文档库 最新最全的文档下载
当前位置:文档库 › 化工原理[下册]第六章吸收习题答案

化工原理[下册]第六章吸收习题答案

6-1 已知在101.3 kPa(绝对压力下),100 g 水中含氨1 g 的溶液上方的平衡氨气分压为987 Pa 。试求:

(1) 溶解度系数H (kmol ·m -3·Pa -1); (2) 亨利系数E(Pa); (3) 相平衡常数m ;

(4) 总压提高到200 kPa(表压)时的H ,E ,m 值。

(假设:在上述范围内气液平衡关系服从亨利定律,氨水密度均为1000

3/m kg )

解:(1)根据已知条件

Pa p NH 987*3=

3/5824.01000

/10117

/13m kmol c NH ==

定义

333*NH NH NH H c p =

()Pa m kmol p c H NH NH NH ??==-34/109.5333

(2)根据已知条件可知

0105.018

/10017/117

/13=+=

NH x

根据定义式

333*NH NH NH x E p =

可得

Pa E NH 41042.93?=

(3)根据已知条件可知

00974.0101325/987/*

*33===p p y NH NH

于是得到

928.0333*==NH NH NH x y m

(4)由于H 和E 仅是温度的函数,故3NH H 和3NH E 不变;而

p E px Ex px p x y m ====**

,与T 和p 相关,故309.0928.03

1'

3

=?=NH m 。 分析(1)注意一些近似处理并分析其误差。

(2)注意E ,H 和m 的影响因素,这是本题练习的主要内容之一。

6-2 在25℃下,CO 2分压为50 kPa 的混合气分别与下述溶液接触:

(1) 含CO 2为0.01 mol/L 的水溶液; (2) 含CO 2为0.05 mol/L 的水溶液。 试求这两种情况下CO 2的传质方向与推动力。

解: 由亨利定律得到

*

2

250CO CO Ex kPa p == 根据《 化工原理》 教材中表 8-1 查出

()kPa E CO 51066.1252?=℃ 所以可以得到

4

*1001.32

-?=CO x 又因为

()()3

45

25/10347.318

1066.1100022

2m kPa kmol EM H O

H O

H CO ??=??=

-ρ℃ 所以得

3

4*/0167.05010347.32

22m kmol p H c CO CO CO =??==- 于是:(1)为吸收过程,3/0067.0m kmol c =?。 (2)为解吸过程,3/0333.0m kmol c =?。

分析 (1)推动力的表示方法可以有很多种,比如,用压力差表示时: ① kPa H c p

CO CO CO 9.2910347.301

.04

*

2

22

=?=

=

-

推动力 kPa p 1.20=?(吸收)

② kPa H c p CO CO CO 4.14910

347.305

.04

*

2

22

=?=

=- 推动力 kPa p 4.99=?(解吸) 或者 , 用摩尔分数差表示时 ① 由4108.118

100001

.02-?==

CO x ,判断出将发生吸收过程,推动力410201.1-?=?x ;

②由 41092-?=CO x ,判断出将发生解吸过程,推动力41099.5-?=?x (2)推动力均用正值表示。

6-3 指出下列过程是吸收过程还是解吸过程,推动力是多少,并在x-y 图上表示。 (1) 含SO 2为0.001(摩尔分数)的水溶液与含SO 2为0.03(摩尔分数)的混合气接触,总压为101.3 kPa ,t=35℃; (2) 气液组成及总压同(1) ,t=15℃;

(3) 气液组成及温度同(1) ,总压为300 kPa(绝对压力)。

解 (1) 根据《化工原理》教材中表 8-1 知T = 35℃时,SO 2 的

kPa E 410567.0?=, 故

563

.10110567.04

=?==P E m

根据相平衡关系 , 得

056.0001.056*=?==A A mx y

由于A A y y >*,所以将发生解吸过程。传质推动力为

026.003.0056.0=-=?y

(2 ) T = 15℃时 , SO 2的 kPa E 410294.0?=,故

293

.10110294.04

=?==P E m

根据相平衡关系 , 得

029.0001.029*=?==A A mx y

由于A A y y <*,所以将发生吸收过程。 传质推动力为

001.0029.003.0=-=?y

(3)同理可知 , 当 T = 35℃,p = 300 kPa 时 ,kPa E 410567.0?=,故9.18==

P

E

m 0189.0001.09.18*=?==A A mx y

由于A A y y <*,所以将发生吸收过程。推动力为

0111.00189.003.0=-=?y

示意图见题6-3 图。

题6-3 图

分析 体会通过改变温度和总压来实现气液之间传质方向的改变 ,即吸收和解吸。

6-4 氨-空气混合气中含氨0.12(摩尔分数),在常压和25℃下用水吸收,过程中

不断移走热量以使吸收在等温下进行。进气量为1000 m 3 ,出口气体中含氨0.01(摩尔分数)。试求被吸收的氨量(kg )和出口气体的体积(m 3) 。

解 惰性气体量 388088.01000m V =?=,进口中 NH 3 之量为3120m ,出口中NH 3 之量为3988

.12.099

.001.0120m =?

,于是总出气量= 880 + 9 =3889m ,被吸收的NH 3量为

mol 4544298

8.314101325

8890.01-298314.8101325100012.0=??????

,为 77.3kg 。

分析 (1) 进行物料衡算时应以摩尔数或者质量为基准,一般不以体积为基准。此

处由于温度和压力均不变,故摩尔数的变化正比于体积的变化,所以以体积作为衡算的基准。

(2) 本题是并流还是逆流? 有区别吗 ?

(3) 如何才能不断移走热量? 该用填料塔还是板式塔 ? (4) 不移走热量对吸收有什么影响 ?

6-5 一浅盘内存有2mm 厚的水层,在20℃的恒定温度下靠分子扩散逐渐蒸发到大气中。假定扩散始终是通过一层厚度为5mm 的静止空气膜层,此空气膜层以外的水蒸气分压为零。扩散系数为2.6×10-5m 2/s ,大气压强为1.013×105Pa 。求蒸干水层所需时间。

解:本题中水层Z 的变化是时间θ的函数,且与扩散速率有关。

1

2

2121ln B B B B A A A p p p p p p RTZ DP N --=

查教材附录水的物理性质得,20℃时水的蒸汽压为2.3346kPa 。已知条件为:

,3.101,97.983346.23.101,3.101,0,3.101221221kPa p p P kPa p kPa p kPa p kPa p B A B B A A =+==-====

代入上式得:

()

s

m kmol p p p p p p RTZ DP N B B B B A A A ??=--?????=--=26-5-122121/1003.597.983

.101ln

97.983.10103.101005.0293314.83.1011060.2ln 水的摩尔质量kmol kg M /18=,设垂直管截面积为A ,在θd 时间内汽化的水量应等于水扩散出管口的量,即

AdZ M

Ad N A ρ

θ= 则s m M N d dZ A /10054.91000181003.586--?=??==ρθ

在0=θ,0=Z 到0=θ,m Z 3102-?=之间积分,得

s 48

-3

-1021.210

054.9102?=??=θ 6-6 含组分A 为0.1的混合气,用含A 为0.01(均为摩尔分数)的液体吸收其中的A 。已知A 在气、液两相中的平衡关系为y x =,液气比为0.8,求: (1)

逆流操作时,吸收液出口最高组成是多少?此时的吸收率是多少?若5

.1=G L

各量又是多少?分别在y-x 图上表示;

(2) 若改为并流操作,液体出口最高组成是多少?此时的吸收率又是多少? 解 (1) 逆流操作(题6-6 图(a))时,已知

题6-6 图

01.001.0101.02≈-=

X ,11.01

.011

.01=-=Y

① 当18.0=<=m V L ,以及塔高无穷高时,在塔底达到两相平衡(题8-9图(b)),

11.01*1max 1===m Y X X 。根据物料衡算可知

()

()03.001.011.08.011.02*

112=-?-=--

=X X V

L Y Y 此时 , 吸收率为

%7.7211

.003

.011.0=-=

E

② 当15.1=>=m V L ,以及塔高无穷高时,在塔顶达到吸收平衡(题 8-9图(b)),

01.02*2min 2===mX Y Y 。仍可以根据物料衡算 ()()min 2121Y Y V X X L -=-,求出

077.01=X

%9.9011

.001

.011.0=-=

E

(2) 并流操作且8.0=V L 时(题8-9 图(c)),因为∞=H ,所以有

11mX Y =

根据操作线关系,有

V

L

X X Y Y -=--1212

式①,②联立,求得:

0655.011==Y X

于是

%5.4011

.00655

.011.0=-=

E

分析 逆流吸收操作中,操作线斜率比平衡线斜率大时,气液可能在塔顶呈平衡;此时吸收率最大,但吸收液浓度不是最高。

操作线斜率小于平衡线斜率时,气液在塔底呈平衡;吸收液浓度是最高的,但吸收率不是最高。

6-7 用水吸收气体中的SO 2 ,气体中SO 2 的平均组成为0.02(摩尔分数),水中SO 2 的平均浓度为1g/1000g 。塔中操作压力为10.13kPa(表压),现已知气相传质分系数G k =0.3×10-2kmol/(m 2·h·kPa ),液相传质分系数L k = 0.4 m/h 。操作条件下平衡关系50y x =。求总传质系数K Y (kmol/(m 2·h ))。 解 根据

()()()()()()()()*********

11111111y y p p p K y y y y p p K y y y y K y y y y K Y Y K N A A Y Y Y Y Y A ---=---=---=???

? ??---=-=

()

*A A G A p p K N -=

()()

*11y y pK K G Y --=

现已知kPa p 4.111=,02.0=y ,4*1081.218

100064164

150-?=+?==A mx y ,因此

要先根据下式求出G K 才能求出Y K :

L

G G Hk k K 111+= 因此还要求出 H :

()

kPa m kmol pmx c x p c H A A A A ?=?≈==

3*

/01.050

4.111181000 于是便可求出

()

kPa h m kmol K G ??=2/0017.0

()

h m kmol K Y ?=2/187.0

分析 此题主要练习各种传质系数之间的转换关系,第二目的是了解各系数的量级。

6-8 在1.013×105Pa 、27℃下用水吸收混于空气中的甲醇蒸气。甲醇在气、液两相中的浓度很低,平衡关系服从亨利定律。已知H=0.511 kPa ·m 3/kmol ,气膜吸收分系数k G =1.55×105kmol/(m 2·s·kPa),液膜吸收分系数k L =2.08×105 (m/s)。试求

吸收总系数K G 并算出气膜阻力在总阻力中所占的百分数。

解 根据定义式()()A A

L A

A G A c c K p p K N -=-=**和H

c p A A

*

*=,可知

G L K H

K 1

=

所以只要求出G K 即可。又

24371673417637075

.01098.111067.511113-5-=+=??+?=+=L G G Hk k K 所以

()

Pa h m kmol K G ???=25-/101.4

h m K L /02.0=

因为

G k 1为气相阻力,G

K 1为总阻力,故 %4.722437117637==总阻力气相阻力

分析 此题应和题6-9一起综合考虑。

6-9 在吸收塔内用水吸收混于空气中的低浓度甲醇,操作温度为27℃,压强为1.013×105Pa 。稳定操作状况下塔内某截面上的气相中甲醇分压为37.5mmHg ,液相中甲醇浓度为2.11kmol/m 3。试根据题6-8中有关数据计算出该截面的吸收速率。

解 吸收速率可以用公式 ()*p p K N G A -=求出。其中

kPa p 07.5=

kPa H c p 33

*

10023.1955

.1102--?=?==

()

kPa s m kmol Hk k K L

G G ???=??+

?=

+=

---255

5/1012.11008.2955.11

1055.111

111

于是可得

()()

s m kmol N A ??=?-??=---2535/1068.510023.107.51012.1

分析 (1) 此时,根据()()55-1068.5-07.51055.1-?=?=-=i i G A p p p K N , 还可以计算出气液界面气相侧中的甲醇分压(kPa p i 405.1=)以及液相侧中的甲醇浓度 (3/748.2m kmol Hp c i i ==),此值远高于主体溶液中的甲醇浓度 。

(2) 是不是题目有些问题?含5%甲醇的空气似乎应是入口气 体,因此3/2m mol 应是出塔液体的浓度,而此液体的浓度也太低了 (质量分数仅为0.0064%),这些水又有何用呢?

(3) 若将题目中 甲醇浓度改为3/2m kmol ,则质量分数为6.4 %,便可以用精馏法回收其中的甲醇。

6-10 附图为几种双塔吸收流程,试在y-x 图上定性画出每种吸收流程中A 、B 两塔的操作线和平衡线,并标出两塔对应的气、液相进出口摩尔分数。

题6-10附图

(c)

(d )

6-11 在某逆流吸收塔内,于101.3kPa 、24℃下用清水吸收混合气体中的H 2S ,将其浓度由2%降至0.1%(体积分数)。系统符合亨利定律,E =545×101.3kPa 。

11

(a)

(b)

(c)

(d)

1

1

1

1

a

3

x

y 3

y

1

231

y 2x

y 2

y 3

2

13

y 1

若吸收剂用量为最小用量的1.2倍,试计算操作液气比及出口液相组成。 解:已知 y 1=0.02 y 2=0.001 KPa 1052.5E 4?= P =101.33KPa 则 0204.002.0-102.01Y ==

001.0001

.0-1001

.0Y2==

75.54433

.1011025.5P E m 4=?==

5.51775

.5440204.0001.00204.0m Y1Y2-Y1V L min

=-==

???

?? 25.7665.1755.1V L 5.1V L min

=?=???

??= 又据全塔物料衡算()()2121Y -Y V X -X L =

=1X ()()5

-105.2001.00204.025.77612X Y 2-Y 1L V 1X ?=-??

? ??=+??? ??=

即操作液气比

V

L

为776.25 出口液相组成X 1为5105.2-? 6-12用纯水逆流吸收气体混合物中的SO 2,SO 2的初始浓度为5%(体积分数),操作条件下的相平衡关系为y =5.0x ,分别计算液气比为4和6时气体的极限出口浓度。

解:当填料塔为无限高,气体出口浓度达极限值,此时操作线与平衡线相交。对于逆流操作,操作线与平衡线交点位置取决于液气比与相平衡常数m 的相对大小。

当4=L ,0.5=

01.05

05.01max ,1===

m y x 由物料衡算关系可以求得气体的极限出口浓度为:

()()01.0001.0405.0211min ,2=-?-=--

=x x G

L

y y 当6=L ,0.5=>m G L ,操作线与平衡线交于塔顶,由平衡关系可以计算气体极限出口浓度为:

02min ,2==mx y

由物料衡算关系可求得液体出口浓度为:

()00833.06

05.0min ,2121==-+

=y y L G

x x 从以上计算结果可知,当m L <时,气体的极限残余浓度随G L 增大而减小;当m G L >时,气体的极限浓度只取决于吸收剂初始浓度,而与吸收剂的用量无关。

6-13 在某填料吸收塔中,用清水处理含SO 2的混合气体。逆流操作,进塔气体中含SO 2为0.08(摩尔分数),其余为惰性气体。混合气的平均相对分子质量取28。水的用量比最小用量大65%,要求每小时从混合气中吸收2000kg 的SO 2。已知操作条件下气、液平衡关系为x y 7.26=。计算每小时用水量为多少立方米。 解:根据题意得

087.008

.0108

.01111=-=-=

y y Y 根据吸收的SO 2质量求得混合气中惰性气体的流量

h kmol V /375.35992.008

.0642000

=??=

根据物料衡算

()()221087.0375.35964

2000

Y Y Y V -?==

- 解得521035.4-?=Y

又 67.267.26/087.01035.4087.052

121min =?-=--=???

??-X X Y Y V L e

则 h k m o l L L /1058.1375.3597.2665.165.14min ?=??== 则每小时的用水量为

h m LM V /1085.21000181058.1354?=???==ρ水

6-14 用纯溶剂对低浓度气体作逆流吸收,可溶组分的回收率为η,采用的液气比是最小液气比的β倍。物系平衡关系服从亨利定律。试以η、β两个参数列出计算N OG 的表达式。

解:令进塔气体浓度为y1,则出塔气体浓度为()η-=1y y 12 x 2=0

m 1x 2y -1y G L G L min

βηββ==???

??=)( ()()

2121G L x x y y --=

()[]β

ηβηm y x x y y 111m 1

11=

?--=

∴ 由上题证明的结果: L G m

-1y y ln

N 2

1OG

??=

β

1

1111y y y mx y -

=-=?

()

η-=-=?10122y y y

()()[]

ηββ--=

??∴1121

y y

()()()

111ln NOG -????

??--=βηηβββη

6-15 在一填料吸收塔内,用含溶质为0.0099的吸收剂逆流吸收混合气体中溶质的85%,进塔气体中溶质浓度为0.091,操作液气比为0.9,已知操作条件下系统的平衡关系为x y 86.0=,假设总体积传质系数与流动方式无关。试求:(1)逆流操作改为并流操作后所得吸收液的浓度;(2)逆流操作与并流操作平均吸收推动力之比。

解:逆流吸收时,已知y 1=0.091,x 2=0.0099

所以 ()()01365.085.01091.0-11y 2y =-==η

()()09584

.09

.001365.0091.00099.0L

212x 1x =-+=-+=y y V

0824.009584.086.0X 86.0Y 1*

1=?=?= 008514.00099.086.02X 86.0Y *

2=?=?= 0086.00824.0091.0Y Y Y *

111=-=-=? 005136.0008514.001365.0Y -Y Y *

222=-==?

()()??

? ??-=???

? ???-?=

?005136.00086.0ln 005136.00086.0Y Y ln Y Y Ym 2121

()()51

.1100672

.001365.0091.0Y Y2Y1N OG =-=?-=

m

改为并流吸收后,设出塔气、液相组成为’

1Y 、’

1X ,进塔气。 物料衡算:

()(

)

121

Y -Y V L X -X

2=

将物料衡算式代入N OG 中整理得:

()()()

'1'122ln /)//(1/1mX Y mX Y V L m N OG --+=

逆流改为并流后,因K Ya 不变,即传质单元高度H OG 不变,故N OG 不变 所以

(

)

()’

’1

186.00099.086.091.0ln 9.086

.01151.11x y -?-+=

由物料衡算式得:

0999.0X 9.0Y 11=+’

将此两式联立得:

0568.0X 1=’

0488.0Y 1=’

()84.100366

.000672.0N Y -Y Y OG

1

2

m

===

?’

84.100366.000672

.0Y Y m

m ==??’

由计算结果可以看出,在逆流与并流的气、液两相进口组成相等及操作条件相同

情况下,逆流操作可获得较高的吸收液浓度及较大的吸收推动力。

6-16 今有逆流操作的填料吸收塔,用清水吸收原料气中的甲醇。已知处理气量为1000m 3/h (标准状况),原料气中含甲醇100g/m 3,吸收后的水中含甲醇量等于与进料气体相平衡时组成的67%。设在标准状况下操作,吸收平衡关系为x y 15.1=,甲醇的回收率为98%,K y = 0.5 kmol/(m 2·h ),塔内填料的有效比表面积为190 m 2/m 3,塔内气体的空塔流速为0.5 m/s 。试求: (1) 水的用量;

(2) 塔径; (3) 填料层高度。

解 下面计算中下标1表示塔底,2表示塔顶。根据已知操作条件,有

h kmol V /52.41125.364.441032100

10004.2210003

=-=??-=

0753.052

.41125.31==Y ()00151

.0%98112=-=Y Y 02=X

0609.015

.11

115.1111*1

=?+==Y Y y x %671=x 0408.0*

1

=x ,0425.011

1

1=-=x x X (1)根据全塔的甲醇物料衡算式 ()()2121Y Y V X X L -=-可以得出用水量

()()h kmol X X Y Y V L /04.720

0425.000151.00753.052.412121=--?=--=

(2)塔径m u V D s T 814.05

.03600

100044=??==

ππ,可圆整到0.84m 。 (3)由于是低浓度吸收,故可以将x y 15.1=近似为X Y 15.1=,并存在Y y K K ≈,则可进行以下计算: 填料层高度

OG OG H N H =

先计算气相总传质单元数:

m

OG Y Y Y N ?-=

21 2

12

1ln Y Y Y Y Y m ???-?=?

0264.00425.015.10753.0*111=?-=-=?Y Y Y

00151.0*222=-=?Y Y Y

49.8=OG N

再计算气相总传质单元高度

m a K V a K V H y Y OG 79.084.04

1905.052

.412=???=Ω≈Ω=

π

最终解得m H 7.6=

分析 (1)这是一个典型的设计型问题,即已知工艺要求,希望设计出用水量、塔径和塔高。

(2)若不进行以上近似,则可按下述方法求解:

()*'-y y dH a K dy V y -Ω=

式中:'V -气体总流量。 于是

()

*

'y y a K dy

V dH y -Ω-=

对上式进行积分得

()

?

-Ω=1

2

*

'y y y y

y a K dy

V H (当然此时y K 也会随着流量变化而变化,求解时还需要做另外的近似) (3)或者做以下近似处理

()()()()**

***

*

1111Y Y Y Y K Y Y Y Y K y y K Y Y K N y y y Y A ++-=???

? ??+-+=-=-=

()()

*

111

Y

Y K K y

Y ++= 其中,Y 可取1Y 和2Y 的平均值;*Y 可取*1Y 和*2Y 的平均值。 取

0384.02

2

1=+=

Y Y Y 0213.02

0425.0221=+=+=

X X X 0244.00213.015.1*=?==mX Y

()()

()

h m kmol K Y ?=++=

2/0471.00213.010384.015

.0

m H OG 835.0841.04

190471.025

.412

=??

?=

π

481.806.7225.4115.100151.00753.006.7225.4115.11ln 06.7225.4115.111

1ln 11

2221=???????+??? ???-?-

=??????+--??? ??--=

L mV mX Y mX Y L mV L mV N OG

m H N H OG OG 1.7481.8835.0=?==

以上两种方法的计算结果具有可比性。

6-17 在一填料吸收塔内,用清水逆流吸收空气中的NH 3,入塔混合气中NH 3的含量为0.01(摩尔分率,下同),吸收在常压、温度为10℃的条件下进行,吸收率达95%,吸收液中NH 3含量为0.01。操作条件下的平衡关系为x y 5.0=,试计算清水流量增加1倍时,吸收率、吸收推动力和阻力如何变化,并定性画出吸收操作线的变化。

解:吸收率增加,吸收推动力增加

2是清水增加一倍时的操作线,斜率增加,推动力增大。

6-18 某吸收塔用25mm×25mm 的瓷环作填料,充填高度5m ,塔径1m ,用清水逆流吸收流量为2250m 3/h 的混合气。混合其中含有丙酮体积分数为5%,塔顶逸出废气含丙酮体积分数将为0.26%,塔底液体中每千克水带有60g 丙酮。操作在101.3kPa 、25℃下进行,物系的平衡关系为y=2x 。试求(1)该塔的传质单元高数H OG 及体积吸收系数K y a ;(2)每小时回收的丙酮量,kg/h 。

y

0.5x

11

解:(1)M 丙酮=58

由全塔物料衡算:

(2)每小时回收的丙酮量为:

()()h kg M y y G /9.252580026.005.00.9221'=?-?=-

6-19 在一填料层高度为5m 的填料塔内,用纯溶剂吸收混合气中的溶质组分。当液气比为1.0时,溶质回收率可达90%。在操作条件下气液平衡关系为y =0.5x 。现改用另一种性能较好的填料,在相同的操作条件下,溶质回收率可提高到95%,试问此填料的体积吸收总系数为原填料的多少倍? 解:本题为操作型计算,NOG 宜用脱吸因数法求算。

01828

.018/100058/6058

/60x 1=+=

59.20

01828.00026

.005.0y 2121=--=--=x x y G L 772.059.22

/m ===G L A I 19

.7]772.00026.005

.0)772.01ln[(772.011]1)11ln[(/1-112221=+--=

+---=A

mx y mx y A A N OG 695.019

.75

===

OG OG N H H a

K G H OG y =

h T T V G /mol 0.92298273×4.222250.4.220===

相关文档
相关文档 最新文档