阀和溢流阀组成交叉溢流补油回路,可在行程端点消除误差。 (3)、同步缸的同步回路:同步缸3由两个尺寸相同的双杆缸连接而成,当同步缸的活塞左移时,油腔a与b中的油液使缸1与缸2同步上升。若缸1的活塞先到达终点,则油腔a的余油经单向阀4和安全阀5排回油箱,油腔b的油继续进入缸2下腔,使之到达终点。同理,若缸2的活塞先达终点,也可使缸1的活塞相继到达终点。

液压多缸同步方法的选择

1有关程控液压同步分流器 第一章概况 液压技术是实现现在传动与自动化控制的关键技术之一,液压技术以器特有的特性,可以实现体积小,高响频,易扩展,柔性传输,无缝无级变速,可操控性能好,易于实现直线运动等优点征服世界,从而世界各国都对液压工业的发展给予了很大在重视,而液压同步技术,则是液压技术里的一个很大的分支,有这举足轻重的地位,特别是在高精度,高响频率,大流量,长行程领域.然而,这个技术基本全部掌握在国外几家大公司受力,因此很多地方的运用都受到了这样那样的限制. 一目前运用的液压多缸同步优缺点分析 1: 同步阀同步: 同步阀是最老的技术之一,使用分流截流方式实现同步,有点的价格便宜,安装方便.流量范围大.缺点精度低,抗偏载能力差,需要反复调节,只适用同步要求不高,没有同步危险的地方.属于低端产品,也比较成熟.误差终点补偿.如果出现偏载严重或者油缸卡滞,同步效果随即失效. 正常同步精度5%-10% 1 无调节同步阀 2可调节同步阀 3 电控调节同步阀

2、同步缸同步: 同步缸是容积同步,同步精度高,抗偏载能力强,对油品抗污染能力强, 价格相应较高,属于被动同步, 缺点是体积大, 流量小, 补油困难, 安装受限, 体积不能做的很大, 否则会严重影响同步精度和安全, 油缸出现内泄补油困难.可以在合适的地方使用.液压油不循环,容易 升温和污染,影响系统工作. 正常同步精度0.1%-5% 1 同步缸(流量小) 2 串联油缸(制作工艺要求高) 3 双出头油缸串联(压力损失大,加工精度要求高,维修困难) 4 同步缸是同步精度理论上的0,但是由于制造精度的原因,不 能做得很大,在流量,小行程时可以采用,大流量,大行程时, 不适合. 3、同步马达(同步分流马达): 同步马达也是采用容积同步方式, 用同心轴连接,同步性能好,抗 偏载能力强,抗污染能力强, 缺点体积大,价格高, 维修困难,使用有 限制,必须在转速范围才可以, 目前是主流,使用范围广.也可用于增压. 同步精度1%-10%

液压传动系统的基本回路

同兴液压总汇:贴心方案星级服务 液压传动系统的基本回路 由有关液压元件组成,用来完成特定功能的典型油路。任何一个液压传动系统都是由几个基本回路组成的,每一基本回路都具有一定的控制功能。几个基本回路组合在一起,可按一定要求对执行元件的运动方向、工作压力和运动速度进行控制。根据控制功能不同,基本回路分为压力控制回路、速度控制回路和方向控制回路。 压力控制回路 用压力控制阀(见液压控制阀)来控制整个系统或局部范围压力的回路。根据功能不同,压力控制回路又可分为调压、变压、卸压和稳压4种回路。 ①调压回路:这种回路用溢流阀来调定液压源的最高恒定压力,图中的溢流阀就起这一作用。当压力大于溢流阀的设定压力时,溢流阀开口就加大,以降低液压泵的输出压力,维持系统压力基本恒定。 ②变压回路:用以改变系统局部范围的压力,如在回路上接一个减压阀则可使减压阀以后的压力降低;接一个升压器,则可使升压器以后的压力高于液压源压力。 ③卸压回路:在系统不要压力或只要低压时,通过卸压回路使系统压力降为零压或低压。 ④稳压回路:用以减小或吸收系统中局部范围内产生的压力波动,保持系统压力稳定,例如在回路中采用蓄能器。 速度控制回路 通过控制介质的流量来控制执行元件运动速度的回路。按功能不同分为调速回路和同步回路。 ①调速回路:用来控制单个执行元件的运动速度,可以用节流阀或调速阀来控制流量,如图中的节流阀就起这一作用。节流阀控制液压泵进入液压缸的流量(多余流量通过溢流阀流回油箱),从而控制液压缸的运动速度,这种形式称为节流调速。也可用改变液压泵输出流量来调速,称为容积调速。 ②同步回路:控制两个或两个以上执行元件同步运行的回路,例如采用把两个执行元件刚性连接的方法,以保证同步;用节流阀或调速阀分别调节两个执行元件的流量使之相等,以保证同步;把液压缸的管路串联,以保证进入两液压缸的流量相同,从而使两液压缸同步。 方向控制回路 控制液压介质流动方向的回路。用方向控制阀控制单个执行元件的运动方向,使之能正反方向运动或停止的回路,称为换向回路,图中的换向阀即起这一作用。在执行元件停止时,防止因载荷等外因引起泄漏导致执行元件移动的回路,称为锁紧回路。

液压驱动双油缸不同步的原因与解决方法

液压驱动双油缸不同步的原因与解决方法 液压油缸在斗轮堆取料机、起重机械、工程机械等设备上的得到十分广泛的应用,其特点是机构简单,设计制造方便。而在大多数场合下设备俯仰机构采用的是双油缸驱动,这就带来了双油油缸不同步问题。所谓双油油缸不同步是指两个油缸在运动时活塞杆所行走的位移量不同导致被支撑结构出现被扭曲或承受扭转载荷,严重时被支撑梁会出现过大的扭转角度使得设备无法正常运行或出现被支撑梁应力过大等问题。双油缸运行不同步的原因:1、两个油缸外载荷的偏差,如两个油缸的阻力不同、摩擦力不同会导致不平衡。其中阻力小的油缸位移量就会大一些。2、内部摩擦力的不同,如每个油缸的活塞与油缸之间,活塞杆与密封件之间的摩擦里的差距导致油缸不同步。3、两个油缸的输油管路上液压油沿程阻力的不同导致油缸出现不同步。4、控制原件调整的偏差导致流量的偏差出现不同步,如每个油缸使用独立的节流阀会出现进出油的流量的差别影响到两个油缸的同步。5、被支撑件的油缸支撑点最初就已经出现偏差,即初始状态就是偏斜的。6、油缸使用时间过长后出现活塞与油缸之间内泄漏导致双油缸不同步。双油缸运行不同步的解决办法:1、机械刚性同步与机械传动同步机械刚性同步是将被驱动件制造成具有足够刚度的结构,当油缸出现不同步现象时靠其自身的较强的刚度来实现同步。这种方式只有在结构设计条件许可的条件下进行。机械传动同步是将被驱动件在条件许可时采用齿轮或齿条的附属设施实现双油缸的同步。这种同步方式需要在机构具有特定条件下实施。2、回路中使用节流采用节流阀后可以分别调整两个油缸的进出口的液压油流量,达到调整两个油缸速度的目的。最终实现两个油缸同步的调整。优点是比较简单。缺点是同步效果不佳。调整后同步的偏差仍然比较大。图1 在油缸进出油口加节流阀3、在液压回路中使用分流阀与集流阀或者调速阀分流阀与集流阀或者调速阀调整两个油缸的同步效果要比采用节流阀好一些。这是因为分流阀与集流阀或者调速阀对流量的控制相对准确。图2 在两个油缸的有杆腔与无杆腔进出油口加分流阀与集流阀或调速阀4、两个油缸分别使用独立定量泵供油实现双缸同步采用两个油泵分别驱动两个油缸,由于两个油泵的流量相等。两个油缸之间的进出油缸的液压油不受相互牵连。尽管载荷有所不同,但在流量相同的条件下可以实现同步。5、回路中采用同步马达实现双油缸同步图3 在双缸的进油口加同步马达供油的同

同步回路

同步回路 同步回路的作用是保证多个执行元件克服负载、摩擦阻力、泄漏、制造质量和结构变形上的差异,从而保证在运动上的同步。同步回路分为速度同步和位置同步两类。 1.采用流1控制间的同步回路 图7. 36(a)是两个并联的液压缸分别用调速阀控制的同步回路。两个调速阀分别调节两缸活塞的运动速度,当两缸有效面积相等时,则流量也调整得相同;若两缸面积不等时,则改变调速阀的流量也能达到同步的运动.这种回路结构简单,并且可以调速;但是调整比较麻烦,而且由于受到油温变化以及调速阀性能差异等影响,同步精度较低,一般在5%-7%。图7. 36(b)所示回路,采用分流集流阀(同步阀)代替调速阀来控制两液压缸的进人或流出的流量,可使两液压缸在承受不同负载时仍能实现速度同步.回路中单向节流阀2用来控制活塞的下降速度,液控单向阀4用来防止活塞停止时两缸因负载不同而通过分流阀的内节流孔窜油。由于同步作用靠分流阀自动调整,使用较为方便,但效率低、压力损失大,不宜用于低压系统。 2.采用串联液压缸的同步回路 图7.37是串联液压缸的同步回路。图中第一个液压缸回油腔排出的油液被送人第二个液压缸的进油腔。如果串联油腔活塞的有效面积相等时,便可实现同步运动。这种回路中两缸能承受不同的负载,但泵的供油压力要大于两缸工作压力之和。 由于泄漏和制造误差影响了串联液压缸的同步精度,当活塞往复多次后,会产生严重的失调现象,为此要采取补偿措施。在活塞下行的过程中,如液压缸6的活塞先运动到底,触动行程开关Is发信使电磁铁3YA通电,此时压力油便经过三位四通电磁阀4、液控单向阀5,向液压缸7的上腔补油,使缸7的活塞继续运动到底。如果液压缸7的活塞先运动到底触动行程开关2S,使电磁铁4YA通电,压力油便经三位

液压基本回路电子教案

【课题编号】 26—11.5 【课题名称】 液压基本回路 【教学目标与要求】 一、知识目标 了解组成液压传动系统的四大基本回路的结构、运动特点和应用场合。 二、能力目标 能够将液压传动系统分成几个基本回路,以便分析运动分析。 三、素质目标能分析液压系统的传动过程。 四、教学要求 1. 能够认识四个基本回路的组成,即各回路中不同类型的特点。 2. 能够把液压传动系统图分成相应的基本回路,分析各个回路在传动中的作用。 【教学重点】 各典型回路的运动特点分析。 【难点分析】 1.换向阀不同中位机能的作用。 2.进油节流调速与回油节流调速比较。 3.二次进给回路的应用。

分析学生】 由于传动系统的图形符号不复杂,比较直观,难度不大,只要各种阀的动作机理清楚,各个典型回路应当比较容易理解。方向控制阀的各中位机能的作用对执行元件运动的影响,估计学生缺少感性认识,可能理解不深。 【教学思路设计】重点是分析各种典型回路的特点,比较各回路对执行件的影响,所以要注意采用比较法来记住各种回路的特点。 【教学安排】 2 学时(90 分钟) 【教学过程】 对于任何一种液压传动系统,无论其结构有多么的复杂,总归是由一些基本回路组成的,只要熟悉这些基本回路,就能比较容易地分析传动的过程,正如分析机器时,先将它拆成各个机构一样。 一、方向控制回路 1.换向如图11—35 的换向回路由手动三位四通阀来控制工作台的左右运动,图示位置换向阀处于左位,油液进入油缸左腔,执行元件右移;当换向改换成为右位时,油液进入油缸右腔,执行元件左移,实现左右移动。而换向阀处于中位时,由于进油口与回油口相通,油液全部流回油箱,油缸左右两腔油液被封闭,执行元件固定不动。图中溢流阀、压力表、液压泵和配件为基本配置元件。 2 . 锁紧将执行元件锁紧在某个位置上不得左右窜动。常用的 回路有换向阀锁紧和单向阀锁紧两种 1)换向阀锁紧回路如图11—36 所示,换向阀的中位机能为O

液压传动控制回路

哈尔滨应用职业技术学院毕业论文 题目液压同步回路的应用 学生姓名张硕 系部名称机电工程系 专业班级机械一班 指导教师吴君 起止时间 教务处制

毕业论文项目表 填表日期2015年 05月12日迄今已进行周剩余周 学生姓名张硕系部机电工程专业、班级机械一班 指导教师姓名吴君职称 从事 专业 是否外聘□是□否题目名称液压传动速度控制回路 指导教师 意见 指导教师签字:年月日 系意见 系主任签字:年月日 毕业答辩成绩: 年月日小组答辩委员会成员签字: 年月日答辩委员会主任签字: 年月日

摘要 本课题研究主要讲述了液压传动系统在机械工业制造中的应用,全方面的介绍了液压传动系统的各种知识。在液压传动系统中,各机构的运动速度要求各不相同,而液压能源却是共用的,这就要采用速度控制回路来解决各执行元件不同的速度要求。再如飞机上的某些执行收放动作的液压缸,受外负载的影响很大,使得“收”和“放”两方向的速度相差较大,为使“放下"液压缸平稳而均匀地动作,也需要采用速度控制回路来解决。液压传动系统中速度控制回路包括调节液压执行元件的速度的调速回路,使之获得快速运动的快速回路,快速运动和工作进给速度以及工作进给速度之间的速度接换回路。 关键词:减速回路、增速回路、调速回路 (一)减速回路 利用控制流量的减速回路有以下几种。 图6—16所示是歼击机起落架收放系统中常用的一种“进路节流力减速回路,在放下起落架.(活塞杆伸出)的高压进油路上安装节流阀和单向阀,当放起落架时单向阀关闭,液压油只能经节流阀进入液压缸,使液压缸活塞杆伸出动作平稳。这种回路一般用于负载为“正”的场合.(即负载与活塞运动方向相反)。 图6-17所示是一种“回路节流”的减速回路,调速阀和单向阀并联安装在回油路上。这种回路一般用于负载为“负"的场合或负载突然减小的场合。此回路的优点是能形成背压以承受“负抄负载,防止突进,运动较平稳,在机床液压系统中用得较多。此种回路有一个缺点,若泵源是采用溢流阀保持给定压力时,则效率较低。因为泵源的

液压系统同步回路的设计

摘 要:通过对液压系统中同步回路的分析,介绍了各种同 步回路设计时的优缺点及设计的改进措施,以便根据具体情况选择合适同步回路。 关键词:液压系统;同步回路;串联缸;节流阀;分流阀 1前言 在液压系统设计中,要求执行机构动作同步的情况较多,设计人员通常采用节流调速、串联液压缸、分流阀及同步马达等一系列方案来实现。由于在设备制造和运行中存在一系列内在和外在因素,如泄露、制造误差、摩擦和阻力等问题,使同步回路在应用时获得的同步效果有差异,这就要求在方案设计时针对不同工况选择不同的同步回路。下面介绍一些常用的同步回路设计方法,为设计人员合理地选择同步回路提供参考。 2 同步回路的设计 2.1 液压缸机械结合同步回路 图1中回路由两执行油缸和刚性梁组成,通过 刚性梁联接实现两缸同步。图2中回路由两执行油缸、齿轮齿条缸组成,通过齿轮齿条将两缸联接在一起,从而实现同步。两液压回路液压缸的同步都是靠机械结构来保证的,这种回路特点是同步性能较可靠,但由于油缸的受力有差别时硬性的机械作用力可能对油缸有所损伤,同时对机械联接的强度要求有所增加。在实际应用上,我公司生产的6000t/h 堆取料机,其大臂俯仰油缸就是采用机械刚性联接实现同步的,满足了油缸同步的要求。2.2 串联液压缸同步回路 图3中回路由泵、溢流阀、换向阀及两串联缸组成,要求实现两串联缸同步。实现此串联液压缸同步回路的前提条件是:必须使用双侧带活塞杆的液压缸,或者串联的两油腔的有效作用面积相等,这样根据油缸速度为流量与作用面积的比值,油缸 的速度才能相同。但是,这种结构往往由于制造上的误差、内部泄露及混入空气等原因而影响其同步 性。对于负载一定时, 需要的油路压力要增加,其增加的倍数为其所串联的油缸数。为了补偿因为泄露造成的油缸不同步问题,在设计同步回路时可以采用带补油装置的同步回路,见图4。 图4中回路较图3增加了液压锁和控制液压 锁打开的换向阀,这条油路的增加可使两串联缸更好地实现同步。同样,缸Ⅰ的有杆腔A 和缸Ⅱ的无杆腔B 的受力面积相同。在工作状态,活塞杆伸出 液压系统同步回路的设计 大连华锐股份有限公司液压装备厂王经伟 重工与起重技术 HEAVY INDUSTRIAL &HOISTING MACHINERY No.12010Serial No.25 2010年第1期总第25 期

相关文档