文档库 最新最全的文档下载
当前位置:文档库 › 高一数学两个变量的线性相关

高一数学两个变量的线性相关

相关性分析(相关系数)

相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值一般介于-1~1之间。相关系数不是等距度量值,而只是一个顺序数据。计算相关系数一般需大样本. 相关系数又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。 相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。 γ>0为正相关,γ<0为负相关。γ=0表示不相关; γ的绝对值越大,相关程度越高。 两个现象之间的相关程度,一般划分为四级: 如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。 相关系数的计算公式为<见参考资料>. 其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值, 为因变量数列的标志值;■为因变量数列的平均值。 为自变量数列的项数。对于单变量分组表的资料,相关系数的计算公式<见参考资料>. 其中fi为权数,即自变量每组的次数。在使用具有统计功能的电子计算机时,可以用一种简捷的方法计算相关系数,其公式<见参考资料>. 使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、■、∑xi、∑yi、∑■、∑xiy1、γ等数值,不必再列计算表。 简单相关系数: 又叫相关系数或线性相关系数。它一般用字母r 表示。它是用来度量定量变量间的线性相关关系。 复相关系数: 又叫多重相关系数

2020-2021学年人教A版高中数学必修3:2.3.1变量间的相关关系2.3.2两个变量的线性相关

课时分层作业(十四)变量间的相关关 系 (建议用时:60分钟 ) 一、选择题 1.有几组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩;③立方体的棱长和体积.其中两个变量成正相关的是() A.①③B.②③ C.②D.③ C[①是负相关;②是正相关;③不是相关关系.] 2.由一组样本数据(x1,y1),(x2,y2),…,(x n,y n)得到的回归直线方程为y^=b^x+a^,那么下面说法不正确的是() A.直线y^=b^x+a^必经过点(x,y) B.直线y^=b^x+a^至少经过点(x1,y1),(x2,y2),…,(x n,y n)中的一个点 C.直线y^=b^x+a^的斜率为∑ i=1 n x i y i-n x y ∑ i=1 n x2i-n x2 D.直线y^=b^x+a^是最接近y与x之间真实关系的一条直线 B[回归直线一定经过样本点的中心,故A正确;直线y^=b^x+a^可以不经过样本点中的任何一点,故B错误.由回归方程的系数可知C正确;在直角坐标系中,直线y ^=b^x+a^与所有样本点的偏差的平方和最小,故D正确;] 3.四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论: ①y与x负相关且y ^=2.347x-6.423;②y与x负相关且y^=-3.476x+5.648;

③y与x正相关且y ^=5.437x+8.493;④y与x正相关且y^=-4.326x-4.578. 其中一定不正确的结论的序号是() A.①②B.②③ C.③④D.①④ D[由正负相关的定义知①④一定不正确.] 4.为了解儿子身高与其父亲身高的关系,随机抽取5对父子身高数据如下: 则y对x A.y=x-1 B.y=x+1 C.y=88+1 2x D.y=176 C[x=174+176+176+176+178 5=176,y= 175+175+176+177+177 5= 176.根据回归直线过样本中心点(x、y)验证知C符合.] 5.某产品的广告费用x与销售额y的统计数据如下表: 根据上表可得回归方程y=b x+a中的b为9.4,据此模型预报广告费用为6万元时,销售额为() A.63.6万元B.65.5万元 C.67.7万元D.72.0万元 B[x=1 4(4+2+3+5)=3.5,y= 1 4(49+26+39+54)=42,所以a ^=y-b^ x=42-9.4×3.5=9.1.所以回归方程为y^=9.4x+9.1.令x=6,得y^=65.5(万元).] 二、填空题 6.若回归直线y^=b^x+a^的斜率估值为1.23,样本中心点为(4,5),当x=2时,估计y的值为________. 2.54[因为回归直线y^=b^x+a^的斜率估值为1.23,所以b^=1.23,y^=1.23x+a^.

线性回归方程中的相关系数r

线性回归方程中的相关系数r r=∑(Xi-X的平均数)(Yi-Y平均数)/根号下[∑(Xi-X平均数)^2*∑(Yi-Y平均数)^2]

R2就是相关系数的平方, R在一元线性方程就直接是因变量自变量的相关系数,多元则是复相关系数 判定系数R^2 也叫拟合优度、可决系数。表达式是: R^2=ESS/TSS=1-RSS/TSS 该统计量越接近于1,模型的拟合优度越高。 问题:在应用过程中发现,如果在模型中增加一个解释变量,R2往往增大 这就给人一个错觉:要使得模型拟合得好,只要增加解释变量即可。 ——但是,现实情况往往是,由增加解释变量个数引起的R2的增大与拟合好坏无关,R2需调整。 这就有了调整的拟合优度: R1^2=1-(RSS/(n-k-1))/(TSS/(n-1)) 在样本容量一定的情况下,增加解释变量必定使得自由度减少,所以调整的思路是:将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响: 其中:n-k-1为残差平方和的自由度,n-1为总体平方和的自由度。 总是来说,调整的判定系数比起判定系数,除去了因为变量个数增加对判定结果的影响。R = R接近于1表明Y与X1,X2 ,…,Xk之间的线性关系程度密切; R接近于0表明Y与X1,X2 ,…,Xk之间的线性关系程度不密切 相关系数就是线性相关度的大小,1为(100%)绝对正相关,0为0%,-1为(100%)绝对负相关 相关系数绝对值越靠近1,线性相关性质越好,根据数据描点画出来的函数-自变量图线越趋近于一条平直线,拟合的直线与描点所得图线也更相近。 如果其绝对值越靠近0,那么就说明线性相关性越差,根据数据点描出的图线和拟合曲线相差越远(当相关系数太小时,本来拟合就已经没有意义,如果强行拟合一条直线,再把数据点在同一坐标纸上画出来,可以发现大部分的点偏离这条直线很远,所以用这个直线来拟合是会出现很大误差的或者说是根本错误的)。 分为一元线性回归和多元线性回归 线性回归方程中,回归系数的含义 一元: Y^=bX+a b表示X每变动(增加或减少)1个单位,Y平均变动(增加或减少)b各单位多元: Y^=b1X1+b2X2+b3X3+a 在其他变量不变的情况下,某变量变动1单位,引起y平均变动量 以b2为例:b2表示在X1、X3(在其他变量不变的情况下)不变得情况下,X2每变动1单位,y平均变动b2单位 就一个reg来说y=a+bx+e a+bx的误差称为explained sum of square e的误差是不能解释的是residual sum of square

6.示范教案(2.3.2--两个变量的线性相关)

变量间的相关关系 2.3.1 变量之间的相关关系 2.3.2 两个变量的线性相关 整体设计 教学分析 变量之间的关系是人们感兴趣的问题.教科书通过思考栏目“物理成绩与数学成绩之间的关系”,引导学生考察变量之间的关系.在教师的引导下,可使学生认识到在现实世界中存在不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.随后,通过探究人体脂肪百分比和年龄之间的关系,引入描述两个变量之间关系的线性回归方程(模型).教科书在探索用多种方法确定线性回归直线的过程中,向学生展示创造性思维的过程,帮助学生理解最小二乘法的思想.通过气温与饮料销售量的例子及随后的思考,使学生了解利用线性回归方程解决实际问题的全过程,体会线性回归方程作出的预测结果的随机性,并且可能犯的错误.进一步,教师可以利用计算机模拟和多媒体技术,直观形象地展示预测结果的随机性和规律性. 三维目标 1.通过收集现实问题中两个有关联变量的数据认识变量间的相关关系. ) 2.明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系. 3.经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程的系数公式建立线性回归方程. 重点难点 教学重点:通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;利用散点图直观认识两个变量之间的线性关系;根据给出的线性回归方程的系数公式建立线性回归方程. 教学难点:变量之间相关关系的理解;作散点图和理解两个变量的正相关和负相关;理解最小二乘法的思想. 课时安排 2课时 教学过程 、 第1课时 导入新课 思路1 在学校里,老师对学生经常这样说:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着一种相关关系.这种说法有没有根据呢 学生讨论:我们可以发现自己的数学成绩和物理成绩存在某种关系.(似乎就是数学好

常用相关分析方法及其计算

二、常用相关分析方法及其计算 在教育与心理研究实践中,常用的相关分析方法有积差相关法、等级相关法、质量相关法,分述如下。 (一)积差相关系数 1. 积差相关系数又称积矩相关系数,是英国统计学家皮尔逊(Pearson )提出的一种计算相关系数的方法,故也称皮尔逊相关。这是一种求直线相关的基本方法。 积差相关系数记作XY r ,其计算公式为 ∑∑∑===----= n i i n i i n i i i XY Y y X x Y y X x r 1 2 1 2 1 ) ()() )(( (2-20) 式中i x 、i y 、X 、Y 、n 的意义均同前所述。 若记X x x i -=,Y y y i -=,则(2-20)式成为 Y X XY S nS xy r ∑= (2-21) 【 式中 n xy ∑称为协方差,n xy ∑的绝对值大小直观地反映了两列变量的一致性程 度。然而,由于X 变量与Y 变量具有不同测量单位,不能直接用它们的协方差 n xy ∑来表示两列变量的一致性,所以将各变量的离均差分别用各自的标准差 除,使之成为没有实际单位的标准分数,然后再求其协方差。即: ∑∑?= = )()(1Y X Y X XY S y S x n S nS xy r Y X Z Z n ∑?= 1 (2-22) 这样,两列具有不同测两单位的变量的一致性就可以测量计算。 计算积差相关系数要求变量符合以下条件:(1)两列变量都是等距的或等比的测量数据;(2)两列变量所来自的总体必须是正态的或近似正态的对称单峰分布;(3)两列变量必须具备一一对应关系。 2. 积差相关系数的计算

利用公式 (2-20)计算相关系数,应先求两列变量各自的平均数与标准差,再求离中差的乘积之和。在统计实践中,为方便使用数据库的数据格式,并利于计算机计算,一般会将(2-20)式改写为利用原始数据直接计算XY r 的公式。即: ∑∑∑∑∑∑∑---= 2 22 2) () (i i i i i i i i XY y y n x x n y x y x n r (2-23) (二)| (三)等级相关 在教育与心理研究实践中,只要条件许可,人们都乐于使用积差相关系数来度量两列变量之间的相关程度,但有时我们得到的数据不能满足积差相关系数的计算条件,此时就应使用其他相关系数。 等级相关也是一种相关分析方法。当测量得到的数据不是等距或等比数据,而是具有等级顺序的测量数据,或者得到的数据是等距或等比的测量数据,但其所来自的总体分布不是正态的,出现上述两种情况中的任何一种,都不能计算积差相关系数。这时要求两列变量或多列变量的相关,就要用等级相关的方法。 1. 斯皮尔曼(Spearman)等级相关 斯皮尔曼等级相关系数用R r 表示,它适用于两列具有等级顺序的测量数据,或总体为非正态的等距、等比数据。 斯皮尔曼等级相关的基本公式如下: ) 1(612 2--=∑n n D r R (2-24) 式中: Y X R R D -=____________对偶等级之差; n ____________对偶数据个数。 , 如不用对偶等级之差,而使用原始等级序数计算,则可用下式 )]1() 1(4[13+-+?-= ∑n n n R R n r Y X R (2-25) 式中: X R ___________X 变量的等级; Y R ____________Y 变量的等级; n ____________对偶数据个数。 (2-25)式要求∑∑=Y X R R ,∑∑=2 2Y X R R ,从而保证22Y X S S =。在观测变量中没有相同等级出现时可以保证这一条件。但是,在教育与心理研究实践中,搜集到的观测变量经常出现相同等级。在这种情况下,∑∑=Y X R R 的条件仍可得

2020_2021学年高中数学第2章统计2.3.1变量间的相关关系2.3.2两个变量的线性相关课时作

课时分层作业(十四) 变量间的相关关系 (建议用时:60分钟 ) 一、选择题 1.有几组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩;③立方体的棱长和体积.其中两个变量成正相关的是( ) A .①③ B .②③ C .② D .③ C [①是负相关;②是正相关;③不是相关关系.] 2.由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到的回归直线方程为y ^=b ^x +a ^ ,那么下面说法不正确的是( ) A .直线y ^=b ^x +a ^ 必经过点(x ,y ) B .直线y ^=b ^x +a ^ 至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点 C .直线y ^=b ^ x +a ^ 的斜率为 ∑i =1 n x i y i -n x y ∑i =1 n x 2 i -n x 2 D .直线y ^=b ^x +a ^ 是最接近y 与x 之间真实关系的一条直线 B [回归直线一定经过样本点的中心,故A 正确;直线y ^=b ^x +a ^ 可以不经过样本点中的任何一点,故B 错误.由回归方程的系数可知C 正确;在直角坐标系中,直线y ^=b ^x +a ^ 与所有样本点的偏差的平方和最小,故D 正确;] 3.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:

①y 与x 负相关且y ^=2.347x -6.423;②y 与x 负相关且y ^ =-3.476x +5.648;③y 与 x 正相关且y ^=5.437x +8.493;④y 与x 正相关且y ^ =-4.326x -4.578. 其中一定不正确的结论的序号是( ) A .①② B .②③ C .③④ D .①④ D [由正负相关的定义知①④一定不正确.] 4.为了解儿子身高与其父亲身高的关系,随机抽取5对父子身高数据如下: 则y 对x A .y =x -1 B .y =x +1 C .y =88+1 2 x D .y =176 C [x =174+176+176+176+1785=176,y =175+175+176+177+177 5=176. 根据回归直线过样本中心点(x 、y )验证知C 符合.] 5.某产品的广告费用x 与销售额y 的统计数据如下表: 根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时,销售额为( ) A .63.6万元 B .65.5万元 C .67.7万元 D .72.0万元 B [x =14(4+2+3+5)=3.5,y =14 (49+26+39+54)=42,所以a ^=y -b ^ x =

人教版高中数学-两个变量的线性相关

《2.3.2两个变量的线性相关》 一、内容和内容解析 本节课是人教A版高中数学必修三2.3.2两个变量的线性相关的第二课时。上节课通过大量的生活实例,学生已经初步认识两个变量间的相关关系,并可以借助散点图呈现收集的数据。通过对单变量样本数据中“平均数的几何意义”(切合学生的认知需要)的介绍,为本节课的内容做了铺垫。本节课的主要内容是用最小二乘法求线性回归方程,基础知识是回归直线的概念,也是本节课的核心概念;基本思想是“最小二乘法”思想;根据线性回归方程的系数公式求回归直线是本节课的基本技能. 就统计学科而言,对不同的数据处理方法进行“优劣评价”是“假设检验”的萌芽,而后者是统计学学科研究的另一重要领域.了解“最小二乘法”思想,比较各种“估算方法”,体会它的科学性,既是统计学教学发展的需要,又在体会此思想的过程中促进学生对核心概念的进一步理解.“样本估计总体”是本节课的上位思想也是整个第二章的核心思想,而“最小二乘法思想”作为本节课的核心思想,由此得以体现.回归思想和贯穿统计学科中的随机思想,也在本节课中有所渗透. 本节课通过引导学生经历“收集数据——整理数据(作散点图)——探究并确定回归直线的数学意义——求回归直线方程——应用”完整的回归分析的过程,鼓励学生独立思考、自主探究、合作交流和计算机操作等方式展开学习,从而发挥本节课的育人价值。整个学习过程渗透了数据分析和数学建模的核心素养。通过引导学生对散点图中的点大致分布在一条直线附近的观察,渗透直观想象的核心素养;通过尝试提出找回归直线的想法、用自己的语言描述对这条直线的初步认识到探究从数学的角度定义回归直线的过程,渗透数学抽象和逻辑推理的核心素养;最后,根据回归直线方程的系数公式,引导学生先求出公式中的基本统计量,再代入公式的过程和指导学生利用Excel电子表格求回归方程的过程,提升数学运算的核心素养。 基于上述内容分析,本节课的教学重点为:了解最小二乘法思想,并能根据给出的线性回归方程的系数公式,建立线性回归方程 二、目标和目标设置 基于对本节课教学内容的解析,结合《普通高中数学课程标准(2017年版)》的要求,制定本节课的教学目标如下: 1.了解一元线性回归模型的含义: (1)能根据散点图解释两个相关变量的线性相关关系; (2)能用自己的语言解释回归直线的统计意义; 2.了解最小二乘原理: (1)经历用不同方法确定回归直线的过程,能认识到回归直线是“从整体上看,各点与此直线上的点的距离最小”的直线; (2)能用数学符号刻画“从整体上看,各点与此直线上的点的距离最小”的表达方式; (3)通过对表达方式的转化(距离最小到偏差平方和最小),体会最小二乘法原理,并能用自己的语言表述; 3. 针对实际应用问题,能根据给出的线性回归方程系数公式建立线性回归方程; 4. 在经历完整的线性回归分析的过程中,重点提升数据分析和数学建模核心素养; 5. 针对实际应用问题,会用一元线性回归模型进行预测.

SPSS双变量相关性分析

数学建模SPSS 双变量相关性分析 关键词:数学建模相关性分析SPSS 摘要:在数学建模中,相关性分析是很重要的一部分,尤其是在双变量分析时, 要根据变量之间的联系建立评价指标,并且通过这些指标来进行比对赋值而做出 评价结果。本文由数学建模中的双变量分析出发, 首先阐述最主要的三种数据分 析:Pearson 系数,Spearman 系数和Kendall 系数的原理与应用,再由实际建模 问题出发,阐述整个建模过程和结果。 相关性分析是指对两个或多个具备相关性的变量元素进行分析, 从而衡量两 个变量因素的相关密切程度。相关性的元素之间需要存在一定的联系或者概率才 可以进行相关性分析。相关性不等于因果性,也不是简单的个性化,相关性所涵 盖的范围和领域几乎覆盖了我们所见到的方方面面,相关性在不同的学科里面的 定义也有很大的差异。 双变量相关分析中有三种数据分析:Pearson 系数,Spearman 系数和Kendall 系数。 Pearson 相关系数用来衡量两个数据集合是否在一条线上面,它用来衡量定 距变量间的线性关系。如衡量国民收入和居民储蓄存款、身高和体重、高中成绩 和高考成绩等变量间的线性相关关系。 当两个变量都是正态连续变量,而且两者 之间呈线性关系时,表现这两个变量之间相关程度用积差相关系数,主要有 Pearson 简单相关系数r 。 X X Y Y r ------------------------------------- 2 — 2 \ X X Y Y Spearman 相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关 分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。对 于服从Pearson 相关系数的数据亦可计算 Spearman 相关系数,但统计效能要低 一些。Spearman 相关系数的计算公式可以完全套用 Spearman 相关系数计算公式, 但公式中的x 和y 用相应的秩次代替即可。 设有n 组观察对象,将Xi 、Yi (i=1,2,…,n )分别由小到大编秩。并用 Pi 表示Xi 的秩,Qi 表示Yi 的秩 两者秩和为: 两者平均秩为: 秩相关系数r s 计算公式为: l XY l XX I YY n(n + 1) 2 =(n + 1) =2 Pave

《两个变量的线性相关》教案

《两个变量的线性相关》教案 教学目标 经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 教学重点 经历用不同估算方法描述两个变量线性相关的过程.知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 教学过程 1.回顾上节课的案例分析给出如下概念: (1)回归直线方程 (2)回归系数 2.最小二乘法 3.直线回归方程的应用 (1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系 (2)利用回归方程进行预测;把预报因子(即自变量X )代入回归方程对预报量(即因变量Y )进行估计,即可得到个体Y 值的容许区间. (3)利用回归方程进行统计控制规定Y 值的变化,通过控制X 的范围来实现统计控制的目标.如已经得到了空气中NO 2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO 2的浓度. 4.应用直线回归的注意事项 (1)做回归分析要有实际意义; (2)回归分析前,最好先作出散点图; (3)回归直线不要外延. 5.实例分析: 某调查者从调查中获知某公司近年来科研费用支出(i X )与公司所获得利润(i Y )的统计资料如下表: 科研费用支出(i X )与利润(i Y )统计表 单位:万元 年份 科研费用支出 利润 1998 1999 2000 5 11 4 31 40 30

2001 2002 2003 5 3 2 34 25 20 合计 30 180 要求估计利润(i Y )对科研费用支出(i X )的线性回归模型. 解:设线性回归模型直线方程为:i i X Y 10???ββ+= 56 30 ===∑n X X i 306 180 == =∑n Y Y i 因为: 根据资料列表计算如下表: 年份 i X i Y i Y X 2 i X X X i -Y Y i -2 )(X X i -) )((Y Y X X i i --1998 1999 2000 2001 2002 2003 5 11 4 5 3 2 31 40 30 34 25 20 1 55 4 40 1 20 1 70 7 5 4 2 5 121 1 6 2 5 9 4 0 6 -1 0 -2 -3 1 10 0 4 -5 -1 0 36 1 0 4 9 0 60 0 0 10 30 合计 30 180 1 000 2 00 50 100 现利用公式(Ⅰ)、(Ⅱ)、(Ⅲ)求解参数10ββ、的估计值: 2 300600900120054006000302006180 3010006)(?22 2 1== --= -??-?= --=∑∑∑∑∑i i i i i i X X n Y X Y X n β 20 5 230??1 0=?-=-=X Y ββ

相关性分析

相关性分析是指对两个或多个具备相关性的变量元素进行分析,从而衡量两个变量因素的相关密切程度。 相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法 相关性的元素之间需要存在一定的联系或者概率才可以进行相关性分析。相关性不等于因果性,也不是简单的个性化,相关性所涵盖的范围和领域几乎覆盖了我们所见到的方方面面,相关性在不同的学科里面的定义也有很大的差异。 分类: 1、线性相关分析:研究两个变量间线性关系的程度。用相关系数r来描述 (1)正相关:如果x,y变化的方向一致,如身高与体重的关系,r>0;一般地, ·|r|>0.95 存在显著性相关; ·|r|≥0.8 高度相关; ·0.5≤|r|<0.8 中度相关; ·0.3≤|r|<0.5 低度相关; ·|r|<0.3 关系极弱,认为不相关 (2)负相关:如果x,y变化的方向相反,如吸烟与肺功能的关系,r<0; (3)无线性相关:r=0。 如果变量Y与X间是函数关系,则r=1或r=-1;如果变量Y与X间是统计关系,则-1

2、偏相关分析:研究两个变量之间的线性相关关系时,控制可能对其产生影响的 变量。如控制年龄和工作经验的影响,估计工资收入与受教育水平之间的相关关系 3、距离分析:是对观测量之间或变量之间相似或不相似程度的一种测度,是一种广义的距离。分为观测量之间距离分析和变量之间距离分析(1)不相似性测度: ·a、对等间隔(定距)数据的不相似性(距离)测度可以使用的统计量有Euclid欧氏距离、欧氏距离平方等。 ·b、对计数数据使用卡方。 ·c、对二值(只有两种取值)数据,使用欧氏距离、欧氏距离平方、尺寸差异、模式差异、方差等。 (2)相似性测度: ·a、等间隔数据使用统计量Pearson相关或余弦。 ·b、测度二元数据的相似性使用的统计量有20余种 分析的类别: 网络分析、 财务分析、又称有用性分析,是财务会计的一部分,是指会计信息要同信息使 用者的经济决策相关联,即人们可以利用会计信息做出有关的经济决策,相关性分 析的目的在于提高使用者的经济决策能力和预测能力 经济分析、相关性的统计与分析是经济学中常用的一种方法。相关性是指当两 个因素之间存在联系,一个典型的表现是:一个变量会随着另一个变量变化。相关 又会分成正相关和负相关两种情况 统计分析、相关性系数的计算过程可表示为:将每个变量都转化为标准单位, 乘积的平均数即为相关系数。两个变量的关系可以直观地用散点图表示,当其紧密 地群聚于一条直线的周围时,变量间存在强相关性 数学分析、当两个变量的标准差都不为零时,相关性系数才有定义。当一个或 两个变量带有测量误差时,他们的相关性就会受到削弱 几何分析、对于居中的数据来说(居中也就是每个数据减去样本均值,居中后 它们的平均值就为0),相关性系数可以看作是两个随机变量中得到的样本集向量 之间夹角的cosine函数 大气分析、对回归因素所引起的变差与总变差之间的相关性分析

常用相关分析方法及其计算

二、常用相关分析方法及其计算 在教育与心理研究实践中,常用的相关分析方法有积差相关法、等级相关法、质量相关法,分述如下。 (一)积差相关系数 1. 积差相关系数又称积矩相关系数,是英国统计学家皮尔逊(Pearson )提出的一种计算相关系数的方法,故也称皮尔逊相关。这是一种求直线相关的基本方法。 积差相关系数记作XY r ,其计算公式为 ∑∑∑===----= n i i n i i n i i i XY Y y X x Y y X x r 1 2 1 2 1 ) ()() )(( (2-20) 式中i x 、i y 、X 、Y 、n 的意义均同前所述。 若记X x x i -=,Y y y i -=,则(2-20)式成为 Y X XY S nS xy r ∑= (2-21) 式中n xy ∑称为协方差,n xy ∑的绝对值大小直观地反映了两列变量的一致性程 度。然而,由于X 变量与Y 变量具有不同测量单位,不能直接用它们的协方差 n xy ∑来表示两列变量的一致性,所以将各变量的离均差分别用各自的标准差 除,使之成为没有实际单位的标准分数,然后再求其协方差。即: ∑∑?= = )()(1Y X Y X XY S y S x n S nS xy r Y X Z Z n ∑?= 1 (2-22) 这样,两列具有不同测两单位的变量的一致性就可以测量计算。 计算积差相关系数要求变量符合以下条件:(1)两列变量都是等距的或等比的测量数据;(2)两列变量所来自的总体必须是正态的或近似正态的对称单峰分布;(3)两列变量必须具备一一对应关系。 2. 积差相关系数的计算 利用公式 (2-20)计算相关系数,应先求两列变量各自的平均数与标准差,再

三种常用的不同变量之间相关系数的计算方法

三种常用的不同变量之间相关系数的计算方法 1.定类变量之间的相关系数. 定类变量之间的相关系数,只能以变量值的次数来计算,常用λ系数法, 其计算公式为: (3.2.12) 式中,为每一类x中y分布的众数次数;为变量y各分类次数的众数次数;n为总次数。一般来说,λ系数在0~1之间取值,值越大表明相关程度越高。 例如,性别与对吸烟的态度资料见表3—2。 表3—2 性别与对吸烟态度 态度y 性别x 男女合计(Fy) 容忍反对37 15 8 42 45 57 合计(Fx)52 50 102 从y的分布来看,对吸烟的态度众数是“反对”,众数次数为57,即=57。再从x的每 一个分组(男、女)中y的次数分布来看,男性中y的分布众数是“容忍”,次数为37(f1m);女性中y的分布众数是“反对”,次数为42(f2m);总次数为102(n)。于是, 从计算结果可知,性别与对吸烟态度的相关程度为0.49,属于中等相关。 2.定序变量之间的相关系数

定序变量之间的相关测量常用Gamma系数法和Spearman系数法。Gamma系数法计算公式为: (3.2.13) 式中,G为系数;Ns为同序对数目;Nd为异序对数目。 所谓序对是指表明高低位次的两两配对,如果一对个案在变量x,y的分类表现位次一致,则为同序对;如果位次相反,则为异序对。 G系数取值在—1--十1之间。G=1,表示完全正相关;G=-1,表示完全负相关;G=0,表示完全不相关;-1

高中数学 2.3.1、2变量之间的相关关系和两个变量的线性相关同步测试 新人教A版必修3

2-3-1变量之间的相关关系 2-3-2 两个变量的线性相关 一、选择题 1.对于给定的两个变量的统计数据,下列说法正确的是( ) A .都可以分析出两个变量的关系 B .都可以用一条直线近似地表示两者的关系 C .都可以作出散点图 D .都可以用确定的表达式表示两者的关系 [答案] C [解析] 给出一组样本数据,总可以作出相应的散点图,但不一定分析出两个变量的关系,更不一定符合线性相关或有函数关系. 2.下列两个变量之间的关系,哪个不是函数关系( ) A .正方体的棱长和体积 B .圆半径和圆的面积 C .正n 边形的边数和内角度数之和 D .人的年龄和身高 [答案] D [解析] A 、B 、C 都是函数关系,对于A ,V =a 3 ;对于B ,S =πr 2 ;对于C ,g (n )=(n -2)π.而对于年龄确定的不同的人可以有不同的身高,∴选D. 3.下列变量之间的关系是函数关系的是( ) A .一次函数y =ax +b ,其中a ,b 是已知常数,取b 为自变量,因变量是b 2 -4a B .施肥量和小麦亩产量 C .降雨量和交通事故发生率 D .学习时间和学习成绩 [答案] A [解析] 一般地说,在一定范围内,在其它条件相同的情况下,施肥量加大,小麦亩产量会增加,它们正相关,但不具有函数关系;同理C 、D 也没函数关系,而A 中,∵a ,b 为已知常数,当b 确定时,b 2 -4a 也随之确定且有唯一值与之对应,∴A 为函数关系. 4.由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到的回归直线方程y ^ =bx +a ,那么下面说法不正确的是( ) A .直线y ^=bx +a 必经过点(x -,y - )

SPSS 3种相关系数的区别

3种相关系数的区别 在SPSS软件相关分析中,pearson(皮尔逊), kendall(肯德尔)和spearman(斯伯曼/斯皮尔曼)三种相关分析方法有什么异同两个连续变量间呈线性相关时,使用Pearson积差相关系数,不满足积差相关分析的适用条件时,使用Spearman秩相关系数来描述. Spearman相关系数又称秩相关系数,是利用两变量的秩次大小作线性相关分析,对原始变量的分布不作要求,属于非参数统计方法,适用范围要广些。对于服从Pearson相关系数的数据亦可计算Spearman相关系数,但统计效能要低一些。Pearson相关系数的计算公式可以完全套用Spearman相关系数计算公式,但公式中的x和y用相应的秩次代替即可。 Kendall's tau-b等级相关系数:用于反映分类变量相关性的指标,适用于两个分类变量均为有序分类的情况。对相关的有序变量进行非参数相关检验;取值范围在-1-1之间,此检验适合于正方形表格; 计算积距pearson相关系数,连续性变量才可采用;计算Spearman秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据; 计算Kendall秩相关系数,适合于定序变量或不满足正态分布假设的等间隔数据。 计算相关系数:当资料不服从双变量正态分布或总体分布未知,或原始数据用等级表示时,宜用spearman或kendall相关 Pearson 相关复选项积差相关计算连续变量或是等间距测度的变量间的相关分析 Kendall 复选项等级相关计算分类变量间的秩相关,适用于合并等级资料 Spearman 复选项等级相关计算斯皮尔曼相关,适用于连续等级资料 注: 1若非等间距测度的连续变量因为分布不明-可用等级相关/也可用Pearson 相关,对于完全等级离散变量必用等级相关 2当资料不服从双变量正态分布或总体分布型未知或原始数据是用等级表示时,宜用Spearman 或Kendall相关。 3 若不恰当用了Kendall 等级相关分析则可能得出相关系数偏小的结论。则若不恰当使用,可能得相关系数偏小或偏大结论而考察不到不同变量间存在的密切关系。对一般情况默认数据服从正态分布的,故用Pearson分析方法。 在SPSS里进入Correlate-》Bivariate,在变量下面Correlation Coefficients复选框组里有3个选项: Pearson Kendall's tau-b Spearman:Spearman spearman(斯伯曼/斯皮尔曼)相关系数 斯皮尔曼等级相关是根据等级资料研究两个变量间相关关系的方法。它是依据两列成对等级的各对等级数之差来进行计算的,所以又称为“等级差数法” 斯皮尔曼等级相关对数据条件的要求没有积差相关系数严格,只要两个变量的观测值是成对的等级评定资料,或者是由连续变量观测资料转化得到的等级资料,不论两个变量的总体分布形态、样本容量的大小如何,都可以用斯皮尔曼等级相关来进行研究 Kendall's相关系数 肯德尔(Kendall)W系数又称和谐系数,是表示多列等级变量相关程度的一种方法。适用这种方法的数据资料一般是采用等级评定的

《相关性分析》Word文档

第八章相关分析 【教学目的与要求】 通过本章的学习,使学生了解相关关系和相关分析基本概念,掌握相关分析理论。学生必须深刻领会相关关系的概念,弄清相关分析和回归分析之间的关系,掌握相关分析和回归分析的统计分析方法。 【重点和难点】 相关分析的概念 相关系数的含义与计算 回归方程的建立 回归系数的含义 【课堂讲授内容】 前述分析方法如综合分析法、动态分析法、因素分析法、抽样推断法均是对同一现象的数量特征进行描述和分析,而相关分析与之最大区别为相关分析侧重于两个现象之间的数量联系的研究,当然也不排除时间数列的自相关分析。相关分析有广义与狭义之分,广义的相关分析还包括回归分析,本章的相关分析是广义的概念。 第一节相关分析概述 一、变量关系的类型 在大量变量关系中,存在着两种不同的类型:函数关系和相关关系。 函数关系是指变量之间存在的一种完全确定的一一对应的关系,它是一种严格的确定性的关系。 相关关系是指两个变量或者若干变量之间存在着一种不完全确定的关系,它是一种非严格的确定性的关系。 两者之间的联系: ①由于人类的认知水平的限制,有些函数关系可能目前表现为相关关系。 ②对具有相关关系的变量进行量上的测定需要借助于函数关系。 二、相关关系的种类 按照相关关系涉及的因素的多少,可分为单相关 复相关 按照相关关系的方向,可分为正相关 负相关 按照相关的表现形式,可分为直线相关 曲线相关

按照相关的程度,可以分为 完全相关 完全不相关 不完全相关 三、相关分析的内容 对于相关关系的分析我们可以借助于若干分析指标(如相关系数或相关指数)对变量之间的密切程度进行测定,这种方法通常被称作相关分析 (狭义概念),广义的相关分析还包括回归分析。对于存在的相关关系的变量,运用相应的函数关系来根据给定的自变量,来估计因变量的值 ,这种统计分析方法通常称为回归分析。相关分析和回归分析都是对现象的之间相关关系的分析。广义相关分析包括的内容有: 确定变量之间是否存在相关关系及其表现形式 狭义相关分析 确定相关关系的密切程度 确定相关关系的数学表达式 回归分析 确定因变量估计值误差的程度 第二节 一元线性相关分析 一、 相关关系密切程度的测定 在判断相关关系密切程度之前,首先确定现象之间有无相关关系。确定方法有:一是根据自己的理论知识和实践经验综合分析判断;二是用相关图表进一步确定现象之间相关的方向和形式。在此基础上通过计算相关系数或相关指数来测定相关关系密切的程度。相关系数是用来说明直线相关的密切程度;相关指数则是用来判断曲线相关的密切程度。这是主要介绍相关系数的计算。 相关系数是用来分析判断直线相关的方向和程度的一种统计分析指标,其计算方法中最简单是最常用的为积差法,是用两个变量的协方差与两变量的标准差的乘积之比来计算的,计算公式如下: σ σσy x xy r 2 = ∑∑--∑--= ) )(2 2 ))((y y x x y y x x (1)

双变量关联性分析

第十三章双变量关联性分析 在医学研究中,常会观察到两个变量之间在数量上存在某种协同变化的关系,例如随着体内凝血酶浓度的升高,其凝血时间随之降低等。这类关系在统计学上称为两个随机变量之间的关联性。如何判断两变量间的关联性是否确实存在,以及如何描述关联的方向与密切程度是本章所要介绍的内容。需要指出的是,关联性只反映变量间数量上的关系,但数量上的关联并不表示专业上的因果关系,其是否反映了变量间的因果关系还需其他手段加以确认。本章介绍两个定量变量间的直线相关和两个分类变量间关联性的统计分析方法。 第一节直线相关 一、直线相关的概念及其统计描述 例13.1 某医师测量了15名正常成年人的体重(kg)与CT双肾体积(ml)大小,数据如表13.1所示。据此回答两变量是否有关联?其方向与密切程度如何? 表13.1 15名正常成年人体重和双肾体积的测量值 编号体重(kg) 双肾体积(ml) 1 43 217.22 2 74 316.18 3 51 231.11 4 58 220.96 5 50 254.70 6 65 293.84 7 54 263.28 8 57 271.73 9 67 263.46 10 69 276.53 11 80 341.15 12 48 261.00 13 38 213.20 14 85 315.12 15 54 252.08 初步判断两变量间关系最直观有效的方法就是在平面直角坐标系中绘图,其中一个变量用x表示,另一变量用y表示,在平面直角坐标系中可绘制这些实测

点的分布情况,称为散点图(scatter plot),如图13.1所示。 体重(kg) x 图13.115名正常成年人体重和双肾体积的散点图 由上图可见,两变量的散点分布大致呈直线趋势,其数量变化的方向相同。在统计学上两个随机变量之间呈直线趋势的关系被称为直线相关(linear correlation),又称简单相关(simple correlation),其性质可由图13.2所示散点图作直观说明。 (a) (b) (c) (d) 图13.2 常见的散点图 图13.2(a)、(b)中散点近似呈椭圆形分布,其变化趋势接近一直线,其中图13.2(a)中两变量同时增大或减小,变化趋势同向,称为正相关(positive correlation)。图13.2(b)中一个变量随着另一个变量的增大而减小,变化趋势相反,称为负相关(negative correlation)。如全部数据点恰好散布在一条直线上,称为完全相关,这种特殊情况在实际医学研究中并不存在。图13.2(c)中各点总的趋势杂乱无章或大致呈圆形散布,则该两变量间无相关,也称零相关(zero correlation)。图13.2(d)中各点散布也非直线趋势,亦属无相关,由于统计学中提到的相关通常是指直线相关,故无相关是指无直线关系,但可能存在非直线相关。 二、相关系数的意义及计算 双 肾 体 积 ( m l ) y

相关性分析(相关系数)

简单相关系数: 又叫相关系数或线性相关系数。它一般用字母r 表示。它是用来度量定量变量间的线性相关关系。 复相关系数: 又叫多重相关系数 复相关是指因变量与多个自变量之间的相关关系。例如,某种商品的需求量与其价格水平、职工收入水平等现象之间呈现复相关关系。 偏相关系数: 又叫部分相关系数:部分相关系数反映校正其它变量后某一变量与另一变量的相关关系,校正的意思可以理解为假定其它变量都取值为均数。偏相关系数的假设检验等同于偏回归系数的t检验。复相关系数的假设检验等同于回归方程的方差分析。 典型相关系数:是先对原来各组变量进行主成分分析,得到新的线性无关的综合指标.再用两组之间的综合指标的直线相关系敷来研究原两组变量间相关关系 可决系数是相关系数的平方。 意义:可决系数越大,自变量对因变量的解释程度越高,自变量引起的变动占总变动的百分比高。观察点在回归直线附近越密集。 相关系数(correlation coefficient) 相关系数是表示两个变量(X,Y)之间线性关系密切程度的指标,用r表示,其值在-1至+1间。如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r 的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。计算相关系数的公式为: 定义与说明

相关系数,或称线性相关系数、皮氏积矩相关系数(Pearson product-moment correlation coefficient, PPCC)等,是衡量两个随机变量之间线性相关程度的指标。它由卡尔·皮尔森(Karl Pearson)在1880年代提出[1],现已广泛地应用于科学的各个领域。 相关系数计算公式 相关系数(r)的定义如右图所示,取值范围为[-1,1],r>0表示正相关,r<0表示负相关,|r|表示了变量之间相关程度的高低。特殊地,r=1称为完全正相关,r=-1称为完全负相关,r=0称为不相关。通常|r|大于时,认为两个变量有很强的线性相关性。[2] 样本相关系数常用r表示,而总体相关系数常用ρ表示。 在线性关系不显著时,还可以考虑采用秩相关系数(rank correlation),如斯皮尔曼秩相关系数(Spearman's rank correlation coefficient)等。 相关性质 (1)对称性:X与Y的相关系数(rXY)和Y与X之间的相关系数(rYX)相等; (2)相关系数与原点和尺度无关; (3)若X与Y统计上独立,则它们之间的相关系数为零;但r=0不等于说两个变量是独立的。即零相关并不一定意味着独立性; (4)相关系数是线性关联或线性相依的一个度量,它不能用于描述非线性关系;(5)相关系数只是两个变量之间线性关联的一个度量,不一定有因果关系的含义。 Pearson相关系数

相关文档
相关文档 最新文档