文档库 最新最全的文档下载
当前位置:文档库 › Linux设备驱动程序学习(17)-USB 驱动程序(二)

Linux设备驱动程序学习(17)-USB 驱动程序(二)

Linux设备驱动程序学习(17)-USB 驱动程序(二)
Linux设备驱动程序学习(17)-USB 驱动程序(二)

Linux设备驱动程序学习(17)-USB 驱动程序(二) (2009-07-14 00:38) 分类:Linux设备驱动程序

内核使用2.6.29.4

USB设备其实很复杂,但是Linux内核提供了一个称为USB core的子系统来处理了大部分的复杂工作,所以这里所描述的是驱动程序和USB core之间的接口。

在USB设备组织结构中,从上到下分为设备(device)、配置(config)、接口(interface)和端点(endpoint)四个层次。

对于这四个层次的简单描述如下:

设备通常具有一个或多个的配置

配置经常具有一个或多个的接口

接口通常具有一个或多个的设置

接口没有或具有一个以上的端点

设备

很明显,地代表了一个插入的USB设备,在内核使用数据结构 struct usb_device来描述整个USB设备。(include/linux/usb.h)

struct device dev;//一般的设备接口数据结构

struct usb_device_descriptor descriptor;//USB设备描述符struct usb_host_config *config;//设备的所有配置

struct usb_host_config *actconfig;//被激活的设备配置struct usb_host_endpoint *ep_in[16];//输入端点数组struct usb_host_endpoint *ep_out[16];//输出端点数组

char**rawdescriptors;//每个配置的raw描述符

unsigned short bus_mA;//可使用的总线电流

u8 portnum;//父端口号

u8 level;//USB HUB的层数

unsigned can_submit:1;//URB可被提交标志

unsigned discon_suspended:1;//暂停时断开标志unsigned persist_enabled:1;//USB_PERSIST使能标志unsigned have_langid:1;//string_langid存在标志unsigned authorized:1;

unsigned authenticated:1;

unsigned wusb:1;//无线USB标志

int string_langid;//字符串语言ID

/* static strings from the device *///设备的静态字符串char*product;//产品名

char*manufacturer;//厂商名

char*serial;//产品串号

struct list_head filelist;//此设备打开的usbfs文件

#ifdef CONFIG_USB_DEVICE_CLASS

struct device *usb_classdev;//用户空间访问的为usbfs设备创建的USB 类设备

#endif

#ifdef CONFIG_USB_DEVICEFS

struct dentry *usbfs_dentry;//设备的usbfs入口

#endif

int maxchild;//(若为HUB)接口数

struct usb_device *children[USB_MAXCHILDREN];//连接在这个HUB 上的子设备

int pm_usage_cnt;//自动挂起的使用计数

u32 quirks;

atomic_t urbnum;//这个设备所提交的URB计数

unsigned long active_duration;//激活后使用计时

#ifdef CONFIG_PM //电源管理相关

struct delayed_work autosuspend;//自动挂起的延时

struct work_struct autoresume;//(中断的)自动唤醒需求

struct mutex pm_mutex;//PM的互斥锁

unsigned long last_busy;//最后使用的时间

int autosuspend_delay;

unsigned long connect_time;//第一次连接的时间

配置

一个USB设备可以有多个配置,并可在它们之间转换以改变设备的状态。比如一个设备可以通过下载固件(firmware)的方式改变设备的使用状态(我感觉类似FPGA或CPLD),那么USB设备就要切换配置,来完成这个工作。一个时刻只能有一个配置可以被激活。Linux使用结构 struct usb_host_config 来描述USB 配置。我们编写的USB设备驱动通常不需要读写这些结构的任何值。可在内核源

接口

USB端点被绑为接口,USB接口只处理一种USB逻辑连接。一个USB接口代表一个基本功能,每个USB驱动控制一个接口。所以一个物理上的硬件设备可能需要一个以上的驱动程序。这可以在“晕到死差屁”系统中看出,有时插入一个USB 设备后,系统会识别出多个设备,并安装相应多个的驱动。

USB 接口可以有其他的设置,它是对接口参数的不同选择. 接口的初始化的状态是第一个设置,编号为0。其他的设置可以以不同方式控制独立的端点。

USB接口在内核中使用 struct usb_interface 来描述。USB 核心将其传递给USB 驱动,并由USB驱动负责后续的控制。

struct usb_interface {

struct usb_host_interface *altsetting;/* 包含所有可用于该接口的可选设置的

接口结构数组。每个struct usb_host_interface 包含一套端点配置(即struct usb_host_endpoint结构所定义的端点配置。这些接口结构没有特别的顺序。

*/

struct usb_host_interface *cur_altsetting;/* 指向altsetting内部的指针,表示

当前激活的接口配置*/

unsigned num_altsetting;/* 可选设置的数量*/

/* If there is an interface association descriptor then it will list the associated interfaces */

struct usb_interface_assoc_descriptor *intf_assoc;

int minor;/* 如果绑定到这个接口的USB 驱动使用USB 主设备号, 这个

变量包含由USB 核心分配给接口的次设备号. 这只在一个成功的调用

usb_register_dev后才有效。*/

/*以下的数据在我们写的驱动中基本不用考虑,系统会自动设置*/

enum usb_interface_condition condition;/* state of binding */

unsigned is_active:1;/* the interface is not suspended */

unsigned sysfs_files_created:1;/* the sysfs attributes exist */

unsigned ep_devs_created:1;/* endpoint "devices" exist */

unsigned unregistering:1;/* unregistration is in progress */

unsigned needs_remote_wakeup:1;/* driver requires remote wakeup */

unsigned needs_altsetting0:1;/* switch to altsetting 0 is pending */

unsigned needs_binding:1;/* needs delayed unbind/rebind */

unsigned reset_running:1;

struct device dev;/* 接口特定的设备信息*/

struct device *usb_dev;

int pm_usage_cnt;/* usage counter for autosuspend */

struct work_struct reset_ws;/* for resets in atomic context */

};

struct usb_host_interface {

struct usb_interface_descriptor desc;//接口描述符

struct usb_host_endpoint *endpoint;/* 这个接口的所有端点结构体的联合数

组*/

char*string;/* 接口描述字符串*/

unsigned char*extra;/* 额外的描述符*/

int extralen;

};

端点

USB 通讯的最基本形式是通过一个称为端点的东西。一个USB端点只能向一个方向传输数据(从主机到设备(称为输出端点)或者从设备到主机(称为输入端点))。端点可被看作一个单向的管道。

一个 USB 端点有 4 种不同类型, 分别具有不同的数据传送方式:

控制CONTROL

控制端点被用来控制对 USB 设备的不同部分访问. 通常用作配置设备、获取设备信息、发送命令到设备或获取设备状态报告。这些端点通常较小。每个 USB 设备都有一个控制端点称为"端点 0", 被 USB 核心用来在插入时配置设备。USB

协议保证总有足够的带宽留给控制端点传送数据到设备.

中断INTERRUPT

每当 USB 主机向设备请求数据时,中断端点以固定的速率传送小量的数据。此为USB 键盘和鼠标的主要的数据传送方法。它还用以传送数据到 USB 设备来控制设备。通常不用来传送大量数据。USB协议保证总有足够的带宽留给中断端点传送数据到设备.

批量BULK

批量端点用以传送大量数据。这些端点常比中断端点大得多. 它们普遍用于不能有任何数据丢失的数据。USB 协议不保证传输在特定时间范围内完成。如果总线上没有足够的空间来发送整个BULK包,它被分为多个包进行传输。这些端点普遍用于打印机、USB Mass Storage和USB网络设备上。

等时ISOCHRONOUS

等时端点也批量传送大量数据, 但是这个数据不被保证能送达。这些端点用在可以处理数据丢失的设备中,并且更多依赖于保持持续的数据流。如音频和视频设备等等。

控制和批量端点用于异步数据传送,而中断和同步端点是周期性的。这意味着这些端点被设置来在固定的时间连续传送数据,USB 核心为它们保留了相应的带宽。

端点在内核中使用结构 struct usb_host_endpoint 来描述,它所包含的真实端点信息在另一个结构中:struct usb_endpoint_descriptor(端点描述符,包含

};

/*-------------------------------------------------------------------------*/

/* USB_DT_ENDPOINT: Endpoint descriptor */

struct usb_endpoint_descriptor {

__u8 bLength;

__u8 bDescriptorType;

__u8 bEndpointAddress;/*这个特定端点的USB 地址,这个8位数据包含端点的方向,结合位掩码USB_DIR_OUT 和USB_DIR_IN 使用, 确定这个端点的数据方向。*/

__u8 bmAttributes;//这是端点的类型,位掩码如下

__le16 wMaxPacketSize;/*端点可以一次处理的最大字节数。驱动可以发送比这个值大的数据量到端点, 但是当真正传送到设备时,数据会被分为wMaxPakcetSize 大小的块。对于高速设备, 通过使用高位部分几个额外位,可用来支持端点的高带宽模式。*/

__u8 bInterval;//如果端点是中断类型,该值是端点的间隔设置,即端点的中断请求间的间隔时间,以毫秒为单位

/* NOTE: these two are _only_ in audio endpoints. */

/* use USB_DT_ENDPOINT*_SIZE in bLength, not sizeof. */

__u8 bRefresh;

__u8 bSynchAddress;

} __attribute__ ((packed));

#define USB_DT_ENDPOINT_SIZE 7

#define USB_DT_ENDPOINT_AUDIO_SIZE 9 /* Audio extension */

/*

* Endpoints

*/

#define USB_ENDPOINT_NUMBER_MASK 0x0f /* in bEndpointAddress 端

点的USB 地址掩码*/

#define USB_ENDPOINT_DIR_MASK 0x80 /* in bEndpointAddress 数据方

向掩码*/

#define USB_DIR_OUT 0 /* to device */

#define USB_DIR_IN 0x80 /* to host */

#define USB_ENDPOINT_XFERTYPE_MASK 0x03 /* bmAttributes 的位掩

码*/

#define USB_ENDPOINT_XFER_CONTROL 0

#define USB_ENDPOINT_XFER_ISOC 1

#define USB_ENDPOINT_XFER_BULK 2

#define USB_ENDPOINT_XFER_INT 3

#define USB_ENDPOINT_MAX_ADJUSTABLE 0x80

/*-------------------------------------------------------------------------*/

USB 和 sysfs

由于单个 USB 物理设备的复杂性,设备在 sysfs 中的表示也非常复杂。物理USB 设备(通过 struct usb_device 表示)和单个 USB 接口(由 struct

usb_interface 表示)都作为单个设备出现在 sysfs 中,这是因为这两个结构都包含一个 struct device结构。以下内容是我的USB鼠标在 sysfs 中的目录

||-- 0003:046D:C018.0003

|||-- driver ->../../../../../../../bus/hid/drivers/generic-usb |||-- power

||| `-- wakeup

|||-- subsystem ->../../../../../../../bus/hid

|| `-- uevent

||-- bAlternateSetting

||-- bInterfaceClass

||-- bInterfaceNumber

||-- bInterfaceProtocol

||-- bInterfaceSubClass

||-- bNumEndpoints

||-- driver ->../../../../../../bus/usb/drivers/usbhid

||-- ep_81 -> usb_endpoint/usbdev3.4_ep81

||-- input

|| `-- input6

|||-- capabilities

||||--abs

||||-- ev

||||-- ff

||||-- key

||||-- led

||||-- msc

||||-- rel

||||-- snd

||| `-- sw

|||-- device ->../../../3-1:1.0

|||-- event3

||||-- dev

||||-- device ->../../input6

||||-- power

|||| `-- wakeup

||||-- subsystem ->../../../../../../../../../class/input ||| `-- uevent

|||-- id

||||-- bustype

||||-- product

||||-- vendor

||| `-- version

|||-- modalias

|||-- mouse1

||||-- dev

||||-- device ->../../input6

||||-- power

|||| `-- wakeup

||||-- subsystem ->../../../../../../../../../class/input ||| `-- uevent

|||-- name

|||-- phys

|||-- power

||| `-- wakeup

|||-- subsystem ->../../../../../../../../class/input

|||-- uevent

|| `-- uniq

||-- modalias

||-- power

|| `-- wakeup

||-- subsystem ->../../../../../../bus/usb

||-- supports_autosuspend

||-- uevent

| `-- usb_endpoint

| `-- usbdev3.4_ep81

||-- bEndpointAddress

||-- bInterval

||-- bLength

||-- bmAttributes

||-- dev

||-- device ->../../../3-1:1.0

||-- direction

||-- interval

||-- power

|| `-- wakeup

||-- subsystem ->../../../../../../../../class/usb_endpoint ||-- type

||-- uevent

| `-- wMaxPacketSize

|-- authorized

|-- bConfigurationValue

|-- bDeviceClass

|-- bDeviceProtocol

|-- bDeviceSubClass

|-- bMaxPacketSize0

|-- bMaxPower

|-- bNumConfigurations

|-- bNumInterfaces

|-- bcdDevice

|-- bmAttributes

|-- busnum

|-- configuration

|-- descriptors

|-- dev

|-- devnum

|-- driver ->../../../../../bus/usb/drivers/usb |-- ep_00 -> usb_endpoint/usbdev3.4_ep00 |-- idProduct

|-- idVendor

|-- manufacturer

|-- maxchild

|-- power

||-- active_duration

||-- autosuspend

||-- connected_duration

||-- level

||-- persist

| `-- wakeup

|-- product

|-- quirks

|-- speed

|-- subsystem ->../../../../../bus/usb

|-- uevent

|-- urbnum

|-- usb_endpoint

| `-- usbdev3.4_ep00

||-- bEndpointAddress

||-- bInterval

||-- bLength

USB sysfs 设备命名方法是: root_hub-hub_port:config.interface

随着USB集线器层次的增加, 集线器端口号被添加到字符串中紧随着链中之前的集线器端口号。对一个 2 层的树, 设备为:

root_hub-hub_port-hub_port:config.interface,以此类推。

Linux设备驱动程序举例

Linux设备驱动程序设计实例2007-03-03 23:09 Linux系统中,设备驱动程序是操作系统内核的重要组成部分,在与硬件设备之间 建立了标准的抽象接口。通过这个接口,用户可以像处理普通文件一样,对硬件设 备进行打开(open)、关闭(close)、读写(read/write)等操作。通过分析和设计设 备驱动程序,可以深入理解Linux系统和进行系统开发。本文通过一个简单的例子 来说明设备驱动程序的设计。 1、程序清单 //MyDev.c 2000年2月7日编写 #ifndef __KERNEL__ #define __KERNEL__//按内核模块编译 #endif #ifndef MODULE #define MODULE//设备驱动程序模块编译 #endif #define DEVICE_NAME "MyDev" #define OPENSPK 1 #define CLOSESPK 2 //必要的头文件 #include //同kernel.h,最基本的内核模块头文件 #include //同module.h,最基本的内核模块头文件 #include //这里包含了进行正确性检查的宏 #include //文件系统所必需的头文件 #include //这里包含了内核空间与用户空间进行数据交换时的函数宏 #include //I/O访问 int my_major=0; //主设备号 static int Device_Open=0; static char Message[]="This is from device driver"; char *Message_Ptr; int my_open(struct inode *inode, struct file *file) {//每当应用程序用open打开设备时,此函数被调用 printk ("\ndevice_open(%p,%p)\n", inode, file); if (Device_Open) return -EBUSY;//同时只能由一个应用程序打开 Device_Open++; MOD_INC_USE_COUNT;//设备打开期间禁止卸载 return 0; } static void my_release(struct inode *inode, struct file *file)

usb驱动程序教程

编写Windows https://www.wendangku.net/doc/8f14890916.html,的usb驱动程序教程 Windows https://www.wendangku.net/doc/8f14890916.html, 是微软推出的功能强大的嵌入式操作系统,国内采用此操作系统的厂商已经很多了,本文就以windows https://www.wendangku.net/doc/8f14890916.html,为例,简单介绍一下如何开发windows https://www.wendangku.net/doc/8f14890916.html, 下的USB驱动程序。 Windows https://www.wendangku.net/doc/8f14890916.html, 的USB系统软件分为两层: USB Client设备驱动程序和底层的Windows CE实现的函数层。USB设备驱动程序主要负责利用系统提供的底层接口配置设备,和设备进行通讯。底层的函数提本身又由两部分组成,通用串行总线驱动程序(USBD)模块和较低的主控制器驱动程序(HCD)模块。HCD负责最最底层的处理,USBD模块实现较高的USBD函数接口。USB设备驱动主要利用 USBD接口函数和他们的外围设备打交道。 USB设备驱动程序主要和USBD打交道,所以我们必须详细的了解USBD提供的函数。 主要的传输函数有: abourttransfer issuecontroltransfer closetransfer issuein te rruptransfer getisochresult issueisochtransfer gettransferstatus istransfercomplete issuebulktransfer issuevendortransfer 主要的用于打开和关闭usbd和usb设备之间的通信通道的函数有: abortpipetransfers closepipe isdefaultpipehalted ispipehalted openpipe resetdefaultpipe resetpipe 相应的打包函数接口有: getframelength getframenumber releaseframelengthcontrol setframelength takeframelengthcontrol 取得设置设备配置函数: clearfeature setdescriptor getdescriptor setfeature

一个简单的演示用的Linux字符设备驱动程序.

实现如下的功能: --字符设备驱动程序的结构及驱动程序需要实现的系统调用 --可以使用cat命令或者自编的readtest命令读出"设备"里的内容 --以8139网卡为例,演示了I/O端口和I/O内存的使用 本文中的大部分内容在Linux Device Driver这本书中都可以找到, 这本书是Linux驱动开发者的唯一圣经。 ================================================== ===== 先来看看整个驱动程序的入口,是char8139_init(这个函数 如果不指定MODULE_LICENSE("GPL", 在模块插入内核的 时候会出错,因为将非"GPL"的模块插入内核就沾污了内核的 "GPL"属性。 module_init(char8139_init; module_exit(char8139_exit; MODULE_LICENSE("GPL"; MODULE_AUTHOR("ypixunil"; MODULE_DESCRIPTION("Wierd char device driver for Realtek 8139 NIC"; 接着往下看char8139_init( static int __init char8139_init(void {

int result; PDBG("hello. init.\n"; /* register our char device */ result=register_chrdev(char8139_major, "char8139", &char8139_fops; if(result<0 { PDBG("Cannot allocate major device number!\n"; return result; } /* register_chrdev( will assign a major device number and return if it called * with "major" parameter set to 0 */ if(char8139_major == 0 char8139_major=result; /* allocate some kernel memory we need */ buffer=(unsigned char*(kmalloc(CHAR8139_BUFFER_SIZE, GFP_KERNEL; if(!buffer { PDBG("Cannot allocate memory!\n"; result= -ENOMEM;

最新开发usb驱动程序的方法连载一

最新开发usb驱动程序的方法连载一 开发usb驱动程序的方法(连载二) NT还有更多其他的对象,例如中断对象、Controller对象、定时器对象等等,但在我们开发的驱动程序中并没有用到,因此在这里不做介绍。 I/O缓冲策略 很明显的,驱动程序和客户应用程序经常需要进行数据交换,但我们知道驱动程序和客户应用程序可能不在同一个地址空间,因此操作系统必须解决两者之间的数据交换。这就就设计到设备的I/O缓冲策略。 读写请求的I/O缓冲策略 前面说到通过设置Device对象的Flag可以选择控制处理读写请求的I/O缓冲策略。下面对这些缓冲策略分别做一介绍。 1、缓冲I/O(DO_BUFFERED_IO) 在读写请求的一开始,I/O管理器检查用户缓冲区的可访问性,然后分配与调用者的缓冲区一样大的非分页池,并把它的地址放在IRP的AssociatedIrp.SystemBuffer域中。驱动程序就利用这个域来进行实际数据的传输。 对于IRP_MJ_READ读请求,I/O管理器还把IRP的UserBuffer域设置成调用者缓冲区的用户空间地址。当请求完成时,I/O管理器利用这个地址将数据从驱动程序的系统空间拷贝回调用者的缓冲区。对于IRP_MJ_WRITE写请求,UserBuffer被设置为NULL,并把用户缓冲区的数据拷贝到系统缓冲区中。 2、直接I/O(DO_DIRECT_IO) I/O管理器首先检查用户缓冲区的可访问性,并在物理内存中锁定它。然后它为该缓冲区创建一个内存描述表(MDL),并把MDL的地址存放在IRP的MdlAddress域中。AssociatedIrp.SystemBuffer和 UserBuffer 都被设置为NULL。驱动程序可以调用函数 MmGetSystemAddressForMdl得到用户缓冲区的系统空间地址,从而进行数据操作。这个函数将调用者的缓冲区映射到非份页的地址空间。驱动程序完成I/O请求后,系统自动从系统空间解除缓冲区的映射。 3、这两种方法都不是 这种情况比较少用,因为这需要驱动程序自己来处理缓冲问题。 I/O管理器仅把调用者缓冲区的用户空间地址放到IRP的UserBuffer 域中。我们并不推荐这种方式。 IOCTL缓冲区的缓冲策略 IOCTL请求涉及来自调用者的输入缓冲区和返回到调用者的输出缓冲区。为了理解IOCTL请求,我们先来看看WIN32 API DeviceIoControl函数的原型。 BOOL DeviceIoControl ( HANDLE hDevice, // 设备句柄 DWORD dwIoControlCode, // IOCTL请求操作代码 LPVOID lpInBuffer, // 输入缓冲区地址 DWORD nInBufferSize, // 输入缓冲区大小 LPVOID lpOutBuffer, // 输出缓冲区地址 DWORD nOutBufferSize, // 输出缓冲区大小 LPDWORD lpBytesReturned, // 存放返回字节数的指针

未能成功安装设备驱动程序MTPUSB设备安装失败的解决办法

未能成功安装设备驱动程序M T P U S B设备安装失败的解决办法 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

M T P U S B设备安装失败未能成功安装设备驱动程序 终极解决方法 环境介绍:电脑系统win7(32位)已安装摩托罗拉手机驱动版本(其他版本应该也行,不行的话去摩托罗拉官网下载最新驱动) 手机型号:摩托罗拉defy mb525(系统) 备注:其他电脑操作系统和不同型号手机可参考此方法,找到相应设置项即可。 问题简介: 1.当我们把手机连接至电脑,把模式调制成“摩托罗拉手机门户”时,出现下列情况 2.过一会之后便会弹出提示说:未能成功安装设备驱动程序

3.单击查看详情便弹出窗口如下图所示: 4.此时桌面右下角图标出现黄色三角号,如图所示: 5.于是我们就开始不淡定了,怎么看怎么别扭、抓狂、按耐不住。下面介绍问题解决方案 解决方法: 1.我的电脑——右键单击——管理——设别管理器,之后会看到如图所示:在便携设备下有黄色三角号提示,即是我们纠结的MTP USB设备安装不成功的展示。

MIUI手机操作系统为例,其他手机操作系统需将USB绑定服务开启即可)。选择设置——系统——共享手机网络——USB绑定,将该选项设置为“开”,这是你会发现如图所示变化,在设备管理器面板中没有了便携设备选项及黄色三角号提醒,如图所示:(但桌面右下角的黄色三角警示还在)

3.在完成以上步骤后,用手机打开WIFI并登录无线WLAN,手机打开网页检验连接是否正常,若正常则如下图所示,黄色三角号警示消失,问题解决;若以上步骤没有解决问题,请先连接WIFI并登录WLAN之后,再按步骤操作。 4.完成以上步骤并解决问题后,选择电脑桌面网络——右键单击——属性,如下图所示:此时不仅手机能上网,而且电脑也能正常连接网络,正常上网。(我的体验是连接数据不稳定,时不时的要手机重新登陆WIFI,才有数据传输,可能是高校WLAN的问题,在家网速快的可以尝试一下) 5.通过这个问题的解决,我才知道原来MTP USB设备安装失败,未能成 功安装设备驱动程序的原因是我们手机里面没有启用该设备服务。今天 才知道MTP USB设备是与手机里的共享手机网络中“USB绑定”服务相关 联的,是电脑用来使用手机WIFI网络连接进行上网的工具。

USB驱动程序的编写采用WDM驱动程序

U S B驱动程序的编写采用W D M驱动程序 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

USB驱动程序的编写采用WDM 驱动程序。WDM 驱动程序是一些例程的集合,它们被动地存在,等待主机系 统软件(PnP 管理器、I/O 管理器、电源管理器等)来调用或激活它们。具体驱动程序不同,其所包含 的例程也不同。一个WDM 驱动程序的基本组成包括以下5个例程:(1)驱动程序入口例程:处理驱动程序的初始化。 (2)即插即用例程:处理PnP 设备的添加、删除和停止。 (3)分发例程:处理用户应用程序发出的各种 I/O 请求。 (4)电源管理例程:处理电源管理请求。 (5)卸载例程:处理驱动程序的卸载。 包含文件: , , , , , makefile,sources) 在文件中,包含了上述五个例程: 中定义了各种数据结构还有各种IOCTL控制码,用于不同数据的读写。

中实现了各种驱动例程。包含了上述五个所说例程外还包含了其他例程,课程从下面的驱动 程序入口例程得出一些信息。 驱动程序入口例程: NTSTATUS DriverEntry( IN PDRIVER_OBJECT DriverObject, IN PUNICODE_STRING RegistryPath ) { NTSTATUS ntStatus = STATUS_SUCCESS; PDEVICE_OBJECT deviceObject = NULL; DriverObject->MajorFunction[IRP_MJ_CREATE] = Ezusb_Create; DriverObject->MajorFunction[IRP_MJ_CLOSE] = Ezusb_Close; ources. If you want to add a new source # file to this

Linux设备驱动程序学习(18)-USB 驱动程序(三)

Linux设备驱动程序学习(18)-USB 驱动程序(三) (2009-07-14 11:45) 分类:Linux设备驱动程序 USB urb (USB request block) 内核使用2.6.29.4 USB 设备驱动代码通过urb和所有的 USB 设备通讯。urb用 struct urb 结构描述(include/linux/usb.h )。 urb以一种异步的方式同一个特定USB设备的特定端点发送或接受数据。一个USB 设备驱动可根据驱动的需要,分配多个 urb 给一个端点或重用单个 urb 给多个不同的端点。设备中的每个端点都处理一个 urb 队列, 所以多个 urb 可在队列清空之前被发送到相同的端点。 一个 urb 的典型生命循环如下: (1)被创建; (2)被分配给一个特定 USB 设备的特定端点; (3)被提交给 USB 核心; (4)被 USB 核心提交给特定设备的特定 USB 主机控制器驱动; (5)被 USB 主机控制器驱动处理, 并传送到设备; (6)以上操作完成后,USB主机控制器驱动通知 USB 设备驱动。 urb 也可被提交它的驱动在任何时间取消;如果设备被移除,urb 可以被USB 核心取消。urb 被动态创建并包含一个内部引用计数,使它们可以在最后一个用户释放它们时被自动释放。 struct urb

struct list_head urb_list;/* list head for use by the urb's * current owner */ struct list_head anchor_list;/* the URB may be anchored */ struct usb_anchor *anchor; struct usb_device *dev;/* 指向这个 urb 要发送的目标 struct usb_device 的指针,这个变量必须在这个 urb 被发送到 USB 核心之前被USB 驱动初始化.*/ struct usb_host_endpoint *ep;/* (internal) pointer to endpoint */ unsigned int pipe;/* 这个 urb 所要发送到的特定struct usb_device 的端点消息,这个变量必须在这个 urb 被发送到 USB 核心之前被 USB 驱动初始化.必须由下面的函数生成*/ int status;/*当 urb开始由 USB 核心处理或处理结束, 这个变量被设置为 urb 的当前状态. USB 驱动可安全访问这个变量的唯一时间是在 urb 结束处理例程函数中. 这个限制是为防止竞态. 对于等时 urb, 在这个变量中成功值(0)只表示这个 urb 是否已被去链. 为获得等时 urb 的详细状态, 应当检查 iso_frame_desc 变量. */ unsigned int transfer_flags;/* 传输设置*/ void*transfer_buffer;/* 指向用于发送数据到设备(OUT urb)或者从设备接收数据(IN urb)的缓冲区指针。为了主机控制器驱动正确访问这个缓冲, 它必须使用 kmalloc 调用来创建, 不是在堆栈或者静态内存中。对控制端点, 这个缓冲区用于数据中转*/ dma_addr_t transfer_dma;/* 用于以 DMA 方式传送数据到 USB 设备的缓冲区*/ int transfer_buffer_length;/* transfer_buffer 或者 transfer_dma 变量指向的缓冲区大小。如果这是 0, 传送缓冲没有被 USB 核心所使用。对于一个 OUT 端点, 如果这个端点大小比这个变量指定的值小, 对这个USB 设备的传输将被分成更小的块,以正确地传送数据。这种大的传送以连续的 USB 帧进行。在一个 urb 中提交一个大块数据, 并且使 USB 主机控制器去划分为更小的块, 比以连续地顺序发送小缓冲的速度快得多*/

USB设备驱动程序设计

USB设备驱动程序设计 引言 USB 总线是1995 年微软、IBM 等公司推出的一种新型通信标准总线, 特点是速度快、价格低、独立供电、支持热插拔等,其版本从早期的1.0、1.1 已经发展到目前的2.0 版本,2.0 版本的最高数据传输速度达到480Mbit/s,能 满足包括视频在内的多种高速外部设备的数据传输要求,由于其众多的优点,USB 总线越来越多的被应用到计算机与外设的接口中,芯片厂家也提供了多种USB 接口芯片供设计者使用,为了开发出功能强大的USB 设备,设计者往往 需要自己开发USB 设备驱动程序,驱动程序开发一直是Windows 开发中较难 的一个方面,但是通过使用专门的驱动程序开发包能减小开发的难度,提高工 作效率,本文使用Compuware Numega 公司的DriverStudio3.2 开发包,开发了基于NXP 公司USB2.0 控制芯片ISP1581 的USB 设备驱动程序。 USB 设备驱动程序的模型 USB 设备驱动程序是一种典型的WDM(Windows Driver Model)驱动程序,其程序模型如图1 所示。用户应用程序工作在Windows 操作系统的用户模式层,它不能直接访问USB 设备,当需要访问时,通过调用操作系统的 API(Application programming interface)函数生成I/O 请求信息包(IRP),IRP 被传输到工作于内核模式层的设备驱动程序,并通过驱动程序完成与UBS 外设通 信。设备驱动程序包括两层:函数驱动程序层和总线驱动程序层,函数驱动程 序一方面通过IRP 及API 函数与应用程序通信,另一方面调用相应的总线驱动 程序,总线驱动程序完成和外设硬件通信。USB 总线驱动程序已经由操作系统 提供,驱动程序开发的重点是函数驱动程序。 USB 设备驱动程序的设计

USB WDM 设备驱动程序

USB WDM 设备驱动程序DriverStudio 引言 随着微机技术水平的日益提高,传统的计算接口已经不能满足当前计算机高速发展的需求,计算机业界迫切需要新的通用型、高速总线接口。通用外设接口标准USB应运而生。USB,全称为通用串行总线(Universal Serial Bus),它是Compaq、IBM等PC大厂商联合开发的一种新型的、基于令牌的、高速的串行总线标准。开发者要设计USB设备接口,就必须首先了解USB协议,在此基础上有针对性的开发USB设备驱动程序。 USB简介 在众多的PC机总线中,USB以其突出的优点独树一帜:①使用方便。支持热拔插,不涉及中断请求(IRQ)冲突等问题,能真正做到“即插即用”。②传输速率高。目前的USB 2.0协议速度高达480Mbps 。③易于扩展。通过使用Hub扩展可连接多达127个外设。④使用灵活。USB共有4种传输模式:控制(control)、同步(Synchronization)、中断(interrupt)、批量(bulk),以适应不同设备的需要。⑤独立供电。正由于上述优点,开发USB接口的设备已成为一种发展趋势。 一个完整的USB系统包括主机系统和USB设备。所有的传输事务都是由主机发起的。一个主机系统又可以分为以下几个层次结构,如图1所示:

图1 USB 互连通信模型 USB总线接口包括USB主控制器和根集线器,其中USB主控制器负责处理主机与设备之间电气和协议层的互连,根集线器提供USB设备连接点。USB系统使用USB主控制器来管理主机和USB设备之间的数据传输,另外它也负责管理USB资源,如带宽等。应用软件不能直接访问USB设备硬件,而通过USB系统和USB总线接口与USB设备进行交互。 USB设备包含一些向主机软件提供一系列USB设备的特征和能力的信息的设备描述符,用来配置设备和定位USB设备驱动程序。这些信息确保了主机以正确的方式访问设备。通常,一个设备有一个或多个配置(Configuration)来控制其行为。配置是接口(Interface)的集合,接口指出软件应该如何访问硬件。接口又是端点(endpoint)的集合,每一个与USB交换数据的硬件就为端点,它是作为通信管道的一个终点。图1显示了一个多层次结构的通信模型,它表明了端点和管道所扮演的角色。 WDM驱动程序和USB驱动程序的分层结构 设备驱动程序实际上是指一系列控制硬件设备的函数,是操作系统中控制和连接硬件的关键模块。它提供连接到计算机的硬件设备的软件接口。

USB驱动开发

第17章USB设备驱动 USB设备驱动和PCI设备驱动是PC中最主要的两种设备驱动程序。与PCI协议相比,USB协议更复杂,涉及面较多。本章将介绍USB设备驱动开发。首先介绍USB协议,使读者对USB协议有个整体认识。然后介绍USB设备在WDM中的开发框架。由于操作系统的USB总线驱动程序提供了丰富的功能调用,因此开发USB驱动开发变得相对简单,只需要调用USB总线驱动接口。 17.1 USB总线协议 USB总线协议比PCI协议复杂的多,涉及USB物理层协议,又涉及USB传输层协议等。对于USB驱动程序开发者来说,不需要对USB协议的每个细节都很清楚。本节概要地介绍USB总线协议,并对驱动开发者需要了解的地方进行详细介绍。 17.1.1 USB设备简介 USB即通用串行总线(Universal Serial Bus),是一种支持即插即用的新型串行接口。也有人称之为“菊链(daisy-chaining)”,是因为在一条“线缆”上有链接127 个设备的能力。USB要比标准串行口快得多,其数据传输率可达每秒4Mb~12Mb(而老式的串行口最多是每秒115Kb)。除了具有较高的传输率外,它还能给外围设备提供支持。 需要注意的是,这不是一种新的总线标准,而是计算机系统连接外围设备(如键盘、鼠标、打印机等)的输入/输出接口标准。到现在为止,计算机系统连接外围设备的接口还没有统一的标准,例如,键盘的插口是圆的、连接打印机要用9针或25针的并行接口、鼠标则要用9针或25针的串行接口。USB能把这些不同的接口统一起来,仅用一个4针插头作为标准插头,如图17-1所示。通过这个标准插头,采用菊花链形式可以把所有的外设连接起来,并且不会损失带宽。USB正在取代当前PC上的串口和并口。

linux驱动程序的编写

linux驱动程序的编写 一、实验目的 1.掌握linux驱动程序的编写方法 2.掌握驱动程序动态模块的调试方法 3.掌握驱动程序填加到内核的方法 二、实验内容 1. 学习linux驱动程序的编写流程 2. 学习驱动程序动态模块的调试方法 3. 学习驱动程序填加到内核的流程 三、实验设备 PentiumII以上的PC机,LINUX操作系统,EL-ARM860实验箱 四、linux的驱动程序的编写 嵌入式应用对成本和实时性比较敏感,而对linux的应用主要体现在对硬件的驱动程序的编写和上层应用程序的开发上。 嵌入式linux驱动程序的基本结构和标准Linux的结构基本一致,也支持模块化模式,所以,大部分驱动程序编成模块化形式,而且,要求可以在不同的体系结构上安装。linux是可以支持模块化模式的,但由于嵌入式应用是针对具体的应用,所以,一般不采用该模式,而是把驱动程序直接编译进内核之中。但是这种模式是调试驱动模块的极佳方法。 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以像操作普通文件一样对硬件设备进行操作。同时,设备驱动程序是内核的一部分,它完成以下的功能:对设备初始化和释放;把数据从内核传送到硬件和从硬件读取数据;读取应用程序传送给设备文件的数据和回送应用程序请求的数据;检测和处理设备出现的错误。在linux操作系统下有字符设备和块设备,网络设备三类主要的设备文件类型。 字符设备和块设备的主要区别是:在对字符设备发出读写请求时,实际的硬件I/O一般就紧接着发生了;块设备利用一块系统内存作为缓冲区,当用户进程对设备请求满足用户要求时,就返回请求的数据。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待。 1 字符设备驱动结构 Linux字符设备驱动的关键数据结构是cdev和file_operations结构体。

Linux设备驱动程序学习(20)-内存映射和DMA-基本概念

Linux设备驱动程序学习(20)-内存映射和DMA-基本概念 (2011-09-25 15:47) 标签: 虚拟内存设备驱动程序Linux技术分类:Linux设备驱动程序 这部分主要研究 Linux 内存管理的基础知识, 重点在于对设备驱动有用的技术. 因为许多驱动编程需要一些对于虚拟内存(VM)子系统原理的理解。 而这些知识主要分为三个部分: 1、 mmap系统调用的实现原理:它允许设备内存直接映射到一个用户进程地址 空间. 这样做对一些设备来说可显著地提高性能. 2、与mmap的功能相反的应用原理:内核态代码如何跨过边界直接存取用户空间的内存页. 虽然较少驱动需要这个能力. 但是了解如何映射用户空间内存到内 核(使用 get_user_pages)会有用. 3、直接内存存取( DMA ) I/O 操作, 它提供给外设对系统内存的直接存取. 但所有这些技术需要理解 Linux 内存管理的基本原理, 因此我将先学习VM子 系统的基本原理. 一、Linux的内存管理 这里重点是 Linux 内存管理实现的主要特点,而不是描述操作系统的内存管理理论。Linux虚拟内存管理非常的复杂,要写可以写一本书:《深入理解Linux 虚拟内存管理》。学习驱动无须如此深入, 但是对它的工作原理的基本了解是必要的. 解了必要的背景知识后,才可以学习内核管理内存的数据结构. Linux是一个虚拟内存系统(但是在没有MMU的CPU中跑的ucLinux除外), 意味着在内核启动了MMU 之后所有使用的地址不直接对应于硬件使用的物理地址,这些地址(称之为虚拟地址)都经过了MMU转换为物理地址之后再从CPU的内存总线中发出,读取/写入数据. 这样 VM 就引入了一个间接层, 它是许多操作成为可能: 1、系统中运行的程序可以分配远多于物理内存的内存空间,即便单个进程都可拥有一个大于系统的物理内存的虚拟地址空间. 2、虚拟内存也允许程序对进程的地址空间运用多种技巧, 包括映射程序的内存到设备内存.等等~~~ 1、地址类型 Linux 系统处理几种类型的地址, 每个有它自己的含义: 用户虚拟地址:User virtual addresses,用户程序见到的常规地址. 用户地址在长度上是 32 位或者 64 位, 依赖底层的硬件结构, 并且每个进程有它自己 的虚拟地址空间.

linux设备驱动中常用函数

Linux2.6设备驱动常用的接口函数(一) ----字符设备 刚开始,学习linux驱动,觉得linux驱动很难,有字符设备,块设备,网络设备,针对每一种设备其接口函数,驱动的架构都不一样。这么多函数,要每一个的熟悉,那可多难啦!可后来发现linux驱动有很多规律可循,驱动的基本框架都差不多,再就是一些通用的模块。 基本的架构里包括:加载,卸载,常用的读写,打开,关闭,这是那种那基本的咯。利用这些基本的功能,当然无法实现一个系统。比方说:当多个执行单元对资源进行访问时,会引发竞态;当执行单元获取不到资源时,它是阻塞还是非阻塞?当突然间来了中断,该怎么办?还有内存管理,异步通知。而linux 针对这些问题提供了一系列的接口函数和模板框架。这样,在实际驱动设计中,根据具体的要求,选择不同的模块来实现其功能需求。 觉得能熟练理解,运用这些函数,是写号linux设备驱动的第一步。因为是设备驱动,是与最底层的设备打交道,就必须要熟悉底层设备的一些特性,例如字符设备,块设备等。系统提供的接口函数,功能模块就像是工具,能够根据不同的底层设备的的一些特性,选择不同的工具,方能在linux驱动中游刃有余。 最后就是调试,这可是最头疼的事。在调试过程中,总会遇到这样,那样的问题。怎样能更快,更好的发现并解决这些问题,就是一个人的道行咯!我个人觉得: 发现问题比解决问题更难! 时好时坏的东西,最纠结! 看得见的错误比看不见的错误好解决! 一:Fops结构体中函数: ①ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 用来从设备中获取数据. 在这个位置的一个空指针导致 read 系统调用以-EINVAL("Invalid argument") 失败. 一个非负返回值代表了成功读取的字节数( 返回值是一个 "signed size" 类型, 常常是目标平台本地的整数类型). ②ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); 发送数据给设备. 如果 NULL, -EINVAL 返回给调用 write 系统调用的程序. 如果非负, 返回值代表成功写的字节数 ③loff_t (*llseek) (struct file *, loff_t, int); llseek 方法用作改变文件中的当前读/写位置, 并且新位置作为(正的)返回值. loff_t 参数是一个"long offset", 并且就算在 32位平台上也至少 64 位宽. 错误由一个负返回值指示. 如果这个函数指针是 NULL, seek 调用会以潜在地无法预知的方式修改 file 结构中的位置计数器( 在"file 结构" 一节中描述). ④int (*open) (struct inode *, struct file *);

如何写驱动程序

我这里重点的介绍如何写驱动程序,对于一些应用程序我就不做介绍了,因为我对于那些高层的东西写得很少。倘若再讲,有班门弄斧之嫌,呵呵! 作为WIN98和WIN2K推荐的一项新技术来说,USB的驱动程序和以往的直接跟硬件打交道的WIN95的VXD的方式的驱动程序不同,它应该是WDM类型的。 USB的WDM接口框图如下(这个图可以说是USB软件总体框图) 对于HID的设备,就可以采用上图左上边的结构,其它类的话采用右上的结构,其实右边的结构可以又细分成两层,一层是Class Driver,一层是Miniport Driver。而倒数第三行的UHCD和OpenHCI分别是由INTEL和COMPAQ两位老大定的一个和硬件有关的底层驱动程序标准,各位可以根据所需要的选择。 对于USB的驱动程序,大家还得去了解WDM驱动程序的写法,或者早些时候的NT驱动程序,其实WDM驱动程序可以看做是NT驱动程序的一个update,只是增加了一些新的特性。 “写驱动程序是一个很漫长和繁琐的工作,在此之前,你最好要熟悉硬件,熟悉C/C++,还要用过DDK,会用一些调试程序,如SOFTICE和WINDBG之类。如果一切就绪,你就可以开始写驱动程序,工作的进程有时侯会取决于你的运气”。(这是一位留美的朋友对我说的,我写出来和大家共享) 下面是我从一个朋友那里得到的一篇文章的摘要: NT驱动程序的分层结构 驱动程序是指管理某个外围设备的一段程序代码。NT采用更灵活的分层驱动方法,允许杂应用程序和硬件之间存在几个驱动程序层次。分层机制允许NT更加广泛地定义驱动程序,包括文件系统、逻辑卷管理器和各种网络组件,各种物理设备驱动程序等等。 1、设备驱动程序 这些是管理实际数据传输和控制特定类型的物理设备的操作的驱动程序,包括开始和完成I/O操作,处理中断和执行特定的设备要求的任何差错处理。

安装USB驱动过程中可能遇到的问题及解决方案

安装USB 驱动过程中可能遇到的问题及解决方案 概述: 本文列举了在安装USB 驱动程序过程中可能遇到的常见问题,并提供了常用的解 决方案。对于其他特殊的情况,如:驱动安装之后出现打印乱码等现象,将在相 关的技术文档中予以进一步的说明。 本文包括: 1. 故障现象: 在打印时遇到:打印到DOT4_00x 端口错误。 故障分析: 1 ).USB 端口没有被正确地识别。USB 电缆不符合规范,长度太长,或者加装 延长线,转接线,共享器等附加设备; 2 ).端口选择不正确; 3 ). 打印机驱动程序未正确安装;如果安装了不匹配的驱动也会出现端口错误。 比如:lj1010 打印机安装了同系列1015 的PCL5e 驱动; 4)). 系统和USB Host Controller 的影响; 5 ).端口供电不足。 解决方案: 1 ).正确连接USB 线,保证USB 电缆长度应小于 2 米,通讯质量较好;取 消延长线和共享器等附加设备; 2 ).检查打印机驱动属性中的端口选项,如果存在多个DOT4 端口, 则首选数 目较高的端口;查看是否有USB 端口,选择USB 端口打印测试; 3 ).取消双向支持;

4 ).完全卸载当前驱动,然后重新启动或热拔插USB 电缆,若系统自动找到新硬件,取消,在device manager 里发现usb printing support 后,再利用“添加打印机向导”添加打印机,安装与打印机语言相匹配的驱动程序,此时,应该选择USB-00X 端口;若系统无法检测到新硬件,要检查系统是否正确识别USB 芯片组,步骤如下: 在Windows 2000/XP 中(Windows 9x/Me 的操作步骤基本类似) ,依次点击“开始→设置→控制面板→系统→硬件→设备管理器”,找到并双击“通用串行总线控制器”。其中应当至少列出两类条目,一类是USB 控制器,另一个是USB Root Hub。如果PC 主板支持USB 2.0 ,并正常安装了驱动程序,一般会在此处显示USB 2.0 Root Hub 。 如果Windows 无法识别出USB 控制器,或在“其他设备”中出现“ USB 控制器”,那么说明主板芯片组的驱动程序或USB 2.0 的驱动程序没有安装成功。建议到芯片组官方网站下载最新的驱动程序,并确认Windows 能正确识别; 5 ).建议将打印机安装到其他计算机上测试; 6 ).保证USB 接口获得足够的电力。USB 设备包含从计算机通过USB 电缆驱动USB 通讯的电源。计算机在100mA 的低电力级别下可以检测到设备,但是需要500mA 才能维持大功率USB 设备的高速通讯(movable disk) 。当打印机得不到充分的电流供应时,也可能造成DOT4 无法正确的设定。建议将打印机直接插在屋内的电源插孔上,而非插在延长线上与其他的电器共用电流,同时尽量使用HP 所附的电源线而非其他可能不合格的电源线,或者为计算机添加有源的USB 集线器。 2. 故障现象: 1 ) . 激光打印机在运行光盘安装驱动程序,插入USB 电缆后或者在出现的新硬件向导下安装打印机时会发生这个错误“ 无法安装这个硬件,在安装LaserJet 1020 时出现了一个问题。安装该设备是发生了一个错误:这个设备的驱动程序丢失了一个必需的项,这可能是由于inf 是为Windows 95 或更新版本而写的。联系您的硬件供应商。”; 2 ).设备控制器的USB 主控制器中出现黄色叹号。 故障分析: 当用打印机驱动光盘的Windows 98 第二版的USB 打印支持驱动程序,而不是使用系统自带的USB 打印支持驱动程序时会发生这种错误。Windows 98 USB 打印驱动程序与更高版本的Windows 操作系统不兼容。

(完整版)AT89C51单片机USB接口驱动和应用程序的开发毕业论文

北方民族大学 学士学位论文论文题目:AT89C51单片机USB接口驱动和应用程序的开发 院(部)名称:电信学院 学生姓名:杨闯 指导教师姓名:周春艳 论文提交时间: 2010年5月24日 论文答辩时间:2010年5月29日 学位授予时间:

北方民族大学教务摘要 通用串行总线USB是一种新兴的并逐渐取代其他接口标准的数据通信标准。USB,由于速度快,使用方便灵活,易于扩展,支持即插即用,成本低廉等一系列优点,得到了广泛的应用。 本论文以基于USB总线的数据采集系统的研制过程为主要内容,阐述了利用CH372与ATMEL的AT89C51等组成的一套数据采集系统的设计方案、开发方法和开发过程,并给出了具体实现方案。 论文首先简要介绍了USB总线的相关内容,然后介绍了数据采集系统的设计。数据采集系统的设计包括硬件设计、固件程序开发、驱动程序开发和应用程序开发四部分。在硬件设计部分,首先介绍了设计中所用的CH372的性能和特点,然后给出了具体硬件设计方案,并对设计中应该注意的问题进行了说明。驱动和应用程序主要完成USB设备的读写和即插即用功能,并提供一个友好的人机界面,对数据采集系统进行控制并显示采集后的数据。 本论文已完成了基于USB总线的数据采集系统的设计,用其实现了基本的数据采集功能。使用USB总线传输数据,为数据采集系统与计算机之间的通讯开辟了新的道路。 关键词:USB、驱动程序、应用程序、AT89C51、CH372

Abstract Universal serial bus USB is one kind of emerging and replace other interface standards of data communication standards. USB, due to fast, convenient and flexible easy to expand, to support plug and play, low cost advantages, such as widely application. The paper is mainly concerned with design process of data acquisition system that is based on USB bus. The design scheme, developing method and developing process of a suit of data acquisition system used with CH372 and ATMEL’s AT89C51 are expatiate. In addition, the paper also gives the material realization scheme. At fist, the paper introduces the protocol of USB bus in brief, and then discusses the design of data acquisition system, which includes four parts, , firmware design, device driver and application program. In the in detail; the questions which should be paid attention to in design is explained. Drivers and applications of the main equipment and USB plug and play function, and provide a friendly -machine interface, control of

编写USB驱动程序步骤

编写USB驱动程序步骤: 1所有usb驱动都必须创建主要结构体struct usb_driver struct usb_driver ->struct module *owner (有他可正确对该驱动程序引用计数,应为THIS_MODULE) ->const char *name (驱动名字,运行时可在查看 /sys/bus/usb/drivers/) ->const struct usb_device_id *id_table (包含该驱动可支持的所有不同类型的驱动设备,没添探测回调函数不会被调用) ->int (*probe)(struct usb_interface *intf,const struct usb_device_id *id) (usb驱动探测函数,确认后struct usb_interface 应恰当初始化,然后返0,如果出错则返负值) ->void(*disconnect)(struct usb_interface *intf) (当struct usb_interface 被从系统中移除或驱动正从usb核心中卸载时,usb核心将调用此函数)代码实例: static struct usb_driver skel_driver={ .owner = THIS_MODULE, .name = "skeleton", .id_table = skel_table, .probe = skel_probe, .disconnect = skel_disconnect, }; ↓ 2usb_register()注册将struct usb_driver 注册到usb核心,传统是在usb驱动程序模块初始化代码中完成该工作的

相关文档
相关文档 最新文档