文档库 最新最全的文档下载
当前位置:文档库 › AAP6150A双路限流车充IC

AAP6150A双路限流车充IC

AAP6150A双路限流车充IC
AAP6150A双路限流车充IC

AAP6150A 7.5V to 40V Input Supply, Synchronous Buck PWM Controller

FEATURES

Wide 7.5V to 40V Input Voltage Range Drive Dual Low Cost N-Channel MOSFETs -Adaptive Shoot-Through-Protection

High Efficiency Up to 95%

0.8V reference with +/- 1.5% accuracy Fast Load Transient Response

Dual Output with Independent

Programmable Over-Current Control

Over-Current Control Accuracy +/-3%

Nearly Zero Input Current at Output Over Current Protection or Output

Under- Voltage Protection

Internal Soft-Start

Programmable Output Cable

Compensation

200kHz Fixed Switching Frequency

Thermal shutdown Protection

Available in MSOP-10 Package RoHS Compliant and Halogen Free APPLICATIONS

Car Charger/Adaptor

Rechargeable Portable Devices

Battery Charger

DESCRIPTION

The AAP6150A is a voltage mode synchronous buck controller that achieves excellent load and line regulation. The device operates from an input voltage range of 7.5V to 40V.The AAP6150A provides protection functions including: input under-voltage lockout, output under-voltage protection and programmable over-current protection with two independent outputs.

The AAP6150A is housed in a MSOP10 Package.

ORDERING INFORMATION

TYPICAL APPLICATION

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

VCC ..............................................–0.3V to 40V PHASE(DC) ………………………….…...–1.0V to (VCC+1)V UG …………….…….....………….(V PHASE –0.3)V to (V BST +0.3)V BST…………….………….....…(V PHASE -0.3)V to (V PHASE +7)V FB, COMP, CS1, CS2, LG ……….……………..…….. –0.3V to 7V Operating Temperature Range …............–40°C to 150°C Storage Temperature Range …………….…–55°C to 150°C ESD Rating

HBM (Human Body Mode) …………………… 2KV MM (Machine Mode) …………………… 200V

PIN DESCRIPTION

PIN # NAME DESCRIPTION

1 VCC Supply Input

2 COMP Output pin of error amplifier, Connect an appropriate compensation network between this

and the FB pin

3 FB Output Voltage Feedback Input.

4 CS2 Vout2 Output Over-Current Detection Pin. When this pin sense the voltage drop of sense-

resistor RCS2 greater than 120mV for 30μs, the IC shut down for about 1.3 seconds before

restart.

5 CS1 Vout1 Output Over-Current Detection Pin. When this pin sense the voltage drop of sense-

resistor RCS1 greater than 120mV for 30μs, the IC shut down for about 1.3 seconds before

restart.

6 GND Ground. Connect this pin to the PCB ground

7 LG Output to external low-side gate driver

8 PHASE Switching node. Connect this pin to the drain of low-side MOSFET and the source of hide-

side MOSFET.

9 UG Output to external high-side gate driver

10 BST Bootstrap pin. Connect a 100nF capacitor for BST pin to PHASE pin. This capacitor provides

power supply to the integrated high-side MOSFET gate driver.

Note: Connect the exposed pad of the package to a large ground copper area for maximum heat dissipation.

ELECTRICAL CHACRACTERISTICS

(V CC = 12V, unless otherwise specified. Typical values are at TA = 25°C.)

PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Supply Input

Supply voltage range V CC7.5 40 V Supply input current I CC V FB=0.7V 1.3 1.6 2 mA Power-On Reset

Rising VCC threshold 7.0 V Falling VCC threshold 6.1 V Oscillator and Soft-Start

Switching Frequency F OSC180 200 220 kHz Sawtooth Amplitude ΔV OSC 1.6 V Soft-Start Time T SS 2 mS Reference Voltage

Reference Voltage V REF Measured at FB Pin 0.788 0.8 0.812 V Accuracy T A=-20~80°C -1.5 +1.5 % PWM Controller Gate Drivers

UGATE Maximum Voltage V UG-V PHASE 4 5.5 6 V LGATE Maximum Volatge V LG-V GND 5.5 V UGATE Source Output Impedance R DS(ON)IGATE=100mA 4.3 Ω UGATE Sink Output Impedance R DS(ON)IGATE=100mA 3.4 Ω LGATE Source Output Impedance R DS(ON)IGATE=100mA 3.6 Ω LGATE Sink Output Impedance R DS(ON)IGATE=100mA 1.3 Ω Over current Protection and FB Under Voltage Protection

CS1 OCP threshold V CS1121 125 129 mV CS2 OCP threshold V CS2121 125 129 mV OCP Debounce Time T OCP30 μS FB Under Voltage Threshold V FB-UV Percent of V REF83 % Recycle Time T R FB UV or OCP 1.3 S

TYPICAL CHARACTERISTICS

(Typical values are at VIN=12V, VOUT=5V, TA = 25°C unless otherwise specified)

Soft Start Transient (I OUT =0A~6A)

VOUT Short Protection OCP Hiccup Mode

70%

75%80%85%90%95%100%

00.51 1.52 2.53 3.54 4.55 5.56

E f f

i c i e n c y

%

)Load Current (A )

Efficiency. VS Load Current

Vin=12V Vin=24V

100200300400500600700

0102030405060708090100110120C a b l e c o m p e n s a t i o n

m V

)Sense Voltage (V CS1or V CS2)(mV )

Cable compensation. VS Sense Voltage.

5.1kΩ

6.8kΩ8.2kΩ15kΩ24kΩ

CH1: PHASE, 5V/div CH2: VOUT, 200mV/div CH3: IOUT, 5A/div TIME: 2ms/div

CH1: PHASE, 5V/div CH2: VIN, 5V/div CH3: IOUT, 2A/div CH4: VOUT, 5V/div TIME: 1ms/div

CH1: SW, 10V/div CH3: I L , 5A/div

CH4: VOUT, 5V/div TIME: 200μs/dv

CH1: PHASE, 5V/div CH3: IOUT, 5A/div CH4: VOUT, 2V/div TIME: 500ms/dv

BLOCK DIAGRAM

DETAIL DESCRIPTION

The AAP6150A is a synchronous voltage-mode

buck PWM controller with programmable

dual-output over-current control.

Initialization

The AAP6150A creates its own internal

supplies for use. The POR function continually

monitors the input bias supply voltage at the

VCC pin. The POR function initiates soft-start

operation after VCC supply voltages exceed its

POR rising threshold voltage.

Soft-start

The AAP6150A has an internal soft-start

circuitry to reduce supply inrush current

during startup conditions. The typical soft-

start time is about 2ms. The Power-On-Reset

function initiates the soft-start process. Once

the VCC voltage falls below 6.1V, the controller

will shut down until the voltage exceeds 7V

again.

Switch Frequency

The on-chip oscillator clock switches at 200 kHz

normally.

Over-Current and UVP Protection

When the load current is less than the current-limit, the AAP6150A will regulate the output voltage and operates in the constant voltage mode. If the load current increased beyond the current-limit sensed by the CS1 pin or CS2 pin and this over-current condition is continuous for 30μs, then the AAP6150A will stop switching for about 1.3 seconds before initiating a new soft start, if the over current condition is not removed, the converter will hiccup. During this long time sleeping at over-current or output under-voltage condition, the input current of the system is nearly zero.

OVP and Thermal Shutdown

If the output voltage is higher than regulation target, the AAP6150A will immediately stop switching the high-side MOSFET but not low-side MOSFET. The AAP6150A will not open the high-side MOSFET until the output voltage decrease to regulation target.

Over temperature protection limits total power dissipation in the device. When the junction temperature exceeds TJ= +150°C, a thermal sensor forces the device into shutdown, allowing the die to cool. The thermal sensor turns the device on again after the junction temperature cools by 15°C.

BST Capacitor, Bootstrap Refresh

A capacitor from the PHASE pin to the BST pin is required for the bootstrap circuit for the High-side Gate driver. The voltage of the PHASE pin can go as high as the supply voltage during the High-side MOSFET opens. A diode is included on the IC (anode to internal PVCC, cathode to BST pin), such that the PVCC will be the bootstrap supply. In the event that the UGATE is on for an extended period of time, the charge on the BST capacitor can start to sag, raising the R DS(ON) of the High-side MOSFET. The AAP6150A has a circuit that detects a long UGATE on-time (7.5 oscillator clock periods), and forces the LG to go high for half an oscillator cycle, which allows the bootstrap capacitor to recharge.

DESIGN PROCEDURE

Setting Output Voltages

Output voltages are set by external resistors. The V REF is 0.8V. According to the typical application diagram:

????=?????1+???

?

?

FIGURE 1. Setting VOUT with a Resistor-Divider Setting Over-Current Threshold

The output over-current value is set by a sense resistor between CSx (x=1 or 2) pin and GND, according to the following equation:

CS

OCP R

mV

I

120

=

Output Cable Compensation

Output cable compensation voltage can be set by R1 (FIGURE 1). The relationship between R1 and output cable compensation voltage is calculated below:

If

21CS CS V V ≥,

111101

3CS CS OUT V k R V V ????=?

212

1013CS CS OUT V k R V V ??

??=?

If

21CS CS V V <,

121101

3CS CS OUT V k R V V ??

??=?

222

1013CS CS OUT V k R V V ??

??=?

Inductor Selection

The external components required for the step-down are an inductor, input and output filter capacitors, and compensation RC network. AAP6150A provides best efficiency with continuous inductor current. A reasonable inductor value (L IDEAL ) can be derived from the following:

(1)

IN IDEAL SW OUT RIPPLE

V D D L f I K ?=

Where, K RIPPLE is the ratio of the inductor peak-to-peak current to the inductor DC current, usually, we set K RIPPLE between 20%-50%. D is the duty cycle:

OUT

IN

V D V =

Given L IDEAL , the peak-to-peak inductor current is K RIPPLE I OUT . The absolute-peak inductor current is I OUT (1+0.5K RIPPLE ). Inductance values smaller than L IDEAL can be used to reduce inductor size; however, if much smaller values are used, inductor current rises, and a larger output capacitance may be required to suppress output ripple. Larger values than L IDEAL can be used to obtain higher output current, but typically with larger inductor size.

Input Capacitor Selection

The input capacitor needs to be carefully selected to maintain sufficiently low ripple at the supply input of the converter. A low ESR capacitor is highly recommended. Since large current flows in and out of this capacitor during normal switching, its ESR also affects efficiency.

Use small ceramic capacitors (C HF ) for high frequency decoupling and bulk capacitors to supply the surge current needed each time high-side MOSFET turns on.

Place the small ceramic capacitors physically close to the MOSFETs and between the drain of high-side MOSFET and the source of low-side MOSFET.

The input buck capacitor should also be placed close to the upper-MOSFET’s drain and GND, with the shortest layout traces possible. The important parameters for the buck input capacitor are the voltage rating and the RMS current rating. For reliable operation, select the bulk capacitor with voltage and current ratings above the maximum input voltage and largest RMS current required by the circuit. The capacitor voltage rating should be at least 1.25 times greater than the maximum input voltage and a voltage rating of 1.5 times is a conservative guideline.

The RMS current is given by:

RMS OUT

I I = I RMS has a maximum at V IN =2V OUT , where I RMS =I OUT /2. This simple worst-case condition is commonly used for design because even significant deviations do not offer much relief.

Output Capacitor Selection

The output capacitor is determined by the required ESR to minimize voltage

ripple.

Moreover, the amount of bulk capacitance is also a key for C OUT selection to ensure that the control loop is stable. Loop stability can be checked by viewing the load transient response.

The output ripple is given by:

1

()8OUT L ESR SW OUT

V I R F C ?≤?+

The output ripple will be highest at maximum input voltage since ΔI L increases with input voltage. Multiple capacitors placed in parallel may be needed to meet the ESR and RMS current handling requirement.

EMI Consideration

Since parasitic inductance and capacitance effects in PCB circuitry would cause a spike voltage on PHASE node when high-side MOSFET is turned on/off, this spike voltage on PHASE may impact on EMI performance in the system. In order to enhance EMI performance, there are two methods to suppress the spike voltage. One is to place an RC snubber between PHASE and GND and make them as close as possible to the high-side MOSFET’s source and low-side MOSFET’s drain. Another method is to add a resistor in series with the boostrap capacitor C1. But this method will decrease the driving capability to the high-side MOSFET. It is strongly recommended to reserve the RC snubber during PCB layout for EMI improvement. Moreover, reducing the PHASE trace area and keeping the main power in a small loop will be helpful on EMI performance.

Compensation

FIGURE 2. Voltage-Mode Buck Converter Compensation

Design

The AAP6150A uses voltage-mode control to achieve compensation and fast load transient response. A type-3 feedback network is recommended (see Figure 2).

The output voltage (V OUT ) is regulated by V REF . The error amplifier output (COMP pin voltage) is compared with the oscillator (OSC) modified saw-tooth wave to provide a pulse-width modulated wave with an amplitude of V IN at the PHASE node. The PWM wave is smoothed by the output filter (L and C). The output filter capacitor bank’s equivalent series resistance is represented by the series resistor E.

The modulator transfer function is the small-signal transfer function of V OUT /V COMP . This function is dominated by a DC gain, given by D*V IN /ΔV OSC , and shaped by the output filter, with a double pole break frequency at F LC and a zero at F CE . For the purpose of this analysis, L and D represent the channel inductance

and

its DCR, while C and E represent the total output capacitance and its equivalent series resistance.

C

L F LC ??

?=

π21

E

C F CE ???=

π21

The compensation network consists of the error amplifier (internal to the AAP6150A) and the external R1-R3, C1-C3 components. The goal of the compensation network is to provide a closed loop transfer function with high 0dB crossing frequency (F 0: typically 0.1 to 0.3 of F SW ) and adequate phase margin (better than 45 degrees). Phase margin is the difference between the closed loop phase at F 0dB and 180o .The equations that follow relate the compensation network’s poles, zeros and gain to the components (R1, R2, R3, C1, C2, and C3) in Figure 2.

Use the following guidelines for locating the poles and zeros of the compensation network: 1. Select a value for R1 (1kΩ~10kΩ, typically). Calculate value for R2 for desired converter bandwidth (F 0). If setting the output voltage via an offset resistor connected to the FB pin, R 0 in Figure 2, the design procedure can be followed as presented.

LC

IN OSC F V F R V R ????=

12

2. Calculate C1 such that F Z1 is placed at fraction of the FLC, at 0.1 to 0.75 of F LC (to adjust, change the 0.5 factor to desired number). The higher the quality factor of the output filter and/or the higher the ratio F CE /F LC , the lower the F Z1 frequency (to maximize phase boost at F LC )

LC

F R C ???=

5.0221

3. Calculate C2 such that F P1 is placed at F CE .

1

1221

2????=

CE F C R C C π

4. Calculate R3 such that F z2 is placed at F LC .

Calculate C3 such that F P2 is placed below F SW (typically, 0.5 to 1.0 times F SW ). F SW represents the switching frequency. Change the numerical factor to reflect desired placement of this pole. Placement of F P2 lower in frequency helps reduce the gain of the compensation network at high frequency, in turn reducing the HF ripple component at the COMP pin and minimizing resultant duty cycle jitter.

1213?=

LC

SW

F F R R SW

F R C ??=

31

APPLICAITION INFORMATION

Layout is critical to achieve clean and stable operation. The switching power stage requires particular attention. Follow these guidelines for good PC board layout:

1) MOSFETs switch very fast and efficiently. The speed with which the current transitions from one device to another causes voltage spikes across the interconnecting impedances and parasitic circuit elements. The voltage spikes can degrade efficiency and radiate noise, which results in over-voltage stress on devices. Careful component placement layout and printed circuit design can minimize the voltage spikes induced in the converter. Consider, as an example, the turn-off transition of the upper MOSFET prior to turn-off, the upper MOSFET was carrying the full load current. During turn-off, current stops flowing in

the

upper MOSFET and is picked up by the low side MOSFET or schottky diode. Any inductance in the switched current path generates a large voltage spikes during the switching interval. Careful component selections, layout of the critical components, and use shorter and wider PCB traces help in minimizing the magnitude of voltage spikes.

2) There are two set of critical components in

a DC-DC converter using the AAP6150A. The switching power components are most critical because they switch large amounts of energy, and as such, they tend to generate equally large amounts of noise. The critical small signal components are those connected to sensitive nodes or those supplying critical bypass current.

3) The power components and the PWM controller should be placed firstly. Place the input capacitors, close to the power switches. Place the output inductor and output capacitors between the MOSFETs and the load. Also locate the PWM controller nearby MOSFETs.

4) If possible, a multi-layer printed circuit board is recommended. The capacitor C IN and C OUT each of them represents numerous capacitors of input and output. Use a dedicated grounding plane and use vias to ground all critical components to this layer. Apply another solid layer as power plane and cut this plane into smaller islands of common voltage levels. The power plane should support the input power and output power nodes. Use copper filled polygons on the top and bottom circuit layers for the PHASE node is subjected to very high dV/dt voltages, the stray capacitance formed between these islands and the surrounding circuitry will tend to couple switching noise. Use the remaining printed circuit layers for small signal routing. The PCB traces between the PWM controller and the gate of MOSFET and also the traces connecting source of MOSFETs should be sized

to carry 2A peak currents.

PACKAGE OUTLINE

MSOP10 PACKAGE OUTLINE AND DIMENSIONS

NS6316规格书,3A车充IC方案,可限流

NS63164-30V 输入3A 输出同步降压稳压器 1特性 ●宽输入电压范围:4V 至30V ●宽输出电压范围:1.8V 至28V ●效率可高达92%以上●超高恒流精度:±5%●恒压精度:±2%●无需外部补偿 ●开关频率:130kHz ●输入欠压/过压、输出短路和过热保护●SOP-8封装● 输出电流:3A 2应用范围 ●车载充电器/适配器●线性调节前置稳压器●分布式供电系统● 电池充电器 3说明 NS6316是支持高电压输入的同步降压电源管理芯片,在4~30V 的宽输入电压范围内可实现3A 的连续电流输出。通过调节FB 端口的分压电阻,可以输出1.8V 到28V 的稳定电压。NS6316具有优秀的恒压/恒流(CC/C)特性。NS6316采用电流模式的环路控制原理,实现了快速的动态响应。NS6316工作开关频率为130kHz ,具有良好的EMI 特性。 NS6316内置线电压补偿,可通过调节FB 端口的分压电阻阻值来实现。NS6316不仅可实现单芯片降压电源管理方案,还可以与QC2.0/QC3.0识别芯片构成快速充电电源管理方案。另外,芯片包含多重保护功能:过温保护,输出短路保护和输入欠压/过压保护等。 NS6316采用SOP8的标准封装。4典型应用电路 NS6316方案PCB和原理图: https://www.wendangku.net/doc/8d1643548.html,/product/NS6316-274.html 。

SOP-8的管脚图如下图所示: 6极限工作参数 ●VIN 电压-0.3V ~33V ●FB 电压-0.3V ~33V ●SW 电压-0.3V ~33V ●CSN 电压-0.3V ~33V ●CSP 电压-0.3V ~33V ●工作温度范围-40℃~+85℃●存储温度范围-55℃~+150℃ ●结温范围 +150℃● 焊接温度(10s 内) +265℃ 注1:超过上述极限工作参数范围可能导致芯片永久性的损坏。长时间暴露在上述任何极限条件下可能会影响芯片的可靠性和寿命。 注2:NS6316可以在0℃到70℃的限定范围内保证正常的工作状态。超过-40℃至85℃温度范围的工作状态受设计和工艺控制影响。 编号管脚名称管脚描述管脚功能 1 FB 反馈输入 该管脚用于检测并设定输出电压;输出电压大小由R1和R2设定:V OUT =1.0V×[1+(R1/R2)]2CSN 输出电压 输出电压脚 3CSP 电流采样脚 该管脚用于检测并设定输出恒流值;输出恒流值大小由R3设定:Icc=Vcc_ref/R3 4VIN 电源供电管脚,该管脚应接至少100uF 电解电容到地,以避免输入端在工作时出现较大的电压波动 5,6 SW 功率开关输出端 该管脚为开关节点,与电感连接,用于负载功率输出 7,8GND 地接地管脚

5V2A,3A车充IC,AT2601

Approved By Test By Miller Lin 深圳市天芯源电子有限公司 https://www.wendangku.net/doc/8d1643548.html, AT2601 TEST REPORT Product Model: USB CLA ● Test Status: ■Sample-test ● Input Voltage : 12V / 24V / 32V ● Dual Output Voltage: ● Dual Output Currant: ● The Duration Of Testing: 5V 2.1A 2012. 03. 30 ● Report Issue Date: : 2012. 03. 30

S W Circuit Diagram Dual Output Currant: 2.1A V in C3 C2 C1 R2 Q1 R1 10 4 1 0 0 u F /4 0 V 4 7 u F/4 0 V 51 0 2N39 04 0.12 U1 D1 V g ate Ip k G C1 V in FB G ND 1N41 48 G C2 TC R5 R4 C5 R6 1k 3K C6 10 3 16 0K L1 10 2 RX 10 0uH Vout R3 C4 22 C7 C9 51 0 15 0P D1 22 0uF 10 4 ZD 1 CX 10 2 SS 2 4 5.6V

Efficiency Test Output Ripple Test Output Capacitor 330uF/10V

SD8925G 输入10V-30V输出5V 2.1A同步降压车充IC

8L Packag ble in SOP-e SD8925G e SD8925G 30V, the SD8925G ac G is a sy e SD89254% Efficie 2.1A 10V~30V Wide Range Synchronous Buck Controller F e a t u r Wide I Up to Progra to up t No Loo Progra Cable Therm Availa A p p l i c a Car Ch Pre-Re Distrib Battery e s Input Voltag 9n ammable Sw to 500kHz op Compen ammable cu Compensat mal Shutdow t i o n s harger / Ada egulator for buted Power y Charger e Range: 10ncy witching Freq sation Requ rrent limit tion from 0n aptor Linear Regu r Systems 0V to 30V quency up uired ? to 0.3? e ulators Th re Op to ou re pr sy eff pr sta Th re Ot pr sh Th ind D e s c r i p t i h gulator from perating with X utput curren gulation. rogrammable ynchronous ficient des rovides fast t abilization. h adily availab ther feature rogrammable hutdown. h dustry stand o n n m a high h an input v h nt with exc The switc e from 150 k architecture signs. Curr transient res requires a ble standard es include e current converter dard SOP-8L nchronous voltage inp voltage rang hieves 2.1A cellent load ching freq kHz to 500 k e provides rent mode sponse and a minimum d external co cable com limit and rs are availa L packages. step down put supply. e from 10V continuous d and line quency is kHz and the for highly operation eases loop number of omponents.mpensation, d thermal able in the SD8925G Shouding ········ ····T y p i c a l A p p l i c a t i o n C i r c u i t * The output voltage is set by R2 and R3: V OUT = 1.21V ? [1 + (R2/R3)].

SD8583S电源芯片车充ic方案

SD8583S 说明书 内置高压MOS 管的原边控制开关电源 描述 SD8583S 是内置高压MOS 管功率开关的原边控制开关电源(PSR ),采用PFM 调制技术,提供精确的恒压/恒流(CV/CC )控制环路,具有非常高的稳定性和平均效率。 采用SD8583S 设计系统,无需光耦,可省去次级反馈控制、环路补偿,精简电路、降低系统成本。 SD8583S 适用8~10W 输出功率,内置线损补偿功能和峰值电流补偿功能。 主要特点 ? 内置高压MOS 管功率开关 ? 原边控制模式 ? 低启动电流 ? 前沿消隐 ? 逐周期限流 ? PFM 调制 ? 降峰值模式 ? 过压保护 ? 欠压锁定 ? 环路开路保护 ? 最大导通时间保护 ? 过温保护 ? 线损电压补偿 ? 峰值电流补偿 应用 ? 充电器 ? 适配器 ? 待机电源 产品规格分类

内部框图 管脚排列图 CDC ISEN Drain Drain 管脚说明 管脚号 管脚名称 I/O 功 能 描 述 1 VCC P 供电电源; 2 FB I 反馈电压输入端; 3 CDC I 输出线损补偿端; 4 ISEN I 峰值电流采样端; 5、6 Drain O 高压MOS 管漏端; 7 GND G 地。

极限参数(除非特殊说明,T amb=25°C) MOS管电气参数(除非特殊说明,T amb=25°C)

电气参数(除非特殊说明,V CC =18V,T amb =25°C)

参数温度特性 -12.0 -8.0-4.0012.0温度(°C)启动电流 (μA ) -40-20 20 40 60 80120 启动电流vs. 温度 温度(°C) 启动电压(V ) 启动电压vs. 温度 温度(°C)关断电压 (V ) 关断电压vs. 温度 温度(°C) 恒压阈值 (V ) 恒压阈值vs. 温度 1008.04.015.0 16.0 17.018.020.021.0-40-20 020********* 1006.0 7.08.09.011.012.0-40-20 20 40 60 80120 100 3.30 3.50 3.90 4.10 4.50-40 -20 0204060 80120 10019.010.0 3.704.30 功能描述 SD8583S 是离线式开关电源集成电路,是内置线损补偿和峰值电流补偿的高端开关电源控制器。通过检测变压器原级线圈的峰值电流和辅助线圈的反馈电压,控制系统的输出电压和电流,达到输出恒压或者恒流的目的。 完整的工作周期分为峰值电流检测和反馈电压检测: 当MOS 管导通,通过采样电阻检测原级线圈的电流,此时FB 端电压为负,输出电容对负载供电,输出电压V O 下降;当原级线圈的电流到达峰值时,MOS 管关断,FB 端电压检测开始。存储在次级线圈的能量对输出电容充电,输出电压V O 上升,并对负载供电。当同时满足恒压、恒流环路控制的开启条件后,MOS 管才开启。随之,芯片再次进入峰值电流检测。 1. 电路启动和欠压锁定 系统上电,电路由高压直流母线通过启动电阻对VCC 管脚外置的电容充电。当VCC 上升到17.8V ,电路开始工作;在电路正常工作过程中,由启动电阻和辅助线圈共同供电来维持VCC 电压;当VCC 下降到8.8V 进入欠压锁定状态,启动电阻对VCC 电容供电,VCC 上升到17.8V ,电路启动重新工作。

AAP6150A双路限流车充IC

AAP6150A 7.5V to 40V Input Supply, Synchronous Buck PWM Controller FEATURES Wide 7.5V to 40V Input Voltage Range Drive Dual Low Cost N-Channel MOSFETs -Adaptive Shoot-Through-Protection High Efficiency Up to 95% 0.8V reference with +/- 1.5% accuracy Fast Load Transient Response Dual Output with Independent Programmable Over-Current Control Over-Current Control Accuracy +/-3% Nearly Zero Input Current at Output Over Current Protection or Output Under- Voltage Protection Internal Soft-Start Programmable Output Cable Compensation 200kHz Fixed Switching Frequency Thermal shutdown Protection Available in MSOP-10 Package RoHS Compliant and Halogen Free APPLICATIONS Car Charger/Adaptor Rechargeable Portable Devices Battery Charger DESCRIPTION The AAP6150A is a voltage mode synchronous buck controller that achieves excellent load and line regulation. The device operates from an input voltage range of 7.5V to 40V.The AAP6150A provides protection functions including: input under-voltage lockout, output under-voltage protection and programmable over-current protection with two independent outputs. The AAP6150A is housed in a MSOP10 Package. ORDERING INFORMATION

IA1219,30V 同步降压IC 车充 DC-DC降压

IA1219 2A 27V Synchronous Buck Converter Description The IA1219 is a monolithic synchronous buck regulator. The device integrates 95 m? MOSFETS that provide 2A continuous load current over a wide operating input voltage of 4.5V to 27V. Current mode control provides fast transient response and cycle-by-cycle current limit. An adjustable soft-start prevents inrush current at turn on. Features 2A Output Current Wide 4.5V to 27V Operating Input Range Integrated Power MOSFET switches Output Adjustable from 0.925V to 0.8Vin Up to 96% Efficiency Programmable Soft-Start Stable with Low ESR Ceramic Output Capacitors Fixed 340KHZ Frequency Cycle-by-Cycle Over Current Protection Short Circuit Protection Input Under Voltage Lockout Package : SOP-8L Applications Distributed Power Systems Networking Systems FPGA, DSP, ASIC Power Supplies Green Electronics/ Appliances Notebook Computers Typical Application Circuit Michael Chu QQ:1 651316203

USB车充工作原理

34063是一种开关型高效DC/DC 变换集成电路。34063能够控制的开关峰值电流达到0.8-1.5A ;实际最高输出电流为峰值电流60%左右。34063工作原理如下: 1.比较器的反相输入端(脚5)通过外接分压电阻R1、R2监视输出电压 。其中,输出电压Uo=1.25(1+ R2/R1)由公式可知输出电压 。仅与R1、R2数值有关,因1.25V 为基准电压,恒定不变。若R1、R2阻值稳定,U 。亦稳定。 2.脚5电压与内部基准电压1.25V 同时送人内部比较器进行电压比较。当脚5的电压值低于内部基准电压(1.25V)时,比较器输出为跳变电压,开启R —S 触发器的S 脚控制门,R —S 触发器在内部振荡器的驱动下,Q 端为“1”状态(高电平),驱动管T2导通,开关管T1亦导通,使输入电压Ui 向输出滤波器电容Co 充电以提高U 。,达到自动控制U 。稳定的作用。 3.当脚5的电压值高于内部基准电压(1.25V)时,R —S 触发器的S 脚控制门被封锁,Q 端为“0”状态(低电平),T2截止,T1亦截止。 4. 振荡器的Ipk 输入(脚7)用于监视开关管T1的峰值电流,以控制振荡器的脉冲输出到R —S 触发器的Q 端。 5. 脚3外接振荡器所需要的定时电容Co 电容值的大小决定振荡器频率的高低,亦决定开关管T1的通断时间。 注释: 1)输出电压计算公式:Uo=1.25*(1+R2/R1)=1.25(1+4.7/1.5)=5.17V R2和R1必须选用1%精密电阻,电压误差±5%左右。 DRC 8 IPK 7 V+ 6 CINV 5 SWC 1 SWE 2 CT 3 V- 4 U1 MC34063 D1 1N5819 R2 1.5K 1/6W R6 4.7K 1/6W R3(2) C1 47uF 35V R4 0.22R 1W C2 470pF C3 220UF 10V L1 100UH J1

LP64920 同步整流车充IC

30V 2.4A Synchronous Buck Converter General Description The LP64920 is a synchronous, rectified, step-down, switch-mode converter with built-in power MOSFET. The LP64920 offers a very compact solution that achieves a maximum of 2.4A of continuous output current. The LP64920 has synchronous mode operation for high efficiency over the output current load range. Current-mode operation provides fast transient response and eases loop stabilization. The LP64920 requires a minimum number of readily available standard external components. Other features include cable compensation, programmable current limit and thermal shutdown. Order Information LP64920 □ □ □ □ F: Pb-Free Package Type SO: SOP8 Current Sense Voltage A: V CS =53mV B: V CS =65mV Applications ? Car Charger ? Pre-Regulator for Linear Regulators ? Distributed Power Systems ? USB Dedicated Charging Ports (DCP) Features ◆ Wide 8V to 30V Continuous Operating Input Range ◆ 78mΩ/65mΩ Low R DS(ON) Internal Power MOSFET ◆ Up to 93% Efficiency ◆ Default 160kHz Switching Frequency ◆ Internal Soft Start ◆ Output Line Drop Compensation ◆ Over-Current Protection (OCP) programmable with External Resistor ◆ No Loop Compensation Required ◆ Thermal Shutdown ◆ Available in SOP8 Package Typical Application Circuit LP64920 ***输出带过压保护,不烧手机*** 布线要求: 1:输入电容尽量靠近IC输入脚,且输入和输出电容的地尽量靠近IC地。5:Rup电阻取输出电容或输出电容后面,Rdn电阻做单点接地,尽量离78脚近。 2:FB的走线尽量短,且不要有靠近或是经过SW脚的走线。 4:带线补后建议在Rdn电阻上面并联一个47PF电容防干扰。 3:Rup和Rdn的电阻同比例增加线补增加;例:180K/24K线补0.3V。6:CS的走线远离SW脚的高频走线,且不要从SW走线的底层经过。

车充IC车充芯片最低成本方案

n Excellent line and load regulation n TTL shutdown capability n ON/OFF pin with hysteresis function n With output constant current loop n Built in thermal shutdown function n Built in current limit function n Built in output over voltage protection n SOP8-EP (Exposed PAD) package Applications n Car Charger n Battery Charger n LED Constant Current Driver number of external components, the regulator is simple to use and include internal frequency compensation and a fixed-frequency oscillator. The PWM control circuit is able to adjust the duty ratio linearly from 0 to 100%. An enable function, an over current protection function is built inside. An internal compensation block is built in to minimize external component count. Figure1. Package Type of XL4001

大电流车充IC方案XL4501

宽输入电压范围 n输出电压从1.25V到32V可调n最小压差0.3V n固定150KHz开关频率 n最大5A开关电流 n内置功率MOS n出色的线性与负载调整率 n内置恒流环路 n内置频率补偿功能 n内置输出短路保护功能 n内置输入过压保护功能 n内置热关断功能n TO263-5L封装 应用 n车载充电器 n电池充电器 n LCD电视与显示屏 n便携式设备供电 n通讯设备供电 n降压恒流驱动 n显示器LED背光 n通用LED照明 描述 XL4501是一款高效降压型DC-DC转换 器,可工作在DC8V到36V输入电压范围, 低纹波,内置功率MOS。XL4501内置固定 频率振荡器与频率补偿电路,简化了电路设 计。 PWM控制环路可以调节占空比从 0~100%之间线性变化。内置输出过电流保 护功能。内部补偿模块可以减少外围元器件 数量。 图1.XL4501封装

150KHz 36V 5A开关电流自带恒流环路降压型DC-DC转换器XL4501 引脚配置 图2. XL4501引脚配置 表1.引脚说明 引脚号引脚名称引脚描述 1 GND 接地引脚。 2 FB 反馈引脚,通过外部电阻分压网络,检测输出电压进行调整,参考电压为1.25V。 3 SW 功率开关输出引脚,SW是输出功率的开关节点。 4 CS 输出电流检测引脚(IOUT=0.11V/RCS)。 5 VIN 输入电压,支持DC8V~36V宽范围电压操作,需要在VIN与GND 之间并联电解电容以消除噪声。

150KHz 36V 5A开关电流自带恒流环路降压型DC-DC转换器XL4501 方框图 图3. XL4501方框图 典型应用 图4. XL4501系统参数测量电路

JW1610子弹头车充方案5v1a车充ic

一、概述 JW1610是一款单芯片的同步降压调节器。内部集成了100mΩ的MOSFET,在输入电压范围内可持续的提供1A的负载电流,芯片电流控制模块为整个系统提供快速的瞬态响应和逐周期的电流限制。内部集成软启动功能可在系统开启时防止浪涌电流损坏IC。在短路状态下,输入电流低至1uA左右。该IC采用8引脚SOP封装,提供了一个非常紧凑的系统解决方案,最少程度的依赖于外部元件。 二、特点 1A输出电流 宽输入电压范围(6.4V至40V) 内部集成100mΩ的功率MOSFET管 输出电压在从0.925V至20V之间可调 高达90%以上的效率 可编程软启动 固定340KHz的频率 逐周期的过电流保护 输入欠压锁定 8引脚SOP封装 三、产品应用 分布式电源系统网络系统 机顶盒液晶电视/显示器 笔记本 四、引脚图及说明 引脚图序号名称功能描述 SOP-81BS 上管驱动栅极输入端,在BS和SW之间连接一个0.01μF或更大 的电容,充电升压后为上管(N沟道MOSFET)提供驱动电压 2IN 电源输入端。为IC和降压稳压器提供4.75V~18V的电源,在输 入和地之间接一个合适大小的旁路电容,减少输入到IC的噪声3SW 功率开关管输出端。这个开关节点为输出提供能量,将LC滤波 器连接在SW和输出端。注意需要BS和SW之间的升压电容驱 动开关管 4GND芯片地 5FB 反馈输入端。输出端经过电阻分压后提供给FB的输入,通过这 个采样反馈来调节输出电压,反馈端的比较点为0.925V 6COMP 补偿端。在COMP和地之间的串联RC网络被用来补偿系统的闭 环控制,一些情况下需要在COMP和地之间再加一个电容 7EN 使能输入端。稳压器的使能输入端,高电平使能,接100K的上 拉电阻可自动启动。 8SS 软启动控制输入端。SS到地之间的电容大小设置软启动的时间, 当电容值为0.1μF时启动时间约为15mS,若不使用此功能,可 将其悬空。 五、内部框图

LP64930同步整流5V3.6A DCDC车充用IC

L P64930 30V 3.5A Synchronous Buck Converter General Description The LP64930 is a synchronous step down regulator with CC control from a high voltage input supply. Operating with an input voltage 8V~30V, the LP64930 achieves 3.5A continuous output current with excellent load and line regulation. Current mode operation provides fast transient response and eases loop stabilization. The LP64930 requires a minimum number of readily available standard external components. Other features include cable compensation, programmable current limit and thermal shutdown. The LP64930 converters are available in the industry standard SOP8 packages. Order Information LP64930 □ □ □ □ F: Pb-Free Package Type SO: SOP8 Current Sense Voltage A: V CS =53mV B: V CS =65mV Applications ? Car Charger / Adaptor ? Pre-Regulator for Linear Regulators ? Distributed Power Systems ? Battery Charger Features ◆ Wide 8V to 30V Continuous Operating Input Range ◆ 58mΩ/45mΩ Low R DS(ON) Internal Power MOSFET ◆ Up to 93% Efficiency ◆ Default 180kHz Switching Frequency ◆ Internal Soft Start ◆ Output Line Drop Compensation ◆ Over-Current Protection (OCP) programmable with External Resistor ◆ No Loop Compensation Required ◆ Thermal Shutdown ◆ Available in SOP8 Package Typical Application Circuit Marking Information ***输出带过压保护,不烧手机***

FP6719内置QC3.0协议的车充IC 带QC3.0认证

FP6719 High Efficiency, Synchronous Boost Converter with QC 2.0 Fast Charging Function Pin Assignments SP Package (SOP-8 Exposed Pad) D+OUT EN LX VIN VREG D-HVSS Fig ure 1. Pin Assignment of FP6719 Ordering Information Description The FP6719 is highly-integrated switch-mode system power management devices for smart power bank application and regulated output voltage including 5V /9V /12V. Its low impedance power switch optimizes switch-mode operation efficiency, reduces MOS power consumption. The USB D+/D- data line makes the device protocol handshake to set suitable output voltage to do fast charging function. The chip is compliant with QC 2.0 class A specifications with Max. output current up to 3A at 5V. Besides the converter includes two switch MOSFETs as synchronous boost converter. So no external Schottky diode is required and could get better efficiency near 92%. Other features include built-in soft start, thermal shutdown protection, under-voltage lockout (UVLO), and short circuit protection function, which can shut off the device if output voltage reaches below 1.5V. The FP6719 is available in a space-saving SOP-8 (Exposed Pad ) package with an exposed pad. Features ● Input Voltage Range from 2.9V to 5.5V. ● Output Voltage Can be Set to 5V/9V/12V. ● Built-in Low R DS (ON) Integrated Power MOSFET ● NMOS 39mΩ/PMOS 42mΩ ● 3.0A Output Current at 5V ● Fixed Switching Frequency 400KHz. ● Power-Save Mode for Light-Load Efficiency. ● Short Circuit Current Fold-back Protection. ● Built-in Soft Start, Output Overvoltage Protection and Thermal Protection ● Supports USB DCP Shorting D+ Line to D- Line per USB Battery Charging Specification, Revision 1.2. ● Meets Chinese Telecommunication Industrial Standard YD/T 1591-2009 ● Supports USB DCP applying 2.7V on D+ line and 2.7V on D- line. ● Supports USB DCP applying 1.2V on D+ and D- lines ● Automatic selection of D+/D- mode for an attached device ● Complaint with Apple? and Samsung devices ● SOP-8 (Exposed Pad ) Pb-Free Package ● UL certificate no: 4787022570-2 Applications ● Backup Battery Pack ● Mobile / Tablet Power ● Digital Cameras and Bluetooth Accessories ● USB Power Output Ports FP6719□ Package Type SP: SOP-8 (Exposed Pad)

车载充电器方案简介

车载充电器方案简介 常规用于汽车电瓶(轿车12V, 卡车24V)供电的车载充电器, 大量使用在各种便携式、手持式设备的充电领域, 诸如: 手机, PDA, GPS等; 车充既要考虑锂电池充电的实际需求(恒压CV,恒流CC,过压保护OVP),又要兼顾车载电瓶的恶劣环境(瞬态尖峰电压,系统开关噪声干扰,EMI等);因此车充方案选取的IC必须同时满足:耐高压,高效率,高可靠性,低频率(有利于EMI的设计)的芯片;通俗讲就是要求“皮实”。 常见的车充方案简介如下: [1] 单片34063实现的低端车充方案示意图 优点::低成本; 缺点:(1) 可靠性差,功能单一;没有过温度保护,短路保护等安全性措施; (2) 输出虽然是直流电压,但控制输出恒流充电电流的方式为最大开关电流峰值限制,精度不够高; (3) 由于34063为1.5A开关电流PWM+PFM模式(内部没有误差),其车充方案输出直流电压电流的纹波比较大,不够纯净;输出电流能力也非常有限;(常见于 300ma~600ma之间的低端车充方案中) [2] 34063+NPN(NMOS)实现扩流的车充方案示意图

优点:在[1]方案的基础上扩流来满足不断增长的充电电流能力的需求; 缺点:同样存在[1]方案中类似的不足; [3] 用2576+358+稳压管的方案示意图 优点:(1) 由于2576内置过流保护、过温度保护等安全措施,结合358(双运放)来实现输出恒压CV,恒流CC,过压保护OVP等功能;实现了可靠、安全、完善的锂电池充电方案; (2) 由于2576为固定52K PWM变换器,使得车充的EMI设计相对容易; (3) 由于2576和358均为40V高压双极工艺制造,更加“皮实”; (4) 这种方案常用在0.8A ~ 1.5A左右的车充中; 缺点:(1) 系统相对复杂,成本较高; (2) 恒流CC和过压保护OVP是通过358的输出去控制2576的EN来实现的,因此充电电流有比较大的纹波,CC和OVP的响应速度也不够快(是通过切换2576是否工作来实现的); [4] XLSEMI设计单片车充IC XL4002示意图

5V3A过认证车充方案IC

一、概述 CX8519是一款降压型PWM转换器,典型输出驱动电流为3.5A无需外加晶体管。设计允许它可在8V~40V的宽输入电压下工作。通过将COMP/EN脚逻辑电平拉低来控制外部关断功能,使其进入待机模式。外部补偿使反馈控制具有良好的线性调整率和负载调整率,具有灵活的外围设计。 CX8519的特点之一是具有可编程的CV/CC模式控制功能。CV(恒压)模式提供了一个稳定的输出电压,CC(恒流)模式提供了一个限流功能。在电流检测放大器输入期间,CC电流值通过外部电阻设定。 CX8519适用于需要用到电流限制功能的DC/DC开关电源上。该器件采用ESOP-8L封装,且工作时只需要很少的外围器件。 二、特性 ●电压输入范围:8V~40V ●线电压Vout(Vref=1.2V)精度为±1% ●CC/CV模式控制(恒流和恒压) ●限流精度为±5% ●输出短路保护 ●过压保护(超出输出电压的118%) ●过温保护 ●内置软启动,启动时间12ms ●固定频率120kHz ●UVLO保护 ●占空比范围(0~90%) ●单独的引脚进行外部补偿和关断控制 ●集成N-MOSFET ●ESOP-8L封装

三、应用 ●车充 ●便携式充电设备 ●高亮度照明设备 ●具有限流功能的多功能DC/DC变换器 四、极限参数 注意:如果器件工作条件超出上述各项极限值,可能对器件造成永久性损坏。上述参数仅仅是工作条件的极限值,不建议器件工作在推荐条件以外的情况。器件长时间工作在极限工作条件下,其可靠性及寿命可能受到影响。

五、功能框图 图1.内部框图

六、管脚定义 VCC LX BST ISEN-ISEN+ COMP/EN FB 图2.管脚结构

CX918 车充芯片车充方案

PULSE-WIDTH-MODULATION BATTERY CHARGER GENERAL DESCRIPTION The CX918 is a constant current, constant voltage power supply controller, which incorporate a voltage mode, a current mode circuit, and pulse width modulation (PWM) switching regulator control circuit. An external sense resistor will set the charge current with ±8% accuracy. An internal resistor divider and precision reference set the final float voltage to 5V with ±2% accuracy. With a 100 KHz switching frequency, the CX918provides a simple solution to the EMI problem. High efficiency up to 90% will minish application component heat. The CX918 also has over-voltage protect, over-thermal protect, and short circuit protect function. At the beginning of the charge, the over-current circuit will limit the charge current not too high. The CX918 is available in a 6-pin SOT 23-6 package. FEATURES z Wide Input Supply Range: 10V to 40V z High Efficiency Current Mode PWM Controller with 100KHz Switching Frequency z ±2% Charge Voltage Accuracy z Constant Switching Frequency for Minimum Noise z ±8% Charge Current Accuracy z Cable compensation function z Automatic Battery Recharge z Automatic Shutdown When Input Supply is Removed z Available in a 6-pin SOT23-6 package APPLICATIONS z SMPS z Charger z Portable Computers z Handheld Instruments TYPICAL APPLICATION Figure 1.FOR 5V/3A CX918

相关文档
相关文档 最新文档