文档库 最新最全的文档下载
当前位置:文档库 › 高考数数列典型例题整合

高考数数列典型例题整合

高考数数列典型例题整合
高考数数列典型例题整合

概念、方法、题型、易误点及应试技巧总结

三、数列

一.数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊

函数,数列的通项公式也就是相应函数的解析式。如

(1)已知*2()156

n n

a n N n =∈+,则在数列{}n a 的最大项为__

(答:1

25

);

(2)数列}{n a 的通项为1

+=bn an

a n ,其中

b a ,均为正数,则n a 与1+n a 的大小关系为___

(答:n a <1+n a );

(3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围

(答:3λ>-);

(4)一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是 ()

(答:A )

A B C D

二.等差数列的有关概念:

1.等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。如

设{}n a 是等差数列,求证:以b n =

n

a a a n

+++ 21 *n N ∈为通项公式的数列{}n b 为等差数列。

2.等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。如

(1)等差数列{}n a 中,1030a =,2050a =,则通项n a =

(答:210n +);

(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______

(答:8

33

d <≤)

3.等差数列的前n 和:1()2n n n a a S +=,1(1)

2n n n S na d -=+

。如 (1)数列 {}n a 中,*11(2,)2

n n a a n n N -=+≥∈,32n a =,前n 项和15

2n S =-,则1a =_,n =

_

(答:13a =-,10n =);

(2)已知数列 {}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T

(答:2*

2*

12(6,)

1272(6,)

n n n n n N T n n n n N ?-≤∈?=?-+>∈??).

4.等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2

a b

A +=

。 提醒:

(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。

(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,

2,,,,2a d a d a a d a d --++…

(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d )

三.等差数列的性质:

1.当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为

公差d ;前n 和211(1)()222

n n n d d

S na d n a n -=+=+-是关于n 的二次函数且常数项为0.

2.若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。

3.当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.如

(1)等差数列{}n a 中,12318,3,1n n n n S a a a S --=++==,则n =____

(答:27);

(2)在等差数列{}n a 中,10110,0a a <>,且1110||a a >,n S 是其前n 项和,则 A 、12

10,S S S 都小于0,1112,S S 都大于0 B 、1219,S S S 都小于0,2021,S S 都大于0 C 、125,S S S 都小于0,67,S S 都大于0 D 、12

20,S S S 都小于0,2122

,S S 都大于0

(答:B )

4.若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb + (k 、p 是非零常数)、*{}(,)p nq a p q N +∈、

232,,n n n n n S S S S S -- ,…也成等差数列,而{}n a a 成等比数列;若{}n a 是等比数列,且0n a >,

则{lg }n a 是等差数列. 如

等差数列的前n 项和为25,前2n 项和为100,则它的前3n 和为 。

(答:225)

5.在等差数列{}n a 中,当项数为偶数2n 时,S S nd =偶奇-;项数为奇数21n -时,S S a -=奇偶中,

21(21)n S n a -=-?中(这里a 中即n a );:(1):奇偶

S S

k k =+。如

(1)在等差数列中,S 11=22,则6a =______

(答:2); (2)项数为奇数的等差数列{}n a 中,奇数项和为80,偶数项和为75,求此数列的中间项与项数

(答:5;31).

6.若等差数列{}n a 、{}n b 的前n 和分别为n A 、n B ,且()n

n

A f n

B =,则

21

21

(21)(21)(21)n n n n n n a n a A f n b n b B ---===--.如 设{n a }与{n b }是两个等差数列,它们的前n 项和分别为n S 和n T ,若

3

41

3-+=

n n T S n n ,那么=n

n

b a ___________

(答:

62

87

n n --)

7.“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和;“首负”的递增等差数列中,

前n 项和的最小值是所有非正项之和。法一:由不等式组???

? ?????≥≤???≤≥++000011n n n n a a a a 或确定出前多少项为非负(或非正);法二:因等差数列前n 项是关于n 的二次函数,故可转化为求二次函数的

最值,但要注意数列的特殊性*n N ∈。上述两种方法是运用了哪种数学思想?(函数思想),由此你能求一般数列中的最大或最小项吗?如

(1)等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大值。

(答:前13项和最大,最大值为169);

(2)若{}n a 是等差数列,首项10,a >200320040a a +>,

200320040a a ?<,则使前n 项和0n S >成立的最大正整数n 是

(答:4006)

8.如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数. 注意:公共项仅是公共的项,其项数不一定相同,即研究n m a b =.

四.等比数列的有关概念:

1.等比数列的判断方法:定义法1(n n

a q q a +=为常数),其中0,0n q a ≠≠或11

n n n

n a a a a +-=

(2)n ≥。如

(1)一个等比数列{n a }共有21n +项,奇数项之积为100,偶数项之积为120,则1n a +为____

(答:5

6

);

(2)数列{}n a 中,n S =41n a -+1 (2n ≥)且1a =1,若n n n a a b 21-=+ ,求证:数列{n b }是等比数列。

2.等比数列的通项:11n n a a q -=或n m n m a a q -=。如

设等比数列{}n a 中,166n a a +=,21128n a a -=,前n 项和n S =126,求n 和公比q .

(答:6n =,1

2

q =或2)

3.等比数列的前n 和:当1q =时,1n S na =;当1q ≠时,1(1)1n n a q S q

-=-11n a a q

q -=-。如 (1)等比数列中,q =2,S 99=77,求9963a a a +++

(答:44);

(2))(10

1

0∑∑==n n

k k

n

C 的值为__________ (答:2046);

特别提醒:等比数列前n 项和公式有两种形式,为此在求等比数列前n 项和时,首先要判断公比q 是否为1,再由q 的情况选择求和公式的形式,当不能判断公比q 是否为1时,要对q 分1q =和1q ≠两种情形讨论求解。

4.等比中项:若,,a A b 成等比数列,那么A 叫做a 与b 的等比中项。提醒:不是任何两数都有等比中项,只有同号两数才存在等比中项,

且有两个如已知两个正数,()a b a b ≠的等差中项为A ,等比中项为B ,则A 与B 的大小关系为______(答:A >B )

提醒:(1)等比数列的通项公式及前n 和公式中,涉及到5个元素:1a 、q 、n 、n a 及n S ,其中1a 、q 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2;

(2)为减少运算量,要注意设元的技巧,如奇数个数成等比,可设为…,2

2

,,,,a a a aq aq q q

…(公比为q );但偶数个数成等比时,不能设为…

33

,,,aq aq q

a

q a ,…,因公比不一定为正数,只有公比为正时才可如此设,且公比为2q 。如有四个数,其中前三个数成等差数列,后三个成等比数列,且第一个数与第四个数的和是16,第二个数与第三个数的和为12,求此四个数。(答:15,,9,3,1或0,4,8,16)

5.等比数列的性质:

(1)当m n p q +=+时,则有m n p q a a a a =,特别地,当2m n p +=时,则有2m n p a a a =.如

(1)在等比数列{}n a 中,3847124,512a a a a +==-,公比q 是整数,则10a =___

(答:512);

(2)各项均为正数的等比数列{}n a 中,若569a a ?=,则3132310log log log a a a +++=

(答:10)。 (2) 若{}n a 是等比数列,则{||}n a 、*{}(,)p nq a p q N +∈、{}n ka 成等比数列;若{}{}n n a b 、

成等比数列,则{}n n a b 、{}n n

a

b 成等比数列; 若{}n a 是等比数列,且公比1q ≠-,则数列

232,,n n n n n S S S S S -- ,…也是等比数列。当1q =-,且n 为偶数时,数列232,,n n n n n S S S S S -- ,…

是常数数列0,它不是等比数列. 如

(1)已知0a >且1a ≠,设数列{}n x 满足1log 1log a n a n x x +=+(*)n N ∈,且12100100x x x +++=,则101102200x x x +++= .

(答:100100a );

(2)在等比数列}{n a 中,n S 为其前n 项和,若140,1330101030=+=S S S S ,则20S 的值为______

(答:40)

(3)若10,1a q >>,则{}n a 为递增数列;若10,1a q <>, 则{}n a 为递减数列;若10,01a q ><< ,则{}n a 为递减数列;若10,01a q <<<, 则{}n a 为递增数列;若0q <,则{}n a 为摆动数列;若1q =,则{}n a 为常数列.

(4) 当1q ≠时,b aq q

a

q q a S n n n +=-+--=

1111,这里0a b +=,但0,0a b ≠≠,这是等比数列前n 项和公式的一个特征,据此很容易根据n S ,判断数列{}n a 是否为等比数列。如若{}n a 是等比数列,

且3n n S r =+,则r =

(答:-1)

(5) m n m n m n n m S S q S S q S +=+=+.如设等比数列}{n a 的公比为q ,前n 项和为n S ,若12

,,n n n S S S ++成等差数列,则q 的值为_____

(答:-2)

(6) 在等比数列{}n a 中,当项数为偶数2n 时,S qS =偶奇;项数为奇数21n -时,1S a qS =+奇偶.

(7)如果数列{}n a 既成等差数列又成等比数列,那么数列{}n a 是非零常数数列,故常数数列{}n a 仅是此数列既成等差数列又成等比数列的必要非充分条件。如设

数列{}n a 的前n 项和为n S (N ∈n ), 关于数列{}n a 有下列三个命题:①若)(1N ∈=+n a a n n ,

则{}n a 既是等差数列又是等比数列;②若()R ∈+=b a n b n a S n 、

2,则{}n a 是等差数列;③若()n

n S 11--=,则{}n a 是等比数列。这些命题中,真命题的序号是

(答:②③)

五.数列的通项的求法:

⑴公式法:①等差数列通项公式;②等比数列通项公式。如已知数列 ,32

1

9,1617,815,413试写

出其一个通项公式:__________

(答:11

212

n n a n +=++)

⑵已知n S (即12()n a a a f n +++=)求n a ,用作差法:{

11,(1)

,(2)

n n n S n a S S n -==-≥。如

①已知{}n a 的前n 项和满足2log (1)1n S n +=+,求n a

(答:{3,1

2,2

n n n a n ==

≥);

②数列{}n a 满足12211

1

2522

2

n n a a a n ++

+

=+,求n a (答:{

114,1

2,2

n n n a n +==

≥)

⑶已知12()n a a a f n =求n a ,用作商法:(1),(1)()

,(2)

(1)

n f n f n a n f n =??=?≥?-?。如数列}{n a 中,,11=a 对所

有的2≥n 都有2321n a a a a n = ,则=+53a a ______

(答:61

16

⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++-

1a +(2)n ≥。如已知数列{}n a 满足11a =,n

n a a n n ++=-

-11

1(

2)n ≥,则n a =________

(答:1n a =)

⑸已知1()n n a f n a +=求n a ,用累乘法:121121

n n n n n a a a

a a a a a ---=????(2)n ≥。如已知数列}{n a 中,

21=a ,前n 项和n S ,若n n a n S 2=,求n a

(答:4

(1)

n a n n =

+)

⑹已知递推关系求n a ,用构造法(构造等差、等比数列)。特别地,(1)形如1n n a ka b -=+、

1n

n n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。

如①已知111,32n n a a a -==+,求n a (答:1231n n a -=-);②已知111,32n n n a a a -==+,求n a (答:

11532n n n a -+=-);(2)形如1

1n n n a a k a b

--=+的递推数列都可以用倒数法求通项。如①已知

1111,31n n n a a a a --=

=+,求n a

(答:1

32

n a n =-);②已知数列满足1a =1=,求n

a (答:21

n a n

=)

注意:(1)用1--=n n n S S a 求数列的通项公式时,你注意到此等式成立的条件了吗?(2n ≥,当1n =时,11S a =);(2)一般地当已知条件中含有n a 与n S 的混合关系时,常需运用关系式1--=n n n S S a ,先将已知条件转化为只含n a 或n S 的关系式,然后再求解。如数列{}n a 满足

11154,3

n n n a S S a ++=+=,求n a (答:{

1

4,1

34,2n n n a n -==≥)

六.数列求和的常用方法:

1.公式法:①等差数列求和公式;②等比数列求和公式,特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.;③常用公式:1123(1)2

n n n ++++=+,

222112(1)(21)6n n n n +++=++,33332

(1)123[]2

n n n +++++=.如

(1)等比数列{}n a 的前n 项和S n=2n-1,则2232221n a a a a ++++ =_____

(答:41

3

n -);

(2)计算机是将信息转换成二进制数进行处理的。二进制即“逢2进1”,如2)1101(表示二进制数,将它转换成十进制形式是13212021210123=?+?+?+?,那么将二进制

1

20052)11111(个转换成十进

制数是_______

(答:200521-)

2.分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和. 如求:1357(1)(21)n n S n =-+-+-+--(答:(1)n n -?)

3.倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法). 如

①求证:01235(21)(1)2n n n

n n n C C C n C n +++++=+; ②已知22()1x f x x =+,则111

(1)(2)(3)(4)()()()234

f f f f f f f ++++++=______

(答:7

2

4.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).

如(1)设{}n a 为等比数列,121(1)2n n n T na n a a a -=+-+++,已知11T =,24T =,①求数列{}n a 的首项和公比;②求数列{}n T 的通项公式.(答:①11a =,2q =;②122n n T n +=--);

(2)设函数)1(4)()1()(2-=-=x x g x x f ,,数列}{n a 满足:12,()n a f a =(n a =-

))(()1++∈N n a g a n n ,①求证:数列}1{-n a 是等比数列;②令212()(1)(1)h x a x a x =-+-

(1)n n a x ++-,求函数)(x h 在点38=x 处的导数)38(h ',并比较)3

8

(h '与n n -22的大小。(答:①略;

②8()(1)213

n h n '=-+,当1n =时,)38(h '=n n -22;当2n =时,)38

(h '

)3

8

(h '>n n -22) 5.裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:

①111(1)1n n n n =-++; ②1111()()n n k k n n k

=-++;

③2211111

()1211

k k k k <=---+,211111111(1)(1)1k k k k k k k k k -

=<<=-++--; ④1111

[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤11(1)!!

(1)!

n n n

n =-++;

⑥=<<=.

如(1)求和:

111

1447

(32)(31)

n n +++

=??-?+

(答:

31

n

n +); (2)在数列{}n a 中,1

1++=

n n a n ,且S n=9,则n =_____

(答:99);

6.通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。如 ①求数列1×4,2×5,3×6,…,(3)n n ?+,…前n 项和n S =

(答:(1)(5)

3n n n ++);

②求和:111112123

123n

+

+++

=++++++

+

(答:

21

n

n +) 七.“分期付款”、“森林木材”型应用问题

1.这类应用题一般可转化为等差数列或等比数列问题.但在求解过程中,务必“卡手指”,细心计算“年限”.对于“森林木材”既增长又砍伐的问题,则常选用“统一法”统一到“最后”解决.

2.利率问题:①单利问题:如零存整取储蓄(单利)本利和计算模型:若每期存入本金p 元,每期利率为r ,则n 期后本利和为:(1)(12)(1)n S p r p r p nr =+++++

(1)

()2

n n p n r +=+(等差数列问题)

;②复利问题:按揭贷款的分期等额还款(复利)模型:若贷款(向银行借款)p 元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,分n 期还清。如果每期利率为r (按复利),那么每期等额还款x 元应满足:12(1)(1)(1)(1)n n n p r x r x r x r x --+=+++++++(等比数列问题).

函数与数列的极限的强化练习题答案(含详细分析)

第一讲:函数与数列的极限的强化练习题答案 一、单项选择题 1.下面函数与y x =为同一函数的是() 2 .A y= .B y= ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域 () , -∞+∞,∴选D 2.已知?是f的反函数,则() 2 f x的反函 数是() () 1 . 2 A y x ? =() .2 B y x ? = () 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互 换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数 为奇函数的是() ()() .A y f x f x =+- ()() .B y x f x f x =-- ?? ?? () 32 .C y x f x = ()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且 ()()()()() 3232 y x x f x x f x y x -=-=-=- ∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x = .sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界, B arctan 2 x π <有界, C sin cos x x +≤ 故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即 n x M ≤),反之不成立,(如() {}11n--有界, 但不收敛, 选A 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小, 则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C 二、填空题(每小题4分,共24分) 7.设() 1 1 f x x = + ,则() f f x ?? ??的定义域 为

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. ; 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. … 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S 。

~ 4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. % 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式. {

、 ~

、 1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -=. 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, ' 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9 分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b

等差数列及其性质典型例题及练习(学生)

等差数列及其性质 典型例题: 热点考向一:等差数列的基本量 例1. 在等差数列{n a }中, (1) 已知81248,168S S ==,求1,a 和d (2) 已知6510,5a S ==,求8a 和8S 变式训练: 等差数列{}n a 的前n 项和记为n S ,已知 102030,50a a ==. (1)求通项公式{}n a ; (2)若242n S =,求n . 热点考向二:等差数列的判定与证明. 例2:在数列{}n a 中,11a =,1114n n a a +=- ,221 n n b a = -,其中* .n N ∈ (1)求证:数列{}n b 是等差数列; (2)求证:在数列{}n a 中对于任意的* n N ∈,都有 1n n a a +>. (3 )设n b n c =,试问数列{n c }中是否存在三项,使它们可以构成等差数列?如果存在,求出这三项;如果不存在,请说明理由. 跟踪训练:已知数列{n a }中,13 5 a = ,数列11 2,(2,)n n a n n N a *-=-≥∈,数列{n b }满足 1()1 n n b n N a *=∈- (1)求证数列{n b }是等差数列; (2)求数列{n a }中的最大项与最小项. 热点考向三:等差数列前n 项和 例3 在等差数列{}n a 的前n 项和为n S . (1)若120a =,并且1015S S =,求当n 取何值时,n S 最大,并求出最大值; (2)若10a <,912S S =,则该数列前多少项的和最小? 跟踪训练3:设等差数列}{n a 的前n 项和为n S ,已知 .0,0,1213123<>=S S a (I )求公差d 的取值范围; (II )指出12321,,,,S S S S 中哪一个最大,并说明理由。 热点考向四:等差数列的综合应用 例4.已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点列(n ,S n )(n ∈N *)均在函数y =f (x )的图象上. (1)求数列{a n }的通项公式; (2)设b n =3 a n a n +1,T n 是数列{b n }的前n 项和,求使得 T n +都成立。求证:c 的最大值为 2 9。

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

等差数列经典题型

等差数列 第三课时 前N 项和 1、在等差数列{a n }中,已知d =2,a n =11, S n =35,求a 1和n . 2、设{a n }为等差数列, S n 为数列{a n }的前n 项和,已知S 7=7, S 15=75, T n 为数列? ??? ? ? S n n 的前n 项和,求T n . (1)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m ; (2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5 b 5 的 值. 3、已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45 n +3,则使 得a n b n 为整数的正整数n 的个数是( ) A.2 B.3 C.4 D.5 4、现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( ) A.9 B.10 C.19 D.29 5、等差数列{a n }中, S 10=4S 5,则a 1 d 等于( ) A.12 B.2 C.1 4 D.4

6、已知等差数列{a n}中,a23+a28+2a3a8=9,且a n<0,则S10为() A.-9 B.-11 C.-13 D.-15 7、设等差数列{a n}的前n项和为S n,若S3=9, S6=36.则a7+a8+a9等于() A.63 B.45 C.36 D.27 8、在小于100的自然数中,所有被7除余2的数之和为() A.765 B.665 C.763 D.663 9、一个等差数列的项数为2n,若a1+a3+…+a2n-1=90,a2+a4+…+a2n=72,且a1-a2n=33,则该数列的公差是() A.3 B.-3 C.-2 D.-1 10、设{a n}是公差为-2的等差数列,如果a1+a4+…+a97=50,那么a3+a6+…+a99=______. 11、在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n的值为______.

第一讲数列地极限典型例题

第一讲 数列的极限 一、内容提要 1.数列极限的定义 N n N a x n n >?N ∈?>??=∞ →,,0lim ε,有ε<-a x n . 注1 ε的双重性.一方面,正数ε具有绝对的任意性,这样才能有 {}n x 无限趋近于)(N n a x a n ><-?ε 另一方面,正数ε又具有相对的固定性,从而使不等式ε<-a x n .还表明数列{}n x 无限趋近于a 的渐近过程的不同程度,进而能估算{}n x 趋近于a 的近似程度. 注2 若n n x ∞ →lim 存在,则对于每一个正数ε,总存在一正整数N 与之对应,但这种N 不是 唯一的,若N 满足定义中的要求,则取Λ,2,1++N N ,作为定义中的新的一个N 也必须满足极限定义中的要求,故若存在一个N 则必存在无穷多个正整数可作为定义中的N . 注3 a x n →)(∞→n 的几何意义是:对a 的预先给定的任意-ε邻域),(εa U ,在{}n x 中至多除去有限项,其余的无穷多项将全部进入),(εa U . 注4 N n N a x n n >?N ∈?>??≠∞ →00,, 0lim ε,有00ε≥-a x n . 2. 子列的定义 在数列{}n x 中,保持原来次序自左往右任意选取无穷多个项所得的数列称为{}n x 的子列,记为{} k n x ,其中k n 表示k n x 在原数列中的项数,k 表示它在子列中的项数. 注1 对每一个k ,有k n k ≥. 注2 对任意两个正整数k h ,,如果k h ≥,则k h n n ≥.反之,若k h n n ≤,则k h ≤. 注3 K k K a x k n n >?N ∈?>??=∞→,, 0lim ε,有ε<-a x k n . 注4 ?=∞ →a x n n lim {}n x 的任一子列{} k n x 收敛于a . 3.数列有界 对数列{}n x ,若0>?M ,使得对N n >?,有M x n ≤,则称数列{}n x 为有界数列. 4.无穷大量 对数列{}n x ,如果0>?G ,N n N >?N ∈?,,有G x n >,则称{}n x 为无穷大量,记 作∞=∞ →n n x lim .

高中数列经典题型大全

高中数列经典题型大全 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131+-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+,其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,651=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121==x x ,∴1211--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ???+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a

最全高考复习数列专题及练习答案详解

高考复习数列专题: 数 列(参考答案附后) 第一节 数列的概念与数列的简单表示 一、选择题 1.已知数列{}a n 对任意的p ,q ∈N * 满足a p +q =a p +a q ,且a 2=- 6,那么a 10=( ) A .-165 B .-33 C .-30 D .-21 2.在数列{a n }中,a 1=2,a n +1=a n +ln(1+1 n ),则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n 3.若数列{a n }的前n 项积为n 2 ,那么当n ≥2时,{a n }的通项公式为( ) A .a n =2n -1 B .a n =n 2 C .a n = n +12 n 2 D .a n = n 2n -1 2 4.在数列{a n }中,a n +1=a n +2+a n ,a 1=2,a 2=5,则a 6的值是( ) A .-3 B .-11 C .-5 D .19 5.已知数列{a n }中,a n =n -79n -80 (n ∈N *),则在数列{a n }的前50 项中最小项和最大项分别是( ) A .a 1,a 50 B .a 1,a 8 C .a 8,a 9 D .a 9, a 50 二、填空题 6.若数列{}a n 的前n 项和S n =n 2 -10n (n =1,2,3,…),则此数

列的通项公式为________;数列{}na n 中数值最小的项是第__________项. 7.数列35,12,511,37,7 17,…的一个通项公式是 ___________________________. 8.设数列{a n }中,a 1=2,a n +1=a n +n +1,则通项a n =__________. 三、解答题 9.如果数列{}a n 的前n 项和为S n =3 2a n -3,求这个数列的通项 公式. 10.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N + )在函数y =x 2 +1的图象上. (1)求数列{a n }的通项公式; (2)若列数{b n }满足b 1=1,b n +1=b n +2a n ,求证:b n ·b n +2<b 2 n +1.

数列教案、考点、经典例题_练习

澳瀚教育 学习是一个不断积累的过程,不积跬步无以至千里,不积小流无以 成江海,在学习中一定要持之以恒,相信自己,你一定可以获得成功! 高中数学 一、定义 1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示) 2.等差数列的通项公式: d n a a n )1(1-+= (=n a d m n a m )(-+) 3.有几种方法可以计算公差d ① d=n a -1-n a ② d = 11--n a a n ③ d =m n a a m n -- 定义:若a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项 不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项 如数列:1,3,5,7,9,11,13…中 5是3和7的等差中项,1和9的等差中项 9是7和11的等差中项,5和13的等差中项 看来,73645142,a a a a a a a a +=++=+ 性质1:在等差数列{}n a 中,若m+n=p+q ,则,q p n m a a a a +=+ 即 m+n=p+q ?q p n m a a a a +=+ (m, n, p, q ∈N ) 二.例题讲解。 一.基本问题 例1:在等差数列{}n a 中 111111(1)(1)2()2, (1)(1)2()2, .m n p q m n p q a a a m d a n d a n m d d a a a p d a q d a p q d d a a a a +=+-++-=++-+=+-++-=++-∴+=+证明:

人教课标版高中数学必修5典型例题剖析:等差数列的通项与求和

等差数列的通项与求和 一、知识导学 1.数列:按一定次序排成的一列数叫做数列. 2.项:数列中的每一个数都叫做这个数列的项,各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. 3.通项公式:一般地,如果数列{a n }的第n项与序号n之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式. 4. 有穷数列:项数有限的数列叫做有穷数列. 5. 无穷数列:项数无限的数列叫做无穷数列 6.数列的递推公式:如果已知数列的第一项(或前几项)及相邻两项(或几项)间关系可以用一个公式来表示,则这个公式就叫做这个数列的递推公式.递推公式是给出数列的一种重要方法,其关健是先求出a 1,a 2,然后用递推关系逐一写出数列中的项. 7.等差数列:一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示. 8.等差中项:如果a,A,b这三个数成等差数列,那么A=2b a +.我们把A=2 b a +叫做a和b的等差中项. 二、疑难知识导析 1.数列的概念应注意几点:(1)数列中的数是按一定的次序排列的,如果组成的数相同而排列次序不同,则就是不同的数列;(2)同一数列中可以出现多个相同的数;(3)数列看做一个定义域为正整数集或其有限子集({1,2,3,…,n })的函数. 2.一个数列的通项公式通常不是唯一的. 3.数列{a n }的前n 项的和S n 与a n 之间的关系:???≥-==-).2(),1(1 1n S S n S a n n n 若 a 1适合a n (n>2),则n a 不用分段形式表示,切不可不求a 1而直接求a n .

上海高中数学数列的极限(完整资料)

【最新整理,下载后即可编辑】 7.6 数列的极限 课标解读: 1、理解数列极限的意义; 2、掌握数列极限的四则运算法则。 目标分解: 1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{}n a 的项n a 无限地趋近于某个常数a (即||a a n -无限地接近于0),那么就说数列{}n a 以a 为极限。 注:a 不一定是{}n a 中的项。 2、几个常用的极限:①C C n =∞→lim (C 为常数);②01lim =∞→n n ;③ ) 1|(|0lim <=∞ →q q n n ; 3、数列极限的四则运算法则:设数列{}n a 、{}n b , 当 a a n n =∞ →lim , b b n n =∞ →lim 时,b a b a n n n ±=±∞→)(lim ; b a b a n n n ?=?∞ →)(lim ; )0(lim ≠=∞→b b a b a n n n 4、两个重要极限: ① ?? ???<=>=∞→00100 1lim c c c n c n 不存在

②?? ???-=>=<=∞ →11||111||0 lim r r r r r n n 或不存在 问题解析: 一、求极限: 例1:求下列极限: (1) 3 21 4lim 22 +++∞→n n n n (2) 2 4323lim n n n n n -+∞→ (3) )(lim 2n n n n -+∞ → 例2:求下列极限: (1) )23741(lim 2222n n n n n n -++++∞→ ; (2) ])23()13(11181851521[lim +?-++?+?+?∞→n n n 例3:求下式的极限:

高考数列练习题及答案(理科)

2.(本小题满分16分)(2013江苏卷) 设}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和.记 c n nS b n n += 2, *N n ∈,其中c 为实数. (1)若0=c ,且421b b b ,,成等比数列,证明:k nk S n S 2=(*,N n k ∈); (2)若}{n b 是等差数列,证明:0=c .

3.(本题满分14分)(2013浙江.理) 在公差为d的等差数列{a n }中,已知a 1 =10,且a 1 ,2a 2 +2,5a 3 成等比数列. (Ⅰ)求d,a n ; (Ⅱ) 若d<0,求|a 1|+|a 2 |+|a 3 |+…+|a n | . 4. (本小题满分12分) (2013陕西.理) 设{} n a是公比为q的等比数列. (Ⅰ) 推导{} n a的前n项和公式; (Ⅱ) 设1 q≠, 证明数列{1} n a+不是等比数列.

(Ⅱ)对任意*p N ∈,由(Ⅰ)中n x 构成的数列{}n x 满足0n n p x x n +<-< 8.(本小题满分14分)(2013广东.理) 设数列{}n a 的前n 项和为n S ,已知11a =,2*1212 ,()33 n n S a n n n N n +=---∈. (1)求2a 的值 (2)求数列{}n a 的通项公式n a (3)证明:对一切正整数n ,有1211174 n a a a +++

11.(本小题满分12分)(2013江西.理) 正项数列{}n a 的前n 项和n S 满足: (1) 求数列{}n a 的通项公式n a ; (2) 令22 1(2)n n n b n a += +,数列{}n b 的前n 项和为n T .证明:对于任意n N * ∈,都有564 n T < . 23. (本小题满分14分) (2013天津.理) 已知首项为3 2 的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且 335544,,S a S a S a +++成等差数列. (Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 设*()1 n n n T S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值

小学奥数等差数列经典练习题

小学奥数等差数列经 典练习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

小学奥数等差数列经典练习题 一、判断下面的数列中哪些是等差数列在等差数列的括号后面打√。0,2,6,12,20,30,36…… 6,12,18,24,30,36,42……700,693,686,679,673…… 90,79,68,57,46,35,24,13…… 1,3,5,7,10,13,16……5,8,11,14,17,20…… 1,5,9,13,17,21,23…90,80,70,60,50,……20,10 二、求等差数列3,8,13,18,……的第30项是多少 三、求等差数列8,14,20,26,……302的末项是第几项 四、一个剧院的剧场有20排座位,第一排有38个座位,往后每排比前一排多2个座位,这个剧院一共有多少个座位五、计算 11+12+13……+998+999+10002+6+3+12+4+18+5+24+6+30 3、求等差数列6,9,12,15,……中第99项是几 4、求等差数列46,52,58……172共有多少项 5、求等差数列245,238,231,224,……中,105是第几项 6、求等差数列0,4,8,12,……中,第31项是几在这个数列中,2000是第几项 7、从35开始往后面数18个奇数,最后一个奇数是多少、已知一个等差数列的第二项是8,第3项是13,这1个等差数列的第10项是多少 1、计算:100+200+300+……21001+79+……+17+15+13 2、有20个同学参加聚会,见面的时候如果每人都和其他同学握手一次,那么参加聚会的同学一共要握手多少次 3、请用被4

最新浙江高考数列经典例题汇总

浙江高考数列经典例题汇总 1. 【2014年.浙江卷.理19】(本题满分14分)已知数列 {}n a 和{}n b 满足 ()()* ∈= N n a a a n b n 221Λ.若{}n a 为等比数列,且. 6,223 1 b b a +== (Ⅰ)求n a 与 n b ; (Ⅱ)设 () * ∈-= N n b a c n n n 1 1。记数列{}n c 的前n 项和为n S . (i )求 n S ; (ii )求正整数k ,使得对任意* ∈N n ,均有 n k S S ≥. 2. 【2011年.浙江卷.理19】(本题满分14分)已知公差不为0的等差数列 {} n a 的首项 1a a = (a R ∈),设数列的前n 项和为n S ,且11a ,21a ,41a 成等比数列 (Ⅰ)求数列 {} n a 的通项公式及 n S (Ⅱ)记1231111...n n A S S S S = ++++ , 212221111...n n B a a a a =++++,当2n ≥时,试比 较 n A 与 n B 的大小.

3. 【2008年.浙江卷.理22】(本题14分)已知数列 {}n a ,0≥n a ,01=a , 22111() n n n a a a n N ?+++-=∈. n n a a a S +++=Λ21)1()1)(1(1 )1)(1(11121211n n a a a a a a T +++++++++= ΛΛ. 求证:当? ∈N n 时, (Ⅰ) 1 +n S n ; (Ⅲ)3

(完整版)历年数列高考题及答案

1. (福建卷)已知等差数列 }{n a 中,12497,1,16a a a a 则==+的值是( ) A .15 B .30 C .31 D .64 2. (湖南卷)已知数列 }{n a 满足 ) (1 33,0*11N n a a a a n n n ∈+-= =+,则 20a = ( ) A .0 B .3- C .3 D .23 3. (江苏卷)在各项都为正数的等比数列{a n }中,首项a 1=3 ,前三项和为21,则a 3+ a 4+ a 5=( ) ( A ) 33 ( B ) 72 ( C ) 84 ( D )189 4. (全国卷II ) 如果数列{}n a 是等差数列,则( ) (A)1845a a a a +<+ (B) 1845a a a a +=+ (C) 1845a a a a +>+ (D) 1845a a a a = 5. (全国卷II ) 11如果128,,,a a a L 为各项都大于零的等差数列,公差0d ≠,则( ) (A)1845a a a a > (B) 1845a a a a < (C) 1845a a a a +>+ (D) 1845a a a a = 6. (山东卷) {}n a 是首项1a =1,公差为d =3的等差数列,如果n a =2005,则序号n 等于( ) (A )667 (B )668 (C )669 (D )670 7. (重庆卷) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个 顶点是下层正方体上底面各边的中点。已知最底层正方体的棱长为2,且改塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是( ) (A) 4; (B) 5; (C) 6; (D) 7。 8. (湖北卷)设等比数列 }{n a 的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q 的值为 . 9. (全国卷II ) 在83和27 2之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为______ 10. (上海)12、用n 个不同的实数 n a a a ,,,21Λ可得到!n 个不同的排列,每个排列为一行写成一个!n 行的数阵。 对第i 行in i i a a a ,,,21Λ,记in n i i i i na a a a b )1(32321-++-+-=,!,,3,2,1n i Λ=。例如:用1,2,3可得数阵 如图,由于此数阵中每一列各数之和都是12,所以,2412312212621-=?-?+-=+++b b b Λ,那么,在 用1,2,3,4,5形成的数阵中, 12021b b b +++Λ=_______。 11. (天津卷)在数列{a n }中, a 1=1, a 2=2,且 )( )1(12* +∈-+=-N n a a n n n ,

等差数列典型例题及分析

第四章 数列 [例1]已知数列1,4,7,10,…,3n+7,其中后一项比前一项大3.(1)指出这个数列的通项公式;(2)指出1+4+…+(3n -5)是该数列的前几项之和.正解:(1)a n =3n -2; (2) 1+4+…+(3n -5)是该数列的前n -1项的和. [例2] 已知数列{}n a 的前n 项之和为① n n S n -=22 ② 12 ++=n n S n 求数列{}n a 的通项公式。 正解: ①当1=n 时,1 11==S a 当2≥n 时,3 4)1()1(222 2-=-+---=n n n n n a n 经检验 1=n 时 11=a 也适合,∴34-=n a n ②当1=n 时,3 11==S a 当2≥n 时,n n n n n a n 21)1()1(12 2=-----++= ∴ ?? ?=n a n 23 ) 2()1(≥=n n [例3] 已知等差数列{}n a 的前n 项之和记为S n ,S 10=10 ,S 30=70,则S 40等于 。 正解:由题意:??? ????=?+=?+70 2293030102 9101011d a d a 得152,521= =d a 代入得S 40 =120402 39 40401=??+ d a 。 [例5]已知一个等差数列{}n a 的通项公式a n =25-5n ,求数列{}||n a 的前n 项和; 正解: ??? ????≥+--≤-6,502)5)(520(5,2 ) 545(n n n n n n [例6]已知一个等差数列的前10项的和是310,前20项的和是1220, 由此可以确定求其前n 项和的公式吗? [例7]已知:n n a -+=12lg 1024 (3010.02lg =)+∈N n (1) 问前多少项之和为

高中数学人教版 必修五 数列经典例题 高考题(附解析答案)

黄冈经典例题高考题(附答案,解析) 等差数列 例1、在等差数列{a n}中: 1、若a1-a4-a8-a12+a15=2,则a3+a13=___________. 2、若a6=5,a3+a8=5,则a10=___________. 3、若a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9=___________. 例 2、已知数列{a n}的通项,试问该数列{a n}有没有最大项?若有,求最大项和最大项的项数,若没有,说明理由. 例 3、将正奇数1,3,5,7,……排成五列,(如下图表),按图表的格式排下去,2003所在的那列,从左边数起是第几列?第几行? 1 3 5 7 15 13 11 9 17 19 21 23 31 29 27 25 ………… 例 4、设f(x)=log 2x-log x4(0

他们研究过图(1)中的1,3,6,10,……,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图(2)中的1,4,9,16,……这样的数为正方形数,下列数中既是三角形数又是正方形数的是() A.289 B.1024 C.1225 D.1378 3.(江西卷)在数列{a n}中,,则a n=( ) A.2+lnn B.2+(n-1)lnn C.2+nlnn D.1+n+lnn 等差数列前N项和、等比数列 例 1 、在等差数列 {a n}中, (1)已知a15=33,a45=153,求a61; (2)已知S8=48,S12=168,求S4; (3)已知a1-a4-a8-a12+a15=2,求S15; (4)已知S7=42,S n=510,a n-3=45,求n. 例 2 、已知数列 {a n}的前n项和,求数列{|a n|}的前n项和S n′.

2018高考数学专题---数列大题训练(附答案)

2018高考数学专题---数列大题训练(附答案) 1 .数列{n a }的前n 项和为n S ,且满足11a =,2(1)n n S n a =+. (1)求{n a }的通项公式; (2)求和T n = 12 111 23(1)n a a n a +++ +. 2 .已知数列}{n a ,a 1=1,点*))(2,(1N n a a P n n ∈+在直线012 1 =+- y x 上. (1)求数列}{n a 的通项公式; (2)函数)2*,(1 111)(321≥∈++++++++= n N n a n a n a n a n n f n 且 ,求函数)(n f 最小值. 3 .已知函数x ab x f =)( (a ,b 为常数)的图象经过点P (1,8 1)和Q (4,8) (1) 求函数)(x f 的解析式; (2) 记a n =log 2)(n f ,n 是正整数,n S 是数列{a n }的前n 项和,求n S 的最小值。 4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15. 求n S =f (1)+f (2)+…+f (n )的表达式. 5 .设数列{}n a 的前n 项和为n S ,且1n n S c ca =+-,其中c 是不等于1-和0的实常数. (1)求证: {}n a 为等比数列; (2)设数列{}n a 的公比()q f c =,数列{}n b 满足()()111,,23 n n b b f b n N n -==∈≥,试写出1n b ?? ???? 的通项公式,并求12231n n b b b b b b -++ +的结果. 6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量1+n n A A 与向量n n C B 共线, 且点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上. (1)试用a 1,b 1与n 来表示a n ; (2)设a 1=a ,b 1=-a ,且12

相关文档
相关文档 最新文档