文档库 最新最全的文档下载
当前位置:文档库 › 液压设备常见故障分析与排除(一)

液压设备常见故障分析与排除(一)

液压设备常见故障分析与排除(一)
液压设备常见故障分析与排除(一)

液压设备常见故障分析与排除(一)

随着人们对液压技术的认识和理解,其应用领域已经遍及到国民经济各个行业。液压设备种类繁多,但它们都具有由液压泵提供能源、由液压阀进行控制、由液压马达和液压缸作为执行元件等共同的特性。虽有不同的个性,但其共性也是相当明显的。

12.1 液压系统的工作压力失常,压力上不去

工作压力是液压系统最基本的参数之一,工作压力的正常与否会很大程度上影响液压系统的工作性能。液压系统的工作压力失常经常表现为对压力进行调解时出现调压阀失效、系统压力建立不起来、完全无压力、持续保持高压、压力上升后又掉下来及压力不稳定等情况。

一旦出现压力失常,液压系统的执行元件将难以执行正常的工作循环,可能出现始终处于原始位置不工作,动作速度显著降低,动作时相关控制阀组常发出刺耳的噪声等,导致机器处于非正常状态,影响整机的使用性能。

12.1.1 压力失常产生的原因

1.液压泵、马达方面的原因:a.液压泵、马达使用时间过长,内部磨损严重,泄漏较大,容积效率低导致液压泵输出流量不够,系统压力偏低。b.发动机转速过低,功率不足,导致系统流量不足,液压系统偏低。c.液压泵定向控制装置位置错误或装配不对,泵不工作,系统无压力。

2.液压控制阀的原因:工作过程中,若发现压力上不去或降不下来的情况,很可能是换向阀失灵,导致系统持续卸荷或持续高压。

溢流阀的阻尼孔堵塞、主阀芯上有毛刺、阀芯与阀孔和间隙内有污物等都有可能使主阀芯卡死在全开位置,液压泵输出的液压油通过溢流阀直接回油箱,即压力油路与回油路短接,造成系统无压力;若上述毛刺或污物将主阀芯卡死在关闭位置上,则可能出现系统压力持续很高降不下来的现象;当溢流阀或换向阀的阀芯出现卡滞时,阀芯动作不灵活,执行部件容易出现时有动作、时无动作的现象,检测系统压力时则表现为压力不稳定。

有单向阀的系统,若单向阀的方向装反,也可能导致压力上不去。系统内外泄漏,例如阀芯与阀体孔之间泄漏严重,也会导致系统压力上不去。

3.其他方面的原因:液压油箱油位过低、吸油管太细、吸油过滤器被杂质污物堵塞会导致液压泵吸油阻力过大(液压泵吸空时,常伴有刺耳的噪声),导致系统流量不足,压力偏低。另外,回油管在液面上(回油对油箱内油液冲击时产生泡沫,导致油箱油液大量混入空气),吸油管密封不好漏气等容易造成液压系统中混入空气,导致系统压力不稳定。

12.1.2 压力失常排除方法

严格按照液压泵正确的装配方式进行装配,并检查其控制装置的线路是否正确。

增加液压油箱相对液压泵的高度,适当加大吸油管直径,更换滤油器滤芯,疏通管道,可解决泵吸油困难及吸空的问题,避免系统压力偏低;另外,选用合适黏度的液压油,避免机器在较低环境温度时因油液黏度过高导致泵吸油困难。

针对液压控制阀的处理方法主要是检查卸荷或方向阀的通、断电状态是否正确,清洗阀芯、疏通阻尼孔,检查单向阀的方向是否正确,更换清洁油液(重新加注液压油时建议用配有过滤装置的加油车来加油)等。

油箱内的回油管没入液面以下,吸油管路接头处加强密封等,可有效防止系统内混入空气,避免系统压力不稳定。

12.2 欠速

12.2.1 欠速的影响

液压设备执行元件(液压缸及液压马达)的欠速包括两种情况:一是快速运动(快进)时速度不够快,达不到设计值和新设备的规定值;二是在负载下其工作速度(工进)随负载的增大显著降低,特别是大型液压设备及负载大的设备,这一现象尤其显著,速度一般与流量大小有关。

欠速首先是影响生产效率,延长了液压设备的工作循环时间;欠速现象在大负载下常常出现停止运动的情况,这便要影响到设备能否正常工作了。而对于需要快速运动的设备,如平面磨床,速度不够会影响磨削表面的粗糙度。

12.2.2 欠速产生的原因

1.快速运动的速度不够的原因

液压泵的输出流量不够和输出压力提不高。溢流阀因弹簧永久变形或错装成弱弹簧、主阀阻尼孔被局部堵塞、朱阀芯卡死在小开口的位置造成液压泵输出的压力油部分溢回油箱,使通入系统供给执行元件的有效流量大为减少,使快速运动的速度不够;对于螺纹插装式溢流阀,其密封的预压缩量的大小也会影响执行元件的快速性。

系统的内外泄漏严重:快进时一般工作压力较低,但比回油油路压力要高许多。当液压缸的活塞密封破损时,液压缸两腔因串腔而使内泄漏大(存在压差),使液压缸的快速运动速度不够,其他部位的内外泄漏也会产生这种现象。

快进时阻力大:例如导轨润滑断油,导轨的镶条压板调得过紧,液压缸的安装精度和装配精度差等原因,造成快进时摩擦阻力增大。

2.工作进给时,在负载下工作进给速度明显降低,即使开大速度控制阀(节流阀等)也依然如此

系统在负载下,工作压力增高,泄漏增大,调好的速度因内外泄漏的增大而减少。

系统油温升高,油液黏度降低,泄漏增加,有效流量减少。

液压系统设计不合理,当负载变化时,进入液压设备执行元件的流量也发生变化,引起速度变化。

油中混有杂质,堵塞流量调节阀节流口,造成工进速度降低;时堵时通,造成速度不稳,例如应该采用调速阀的场合使用了节流阀。

液压系统内进入空气。

12.2.3 欠速排除方法

排除液压泵输出流量不够和输出压力不高的故障。排除溢流阀等压力阀产生的使压力上不去的故障。查找出产生内泄漏与外泄漏的位置,消除内外泄漏;更换磨损严重的零件,消除内漏。控制油温。清洗诸如流量阀等零件,油液污染严重时,及时换油。查明液压系统进气原因,排除液压系统内的空气。

12.3 爬行

12.3.1 概述

液压设备的执行元件常需要以很低的速度(例如每分钟几毫米甚至不到1mm)移动(液压缸)或转动(液压马达)。此时,往往会出现明显的速度不均,出现断续的时动时停,一快一慢,一跳一停的现象,这种现象称为爬行,即低速平稳性的问题。

爬行有很大危害。例如对机床类液压设备而言会破坏工件的表面质量(粗糙度)和加工精度,降低机床和刀具的使用寿命,甚至会产生废品,发生事故,必须排除。

出现爬行故障的原因在于:①当摩擦面处于边界摩擦状态时,存在着动、静摩擦因数的变化(动、静摩擦因数的差异)和动摩擦因数承受着速度的增加而降低的现象。②传动系统的刚度不足(如油中混有空气)。③运动速度太低,而运动件的质量较大。不出现爬行现象的最低速度,称为运动平稳性的临界速度。

消除爬行现象的途径有:①减少动、静摩擦因数之差:如采用静压导轨和卸荷导轨、导轨采用减摩材料、用滚动摩擦代替滑动摩擦以及采用导轨油润滑导轨等。②提高传动机构(液压的、机械的)的刚度K:如提高活塞杆及液压缸座的刚度,防止空气进入液压系统以减少油的可压缩性带来的刚度变化等。③采取措施降低其临界速度及减少移动件的质量等措施。

12.3.2 产生爬行的具体原因

同样是爬行,其故障现象是有区别的:既有有规律的爬行,也有无规律的爬行;有的爬行无规律且振幅大;有的爬行在极低的速度下才产生。产生这些不同现象的爬行原因各有不同的侧重面,有些是机械方面的原因为主,有些是液压方面的原因为主,有些是油中进入空气的原因为主,有些是润滑不良的原因为主。液压设备的维修和操作人员必须不断总结归纳,迅速查明产生爬行的原因,予以排除;现将爬行原因具体归纳如下。

1.静、动摩擦因数的差异大: 导轨精度差。导轨面上有锈斑。导轨压板镶条调得过紧。导轨刮研不好,点数不够,点子不均匀。导轨上开设的油槽不好,深度太浅,运行时己磨掉,所开油槽不均匀。新液压设备,导轨未经跑合。液压缸轴心线与导轨不平行。液压缸缸体孔内局部锈蚀(局部段爬行)和拉伤。液压缸缸体孔、活塞杆及活塞精度差。液压缸装配及安装精度差,活塞、活塞杆、缸体孔及缸盖孔的同轴度差。

?液压缸活塞或缸盖密封过紧、阻滞或过松。

?停机时间过长,油中水分(特别是磨床冷却液)导致有些部位锈蚀。

?静压导轨节流器堵塞,导轨断油。

2.液压系统中进入空气,容积模数降低

液压泵吸入空气:①油箱油面低于油标规定值,吸油滤油器或吸油管裸露在油面上。②油箱内回油管与吸油管靠得太近,二者之间又未装隔板隔开(或未装破泡网),回油搅拌产生的泡沫来不及上浮便被吸入泵内。③裸露在油面至油泵进油口之间的管接头密封不好或管接头因振动而松动,或者油管开裂,吸进空气。④因泵轴油封破损、泵体与泵盖之间的密封破损而进气。⑤吸油管太细太长,吸油滤油器被污物堵塞或者设计时滤油器的容量本来就选得过小,造成吸油阻力增加。⑥油液劣化变质,因进水乳化,破泡性能变差,气泡分散在油层内部或以网状气泡浮在油面上,泵工作时吸入系统。

空气从回油管反灌:①回油管工作时或长久裸露在油面以上。②在未装背压阀的回油路上,而缸内有时又为负压。③油缸缸盖密封不好,有时进气,有时漏油。

3.液压元件和液压系统方面的原因:压力阀压力不稳定,阻尼孔时堵时通,压力振摆大,或者调节的工作压力过低。节流阀流量不稳定,且在超过阀的最小稳定流量下使用。液压泵的输出流量脉动大,供油不均匀。液压缸活塞杆与工作台非球副连接,特别是长液压缸因别劲产生爬行。液压缸内外泄漏大,造成缸内压力脉动变化。润滑油稳定器失灵,导致导轨润滑不稳定,时而断流。润滑压力过低,且工作台又太重。管路发生共振。液压系统采用进口节流方式且又无背压或背压调节机构,或者虽有背压调节机构,但背压调节过低,这样在某种低速区内最易产生爬行。

4.液压油的原因:油牌号选择不对,太稀或太稠。油温影响,黏度有较大变化。

5.其他原因:油缸活塞杆、油缸支座刚性差;密封方面的原因;电机动平衡不好、电机转速不均匀及电流不稳定等。

12.3.3 消除爬行的方法

根据上述产生爬行的原因,可逐一采取排除方法,主要措施有:①在制造和修配零件时,严格控制几何形状偏差、尺寸公差和配合间隙。②修刮导轨,去锈去毛刺,使两接触导轨面接触面积≥75%,调好镶条,油槽润滑油畅通。③以平导轨面为基准,修刮油缸安装面,保证在全长上平行度小于0.1mm;以V形导轨为基准调整油缸活塞杆侧母线,使二者平行度在0.1mm之内。活塞杆与工作台采用球副连接。④油缸活塞与水管同轴度要求≤0.04/1000,所有密封安装在密封沟槽内,不得出现四周上压缩量不等的现象,必要时可以外圆为基准修磨密封沟槽底径。密封装配时,不得过紧和过松。⑤防止空气从泵吸入系统,从回油管反灌进入系统,根据上述产生进气的原因逐一采取措施。⑥排除液压元件和液压系统有关故障。例如系统可改用回油节流系统或能自调背压的进油节流系统等。

⑦采用合适的导轨润滑用油,必要时采用导轨油,因为导轨油中含有极性添加剂,增加了油性,使油分子能紧紧吸附在导轨面上,运动停止后油膜不会被挤破,从而保证了流体润滑状态,使动、静摩擦因数之差极小。⑧增强各机械传动件的刚度;排除因密封方面的原因产生的爬行现象。⑨在油中加入二甲基硅油抗泡剂破泡。⑩注意湍流和液压系统的清洁度。

12.4 振动与噪声

12.4.1 振动(含共振)和噪声的危害

振动和噪声是液压设备常见故障之一,一般会同时出现。振动和噪声有下述危害:①影响加工件表面质量,使机器工作性能变坏。②影响液压设备工作效率,其原因是为避免振动不得不降低切削速度及走刀量。③振动加剧磨损,造成管路接头松脱,产生漏油,甚至振坏设备,造成设备人身事故。④噪声是环境污染的一个重要部分之一,噪声使大脑疲劳,影响听力,加快心脏跳动,危害人身健康。

⑤噪声淹没危险信号和指挥信号,造成工作事故。

12.4.2 共振、振动和噪声产生的原因

整台液压设备是由众多弹性体组成的。每一个弹性体在受到冲击力、转动不平衡力、变化的摩擦力、变化的惯性力以及弹性力等的作用下,便会产生共振和振动,伴之以噪声。

振动包括受迫振动和自激振动两种形式。对液压系统而言,受迫振动来源于电动机、液压泵和液压马达等高速运动件的转动不平衡力,油缸、压力阀、换向阀及流量阀等的换向冲击力及流量压力的脉动。受迫振动中,维持振动的交变力

与振动(包括共振)可无并存关系,即当设法使振动停止时,运动的交变力仍然存在。

自激振动也称颤振。它产生于设备运行过程中;它并不是由强迫振动能源引起的,而是由液压传动装置内部的压力、流量、作用力及质量等参数相互作用产生的。不论这个振动多么剧烈,只要运动(如加工切削运动)停止,便立即消失。例如伺服阀滑阀常产生的自激振动,其振源为滑阀的轴向液动力与管路的相互作用。

另外,液压系统中众多弹性体的振动,可能产生单个元件的振动,也可能产生两个或两个以上元件的共振。产生共振的原因是它们的振动频率相同或相近,产生共振时,振幅增大。

产生振动和噪声的具体原因如下:

液压系统中的振动与噪声以液压油泵、液压马达、液压缸、压力控制阀最严重,方向控制阀次之,流量控制阀最小。有时表现在液压泵、阀及管路之间的共振上,有关液压元件(泵、阀等)产生的振动和噪声故障,可参阅本书相关内容。

其他原因产生的振动和噪声:①电动机振动,轴承磨损引起振动。②泵与电动机联轴器安装不同心(要求刚性连接时同轴度≤0.05mm;挠性连接时同轴度≤0.15mm)。③液压设备外界振源的影响,包括负载(例如切削力的周期性变化)产生的振动.④油箱强度刚度不好,例如油箱顶盖板也常是安装“电动机-油泵”装置的底板,其厚度太薄,刚性不好,运转时产生振动;或者电动机安装连接处未使用缓冲垫。

液压设备上安装的元件之间发生共振:①两个或两个以上的阀(如溢流阀与溢流阀、溢流阀与顺序阀等)的弹簧产生共振。②阀弹簧与配管管路的共振:如溢流阀弹簧与先导遥控管(过长)路的共振,压力表内的波尔登管与其他油管的共振等。③阀的弹簧与空气的共振:如溢流阀弹簧与该阀遥控口(主阀弹簧腔)内滞留空气的共振,单向阀与阀内空气的共振等。

液压缸内存在的空气产生活塞的振动。

液压油的流动噪声,回油管的振动。

油箱的共鸣音。

双泵供油回咯,在两泵出油口汇流区产生的振动和噪声。

阀换向引起的压力急剧变化和产生的液压冲击等产生管路的冲击噪声和振动。

在使用蓄能器保压压力继电器发讯的卸荷回路中,系统中的压力继电器、溢流阀、单向阀等,会因压力频繁变化而引起振动和噪声。

液控单向阀的出口有背压时产生锤击声。

12.4.3 减少振动和降低噪声的措施

各种液压元件产生的振动和噪声排除方法可参阅本书的有关内容。

由于电动机的振动可平衡电动机转子,通过电动机底座下安装防振橡皮垫,更换电动机轴承等方法可解决。

确保“电动机-液压泵”装置的安装同心度,一般电动机和液压泵连接通过泵架来实现,所以泵与电动机的孔必须同轴,采用一次装夹、一刀加工的方式。

与外界振源隔离(如开挖防振地沟)或消除外界振源,增强与外负载连接件的刚性。

油箱装置采用防振措施。

采取各种防共振措施:①改变两个共振阀中一个阀的弹簧刚度或者使用其调节压力适当改变。②对于管路振动,如果用手按压音色变化时说明是管路振动,可采用管夹和适当改变管路长度与直径大小等方法排除,或者在管路中加入一段阻尼,例如在钢管连接的液压系统中,液压泵出口与整个系统的集成块之间往往有一段橡胶软管,就是出于上述目的。③彻底排除回路中的空气。

改变回油管的尺寸。

两泵出油口汇流处,多半为紊流,可使汇流处稍微拉开一段距离,汇流处两泵输出最好成一小于90°的夹角。

油箱共鸣声的排除可采用加厚油箱顶板,补焊加强筋;“电动机-液压泵”装置底座下填补一层硬橡胶板,或者“电动机-液压泵”装置与油箱分离。

选用带阻尼的电液换向阀,并调节换向阀的换向速度;或在电磁先导阀的下面叠加单向节流阀。

?在蓄能器压力继电器回路中,采用压力继电器与继电器互锁联运电路。

?对于液控单向阀出现的振动可采取增高液控压力、减少出油口背压以及采用外泄式液控单向阀等措施解决。

12.5 液压系统温度升高

12.5.1 温升的不良影响

液压系统的温升发热和污染一样,也是一种综合故障的表现形式,主要通过测量油温和少量液压元件来衡量。

液压设备是用油液作为工作介质来传递和转换能量的,运转过程中的机械能损失、压力损失和容积损失必然转化成热量放出,从开始运转时接近室温的温度,通过油箱、管道及机体表液面,还可通过设置的油冷却器散热,运转到一定时间后,温度不再升高,而是稳定在一定温度范围达到热平衡,二者之差便是温升。温升过高会产生下述故障和不良影响。

油温升高,会使油的黏度降低,泄漏增大,泵的容积效率和整个系统的效率会显著降低。由于油的黏度降低,滑阀等移动部位的油膜会变薄和被切破,摩擦阻力增大,导致磨损加剧,系统发热,带来更高的温升。

油温过高,使机械产生热变形,既使液压元件中热膨胀系数不同的运动部件之间的间隙变小而卡死,引起动作失灵,又影响液压设备的精度,导致零件加工质量变差。

油温过高,也会使橡胶密封件变形,加速老化失效,降低使用寿命,丧失密封性能,造成泄漏,泄漏会又进一步发热产生温升。

油温过高,会加速油液氧化变质,并析出沥青物质,降低液压油使用寿命。析出物堵塞阻尼小孔和缝隙式阀口,导致压力阀调压失灵、流量阀流量不稳定、方向阀卡死不换向、金属伸长变弯,甚至破裂等诸多故障。

油温升高,油的空气分离压降低,油中溶解空气逸出,产生气穴,致使液压系统工作性能降低。

12.5.2 造成温升的原因

油温过高有设计方面的原因,也有加工制造和使用方面的原因,具体如下:

液压系统设计不合理,造成先天性不足:①油箱容量设计太少,冷却散热面积不够,而又未设计安装有油冷却装置,或者虽有冷却装置但装置的容量过小。

②选用的阀类元件规格过小,造成阀的流速过高而使压力损失增大导致发热,例如差动回路中如果仅按泵流量选择换向阀的规格,便会出现这种情况。③按快进速度选择油泵容量的定量泵供油系统,在工进时会有大部分多余的流量在高压(工进压力)下从溢流阀溢回而发热。④系统中未设计卸荷回路,停止工作时油泵不卸荷,泵的全部流量在高压下溢流,产生溢流损失发热,导致温升,有卸荷回路,但未能卸荷。⑤液压系统背压过高。例如在采用电液换向阀的回路中,为了保证其换向可靠性,阀不工作时(中位)也要保证系统有一定的背压,以确保有一定的控制压力使电液阀可靠换向,如果系统为大流量,则这些流量会以控制压力的形式从溢流阀溢流,造成温升。⑥系统管路太细太长;弯曲过多,局部压力损失和沿程压力损太大,系统效率低。⑦闭式液压系统散热条件差等。

使用方面造成的发热温升:①油品选择不当油的品牌、质量和黏度等级不符合要求,或不同牌号的液压油混用,造成液压油黏度指数过低或过高。若油液黏度过高,压力损失过大,则功率损失增加,油温上升;如果黏度过低,则内、外泄漏量增加,工作压力不稳,油温也会升高。②污染严重,施工现场环境恶劣,随着机器工作时间的增加,油中易混入杂质和污物,受污染的液压油进入泵、马达和阀的配合间隙中,会划伤和破坏配合表面的精度和粗糙度,使摩擦磨损加剧,同时泄漏增加,引起油温升高。③液压油箱内油位过低,若液压油箱内油量太少,将使液压系统没有足够的流量带走其产生的热量,导致油温升高。④液压系统中混入空气,混入液压油中的空气,在低压区时会从油中逸出并形成气泡,当其运动到高压区时,这些气泡将被高压油击碎,受到急剧压缩而放出大量的热量,引起油温升高。⑤滤油器堵塞,磨粒、杂质和灰尘等通过滤油器时,会被吸附在滤油器的滤芯上,造成吸油阻力和能耗均增加,引起油温升高。⑥液压油冷却循环系统工作不良。通常,采用水冷式或风冷式油冷却器对液压系统的油温进行强制性降温。水冷式冷却器,会因散热片太脏或水循环不畅而使其散热系数降低;风冷式冷却器,会因油污过多而将冷却器的散热片缝隙堵塞,风扇难以对其散热,结果导致油温升高。⑦零部件磨损严重,齿轮泵的齿轮与泵体和侧板,柱塞泵和马达的缸体与配流盘、缸体孔与柱塞,换向阀的阀杆与阀体等都是靠间隙密封的,这些元件的磨损将会引起其内泄漏的增加和油温的升高。⑧环境温度过高,环境温度过高,并且高负荷使用的时间又长,都会使油温太高。

12.5.3 防止油温升高的措施

合理的液压回路设计:①选用传动效率较高的液压回路和适当的调速方式。目前普遍使用着的定量泵节流调速系统的效率是较低(<0.385),这是因为定量泵与油缸的效率分别为85%、95%左右,方向阀及管路等损失约为5%左右,所以即使不进行流量控制,也有25%的功率损失。而且节流调速时,至少有一半以上的浪费。此外还有泄漏及其他的压力损失和容积损失,这些损失均会转化为热能导致温升,所以定量泵加节流调速系统只能用于小流量系统。为了提高效率、减少温升,应采用高效节能回路。

另外,液压系统的效率还取决于外负载。同一种回路,当负载流量qL与泵的最大流量qm比值大时,回路的效率高。例如可采用手动伺服变量、压力控制变量、压力补偿变量、流量补偿变量、速度传感功率限制变量、力矩限制器功率限制变量等多种形式,力求达到负载流量qL与泵的流量相匹配。

②对于常采用定量泵节流调整速回路,应力求减少溢流损失的流量,例如可采用双泵双压供油回路、卸荷回路等。③采用容积调速回路和联合调整(容积+节流)回路。在采用联合调速方式中,应区别不同情况而选用不同方案:对于进给速度要求随负载增加而减少的工况,宜采用限压式变量泵节流调速回路;对于在负载变化的情况下进给速度要求恒定的工况,宜采用稳流式变量泵节流调速回路;对于在负载变化的情况下,供油压力要求恒定的工况,宜采用恒压变量泵节流调速回路。④选用高效率的节能液压元件,提高装配精度。选用符合要求规格的液压元件。⑤设计方案中应尽量简化系统和元件数量。⑥设计方案中应尽量缩短管路程长度,适当加大管径,减少管路口径突变和弯头的数量。限制管路和通道的流速,减少沿程和局部损失,推荐采用集成块的方式和叠加阀的方式。

提高精度和质量:提高液压元件和液压系统的加工精度和装配质量,严格控制相配件的配合间隙和改善润滑条件。采用摩擦因数小的密封材质和改进密封结构,确保导轨的平直度、平行度和良好的接触,尽可能降低油缸的启动力。尽可能减少不平衡力,以降低由于机械摩擦损失所产生的热量。

适当调整液压回路的某些性能参数例如在保证液压系统正常工作的条件下,泵的输出流量应尽量小一点,输出压力尽可能调得低一点,可调背压阀的开启压力尽量调低点,以减少能量损失。

调节溢流阀的压力,根据不同加工要求和不同负载要求,经常调节溢流阀的压力,使之恰到好处。

选用合适的液压油,选用液压油应按厂家推荐的牌号及机器所处的工作环境、气温因素等来确定。对一些有特殊要求的机器,应选用专用液压油;当液压元件和系统保养不便时,应选用性能好的抗磨液压油。

根据实际情况更换液压油:一般在累计工作1000多小时后换油。更换液压油时,注意不仅要放尽油箱内的旧油,还要替换整个系统管路、工作回路的旧油;加油时最好用120目以上的滤网,并按规定加足油量,使油液有足够的循环冷却条件。如遇因液压油污染而引起的突发性故障时,一定要过滤或更换液压系统用油。

使油箱液面保持规定位置:在实际操作和保养过程中,严格遵守操作规程中对液压油油位的规定。

保证进油管接口密封性:经常检查进油管接口等封处的良好密封性,防止空气进入;同时,每次换油后要排尽系统中的空气。

定期清洗、更换滤油器:定期清洗、更换滤油器,对有堵塞指示器的滤油器,应按指示情况清洗或更换滤芯;滤芯的性能、结构和有效期都必须符合其使用要求。

定期检查和维护液压油冷却循环系统:定期检查和维护液压油冷却循环系统,一旦发现故障,必须立即停机排除。

?及时检修或更换磨损过大的零部件:及时检修或更换磨损过大的零部件,据统计,在正常情况下,进口的液压泵、马达工作五六年后,国产产品工作两三年后,其磨损都已相当严重,须及时进行检修。否则,就会出现冷机时工作基本正常,但工作1-2h后,系统各机构的运动速度就明显变慢,需停机待油温降低后才能继续工作。

?应避免长时间连续大负荷地工作:应避免长时间连续大负荷地工作;若油温太高可使设备空载动转10min左右,待其油温降下来后再工作。

液压系统常见故障及排除方法

液压系统常见故障及排除方法 一液压泵常见故障分析和排除方法 故障现象故障分析排除方法 不出油1、电动机转向不对1、检查电动机转向 输油量不足2、吸油管或过滤器堵塞2、疏通管道、清洗过滤器、换新油 压力上不去3、轴向间隙或径向间隙过大3、检查更换有关零件 4、连接泄露,混入空气4、紧固各连接处螺钉,避免泄露,严防 空气混入 5、油粘度太大或油温升太高5、正确选用油液,控制温升 噪音严重1、吸油管及过滤器堵塞或过滤器容量小1、清洗过滤器使过滤器畅通、正确选用 过滤器 压力波动2、吸油管密封处泄露或油液中有气泡2、在连接处或密封处加点油,如果噪音 减小,可拧紧接头处或更换密封圈; 回油管口应在油面以下,和吸油管要 有一定距离 3、泵和联轴节不同心3、调整同心 4、油位低4、加油液 5、油温低或粘度高5、把油液加热到适当温度 6、泵轴承损坏6、检查(用手触感)泵轴承部分温升 温升过高1、液压泵磨损严重,间隙过大泄漏增加1、修磨零件,使其达到合适间隙 2、泵连续吸气,液体在泵内受绝热高压,2、检查泵内进气部位,及时处理 产生高温 3、定子曲面伤痕大3、修整抛光定子曲面 4、主轴密封过紧或轴承单边发热4、修整或更换 内泄漏1、柱塞和缸孔之间磨损1、更换柱塞重新配研 2、油液粘度过低,导致内泄2、更换粘度适当的油液 二、液压缸常见故障分析和排除方法 故障现象故障分析排除方法 爬行1、空气入侵1、增设排气装置,如无排气装置,可开动液压 系统以最大行程使工作部分快速运动,强迫排气 2、不同心2、校正二者同心度 3、缸内腐蚀,拉毛3、轻微者去除毛刺,严重者必须镗磨

冲击1、靠间隙密封的活塞和液1、安规定配活塞和液压缸的间隙,减少泄露压缸之间间隙过大节流阀 失去作用 2、端头的缓冲单向阀失灵,缓冲不起作用2、修正研配单向阀和阀座 推力不足1、液压缸或活塞配合间隙太大或O型密封1、单配活塞和液压缸的间隙或更换O 或工作速度圈损坏造成高低压腔互通型密封圈 逐渐下降2、由于工作时经常用工作行程的某一段2、镗磨修复液压缸孔径,单配活塞 甚至停止,造成液压缸孔径线性不良(局部腰鼓) 至使液压缸高低压油腔互通, 3、缸端油封压得太紧或活塞杆弯曲3、放松油封,以不漏油为限,校直活塞 使摩擦力或阻力增加杆 4、泄露过多4、寻找泄露部位,紧固各结合面 5、油温太高,粘度太小,靠间隙密封或5、分析发热原因,设法散热降温,如密 密封质量差的油缸行速变慢,若液压缸封间隙过大则单配活塞或增设密封环 两端高低压油腔互通,运行速度逐步减 慢或停止 原位移动1、换向阀泄露量大1、更换换向阀 2、差动用单向阀锥阀和阀座线接触不良2、更换单向阀或研磨阀座 3、换向阀机能选型不对3、重新选型,有蓄能器的液压系列一般 常用YX或Y型机型 三、溢流阀的故障分析和排除方法 故障现象故障分析排除方法 压力波动1、弹簧太软或弯曲1、更换弹簧 2、锥阀和阀座接触不良2、如锥阀是新的即卸下调整螺母将导杆推 几下,使其接触良好,或更换锥阀 3、钢球和阀座密配合不良3、检查钢球圆度,更换钢球,研磨阀座 4、滑阀变形或拉毛4、更换或修研滑阀 5、锥阀泄露5、检查,补装 调整无效1、弹簧断裂或漏装1、更换弹簧 2、阻尼孔堵塞2、疏通阻尼孔 3、滑阀卡住3、拆出、检查、修整 4、进出油口反装4、检查油源方向 5、锥阀泄露5、检查、修补 泄露严重1、锥阀或钢球和阀座的接触不良1、锥阀或钢球磨损时更换新的锥阀或钢球 2、滑阀和阀体配合间隙过大2、检查阀芯和阀体的间隙

液压系统常见故障分析及处理

液压系统常见故障分析及处理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。文中概括介绍了液压系统在日常使用中常见故障分析以及处理方法。 一.工作原理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。 二.液压系统的组成 液压传动系统通常由以下五部分组成。 1.动力装置部分。其作用是将电动机(或其它原动机)提供的机械能转换为液体的压力能。简单地说,就是向系统提供压力油的装置。如各类液压泵。 2.控制调节装置部分。包括压力、流量、方向控制阀,是用以控制和调节液压系统中液流的压力、流量和流动方向,以满足工作部件所需力(或力矩)、速度(或转速)和运动方向(或运动循环)的要求。 3.执行机构部分。其作用是将液体的压力能转化为机械能以带动工作部件运动。包括液压缸和液压马达。 4.自动控制部分。主要是指电气控制装置。 5.辅助装置部分。除上述四大部分以外的油箱、油管、集成块、滤油器、蓄能器、压力表、加热器、冷却器等等。它们对于保证液压系统工作的可靠性和稳定性是不可缺少的,具有重要的作用。 三.液压缸 液压缸是把液压能转换为机械能的执行元件。液压缸常见故障有:液压缸爬行、液压外泄漏、液压缸机械别劲、液压缸进气、液压缸冲击等。 1.液压缸爬行故障分析及处理 (1)缸或管道内存有空气,处理方法:设置排气装置;若无排气装置,可开动液压系统以最大行程往复数次,强迫排除空气;对系统及管道进行密封。 (2)缸某处形成负压,处理方法:找出液压缸形成负压处加以密封;并排气。 (3)密封圈压得太紧,处理方法:调整密封圈,使其不松不紧,保证活塞杆能来回用手拉动。 (4)活塞与活塞杆不同轴,处理方法:两者装在一起,放在V形块上校正,使同度误差在0.04mm以内;换新活塞。 (5)活塞杆不直(有弯曲),处理方法:单个或连同活塞放在V形块上,用压力机控直和用千分表校正调直。

AN5006-04设备常见故障处理手册

An5006-04常见故障处理手册 烽火通信科技股份有限公司宽带产品部 Fiberhome Telecommunication Technologies Co. Ltd. Broadband Product Division 网址:https://www.wendangku.net/doc/8d17081379.html,

前言 本手册针对烽火通信科技股份有限公司AN5006-04设备语音模块在外工程使用过程中较为常见的一些故障给出常用的解决办法,目的在于帮助工程人员迅速、准确定位和解决问题。 本手册首先介绍定位AN5006-04设备语音模块常见故障定位手段,然后列举一些AN5006-04设备的故障案例,以供进行故障处理时参考。 AN5006-04设备语音模块在本手册中简称为IAD。 本书适合以下人员阅读: 网络管理员 网络工程师 技术推广人员

目录 1常用定位问题手段 (1) 1.1版本查询 (1) 1.2H248协议相关参数查询 (1) 1.3网关注册状态和端口状态查询 (2) 1.4IP地址查询 (2) 1.5语音算法查询 (2) 1.6抓包分析 (3) 2摘机没有拨号音 (4) 2.1故障现象 (4) 2.2原因分析 (4) 2.3解决办法 (4) 3IAD作为被叫振铃一声后便不再振铃 (6) 3.1故障现象 (6) 3.2原因分析 (6) 3.3解决办法 (6) 4通话时有回音 (8) 4.1故障现象 (8) 4.2原因分析 (8) 4.3解决办法 (8) 5通话时音量过大或者过小 (10) 5.1故障现象 (10) 5.2原因分析 (10) 5.3解决办法 (10)

1常用定位问题手段 1.1版本查询 出现问题后一般建议先查看设备的版本号,看设备目前的版本是否为最新的版本,通过升级到最新版本后直接解决。可通过网管或者在串口/TELNET界面使用命令“show version”命令查看版本号。 串口/TELNET界面命令如下: MG6002(F2)#show version 协议类型: Megaco V1.1.0.4 & V5.2 软件版本: R4.05.02.12 软件版本日期: Jun 25 2008 22:42:08 Linux内核版本: 2.37 1.2H248协议相关参数查询 如果端口采用H248协议,协议相关参数一定要配置正确,否则IAD将无法成功注册到MGC,进而无法进行通话。 查询协议相关参数可通过网管或者在串口/TELNET界面使用命令“show megaco”和“show endpoint”,分别检查网关参数和端点相关参数。 串口/TELNET界面命令如下: MG6002(F2)#show megaco 当前H.248协议配置 ============================== 网关名称: 138.1.123.22 网关IP地址: 138.1.123.22 网关端口: 2944 RTP端口范围: 4000~10000 MGC地址: 138.1.1.123 MGC端口: 2944 是否使用备份MGC: 否 网关注册状态: REGISTERED 是否使用设备MAC作为网关名称: 否 是否启用心跳机制: 否 MG6002(F2)#show endpoint 端口是否注册端口名称连接状态协议类型

液压系统常见的故障系统处理

1 常见故障的诊断方法 5。液压设备是由机械、液压、电气等装置组合而成的,故出现的故障也是多种多样的。某一种故障现象可能由许多因素影响后造成的,因此分析液压故障必须能看懂液压系统原理图,对原理图中各个元件的作用有一个大体的了解,然后根据故障现象进行分析、判断,针对许多因素引起的故障原因需逐一分析,抓住主要矛盾,才能较好的解决和排除。液压系统中工作液在元件和管路中的流动情况,外界是很难了解到的,所以给分析、诊断带来了较多的困难,因此要求人们具备较强分析判断故障的能力。在机械、液压、电气诸多复杂的关系中找出故障原因和部位并及时、准确加以排除。 5.1.1 简易故障诊断法 简易故障诊断法是目前采用最普遍的方法,它是靠维修人员凭个人的经验,利用简单仪表根据液压系统出现的故障,客观的采用问、看、听、摸、闻等方法了解系统工作情况,进行分析、诊断、确定产生故障的原因和部位,具体做法如下: 1)询问设备操作者,了解设备运行状况。其中包括:液压系统工作是否正常;液压泵有无异常现象;液压油检测清洁度的时间及结果;滤芯清洗和更换情况;发生故障前是否对液压元件进行了调节;是否更换过密封元件;故障前后液压系统出现过哪些不正常现象;过去该系统出现过什么故障,是如何排除的等,需逐一进行了解。 2)看液压系统工作的实际状况,观察系统压力、速度、油液、泄漏、振动等是否存在问题。

3)听液压系统的声音,如:冲击声;泵的噪声及异常声;判断液压系统工作是否正常。 4)摸温升、振动、爬行及联接处的松紧程度判定运动部件工作状态是否正常。 总之,简易诊断法只是一个简易的定性分析,对快速判断和排除故障,具有较广泛的实用性。 5.1.2 液压系统原理图分析法 根据液压系统原理图分析液压传动系统出现的故障,找出故障产生的部位及原因,并提出排除故障的方法。液压系统图分析法是目前工程技术人员应用最为普遍的方法,它要求人们对液压知识具有一定基础并能看懂液压系统图掌握各图形符号所代表元件的名称、功能、对元件的原理、结构及性能也应有一定的了解,有这样的基础,结合动作循环表对照分析、判断故障就很容易了。所以认真学习液压基础知识掌握液压原理图是故障诊断与排除最有力的助手,也是其它故障分析法的基础。必须认真掌握。 5.1.3 其它分析法 液压系统发生故障时,往往不能立即找出故障发生的部位和根源,为了避免盲目性,人们必须根据液压系统原理进行逻辑分析或采用因果分析等方法逐一排除,最后找出发生故障的部位,这就是用逻辑分析的方法查找出故障。为了便于应用,故障诊断专家设计了逻辑流程图或其它图表对故障进行逻辑判断,为故障诊断提供了方便。

采煤机液压系统常见故障分析及原因

采煤机液压系统常见故障分析及原因 摘要:阐述了采煤机液压系统的组成及工作原理,针对我公司采煤机液压系统在实际维修和运行中出现的几种异常现象,进行了故障分析与排除,故障处理方法及结果对采煤机的使用者具有一定的参考价值。 关键词:采煤机;液压系统;泄漏;磨损;系统压力 我公司主要使用的采煤机有两种:天地科技股份有限公司的MG250/300采煤机和鸡西煤矿机械有限公司的MG300/700采煤机。适用于中厚煤层开采作业。该采煤机在使用和大修过程中其液压系统出现:摇臂升降速度缓慢或不能抬起、油温过热、开机后摇臂立即上升或下降、齿轮泵压力不足、液压系统产生噪声等现象。因此对采煤机液压系统组成和工作原理有一定了解,才能在实际生产中准确判断、分析与预防各种故障。 1.采煤机液压系统组成及工作原理 1.1采煤机液压系统主要部件及功能 1.1.1采煤机液压系统主要部件 (1)MG250/300采煤机液压系统主要由调高泵组件、过滤器、集成块、液力锁、调高油缸、机外油管和液压制动器等组成。集成阀块是将手液动换向阀、电磁阀、压力继电器、高低压溢流阀、压力表等集成在一起,通过阀体内部通道实现采煤机工作。 (2)MG300/700采煤机调高液压系统主要由手液动阀组、泵组件、低压阀组、粗过滤器、精过滤器、调高油缸、液压制动器、液压锁、高压阀、隔爆电磁换向阀、压力表、管路元件等组成。 1.2工作原理 1.2.1采煤机液压系统主要包括两部分:调高回路和制动回路 (1)调高回路有两个功能:①满足采煤机卧底量要求;②适应采高的要求。调高回路的动力由调高(截割)电机提供。在调高时,调高油缸的阻力较大,为防止系统油压过高,损坏油泵及附件,在齿轮泵出口处设有一高压溢流阀作为安全阀,调定压力为MG300/700采煤机压力25MPa,MG250/300采煤机压力20MPa,可以满足调高要求。该回路由手液动换向阀、电磁换向阀、液力锁、调高油缸组成。 (2)MG250/300采煤机液压制动回路的压力油与调高控制回路是同一控制油源;由二位三通刹车电磁阀,液压制动器及其管路组成。当需要采煤机行走时,

液压系统故障原因分析

液压系统故障原因分析 一、液压系统好长时间没有用,这次开机后,震动、噪音大。 可能是长时间放置,蓄能器氮气泄露,没起到减少脉动的作用。检查氮气的压力,补压或者更换皮囊。噪音是由于振动太大而产生的,没有了震动,就会消除。 二、油缸工作不正常,只能出不能回。 检查油缸的另一端是否出油,电磁阀是否换向,油缸内泄是不是特别严重。回油管路是否被异物堵死。 三、油缸启动压力高。 油缸启动压力高和油缸的制造质量(如活塞杆弯曲、缸筒弯曲等)、密封的形式和安装等因素有关。对于伺服油缸,启动压力高会影响其的动态特性。 对于普通油缸,启动压力的要求没有伺服油缸那样严格,但是也不能太高。一旦发现启动压力高,需要认真对油缸的零件进行尺寸复测,并检查密封的安装质量。 1、内部阻力过大。 2、外部执行部分有机械故障。 油缸的启动压力与油缸的设计结构有关,油口与活塞接触的受力面积,如油口的大小即活塞初始启动的受力面积,启动压力就高,油口与活塞接触间加工受力面积腔(启动压力腔)启动压力就很小。 四、液压系统油缸要求同步。 在支管路上加单向节流阀,价格比较便宜。要求比较高就加个分流节流阀,造价高,但效果较好。 五、液压系统维修率特别高。 主要原因是环境恶劣,液压系统是比较精密的设备,平常要多注意保养,油质要好,加油时要过滤,系统密封要好。各类检测设备要完善,需要有专业的人员对系统的工作情况进

行记录和维护。 六、液压缸动作不规则。 1、电磁阀换向不规则,需要检查电炉部分 2、电液伺服、比例阀的放大器失灵或调整不当。 3、也有就是油缸磨损严重,需修理或者更换。 4、可能是液压管路混杂有空气,需要找出混入空气的部位,然后清洗检查,重新安装和更换元辅件。

空调、电源常见故障处理工作手册

空调、电源常见故障处理工作手册 目录 一、基站交流电源部分常见故障的判断和处理 (2) 1、基站交流配电屏的主要特点和主要性能 (2) 2、基站交流配电屏常见的面板指示 (2) 3、基站交流电源常见的故障处理流程 (2) 3.1外电中断处理流程 (2) 3.2缺相处理流程 (2) 3.3反相故障处理流程 (3) 3.4中性线故障处理流程 (3) 3.5过压、欠压故障处理流程 (3) 3.6过流及短路故障处理流程 (3) 3.7雷击后出现的浪涌电压抑制现象故障处理流程 (3) 二、基站开关电源系统常见故障的判断和处理 (4) 1、开关电源的主要特点和主要性能 (4) 2、常见的故障和处理流程 (4) 2.1 整流模块功能设定 (4) 2.2整流模块常见故障的处理流程 (5) 3、直流配电模块常见的故障和处理流程 (6) 3.1输出电压过高或过低告警处理流程 (6) 3.2分路熔断器熔断或分路配电空气开关跳闸处理流程 (6) 4、蓄电池系统常见故障处理 (6) 4.1、电池主要特点和主要性能 (6) 4.3电池的常见故障和处理流程 (7) 5、监控模块常见的故障和处理流程 (8) 5.1监控模块同整流模块或整个开关电源系统通讯中断 (8) 5.2监控模块故障引发整个开关电源系统工作异常 (8) 三、基站空调系统常见故障的判断和处理 (8) 1、空调对电源的要求和注意事项 (8) 1.1空调对电源的要求 (8) 1.2空调维护注意事项 (8) 2、基站空调的常见故障和处理流程 (9) 2.1低压报警处理流程 (9) 2.2高压报警处理流程 (9) 2.3压缩机过载处理流程 (9) 四、附录 (9)

船舶起货机的液压管路故障分析

渤海船舶职业学院 毕业设计(论文) 题目:船舶起货机的液压管路故障分析 系:动力工程系专业:轮机工程技术(船舶管系)姓名:xxx 指导教师:xxx 班级:xx 评阅教师:xxx 学号:xx 完成日期:xxxxxx

毕业设计说明书(论文)中文摘要 题目:船舶起货机的液压管路故障分析 摘要:船舶液压起货机液压系统的故障诊断和维修一直是船舶维修工作的难点之一。对该液压系统进行状态监测和故障诊断是一门综合技术。它可用于掌握系统各液压设备的实际运行情况, 判断系统质量的优劣, 预测故障的发展趋势及危害程度, 查找故障的原因、部位及异常程度, 实现设备的预防维修和正常维修, 从而提高系统各液压设备的可靠性。液压起货机液压系统常见的故障有以下几种系统没有压力或压力不足, 工作部件运行时爬行, 系统有噪声和振动, 工作机构的运行速度不够, 系统泄漏严重, 非正常发热和动作不能实现等。本文用了功率流的故障诊断方法,它与逻辑分析相结合, 能大大提高液压系统故障诊断的快速性和准确性, 可广泛利用于船舶液压系统的故障诊断方面。通过对液压起货机的故障分析得出除个别故障属设计缺陷所造成之外,绝大部分故障与液压油的污染或日常维护管理不善有关。所以,提高液压系统中油液的清洁度,建立必要的维护管理体系,提高维护管理人员的专业知识,是降低液压起货机故障发生率最为有效的途径。 关键词:液压起货机;故障;诊断

Abstract:Hydraulic Crane ship's hydraulic system fault diagnosis and maintenance of the ship repair work has been a difficult one. The hydraulic system condition monitoring and fault diagnosis is a comprehensive technology. It can be used for hydraulic control system of the actual operation of equipment, determine the merits of quality systems, forecast the development trend of failures and extent of harm, failure to find the reasons, location and extent of anomalies, and preventive maintenance of equipment and normal maintenance, improve the system of hydraulic equipment reliability. Hydraulic Crane hydraulic system failures are common following pressure or pressure system is not lack of working parts running reptiles, the system noise and vibration, the work of running speed is not sufficient, system leakage serious, non-normal fever and action Can not be achieved, and so on. In this paper, the power flow of fault diagnosis method, it is the logic of the combination, can greatly increase the hydraulic system failure and rapid diagnosis of accuracy and be widely used in the ship's hydraulic system fault diagnosis. Crane through the hydraulic machine that in addition to the failure of individual failure is caused by design flaws, failures and most of the hydraulic oil pollution or poor management of the daily maintenance. Therefore, the increase of oil in the hydraulic system of cleanliness, the establishment of the necessary maintenance, improve the maintenance and management expertise, hydraulic Crane is to reduce the incidence of failure of the most effective way. Key words:Hydraulic Crane Machine;Fault ;Diagnosis

液压系统故障诊断

第十一章液压系统故障诊断 第一节概述 液压系统的故障诊断是指在不拆卸液压设备的情况下,凭观察和仪表测试判断液压设备的故障所在和原因。液压设备的故障是指液压设备的各项技术指标偏离了它的正常状态,如管路和某些元件损坏、漏油、发热、致使设备的工作能力丧失,功率下降,产生振动和噪声增大等。 在使用液压设备时,液压系统可能出现的故障是多种多样的。即使是同一个故障现象,产生故障的原因也不一样,它是许多因素综合影响的结果。特别是新装置的液压设备,在试车时产生的故障现象,其原因更是多方面的。液压系统是一个密闭的系统,各元件的工作状态是看不见,摸不着的。因此,在进行故障诊断时,必须对引起故障的因素逐一分析,注意到其内在联系,找出主要矛盾,这样才能比较容易地排除故障。 液压系统的故障主要是由构成回路的液压元件本身产生的动作不良、系统回路的相 少液压设备出现故障的有力措施。 当然,液压系统的故障除由元件本身和工作油液的污染引起的以外,还因安装、调试和设计不当等原因引起的也较多。 液压系统的故障诊断,过去一般凭经验,随着液压测试技术的发展,国内外正研制和应用专用的测试仪和设备。如手提式测试器、液压故障诊断器和液压故障检修车等。应用这些专用仪器和设备能在现场很快查出液压元件及系统的故障,并进行排除。 近年来,在液压系统故障诊断与状态监测技术方面取得了较大进展。如利用振动信

号、油液光谱分析、油液铁谱分析、超声波泄漏指示器、红外线测试仪等来进行检测的技术,利用微机进行分析处理信号和预报故障的技术等的应用已有不少报道。而在港口工程机械液压系统中,普遍使用这些技术来进行故障诊断及状态监测,则还需经过有关各方面的努力才可能逐步实现。 第二节液压系统的故障预兆 液压系统产生故障以前,通常都有预兆。如压力失调、噪声过大、振动过大、温升过高,泄漏过大等等。如果这些现象能及时发现,并加以适当控制或排除,系统的故障就可以减少或避免发生。 一、液压系统的工作压力失调 压力失调常表现为压力不稳定、压力调不上去或调不下来、压力转换滞后、卸荷压力较高等。产生压力失调的原因主要有以下几个方面: 1.液压泵引起的压力失调 1)液压泵的轴向、径向间隙由于磨损而增大; 2)泵的“困油”未得到圆满解决; 3)泵内零件加工及装配精度较差; 4)泵内个别零件损坏等。 2. 液压控制阀引起的压力失调 1)在压力控制阀中: ①先导阀的锥阀与阀座配合不良; ②调压弹簧太软或损坏; ③主阀芯的阻尼孔被堵塞,滑阀失去控制作用; ④主阀芯被污物卡住在开口位置或闭口位置; ⑤溢流阀作远程控制用时,其远程连接通道过小或泄漏; ⑥溢流阀作卸荷阀用时,其控制卸荷的换向阀失灵等。 2)在方向控制阀中: ①油路切换过快而产生液压冲击; ②电磁换向阀换向推杆过长或过短等。 3.辅助元件引起的压力失调 1)油滤器堵塞; 2)液流通道过小,回油不畅; 3)油液粘度太稠或太稀等。 4.其他 1)机械部分未调整好,摩擦阻力过大; 2)空气进入系统; 3)油液污染; 4)电机功率不足或转速过低;

液压元件故障分析

液压元件及故障分析 1:液压元件分类 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件和液压油。 动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。 执行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。 控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。根据控制功能的不同,液压阀可分为压力控制阀、流量控制阀和方向控制阀。压力控制阀又分为溢流阀、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等; 方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。辅助元件包括油箱、滤油器、油管及管接头、密封圈、压力表、油位油温计等。液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。 动力元件- 齿轮泵、叶片泵、柱塞泵、螺杆泵。 执行元件-液压缸:活塞液压缸、柱塞液压缸、摆动液压缸、组合液压缸。 液压马达:齿轮式液压马达、叶片液压马达、柱塞液压马达。 控制元件-方向控制阀:单向阀、换向阀。 压力控制阀:溢流阀、减压阀、顺序阀、压力继电器等。 流量控制阀:节流阀、调速阀、分流阀。 辅助元件-蓄能器、过滤器、冷却器、加热器、油管、管接头、油箱、压力计、流量计、密封装置等。 2:液压传动系统的组成 液压系统主要由:动力元件(油泵)、执行元件(油缸或液压马达)、控制元件(各种阀)、辅助元件和工作介质等五部分组成。 1、动力元件(油泵)它的作用是把液体利用原动机的机械能转换成液压力能;是液压 传动中的动力部分。 2、执行元件(油缸、液压马达)它是将液体的液压能转换成机械能。其中,油缸做直 线运动,马达做旋转运动。 3、控制元件包括压力阀、流量阀和方向阀等。它们的作用是根据需要无级调节液动机 的速度,并对液压系统中工作液体的压力、流量和流向进行调节控制。 4、辅助元件除上述三部分以外的其它元件,包括压力表、滤油器、蓄能装置、冷却器、 管件{主要包括:各种管接头(扩口式、焊接式、卡套式)、高压球阀、快换接头、软管总成、测压接头、管夹等}及油箱等,它们同样十分重要。 5、工作介质工作介质是指各类液压传动中的液压油或乳化液,它经过油泵和液动机实 现能量转换。 3:液压元件的故障分析

液压系统常见故障的成因及其预防与排除

在 在液压传动系统中,都是一些比较精密的零件。人们对机械的液压传动虽然觉得省力方便,但同时又感到它易于损坏。究其原因,主要是不太清楚其工作原理和构造特性,从而也不大了解其预防保养的方法。 液压系统有3个基本的“致病”因素: 污染、过热和进入空气。这3个不利因素有着密切的内在联系,出现其中任何一个问题,就会连带产生另外一个或多个问题。由实践证明,液压系统75%“致病”的原因,均是这三者造成的。 如果液压系统的制造质量没有问题,则造成故障的原因大多是预防保养不当,操作不当的因素一般较少。之所以如此,主要是由于对它的工作条件认识不足。如果懂得一些基本原理,弄明白导致故障的上述3个有害因素,就能长期地保证系统处于良好的工作状况。 1、工作油液因进入污物而变质 进入油液中的污物(如灰、砂、土等)的来源有: (1)系统外部不清洁。不清洁物在加油或检查油量时被带入系统,或通过损坏的油封或密封环而进入系统; (2)内部清洗不彻底。在油箱或部件内仍留有微量的污物残渣; (3)加油容器或用具不洁; (4)制造时因热弯油管而在管内产生锈皮; (5)油液储存不当,在加入系统前就不洁或已变质; (6)已逐渐变质的油会腐蚀零件。被腐蚀金属可能成为游离分子悬浮在油中。

污物会造成零件的磨损与腐蚀,尤其是对于精加工的零件,它们会擦伤胶皮管的内壁、油封环和填料,而这些东西损伤后又会导致更多的污物进入系统中,这样就形成恶性循环的损坏。 2、过热 造成系统过热可能由以下一种或多种原因造成: (1)油中进入空气或水分,当液压泵把油液转变为压力油时,空气和水分就会助长热的增加而引起过热; (2)容器内的油平面过高,油液被强烈搅动,从而引起过热; (3)质量差的油可能变稀,使外来物质悬浮着,或与水有亲合力,这也会引起生热; (4)工作时超过了额定工作能力,因而产生热; (5)回油阀调整不当,或未及时更换已损零件,有时也会产生热。 过热将使油液迅速氧化,氧化又会释放出难溶的树脂、污泥与酸类等,而这些物质聚积油中造成零件的加速磨损和腐蚀,且它们粘附在精加工零件表面上还会使零件失去原有功能。油液因过热变稀还会使传动工作变迟缓。 上述过热的结果,常反映在操纵时传动动作迟缓和回油阀被卡死。 3、进入空气 油液中进入空气的原因有下列几种: (1)加油时不适当地向下倾倒,致使有气泡混入油内而带入管路中; (2)接头松了或油封损坏了,空气被吸入; (3)吸油管路被磨穿、擦破或腐蚀,因而空气进入。 空气进入油中除引起过热外,也会有相当数量空气在压力下被溶于油内。如果被压缩的体积大约有10%是属于被溶的空气,则压力下降时便会形成泡

联合收割机液压系统结构故障分析与判断

47 河南农业 2019年第2期(中) HENANNONGYE 农业机械 NONG YE JI XIE 联合收割机液压系统结构故障分析与判断 赛爱华1,常树堂2 (1.河南省漯河市召陵区农机局,河南 漯河 462300;2.河南省漯河市郾城区农机化技术推广站,河南 漯河 462300) 摘 要:对小麦收割机稍加改动,就可以兼收油菜、大豆;换装割台后,对脱粒、清选部分装置稍做互换,便可以收获玉米籽粒。小麦联合收割机因能为多种农作物机械化收获提供服务而越来越受农民朋友的欢迎。随着小麦收获机使用频率的提高,伴随而来的是小麦收获机的维修问题,特别是液压系统的维修,成为许多机手十分头痛的问题。面对液压系统故障,只要了解收割机液压系统油路结构、工作原理、各部件功用,液压系统故障的排查是有规律可循的。基于此,本文主要就联合收割机液压系统结构故障分析与判断进行综述,为农机手提供借鉴。 关键词:联合收割机;液压系统;故障 一、联合收割机液压系统结构组成联合收割机的液压系统因能安全可靠地实现远距离传递动力和能量,完成远距离机械运动的自动控制,成为联合收割机上不可或缺的重要组成部分。联合收割机的液压系统组成与其他机械的液压控制系统一样,均由以下5个部分构成。 (一)动力源 动力源就是能将原动力输出的机械能转换为推动液压油做功的压力能。这个动力源一般由液压泵完成。 (二)控制元件 控制元件是指对系统中的液压油压力、流量和去向进行控制和调节的元件,主要指各类阀件,大家称之为液压控制器、控制阀或液压分配器。具体到收割机上有2个重要控制元件:液压转向器(或称为方向机、转向阀)、多路阀。 (三)执行元件 执行元件是指把液压油的压力能变成机械能,推动负载运动,满足机械使用者的需要,主要指液压油缸等。 (四)工作介质 小麦收割机一般采用68号抗磨液压油,利用其进行能量传递和信号传递。 (五)辅助元件 辅助元件主要是指动力、控制、执行元件以外的液压器件,在液压系统中起储存、输送、过滤、加热、冷却和测量等作用的器件,包括油管、接头、油箱、过滤器、散热器、储能器、各种测试仪表和安全阀等。 二、联合收割机液压系统主要组成部分功能及常见故障 (一)动力源——齿轮泵 联合收割机多采用齿轮泵作为液压 油的动力源。其构造为有一对几何参数相同的主、被动齿轮,被封闭在齿廓壳体和侧盖板组成的封闭空间内。工作原理是当齿轮泵主动齿轮运转时,带动从动齿轮与之啮合并一起运转,在吸油腔内由于两齿轮脱离时,齿间容积变大出现真空,而从油箱中吸油。吸入的油液由旋转的齿谷携带到排油腔,在排油腔由于齿间容积减小而将液压油挤出泵体。由于齿轮的齿顶和壳体内孔表面间及齿轮端面和盖板间间隙小,而且啮合齿的接触面接触紧密,起到密封作用,并把吸、压油区隔开,因此齿轮转动时泵便连续不断地将液压油排出,为系统提供高压油源[1] 。 现在的联合收割机上大都配有双联齿轮泵(既装备有2个这样的齿轮油泵,两泵主轴由联轴器相连),双联泵中2个油泵虽然转向相同,同为左旋转泵,但排量不同。一个泵向转向机构提供高压油源的叫恒流泵,另一个泵向全车部位如割台、无级变速、液压卸粮等提供高压油源,其油泵排量较大。 齿轮泵常见故障有油封漏油、壳体炸裂、噪声过大并有振动、高温过高以及元件速度不够。其中,油封漏油的原因有油封件老化、油封唇口损坏、泵轴与联轴器同心度差(易引起中间断轴)以及泵体内部磨损严重、高低压腔串通。油泵壳体炸裂的原因有安全阀压力调得过高、安全阀卡死、油泵出油口管路堵死、执行元限位机构反应不灵敏以及油缸启动时活塞抵死端盖导致油环面积不够。噪声过大并有震动的原因有低压管路及法兰处漏气、油箱油位过低、进油管路有折瘪现象导致局部区域形成节流,进 而造成通径不够、安装位置不牢或同轴度差太大以及进油滤清器堵塞。油温过高的原因有系统压力过高,内泄漏油造成能量损失;系统压力过载,安全阀打开;管道不通畅,节流孔堵塞,阻力太大;油箱油位太低。 (二)控制元件——液压控制阀液压阀通常也称液压分配器,从字典中可查到“阀”者,活动的门也。既然是可活动的门,自然可以打开和关闭。操作者通过打开和关闭这个“门”,可实现油源分配,改变系统管道油的流量大小、方向,进而满足机械使用者的需求。液压阀的基本结构主要包括阀芯、阀体和驱动阀芯在阀体内做相对运动的装置。阀芯的主要结构形式有滑阀、锥阀和球阀。阀体上除有与阀芯配合的阀套孔外,还有与外界连接的油管进出油口以及驱动阀芯与阀体做相对运动的装置,可以是手动机构,也可用弹簧配合机动机构。液压系统有转向和操纵两部分组成。2个分系统共用一个油箱和齿轮泵,通过单路稳定分流阀(或使用双联泵)分成两部分。转向部分用于控制收割机转向,主要工作部件是全液压转向器、转向油缸等;操纵部分用于控制工作装置,如割台、拨禾轮、粮仓和无级变速装置,主要工作部件是多路阀、无级变速油缸等。现在就联合收割机上的2个重要的液压控制器做一介绍:控制转向的阀(也称转向器)、控制如割台、拨禾轮、无极变速等功能的多路阀。 1.液压转向器(阀) 小麦收获机上一般都采用一种转阀式全液压转向器,与组合阀分体设计,可根据需要直接连接不同组合阀块,形 DOI:10.15904/https://www.wendangku.net/doc/8d17081379.html,ki.hnny.2019.05.027

SCADA监控系统常见故障处理手册

目录 第一章:1.5MW SCADA监控 1.1塔底屏 1.1.1塔底屏重启后不能自动登陆系统 1.1.2Client.exe软件启动时报错 1.1.3塔底屏软件启动不正常 1.1.4塔底无数据,中控室显示正常 1.1.5无法使用远程桌面连接到塔底屏 1.1.6更换塔底屏后,塔底屏监控软件配置完成后软件无法启动1.2数据库及监控软件 1.2.1风机监控数据压缩包正常生成但关系数据库存储异常(利用率)1.2.2监控软件上查询显示正常,数据中心压缩数据包也正常但使用 数据分析工具查询数据异常,表现为变量数据整体偏移 1.2.3发电量汇总及日报中发电量统计为0 1.2.4在查询发电量及生成日报时如果风机发电量为0则查询缓慢1.2.5中控室前台监控机风机监控显示正常但后台工控机没有显示1.2.6塔底通讯正常但中控室显示异常 1.2.7发现某台风机报出的故障信息与实际故障不符 1.2.8配置服务器启动lampp失败

1.2.9启动监控程序显示无法连接数据库 1.2.10储存多条报警信息或多条操作员日志 1.2.11发电量与功率不符 1.2.12现场发电量修复 1.3通讯相关 1.3.1整条通讯线路通讯中断 1.3.2某台风机监控通讯中断 1.3.3风机通讯闪断 1.4SCADA硬件及其它网络设备 1.4.1防火墙VPN远程连接无法第二阶段协商成功 1.4.2控创服务器无法开机解决办法。 1.4.3服务器数据溢出 1.4.4忘记MOXA交换机IP地址,如何重新配置交换机 1.4.5Cisco路由器及交换机掉电后配置被清空 1.5与第三方通讯 1.5.1第三方与我方监控机opc无法连接 1.5.2第三方与我方监控机ModBus通讯不正常或无法建立数据连接 第二章:2、3、6MW SCADA监控 2.1打开监控界面显示无法浏览网页

工程机械液压系统故障分析与排除实用版

YF-ED-J8608 可按资料类型定义编号 工程机械液压系统故障分析与排除实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

工程机械液压系统故障分析与排 除实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 近年来,随着机械行业的快速发展,挖掘 机被广泛地运用于电力建设、建筑、采油、采 矿等工程中。在挖掘机的众多组成部分中,对 挖掘机运行发挥关键作用的就是液压系统。本 文主要就挖掘机液压系统的现的油温过热故障 产生的原因及排除措施进行了探讨,希望能为 相关领域的研究者和工作者提供参考和借鉴。 液压系统作为工程机械中的重要组成部 分,因为自身体积小、重量轻、控制性强以及 容易安装等优点得到广泛的运用。但是在液压

系统工作中,因为各个方面的原因难免出现工作失效,从而给设备造成严重的经济损失。 挖掘机油温过热产生的原因分析 1.1挖掘机液压元件选用不符合规定 在进行挖掘机液压系统设计的时候选用的液压元件若不满足相关规定,就可能会对油温产生很大的影响。如在设计的时候选择的液压阀规格太小,就容易导致流过阀口的液压油的流动速度增快,由于系统之间的摩擦力增加,油液温度也将上升。例如:在差动回路中如果仅仅按照液压泵的流量去选择换向阀规格的话,就很容易出现上述的情形。如果选用的液压泵的流量太大,就会造成大量液压油从溢流阀中流出,造成不必要的能量损失,同时也会进一步使油温升高。

高压设备常见故障及处理方法

高压设备常见故障及处理方法 一般高压配电装置是泛指,按规程规定电压在250伏以上称为高压,这里我们主要是讲10千伏成套装置,也就是开关柜、计量柜、电容柜等,当然还包括进出线及变压器等。 高压断路器 1.真空开关的常见故障及处理 (1)故障现象:支持绝缘子断裂。 处理方法:应停电及时更换。 (2)故障现象:真空开关爆炸。 处理方法:及时停电分析原因,并加以更换,排除故障的送电,如属开关本体质量问题,更换后即可送电。 (3)故障现象:操作开关后出现过电压。 处理方法:由于产生过电压的原因很复杂,应根据具体情况进行分析,并检查是否安装有氧化锌避雷器,参数选择是否合理,年检是否参加,是否合格,如不符合条件,应更换。 (4)故障现象:跳合闸失灵。 处理分析:检查跳合闸回路,是否有断线,开关机构是否卡住等。 2.六氟化硫断路器 (1)故障现象:漏气。 处理方法:应采取防止跳合闸的措施,进行停电更换处理,处理过程中应特别注意防护措施,因为SF6气体在正常情况下是无毒无害的,但在电弧作用下会分解出有毒的物质,这一点应按操作规程执行。 隔离开关 (1)故障现象:绝缘子破裂,胶合处脱落。 处理方法:采取相应措施,减少负荷停电后处理(用旁路开关代替)。

(2)故障现象:绝缘子表面严重放电。 处理方法:应及时停电予以更换(创造条件)。 (3)故障现象:接触部分过热,当温度超过75摄氏度时。 处理方法:采取相应措施及时更换或处理(螺丝松动等)。 母线 (1)故障现象:接触部分过热(温升超65摄氏度,在环境温度不大于105摄氏度)。 处理方法:分析原因,增加接触面,对接触面处理,并涂导电膏。 (2)故障现象:支持绝缘子破裂。 处理方法:采取措施,更换损坏绝缘子,并分析原因、进行试验。 (3)故障现象:进线发出共振噪声,并有放电声。 处理方法:停电后适当紧固母线卡子,并旋转卡子卡住母线。 变压器 1.油变压器 (1)故障现象:当停送电时变压器内部有不均匀的声音或敲击声。 分析处理:有可能是变压器铁芯松动,螺丝松动掉落,充电后被吸起停电后被释放等,应进一步做试验或吊芯检查处理。 (2)故障现象:变压器轻重瓦斯动作。 分析处理:变压器内部可能发生故障,应立即采油样进行色谱分析,检查原因后相应处理,由于二次穿越性故障造成变压器瓦斯动作应检修。 (3)故障现象:继电保护动作跳闸,原因众多,应逐步分析。 分析处理:首先应区别是否为变压器本体故障,有瓦斯保护的变压器,如瓦斯保护未动作,说明变压器内部故障可能性很低,应检查其他原因,如无瓦斯保护的变压器主保护为速断保护,则应考虑故障可能为变压器,应进一步试验分析,如为过电流保护动作,则可能由于二次穿越故障引起,应进一步查明故障予以处理,处理方法无非是检修或更换。

浅论挖掘机液压系统故障分析及解决措施示范文本

浅论挖掘机液压系统故障分析及解决措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

浅论挖掘机液压系统故障分析及解决措 施示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 一、引言 液压系统是工程机械中的一个重要部分。液压系统由 于具有体积小、重量轻、易安装、功率密度大、响应快、 可控制性强、工作平稳且可实现大范围的无级调速等优 点。应用日趋广泛。液压挖掘机是目前工程施工中使用较 为广泛的一种工程机械,其行走、回转和举升、挖掘动作 都是通过发动机把机械能转化为液压油的压力能来驱动液 压油缸和马达工作而实现的。对于液压系统。虽然只是作 为挖掘机复杂主系统的子系统,但是其对主系统的功能和 效率产生的影响是巨大的。液压系统的失效将会直接导致 主系统的失效,从而造成严重的经济损失。因此,对液压

挖掘机液压系统的分析及故障诊断尤为重要。 二、挖掘机的液压系统类型 按液压栗特性,液压挖掘饥采用的液压系统大致上有定量系统、变量系统和定量、变量系统等三种类型。 (一)定量系统 在液压挖掘机采用的定量系统中,其流量不变,即流量不随负载而变化,通常依靠节流来调节速度。根据定量系统中油泵和回路的数量及组合形式,分为单泵单回路、双泵单回路定量系统、双泵双回路定量系统及多泵多回路定量系统等。 (二)变量系统 在液压挖掘机采用的变量系统中,是通过容积变量来实现无级调速的,其调节方式有三种:变量泵一定量马达调速、定量泵变量马达调速、变量泵变量马达调速。液压挖掘机采用的变量系统多采用变量泵一定量马达的组合方

相关文档
相关文档 最新文档