文档库 最新最全的文档下载
当前位置:文档库 › 实验讲义- 直接吸入火焰原子吸收法测定镉 (1)

实验讲义- 直接吸入火焰原子吸收法测定镉 (1)

实验讲义-   直接吸入火焰原子吸收法测定镉 (1)
实验讲义-   直接吸入火焰原子吸收法测定镉 (1)

实验八直接吸入火焰原子吸收法测定镉、铜、铅、锌1

1 方法原理

将水样或消解处理好的试样直接吸入火焰,火焰中形成的原子蒸气对光源发射的特征电磁辐射产生吸收。将测得的样品吸光度和标准溶液的吸光度进行比较,确定样品中被测元素的含量。

2 干扰及消除

地下水和地表水中的共存离子和化合物,在常见浓度下不干扰测定。当钙的浓度高于1000 mg/L时,抑制镉的吸收,浓度为2000 mg/L时,信号抑制达19%。在弱酸性条件下,样品中六价铬的含量超过30mg/L时,由于生成铬酸铅沉淀而使铅的测定的结果偏低,在这种情况下需要加入l%抗坏血酸将六价铬还原成三价铬。样品中溶解性硅的含量超过20 mg/L时干扰锌的测定,使测定结果偏低,加入200 mg/L钙可消除这一干扰。铁的含量超过100 mg/L时,抑制锌的吸收。当样品中含盐量很高,分析波长又低于350 nm时,可能出现非持征吸收。如高浓度的钙,因产生非特征吸收,即背景吸收,使铅的测定结果偏高。

基于上述原因,分析样品前需要检验是否存在基体干扰或背景吸收。一般通过测定加标回收率,判断基体干扰的程度,通过测定分析线附近l nm内的一条非特征吸收线处的吸收,可判断背景吸收的大小。根据表1选择与选用分析线相对应的非特征吸收谱线。

表1 背景校正用的邻近线波长

元素分析线波长(nm)非特征吸收谱线(nm)

镉228.8 229(氘)

铜324.7 324(锆)

铅283.3 283.7(锆)

锌213.8 214(氘)根据检验的结果,如果存在基体干扰,可加入干扰抑制剂,或用标准加入法测定并计算结果。如果存在背景吸收,用自动背景校正装置或邻近非特征吸收谱线法进行校正。后一种方法是从分析线处测得的吸收值中扣除邻近非特征吸收谱1本方法选自《水和废水监测分析方法》(第四版),与GB/T7475—1987等效。

线处的吸收值,得到被测元素原子的真实吸收。此外,也可通过螯合萃取或样品稀释、分离或降低产生基体干扰或背景吸收的组分。

3 方法的适用范围

本法适用于测定地下水、地表水和废水中的镉、铅、铜和锌。适用浓度范围与仪器的特性有关,表2列出一般仪器的适用浓度范围。

表2 适用浓度范围

元素适用浓度范围(mg/L)元素适用浓度范围(mg/L)镉0.05-1 铅0.2-10

铜0.05-5 锌0.05-1

4 仪器

原子吸收分光先度计、背景校正装置,所测元素的元素灯及其他必要的附件。

5 试剂

5.1 硝酸(优级纯)

5.2 高氯酸(优级纯)

5.3 去离子水

5.4 燃气:乙炔,纯度不低于99.6%。

5.5 助燃气:空气,由气体压缩机供给,经过必要的过滤和净化。

5.6 金属标准贮备液,准确称取经稀酸清洗并干燥后的0.5000 g光谱纯金属,用50ml(1+1)硝酸溶解,必要时加热直至溶解完全。用水稀释至500.0 mL,此溶液每毫升含1.00 mg金属。

5.7 混合标准溶液:用0.2%硝酸稀释金属标准贮备溶液配制而成,使配成的混合标准溶液每毫升含镉、铜、铅和锌分别为10.0、50.0、100.0和10.0μg。

6 步骤

6.1 样品预处理

取l00 mL水样放入200 mL烧杯中,加入硝酸5 mL,在电热板上加热消解(不要沸腾)。蒸至l0 mL左右,加入5 mL硝酸和2 mL高氯酸,继续消解,直至1 mL 左右。如果消解不完全,再加入硝酸5 mL和高氯酸2 mL,再次蒸至1 mL左右。取下冷却,加水溶解残渣,用水定容至100 mL。

取0.2%硝酸l00 mL,按上述相同的程序操作,以此为空白样。

6.2 样品测定

按表3所列参数选择分析线和调节火焰。仪器用0.2%硝酸调零,吸入空白样和试样,测量其吸光度。扣除空白样吸光度后,从校准曲线上查出试样中的金属浓度。如可能,也可从仪器上直接读出试样中的金属浓度。

表3 分析线波长和火焰类型

元素 分析线波长(nm )

火焰类型 镉 228.8 乙炔-空气,氧化型 铜 324.7 乙炔-空气,氧化型 铅 283.3 乙炔-空气,氧化型 锌

213.8

乙炔-空气,氧化型

6.3 校准曲线

吸取混合标准液0,0.50,1.00,3.00,5.00和10.00 mL ,分别放入六个100 mL 容量瓶中,用0.2%硝酸稀释定容。此混合标准系列各金属的浓度见表4。接着按样品测定的步骤测量吸光度,用经空白校正的各标准的吸光度对相应的浓度作图,绘制校准曲线。

表4 标准系列的配制与浓度

混合标准使用溶液体积

(mL )

0 0.50 1.00 3.00 5.00 10.00 标准系列各金属浓度(mg/L )

0 0.05 0.10 0.30 0.50 1.00 铜 0 0.25 0.50 1.50 2.50 5.00 铅 0 0.50 1.00 3.00 5.00 10.00 锌

0.05

0.10

0.30

0.50

1.00

注:定容体积100 mL 。 7 计算

V

m

)被测金属(L /mg 式中:m —从校准曲线上查出或仪器直接读出的被测金属量(μg);

V —分析用的水样体积。

8 精密度和准确度

精密度和准确度,如表5所示。

表5 精密度和准确度

元素参加实验

室数目

质控样品金属

浓度(μg/L)

平均测定

值(μg/L)

实验室内相

对标准(%)

实验室间相对

标准偏差(%)

镉7 100 96 6.1 6.9 铜 5 500 480 3.1 7.1 铅8 100 99.9 2.4 3.1 锌 4 500 507 1.6 2.2

实验九石墨炉原子吸收法测定镉、铜和铅2

1.方法原理

将样品注入石墨管,用电加热方式使石墨炉升温,样品蒸发离解形成原子蒸气,对来自光源的特征电磁辐射产生吸收。将测得的样品吸光度和标准吸光度进行比较,确定样品中被测金属的含量。

2.干扰及消除

石墨炉原子吸收分光光度法的基体效应比较显著和复杂。在原子化过程中,样品基体蒸发,在短波长范围出现分子吸收或光散射,产生背景吸收。可以用连续光源背景校正法,或塞曼偏振光校正法、自吸收法进行校正,也可采用邻近的非特征吸收线校正法,或通过样品稀释降低样品中的基体浓度。另一类基体效应是样品中基体参加原子化过程中的气相反应,使被测元素的原子对特征辐射的吸收增强或减弱,产生正干扰或负干扰。如氯化钠对镉、铜、铅的测定,硫酸钠对铅的测定均产生负干扰。在一定的条件下,采用标准加入法可部分补偿这类干扰。此外,也可使用基体改良剂。测铜时,20 μl水样加入40%硝酸铵溶液10μl;测铅时,20μl水样加入15%钼酸铵溶液10μl;测镉时,20μl水样加入5%磷酸钠溶液10μl。以上基体改良剂对于抑制基体干扰均有一定作用,1%磷酸溶液也可作为镉、铅测定的基体改良剂。而硝酸钯是用于镉、铜、铅最好的基体改进剂,同时使用La、W、Mo、Zn等金属碳化物涂层石墨管测定,既可提高灵敏度,也能克服基体干扰。

3.方法的适用范围

本法适用于地下水和清洁地表水。分析样品前要检查是否存在基体干扰并采取相应的校正措施。测定浓度范围与仪器的特性有关,表1列出一般仪器的测定浓度范围。

4.仪器

原子吸收分光光度计,石墨炉装置、背景校正装置及其他有关附件。

2本方法选自《水和废水监测分析方法》(第四版)

表1 分析线波长和适用浓度范围

元素分析线(nm)适用浓度范围(μg/L)

镉228.8 0.1~2

铜324.7 1~50

铅283.3 1~5

5. 试剂

5.1 硝酸,优级纯。

5.2 硝酸(1+1),0.2%。

5.3 去离子水:金属含量应尽可能低,最好用石英蒸馏器制备的蒸馏水。

5.4 硝酸钯溶液:称取硝酸钯0.108g溶于10ml(1+1)硝酸,用水定容至500ml,则含Pd 10μg/ml。

5.5 金属标准贮备溶液:见实验八。

5.6 混合标准溶液:由标准贮备溶液稀释配制,用0.2%硝酸进行稀释。制成的溶液每毫升含镉、铜、铅0,0.1,0.2,0.4,1.0,2.0μg,含基体改进剂钯1μg的标准系列。

6.步骤

6.1试样的预处理

同实验八,但在试样消解时不能使用高氯酸,用10ml过氧化氢代替。在过滤液中加入10ml硝酸钯溶液,定容至100ml。

6.2 样品测定

①直接法:将20μl样品注入石墨炉,参照表2的仪器参数测量吸光度。以零浓度的标准溶液为空白样,扣除空白样吸光度后,从校准曲线上查出样品中被测金属的浓度。如可能也可用浓度直读法进行测定。

表2 仪器工作参数

工作参数

元素

Cd Pb Cu

光源空心阴极灯空心阴极灯空心阴极灯灯电流(mA) 7.5 7.5 7.0

波长(nm) 228.8 283.3 324.7

通带宽度(nm) 1.3 1.3 1.3

干燥80~100℃/5s 80~180℃/5s 80~180℃/5s

灰化450~500℃/5s 700~750℃/5s 450~500℃/5s 原子化2500℃/5s 2500℃/5s 2500℃/5s

清除2600℃/3s 2700℃/3s 2700℃/3s Ar气流量200ml/min 200ml/min 200ml/min 进样体积(μl) 20 20 20

②标准加入法:一般用三点法。

第一点,直接测定水样;

第二点,取10ml水样,加入混合标准溶液25μl后混匀;

第三点,取10ml水样,加入混合标准溶液50μl后混匀。

以上三种溶液中的标准加入浓度,镉依次为0、0.5和1.0μg/L;铜和铅依次为0、5.0和10μg/L。以零浓度的标准溶液为空白样,参照表2的仪器参数测量吸光度。用扣除空白样吸光度后的各溶液吸光度对加入标准的浓度作图,将直线延长,与横坐标的交点即为样品的浓度(加入标准的体积所引起的误差不超过0.5%)。

7.精密度和准确度

全国范围七个实验室用直接法分析实际水样的精密度和准确度数据,如表3所示。

表3 精密度和准确度

元素

浓度范围(μg/L)

相对标准偏差范围

(n=7,%)

回收率范围(%) 地下水地表水地下水地表水地下水地表水

镉0.1~1.3 0.1~1 1.4~17 1.9~15 75~105 75~108 铜 2.5~11 2.4~15 2.1~10 2.3~10 85~106 92~109 铅1~16 1.9~29 1.4~9.3 1.2~9.5 81~109 75~107

8.注意事项

1)因Pb、Cd和Cu在一般地表水中含量差别较大,测定Cu时可将水样适当稀释后测定。

2)因仪器设备不同,工作条件差异也较大,如果使用横向塞曼扣除背景的仪器,可将灰化、原子化和清除温度降低100~200℃。

3)如果测定基体简单的水样可不使用硝酸钯做基体改进剂。

4)硝酸钯亦可用硝酸镧代替,但其空白较高,必须注意扣除。

5)如果使用涂层石墨管亦可不必加入基体改进剂。常用的金属碳化物涂层处理石墨管的方法有两种:

①涂层溶液注入法:在待测样品溶液和标准溶液注入石墨管前,先将La、W、Mo等易生成碳化物元素的溶液(一般浓度是含涂层金属约为5%)注入石墨管中,按一般石墨炉操作程序经过干燥、灰化和原子化,使其在高温下形成金属碳化物涂层,反复进行几次则得到较厚的涂层。用Ta处理的研究报导较多,由于TaC升华点高达3880℃,适合于耐高温元素的测定,能大大提高这类元素的灵敏度,且石墨管寿命也能明显延长。涂Ta石墨管对Cd、Pb的增感效果分别为1.46和1.06。

这种涂层方法简单易行,但对测定精度改善不甚明显,形成的碳化物涂层膜也不够均匀,一次只能处理一支管,效率不高。

②浸渍法:本方法适合于成批处理,也是本书推荐使用的方法。

一般用含金属元素5%左右的金属盐溶液,例如:La(NO3)3?6H20,ZrOCl6,NH4VO3等,也可用Ta、Ti等金属,经溶解后作为涂层溶液。为了改善涂层效果,有时涂层溶液中需加入1%~2%的草酸。

这里推荐的涂La手续为:将5~10支普通石墨管垂直浸泡于盛有La(NO3)3 25ml(高型)小烧杯中,将烧杯置于真空干燥器内,用真空泵减压1.5~2h,并经常摇动干燥器以便驱赶从石墨微孔排出的小气泡,使溶液更好地渗入石墨管壁。取出凉干后在105℃烘干2h,再重复上述过程一次。用滤纸擦去石墨管两端析出的固体盐类(防止与石墨锥接触不良,而放电烧毁石墨锥、管)后,置于原子化器上,按干燥、灰化、原子化程序处理(涂La时:干燥180℃/20s,灰化800℃/30s,原子化2700℃/5s)2~3次,一般可在管的内表面形成0.1mm左右的片状涂层膜。

原子吸收实验讲义

原子吸收实验讲义-CAL-FENGHAI.-(YICAI)-Company One1

实验一火焰原子吸收光谱法测定水样中的铜含量—标准加入法一、实验目的 1.了解原子吸收光谱仪的基本结构及使用方法; 2.掌握原子吸收光谱分析测量条件的选择方法及测量条件的相互关系和影响,确定各项条件的最佳值。 3.学习使用标准加入法进行定量分析。 二、方法原理 在原子吸收光谱分析中,分析方法的灵敏度、精密度、干扰是否严重,以及分析过程是否简便快速等,在很大程度上依赖于所使用的仪器及所选用的测量条件。因此,原子吸收光谱法测量条件的选择是十分重要的。 原子吸收光谱法的测量条件,包括吸收线的波长,空心阴极灯的灯电流,火焰类型,雾化方式,燃气和助燃气的比例,燃烧器高度,以及单色器的光谱通带等。 本实验通过铜的测量条件,如灯电流,燃气和助燃气的比例,燃烧器高度和单色器狭缝宽度的选择,确定这些测量条件的最佳值。 三、仪器设备与试剂材料 1.TAS-990F型原子吸收分光光度计(北京普析通用)。 2.铜空心阴极灯。 3.铜标准溶液5μg?mL-1。 4. 25 mL比色管。 四、实验步骤 1.铜标准系列的配制 于5支10mL比色管中,各加入1mL未知样品溶液,然后从第二支比色管开始分别准确移取10μg?mL-1铜标准溶液,,, mL,用去离子水稀释至刻度,摇匀。另取一支比色管直接用去离子水定容至刻度,用作空白溶液。 2.仪器操作条件的设置 (1)初选测量条件 表1测量初选条件 (2)燃烧器高度的选择 用上述初选测量条件,固定空气流量,改变燃烧器高度(也称测量高度,见表2)测量其吸收值,选用有较稳定的最大吸收值的燃烧器高度。

火焰原子吸收光谱法

火焰原子吸收光谱法测定自来水中的钙.镁含量

实验目的 z1、了解原子吸收分光光度计的基本结构和原理。z2、掌握火焰原子吸收光谱分析的基本操作。 z3、熟悉用标准曲线法进行定量测定的方法。

实验原理 原子吸收光谱分析的波长区域在近紫外区。其分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量,它符合郎珀-比尔定律 A= -lg I/I = -lgT= KCL 式中I为透射光强度,I 0为发射光强度,T为透射比, L为光通过原子化器光程由于L是不变值所以A=KC。 原子吸收分光光度分析具有快速.灵敏.准确.选择性好.干扰少和操作简便等优点。

操作要点 z标准溶液的配制 (1)钙标准溶液系列;准确吸取2.00.4.00.6.00.8.00.10.0ml钙的标准使用液(100ug/ml)分别置于5只25ml容量瓶中,用去离子水稀释至刻度。 (2)镁标准溶液系列;准确吸1.00.2.00.3.00.4.00.5.00ml镁的标准使用液(50ug/ml)分别置于5只25ml 容量瓶中,用去离子水稀释至刻度。 (3)配制自来水样溶液;准确吸取5ml自来水置于25ml容量瓶中,用去离子水稀释至刻度。 根据实验条件将原子吸收分光光度计按仪器操作步骤进行调节,待仪器电路和气路系统达到稳定时,即可进样。 分别测定各标准溶液系列溶液的吸光度和自来水样的吸光度。

实验数据及处理 z从计算机上列表记录钙.镁标准溶液系列溶液的吸光度,然后,分别以吸光度为纵坐标,标准溶液系列浓度为横坐标,用坐标纸绘制标准曲线。 z测定自来水样的吸光度,然后,在上述标准曲线上查得水样中钙.镁浓度(ug/ml),经稀释需乘上倍数,求得原始自来水中钙.镁含量。

75铜、锌、镉、铬、锰及镍的原子吸收分光光度法《空气与废气监测分析方法》(第四版增补版)剖析

新项目试验报告 项目名称:铜、锌、镉、锰及镍的原子吸收分光光度法 《空气与废气监测分析方法》(第四版) 项目负责人: 审批日期:

一、项目概述 悬浮颗粒物(SP)中痕量金属(如Pb、Cd、Zn等)是重要的大气污染物之一。这些颗粒中的金属元素多来源于人为污染,主要存在于《2.5um的细小颗粒物中。目前已证实颗粒物中至少有10种痕量金属具有生物毒性,以Cd、As等为代表的无机金属元素及其化合物,不但对人体具有毒害,而且具有致癌作用。在一些城市中Pb、Cd已达有害水平。用大流量采样器或中流量采样器将SP采集在滤料山,样品酸消解处理后,用原子吸收分光光度法作颗粒物各组分分析。 二、检测方法和原理 检测方法:原子吸收分光光度法。 原理:采集在过氯乙烯滤膜上的颗粒物,用硫酸-灰化法消化,制备成样品溶液,然后将溶液引入火焰或石墨炉原子化器内,用标准曲线法或标准加入法测定溶液中各元素的浓度。 除镉外,其他元素均未见到明显的干扰。测定镉时,用碘化钾-甲基异丁基酮进行萃取分离以消除干扰。如用石墨炉测定,则可用氘灯扣除背景,消除干扰。 各元素测定范围见表1(按采样10m3,定容10ml计)。 表1 *经碘化钾-甲基异丁基酮萃取测定。 三、主要仪器和试剂 1.试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂,去离子水或同等纯度的水。 1.1 过氯乙烯滤膜。

1.2 硝酸、盐酸、氢氟酸:优级纯。 1.3 0.7%(V/V)硫酸溶液:用优级纯硫酸配制。 1.4 1%(V/V)硝酸溶液:用优级纯硝酸配制。 1.5 硝酸溶液:0.16mol/L。 1.6 5%(m/V)抗坏血酸溶液:称取 5.0g抗坏血酸,溶解于水中并稀释至100ml。临用时配制。 1.7 甲基异丁酮。 1.8 碘化钾溶液:1.0mol/L。 1.9铜、锌、镉、锰及镍标准贮备液:称取上述金属(99.99%)各0.5000g,分别用(1+1)盐酸溶液5.0ml、硝酸5.0ml溶解,移入500ml容量瓶中,用水稀释至标线,摇匀。上述溶液每毫升含相应元素1.00mg。贮于聚乙烯塑料瓶中,冰箱内保存。 1.10铜、锌、镉、锰及镍标准使用液:临用时,吸取10.00ml标准贮备液于100ml容量瓶中,底价1.0ml硝酸,用水稀释至标线。此溶液没毫升含铜、锌、镉、锰及镍各元素100ug。 2.仪器和设备 2.1 总悬浮颗粒物采样器:大流量采样器或中流量采样器。 2.2 马弗炉。 2.3 铂坩埚或裂解石墨坩埚:20~30ml。 2.4 原子吸收分光光度计:具有火焰、石墨炉原子化器。 四、采样要求和样品预处理技术 同总悬浮颗粒物采样方法。 五、检测步骤 3.1原子吸收分光光度计工作条件 ①火焰原子吸收分光光度法工作条件,见表2

原子吸收实验报告

原子吸收光谱法 原子吸收光谱法是基于含待测组分的原子蒸汽对自己光源辐射出来的待测元素的特征谱线(或光波)的吸收作用来进行定量分析的。由于原子吸收分光光度计中所用空心阴极灯的专属性很强,所以,原子吸收分光光度法的选择性高,干扰较少且易克服。而且在一定的实验条件下,原子蒸汽中的基态原子数比激发态原子数多的多,故测定的是大部分的基态原子,这就使得该法测定的灵敏度较高。由此可见,原子吸收分光光度法是特效性、准确性和灵敏度都很好的一种金属元素定量分析法。 一.实验目的 1.熟悉原子吸收光度计的基本构造及使用方法。 2.掌握原子吸收光谱仪中的石墨炉原子化法和火焰原子化法。 二.实验原理 原子光谱是由于其价电子在不同能级间发生跃迁而产生的。当原子受到外界能量的激发时,根据能量的不同,其价电子会跃迁到不同的能级上。电子从基态跃迁到能量最低的第一激发态时要吸收一定的能量,同时由于其不稳定,会在很短的时间内跃迁回基态,并以光波的形式辐射现同样的能量。根据△E=hυ可知,各种元素的原子结构及其外层电子排布的不同,则核外电子从基态受激发而跃迁到其第一激发态所需要的能量也不同,同样,再跃迁回基态时所发射的光波频率即元素的共振线也就不同,所以,这种共振线就是所谓的元素的特征谱线。加之从基态跃迁到第一激发态的直接跃迁最易发生,因此,对于大多数的元素来说,共振线就是元素的灵敏线。在原子吸收分析中,就是利用处于基态的待测原子蒸汽对从光源辐射的共振线的吸收来进行的。 三火焰原子化器与石墨炉原子化器 原子化系统的作用是将待测试液中的元素转变成原子蒸汽。具体方法有火焰原子化法和无火焰原子化法两种,前者较为常用。

原子吸收实验

一、实验目的 1、学习HITACHI180-80型偏振-塞曼原子吸收分光光度计的工作原理及基本结构; 2、了解HITACHI180-80型偏振-塞曼原子吸收分光光度计的仪器性能及应用范围; 3、掌握HITACHI180-80型偏振-塞曼原子吸收分光光度计的操作流程及注意事项。 二、仪器的工作原理及基本结构 (一)概述 在使用原子吸收光谱法测定时,将试液喷成细雾,并与燃气混和送至原子化器,被测元素转化为原子蒸气。气态的基态原子吸收从空心阴极灯(光源)发射出的与被测元素吸收波长相同的特征谱线,使该谱线的强度减弱,再经单色器分光后,由光电倍增管将光信号转变为电流,经放大后由读出装置显示出原子吸收光谱图或吸光度值。 原子吸收分光光度计的部件及其功能 项目 光源原子化系统 色散元件 检测器 读出装置 火焰非火焰 部件 空心阴极灯 燃烧器 石墨炉 光栅或棱镜 光电倍增管 微机、表头、记录仪 功能 产生锐线光源使试液原子化,产生气态基态原子将被测元素共振线与邻近谱线分开浓度变换成电流显示吸光度值或原子吸收光谱图 (二)类型 有单光束、双光束及双道双光束三种类型。单道单光束和单道双光束型的仪器由于结构比较简单,价格相对较低,因而应用比较普遍;单道双光束型的仪器可测定透光信号与参比信号之比,可抵消光源波动和减轻基线漂移;双道双光束型原子吸收分光光度计的结构较复杂而且价格相对较高,但这种仪器可同时测定两种元素,可作内标分析不但补偿光源波动而且补偿喷雾系统和火焰系统所引起的干扰,还可用氘灯作背景校正。 (a)单道单光束原子吸收光谱仪 (b)单道双光束原子吸收光谱仪 (c)双道双光束原子吸收光谱仪 1.空心阴极灯 2.切光器 3.原子化器 4.分光系统 5.光电检测器 6.放大显示器

第09节 火焰原子吸收分光光度法

第九节火焰原子吸收分光光度法 (一)基础知识 分类号:W9-0 一、填空题 1.原子吸收光谱仪由光源、、和检测系统四部分组成。 答案:原子化器分光系统 2.原子吸收光谱仪的火焰原子化装置包括和。 答案:雾化器燃烧器 3.火焰原子吸收光谱仪的原子化器的作用是,用以吸收来自锐线源的。答案:产生基态原子共振辐射 4.火焰原子吸收光度法常用的锐线光源有、和蒸气放电灯3种。 答案:空心阴极灯无极放电灯 5.火焰原子吸收光度法分析过程中主要干扰有:物理干扰、化学干扰、和 等。 答案:电离干扰光谱干扰 6.原子吸收仪的空心阴极灯如果长期闲置不用,应该经常开机预热,否则会使谱线,甚至不再是光源。 答案:不纯锐线 7.火焰原子吸收光度法分析样品时,灯电流太高会导致和。使灵敏度下降。 答案:谱线变宽谱线自吸收 8.火焰原子吸收光度法中扣除背景干扰的主要方法有:双波长法、、和自吸收法。 答案:氘灯法塞曼效应法 9.火焰原子吸收光度法塞曼效应校正背景的光来自同一谱线的,而且在光路上通过原子化器。 答案:分裂同一 10.火焰原子化器装置中燃烧器类型有型和型。 答案:预混合全消耗 11.火焰原子吸收光度法分析样品时,确定空心阴极灯达到预热效果的标志是观察是否稳定、是否稳定和灵敏度是否稳定。 答案:发射能量仪器的基线 12.原子吸收光度法分析样品时,物理干扰是指试样在转移和过程中,由于试样的任何物理特性的变化而引起的吸收强度下降的效应。 答案:蒸发原子化 13.火焰原子吸收光度法中光谱干扰是指待测元素的光谱与干扰物的不能完全分离所引起的干扰。 答案:发射或吸收辐射光谱

1.火焰原子吸收光谱仪中,大多数空心阴极灯一般是工作电流越小,分析灵敏度越低。()答案:错误 正确答案为:大多数空心阴极灯一都是工作电流越小,分析灵敏度越高 2.火焰原子吸收光谱仪中,分光系统单色器所起的作用是将待分析元素的共振线与与光源中的其他发射线分开。() 答案:正确 3.火焰原子吸收光度法分析中,用HNO3-HF-HClO4消解试样,在驱赶HClO4时,如将试样蒸干会使测定结果偏高。() 答案:错误 正确答案为:在驱赶HClO4时,如将试样蒸干会使测定结果偏低。 4.火焰原子吸收光度法中,空气-乙炔火焰适于低温金属的测定。() 答案:正确 5.火焰原子吸收光度法分析样品时,提高火焰温度使分析灵敏度提高。() 答案:错误 正确答案为:火焰原子吸收光度法分析样品时,在一定范围周内提高火焰温度,可以使分析灵敏度提高。 6.火焰原子吸收光谱仪原子化器的效率对分析灵敏度具有重要的影响。() 答案:正确 7.火焰原子吸收光谱仪燃烧器上混合气的行程速度稍大于其燃烧速度时,火焰才会稳定。() 答案:正确 8.火焰原子吸收光度法分析样品时,为避免稀释误差,在测定含量较高的水样时,可选用次灵敏线测量。() 答案:正确 三、选择题 1.原子吸收光度法用的空心阴极灯是一种特殊的辉光放电管,阴极是由制成。( ) A. 待测元素的纯金属或合金 B. 金属铜或合金 C. 任意纯金属或合金 答案:A 2.火焰原子吸收光度法测定时,当空气与乙炔比大于化学计量时,称为火焰。() A. 贫燃型 B. 富燃型 C. 氧化型 D. 还原型 答案:A. 3.火焰原子吸收光度法测定时,光谱干扰是指待测元素发射或吸收的光谱与干扰物的 光谱不能完全分离所引起的干扰。() A. 电离 B. 散射 C. 辐射 D.折射 答案:C. 4.火焰原子吸收光度法测定时,氘灯背景校正适合的校正波长范围为nm。 A. 100-200 B. 220 -350 C. 200-500 D. 400-800 答案:B 5.火焰原子吸收光度法测定时,增敏效应是指试样基体使待测元素吸收信号的现象。() A. 减弱 B. 增强 C. 降低 D.改变

原子吸收光谱实验报告

原子吸收光谱定量分析实验报告 班级:环科10-1 姓名:王强学号:27 一、实验目的: 1.了解石墨炉原子吸收分光光度计的使用方法。 2.了解石墨炉原子吸收分光光度计进样方法及技术关键。 3.学会以石墨炉原子吸收分光光度法进行元素定量分析的方法。 二、实验原理: 在原子吸收分光光度分析中,火焰原子吸收和石墨炉原子吸收是目前使用最多、应用范围最广的两种方法。相对而言,前者虽然具有振作简单、重现性好等优点而得到广泛应用,但该法由于雾化效率低、火焰的稀释作用降低了基态原子浓度、基态原子在火焰的原子化区停留时间短等因素限制了测定灵敏度的提高以及样品使用量大等方面的原因,对于来源困难、鹭或数量很少的试样及固态样品的直接分析,受到很大的限制。石墨炉原子化法由于很好地克服了上述不足,近年来得到迅速的发展。 石墨炉原子吸收方法是利用电能使石墨炉中的石墨管温度上升至2000 ~ 3000 ℃的高温,从而使待测试样完全蒸发、充分的原子化,并且基态原子在原子化区停留时间长,所以灵敏度要比火焰原子吸收方法高几个数量级。样品用量也少,仅5 ~ 100 uL。还能直接分析固体样品。该方法的缺点是干扰较多、精密度不如火焰法好、仪器较昂贵、操作较复杂等。 本实验采用标准曲线法,待测水样品用微量分液器注入,经过干燥、灰化、原子化等过程对样品中的痕量镉进行分析。 三、仪器和试剂: 1.仪器 由北京瑞利分析仪器公司生产的WFX-120型原子吸收分光光度计。 镉元素空心阴极灯 容量瓶 50 mL(5只)微量分液器 ~ mL及5 ~ 50 uL

2.试剂 100 ng/mL镉标准溶液(1%硝酸介质) 2 mol/L硝酸溶液 四、实验步骤: 1.测定条件 分析线波长: nm 灯电流:3 mA 狭缝宽度: nm 干燥温度、时间:100℃、15 s 灰化温度、时间:400℃、10 s 原子化温度、时间:2200℃、3 s 净化温度、时间:2200℃、2 s 保护气流量:100 mL/min 2.溶液的配制 取4只50 mL容量瓶,分别加入0 mL、 mL、 mL、 mL浓度为100 ng/mL的镉标准溶液,再各添加 mL硝酸溶液(2 mol/L),然后以Milli-Q去离子水稀释至刻度,摇匀,供原子吸收测定用。 取水样500 mL于烧杯中,加入5 mL浓硝酸溶液,加热浓缩后转移至50 mL 容量瓶,以Milli-Q去离子水稀释至刻度,摇匀,此待测水样供原子吸收测定用。3.吸光度的测定 设置好测定条件参数,待仪器稳定后,升温空烧石墨管,用微量分液器由稀到浓向石墨管中依次注入40 uL标准溶液及待测水样,测得各份溶液的吸光度。 五、数据记录:

原子吸收光谱法的原理

原子吸收光谱法 原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性和谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。 中文名 原子吸收光谱法 外文名 Atomic Absorption Spectroscopy 光线围 紫外光和可见光 出现时间 上世纪50年代 简称 AAS 测定方法 标准曲线法、标准加入法 别名 原子吸收分光光度法 基本原理 原子吸收光谱法(AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,在线性围与被测元素的含量成正比: A=KC

式中K为常数;C为试样浓度;K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础 由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。AAS现已成为无机元素定量分析应用最广泛的一种分析方法。该法主要适用样品中微量及痕量组分分析。 原子吸收光谱法谱线轮廓 原子吸收光谱线并不是严格几何意义上的线,而是占据着有限的相当窄的频率或波长围,即有一定的宽度。原子吸收光谱的轮廓以原子吸收谱线的中心波长和半宽度来表征。中心波长由原子能级决定。半宽度是指在中心波长的地方,极大吸收系数一半处,吸收光谱线轮廓上两点之间的频率差或波长差。半宽度受到很多实验因素的影响。影响原子吸收谱线轮廓的两个主要因素: 1、多普勒变宽。多普勒宽度是由于原子热运动引起的。从物理学中已知,从一个运动着的

火焰原子吸收分光光度法

实验二火焰原子吸收光谱法测定CuSO4溶液的浓度 1、实验目的 1.1 掌握火焰原子吸收光谱仪的操作技术; 1.2 优化火焰原子吸收光谱法测定水中铜的分析火焰条件; 1.3 熟悉原子吸收光谱法的应用。 2、实验原理 原子吸收光谱法是一种广泛使用的测定元素的方法,是基于在蒸气状态下对待测元素基态原子共振辐射吸收进行定量分析的方法。为了能够测定吸收值,试样需要转变为一种在合适介质中存在的自由原子。化学火焰是产生基态原子的方便方法。 待测试样溶解后以气溶胶的形式引入火焰中,产生的基态原子吸收适当光源发出的辐射后被测定。原子吸收光谱中一般采用空心阴极灯这种锐线光源。这种方法快速、选择性好、灵敏度高且有着较好的精密度。 然而,在原子光谱中,不同类型的干扰将严重影响测定方法的准确性。干扰一般分为三种:物理干扰、化学干扰和光谱干扰。物理和化学干扰改变火焰中原子的数量,而光谱干扰则影响原子吸收信号的准确性。干扰可以通过选择适当的实验条件和对试样进行适当处理来减少或消除。所以,应从火焰温度和组成两方面作慎重选择。 3、实验仪器及试剂 仪器:AA320原子吸收分光光度计,上海精密科学仪器有限公司生产 CuSO4标准溶液:使用已有的浓度为100 ppm的CuSO4标准溶液,通过加去离子纯水稀释的方法配制浓度分别为0.80、1.60、2.40、3.20和4.00 ppm的标准溶液。 试样:未知浓度的含铜离子水溶液。

4、实验步骤 预先调整好狭缝的宽度和空心阴极灯的位置,在波长为324.7 nm处测定标准溶液的吸收。 1. 火焰的选择:火焰组成对原子吸收分光光度法的测定有影响。通过溶液雾化方式引入 2.0 ppm的CuSO4标准溶液到空气-乙炔火焰中,小幅调节乙炔的流速,每次读数前用去离子纯水重新调零,以吸光度对流速作图。 2. 标准曲线和试样测定:选择最佳的流速和燃烧高度。在一系列测定前,用去离子纯水调零,同时如果在测量过程中有延误,需要重新调零。在连续的一系列测定中,记录每种溶液的吸收值,每次每份试样重复3次后转入下一个测定: ●标准曲线系列:标准空白和标准溶液 ●试样空白和试样溶液 ●重复 3. 精密度:用低浓度和高浓度溶液测定精密度,每样读数3次。 4. 检出限:对空白溶液进行3次测试,计算均值。 5、结果与讨论 1. 标准曲线:记录实验中所得的标准溶液读数,并与对应的浓度值进行线性回归,得到标准曲线。用此标准曲线来测定试样中铜离子浓度(以CuSO4计),并通过重复测试取平均值的方法,得到测定值。 2. 精密度:用低浓度和高浓度溶液测定精密度,每样读数3次,计算每个浓度的RSD(%)。 3. 检出限:检出限以能够区分背景的RSD的最小浓度来表示,计算公式为 DL(检出限)=3×S b(背景值SD)/S(标准曲线斜率) 6、思考 1. 火焰原子吸收光谱法具有什么样的特点,其主要测定对象是什么? 2. 火焰原子吸收分光光度法测量灵敏度的主要影响因素有哪些?一般要做哪些条件实验?

火焰原子吸收实验报告

实验火焰原子吸收法测定水样中铜的含量 —标准曲线法 一、实验目的 (1)学习原子吸收分光光度法的基本原理; (2)了解原子吸收分光光度计的基本结构及其使用方法 (3)学习原子吸收光谱法操作条件的选择 (4)掌握应用标准曲线法测水中铜的含量。 二、实验原理 原子吸收光谱法是一种广泛应用的测定元素的方法。它是一种基于待测元素基态原子在蒸气状态对其原子共振辐射吸收进行定量分析的方法。 铜离子溶液雾化成气溶胶后进入火焰,在火焰温度下气溶胶中的铜离子变成铜原子蒸气,由光源铜空心阴极灯辐射出波长为324.7nm的铜特征谱线,被铜原子蒸气吸收。 在恒定的实验条件下,吸光度与溶液中铜离子浓度符合比尔定律A=Kc 利用吸光度与浓度的关系,用不同浓度的铜离子标准溶液分别测定其吸光度,绘制标准曲线。 在同样条件下测定水样的吸光度,从标准曲线上即可求得说中铜的浓度,进而计算出水中铜的含量。 三、实验仪器和试剂 (1)原子吸收分光光度计M6 AA System (2)铜元素空心阴极灯 (3)空气压缩机 (4)乙炔钢瓶 (5)50ml容量瓶6支 (6)吸量管 (7)铜标准试液(0.9944mg/ml) (8)去离子水 (9)水样

(10)烧杯 四、实验步骤 (1)溶液的配制 准确移取0.25ml,0.50ml,1.00ml,2.,50ml,3.00ml铜标准溶液于50ml 容量瓶中,用去离子水稀释至刻度,使其浓度分别为0.25、0.50、 1.00、 2.50、 3.00μg/ml。 (2)样品的配制 准备水样1和水样2于烧杯中。 (3)标准曲线绘制 测定条件: 燃气流量1:1 燃烧器高度7.0nm 波长324.8nm 根据实验条件,将原子吸收分光光度计按仪器的操作步骤进行调节。切换到标准曲线窗口,在开始测定之前,用二次蒸馏水调零,待仪器电路和气路系统达到稳定,记录仪上基线平直时,按照标准溶液浓度由稀到浓的顺序逐个测量Cu2+标准溶液的吸光度,并绘制Cu的标准曲线。 (4)水样中铜含量的测定 根据实验条件,测量水样的吸光度,并从标准曲线上查得水样中Cu的含量。 五、实验数据处理

原子吸收试题-答案

原子吸收分光光度计试卷 答卷人:评分: 一、填空题(共15 分1 分/空) 1. 为实现峰值吸收代替积分吸收测量,必须使发射谱线中心与吸收谱线中心完全重合,而且发射谱线的宽度必须比吸收谱线的宽度窄。 2. 在一定条件下,吸光度与试样中待测元素的浓度呈正比,这是原子吸收定量分析的依据。 3. 双光束原子吸收分光光度计可以减小光源波动的影响。 4. 为了消除火焰发射的干扰,空心阴极灯多采用脉冲方式供电。 5. 当光栅(或棱镜)的色散率一定时,光谱带宽由分光系统的出射狭缝宽度来决定。 6. 在火焰原子吸收中,通常把能产生1%吸收的被测元素的浓度称为特征浓度。 7. 与氘灯发射的带状光谱不同,空心阴极灯发射的光谱是线状的光谱。 8. 用原子吸收分析法测定饮用水中的钙镁含量时,常加入一定量的镧离子,其目的是消除磷酸根离子的化学干扰。 9. 使用火焰原子吸收分光光度法时,采用乙炔-空气火焰,使用时应先开空气,后开乙炔。 10. 待测元素能给出三倍于空白标准偏差的吸光度时的浓度称为检出限。 11. 采用氘灯校正背景时,空心阴极灯测量的是原子吸收+背景吸收(或AA+BG)信号,氘灯测量的是背景吸收(或BG)信号。 12、空心阴极灯灯电流选择的原则是在保证放电稳定和有适当光强输出的情况下,尽量选择低的工作电流。 二、选择题(共15 分1.5 分/题) 1.原子化器的主要作用是( A )。

A.将试样中待测元素转化为基态原子; B.将试样中待测元素转化为激发态原子; C.将试样中待测元素转化为中性分子; D.将试样中待测元素转化为离子。 2.原子吸收的定量方法—标准加入法,消除了下列哪种干扰?( D ) A.分子吸收B.背景吸收C.光散射D.基体效应 3.空心阴极灯内充气体是( D )。 A.大量的空气 B. 大量的氖或氮等惰性气体 C.少量的空气D.低压的氖或氩等惰性气体 4.在标准加入法测定水中铜的实验中用于稀释标准的溶剂是。(D )A.蒸镏水 B.硫酸 C.浓硝酸 D.(2+100)稀硝酸 5.原子吸收光谱法中单色器的作用是( B )。 A.将光源发射的带状光谱分解成线状光谱; B.把待测元素的共振线与其它谱线分离开来,只让待测元素的共振线通过;C.消除来自火焰原子化器的直流发射信号; D.消除锐线光源和原子化器中的连续背景辐射 6.下列哪个元素适合用富燃火焰测定?( C ) A.Na B.Cu C. Cr D. Mg 7.原于吸收光谱法中,当吸收为1%时,其对应吸光度值应为( D )。 A.-2 B.2 C.0.1 D.0.0044 8.原子吸收分析法测定钾时,加入1%钠盐溶液其作用是( C )。 A.减少背景B.提高火焰温度 C.减少K 电离D.提高K 的浓度 9.原子吸收光谱法中的物理干扰可用下述哪种方法消除?( D ) A.释放剂B.保护剂C.缓冲剂D.标准加入法

火焰原子吸收法操作步骤

火焰原子吸收法操作步骤: 打开电脑主机-----回车-----安分析的元素选择不同的元素灯-----分析参数【1】时间参数(2或3)【2】延迟时间(零)【3】积分时间(2或3)终止时间9999【4】稀释倍数(1)【5】测量单位mg/L-----计算方法(峰高)-----工作模式(校准)-----统计方法(全选)-----背景扣除、浓度直读不选-----确认 校准曲线-----浓度(配好的标液)eg:铅、0.5ml 、1.0ml、3.0ml、5.0ml、(按回车确认,打对勾)-----曲线选择(一次曲线不过零点)-----确认-----右键 采样分析-----打开主机电源----调灯流(1.5ma *2 3ma )调负高压(2.5 *100 250)-----先微调波长旋钮涨到最大值(A通道红色涨到最大值)-----调负高压到100 (预热半小时) 对光路-----调高度(圆与光路板相切)逆时针调小、顺时针调大(先调中间,再调左右)数值在40到60之间 点火-----打开空油压机(0.3)-----检查杯里水,要比管高-----打开乙炔(0.05到0.1 0.07)-----红色按钮点火(贫燃空气多乙炔少、中性燃烧空气少5、左边流量器 冲洗采样管,用蒸馏水10到15分钟-----绘制曲线-----采样分析-----启动(零、B -----曲线空格 3次)出数后按空格-----+【标液】(峰起空格出数空格 3次)-----做完后蒸馏水冲洗-----点结束-----打印校准曲线-----曲线打印 分析样品----分析参数-----工作模式(分析)-----浓度直读选中-----采样分析(零、B-----样品空格 3次)出数后按空格-----+(峰气空格出数空格 3次)-----做完后蒸馏水冲洗 关乙炔-----等火灭按绿色按钮-----空压机放水关闭-----高压、灯电流调零、关主机-----文件管理----退回DOS-----退回-----关电源 备注:存数据.p 存曲线.f

原子吸收光谱实验报告

原子吸收光谱定量分析实验报告班级:环科10-1 姓名:王强学号:2010012127 一、实验目的: 1.了解石墨炉原子吸收分光光度计的使用方法。 2.了解石墨炉原子吸收分光光度计进样方法及技术关键。 3.学会以石墨炉原子吸收分光光度法进行元素定量分析的方法。 二、实验原理: 在原子吸收分光光度分析中,火焰原子吸收和石墨炉原子吸收是目前使用最多、应用范围最广的两种方法。相对而言,前者虽然具有振作简单、重现性好等优点而得到广泛应用,但该法由于雾化效率低、火焰的稀释作用降低了基态原子浓度、基态原子在火焰的原子化区停留时间短等因素限制了测定灵敏度的提高以及样品使用量大等方面的原因,对于来源困难、鹭或数量很少的试样及固态样品的直接分析,受到很大的限制。石墨炉原子化法由于很好地克服了上述不足,近年来得到迅速的发展。 石墨炉原子吸收方法是利用电能使石墨炉中的石墨管温度上升至2000 ~ 3000 ℃的高温,从而使待测试样完全蒸发、充分的原子化,并且基态原子在原子化区停留时间长,所以灵敏度要比火焰原子吸收方法高几个数量级。样品用量也少,仅 5 ~ 100 uL。还能直接分析固体样品。该方法的缺点是干扰较多、精密度不如火焰法好、仪器较昂贵、操作较复杂等。 本实验采用标准曲线法,待测水样品用微量分液器注入,经过干

燥、灰化、原子化等过程对样品中的痕量镉进行分析。 三、仪器和试剂: 1.仪器 由北京瑞利分析仪器公司生产的WFX-120型原子吸收分光光度计。 镉元素空心阴极灯 容量瓶 50 mL(5只)微量分液器0.5 ~ 2.5 mL及5 ~ 50 uL 2.试剂 100 ng/mL镉标准溶液(1%硝酸介质) 2 mol/L硝酸溶液 四、实验步骤: 1.测定条件 分析线波长:228.8 nm 灯电流:3 mA 狭缝宽度:0.2 nm 干燥温度、时间:100℃、15 s 灰化温度、时间:400℃、10 s 原子化温度、时间:2200℃、3 s 净化温度、时间:2200℃、2 s 保护气流量:100 mL/min 2.溶液的配制 取4只50 mL容量瓶,分别加入0 mL、0.125 mL、0.250 mL、0.500 mL浓度为100 ng/mL的镉标准溶液,再各添加2.5 mL硝酸溶液(2 mol/L),然后以Milli-Q去离子水稀释至刻度,摇匀,供原子吸收测

原子吸收光度法实验报告

原子吸收光谱分析实验 一、目的要求 1.了解原子吸收光谱仪的基本构造、原理及方法; 2.了解利用原子吸收光谱仪进行测试实验条件的选择; 3.掌握原子吸收光谱分析样品的预处理方法; 4.学会应用原子吸收光谱分析定量测量样品中的常/微量元素含量。 二、实验原理 1、原子吸收光谱分析的原理 当光源发射的某一特征波长的辐射通过原子蒸气时,被原子中的外层电子选择性地吸收,透过原子蒸气的入射辐射强度减弱,其减弱程度与蒸气相中该元素的基态原子浓度成正比。 当实验条件一定时,蒸气相中的原子浓度与试样中该元素的含量(浓度)成正比。因此,入射辐射减弱的程度与该元素的含量(浓度)成正比。 朗伯—比尔吸收定律:cL 1lg lg 0K T I I A === 式中:A —吸光度 I —透射原子蒸气吸收层的透射辐射强度 I 0—入射辐射强度 L —原子吸收层的厚度 K —吸收系数 c —样品溶液中被测元素的浓度 原子吸收光谱分析法就是根据物质产生的原子蒸气对特定波长光的吸收作用来进行定量分析的。 2、原子吸收光谱仪的结构及其原理

原子吸收光谱分析法所使用的仪器称为原子吸收光谱仪或原子吸收分光光度计,一般由四部分构成,即光源、原子化系统、分光系统和检测显示系统组成。 图4-1 原子吸收光谱仪结构示意图 (1)光源 光源的作用是辐射待测元素的特征谱线,以供测量之用。要测出待测元素的特征谱线和峰值吸收,就需要光源辐射出的特征谱线宽度必须很窄,目前空心阴极灯是最能满足要求的理想的锐线光源。 (2)原子化系统 样品的原子化作为原子吸收光谱测试的主要环节,在很大的程度上影响待测样品中元素的灵敏度、干扰、准确度等。目前原子化技术有火焰原子化和非火焰原子化两类。常用的原子化器有混合型火焰原子化器、电热石墨炉原子化器、阴极溅射原子化器和石英炉原子化器等。 (3)分光系统 分光系统的作用是把待测元素的共振线(实际上是分析线)与其他谱线分离出来,只让待测元素的共振线能通过。该系统主要由色散元件(常用的是光栅),入射和出射狭缝,反射镜等组元素组成,其中色散原件(光栅、棱镜)是分光系统中的关键部件。 (4)检测显示系统 检测显示系统主要由检测器,放大镜和对数变换器及显示装置组成。检测器

火焰原子吸收操作规程

WFX100 原子吸收的使用 A、元素分析方法的建立 一、打开软件,选择“操作”——“编辑分析方法” 1、在弹出对话框中,选择要建立的分析方式,我们一般用“火焰原子吸收”。在“操作”界面默认为“创建新方法”。已经有方法的时候可对已有的方法进行“修改”或“删除”。 2、在“创建新方法”中,点击“....”弹出元素周期表,选择要分析的元素点击“确定”即可。在“方法说明”中,对编辑的元素进行说明,可以只日期、浓度等,自己设定即可。完成后点击“确定”。 二、“确定”后,出现“方法编辑器”对话框 1、“仪器条件”中看看“分析波长”是否正确;元素灯为空心阴极灯“HCL”;输入所需要的“灯电流”,默认为3mA,最大不能超过6mA;选择“元素灯位置”,与自己所放置的位置相对应。其它均为默认值。 2、“测量条件”中,“阻尼常数”应该改为2,使仪器的数据不随电流的波动而变化;“测量方式”选择“工作曲线法”。 3、“工作曲线参数”,在“浓度”栏中,输入所配制的标准系列的浓度值,例如所配制的标准系列浓度为0ug/ml、1ug/ml、3ug/ml、5ug/ml。将这组数据输入“浓度”对话框中即可。在“标准空白”一栏中,若“打钩”表示测定标准空白,此时下面的标准测定才有效。一般可以不打钩,直接在“浓度”栏中第一项输入空白值“0”即可,否则就不输入“0”。“浓度单位”栏中,选择配制的浓度单位ug/ml或ng/ml。 以上元素分析条件和方法编辑好以后,点击“确定”——“完成”即可。如果还想编辑其它元素,则点击“继续”重复上述过程即可。 B、仪器具体操作 一、开机及相关参数设置: 1、依次打开电脑——仪器电源开关——仪器软件。 2、打开“文件”——“新建”,在“分析光源”菜单中选择“火焰原子吸收”方式。

火焰原子吸收实验报告

实验火焰原子吸收法测定水样中铜的含量 令狐采学 —标准曲线法 一、实验目的 (1)学习原子吸收分光光度法的基来源根基理; (2)了解原子吸收分光光度计的基本结构及其使用办法 (3)学习原子吸收光谱法操纵条件的选择 (4)掌握应用标准曲线法测水中铜的含量。 二、实验原理 原子吸收光谱法是一种广泛应用的测定元素的办法。它是一种基于待测元素基态原子在蒸气状态对其原子共振辐射吸收进行定量阐发的办法。 铜离子溶液雾化成气溶胶后进入火焰,在火焰温度下气溶胶中的铜离子酿成铜原子蒸气,由光源铜空心阴极灯辐射出波长为324.7nm 的铜特征谱线,被铜原子蒸气吸收。 在恒定的实验条件下,吸光度与溶液中铜离子浓度合适比尔定律 A=Kc 利用吸光度与浓度的关系,用不合浓度的铜离子标准溶液辨别测定其吸光度,绘制标准曲线。 在同样条件下测定水样的吸光度,从标准曲线上即可求得说中铜的浓度,进而计算出水中铜的含量。 三、实验仪器和试剂 (1)原子吸收分光光度计M6 AA System (2)铜元素空心阴极灯 (3)空气压缩机 (4)乙炔钢瓶 (5)50ml容量瓶6支 (6)吸量管 (7)铜标准试液(0.9944mg/ml) (8)去离子水 (9)水样 (10)烧杯 四、实验步调 (1)溶液的配制

准确移取0.25ml,0.50ml,1.00ml,2.,50ml,3.00ml铜标准溶液于50ml容量瓶中,用去离子水稀释至刻度,使其浓度辨别为 0.25、0.50、1.00、2.50、3.00μg/ml。 (2)样品的配制 准备水样1和水样2于烧杯中。 (3)标准曲线绘制 测定条件: 燃气流量 1:1 燃烧器高度 7.0nm 波长 324.8nm 根据实验条件,将原子吸收分光光度计按仪器的操纵步调进行调节。切换到标准曲线窗口,在开始测定之前,用二次蒸馏水调零,待仪器电路和气路系统达到稳定,记录仪上基线平直时,依照标准溶液浓度由稀到浓的顺序逐个丈量Cu2+标准溶液的吸光度,并绘制Cu的标准曲线。 (4)水样中铜含量的测定 根据实验条件,丈量水样的吸光度,并从标准曲线上查得水样中Cu 的含量。 五、实验数据处理

原子吸收火焰法操作规程

岛津AA-7000型原子吸收分光光度计火焰法操作规程 一准备工作 1.1 检查电源。打开乙炔气,逆时针旋转乙炔钢瓶打开主阀1~1.5圈。并使次级压力表为0.09MPa。打开空气压缩机电源,调节输出压力0.35MPa 1.2打开排风开关和风向阀。 1.3安装空心阴极灯将灯插入灯座,记录灯的位置。 二开机系统与系统初始化 2.1先打开ASC-7000A与GFA-7000A的电源开关,然后打开AA-7000主机电源开关。关闭GFA-7000A的加热开关,在石墨炉测量开始前,准备就绪时再打开。2.2 打开PC电源,启动Windows。双击WizAArd图标。选择WizAArd的【测量】后双击AA-7000图标。登陆ID为admin,点击确定,进入主界面。显示【向导选择】画面时单击【取消】。 2.3确定主机燃烧室中不存在妨碍光路的物体,单击【仪器】→【连接】。按屏幕提示的各项安全检查项目一一检查确认后仪器开始初始化。仪器初始化时,会自动标记各个项目。仪器初始化完成。 安全提示(操作人员检查)乙炔主表不低于0.5MPa、燃气出口压力0.09MPa (不超过0.12)助燃0.35MPa(不超过0.4)。、检查燃烧头不堵塞、确定燃烧头到位、确定雾化器金属片已固定住、每次开机时检查气管、废液管是否漏气漏水、检查废液罐是否装满水、检查废液管末端不要插到液面以下、设置燃气流量(仪器默认值)。检查完毕,点击:【确定】。废液灌的补水,打开废液灌盖,取出废液传感器(仪器此时会发出PiPi-PiPi的蜂鸣声并显示提示信息),从废液灌口向内补水,直到水溢出为止。放好废液传感器,盖好废液灌盖。 三设定分析条件和确定灯的位置 3.1 单击菜单中的【参数】→【元素选择向导】→【选择元素】,按屏幕提示选择或输入要测定的元素,单击选中选择【火焰连续法】、【普通灯】,出现和灯有关的信息时,会出现提示框,点击【是】,继续出现的提示框中单击【确定】,出现【编辑参数】页得【光学参数】画面。在此画面中单击【灯位设定】,输入与各灯座号相应的灯【元素】和【灯类型】(选择普通),单击【确定】,返回【编辑参数】里的【光学参数】,设定【灯座号】,单击【确定】。连续测量多个元素时,重新返回【元素选择】画面,重复上述操作。测量参数:一般选(SM-M-M-),Pre-spray-time(预喷雾时间)Integration time(积分时间即测量时间)默认。 3.2 参数编辑完成后,点击【下一步】,进入制备参数屏,开始校准曲线及样品组设定。点击【校准曲线设定】,输入标准溶液浓度、重复测定条件、工作曲线参数、标准溶液进样体积及标准溶液位置等参数,点击【确定】,点击【样品组设定】,输入测定样品的信息(操作同校准曲线设定),点击【确定】→【下一步】

仪器分析石墨炉原子吸收实验报告

原子吸收法测定水中的铅含量 课程名称:仪器分析实验实验项目:原子吸收法测定水中的铅含量 原子吸收法测定水中的铅含量 一、实验目的 1。加深理解石墨炉原子吸收光谱法的原理 2。了解石墨炉原子吸收光谱法的操作技术 3. 熟悉石墨炉原子吸收光谱法的应用 二、方法原理 石墨炉原子吸收光谱法,采用石墨炉使石墨管升至2000℃以上的高温,让管内试样中的待测元素分解形成气态基态原子,由于气态基态原子吸收其共振线,且吸收强度与含量成正比,故可进行定量分析。它是一种非火焰原子吸收光谱法。 石墨炉原子吸收法具有试样用量小的特点,方法的绝对灵敏度较火焰法高几个数量级,可达10-14g,并可直接测定固体试样.但仪器较复杂、背景吸收干扰较大。在石墨炉中的工作步骤可分为干燥、灰化、原子化和除残渣4个阶段。在选择最佳测定条件下,通过背景扣除,测定试液中铅的吸光度。 三、仪器与试剂 (1)仪器石墨炉原子吸收分光光度计、石墨管、氩气钢瓶、铅空心阴极灯(2) 试剂铅标准溶液(0。5mg/mL)、水样 四、实验步骤 1。设置仪器测量条件 (1)分析线波长 217.0 nm (2)灯电流90(%) (3)通带 0.5nm (4)干燥温度和时间 100℃,30 s (5)灰化温度和时间 1000℃,20 s (6)原子化温度和时间2200℃,3s (7)清洗温度和时间 2800℃,3s (8)氮气或氩气流量100 mL/min 2. 分别取铅标准溶液B,用二次蒸馏水稀释至刻度,摇匀,配制1.00 ,10.00, 20.00, 和50.00 ug/mL铅标准溶液,备用。 3. 微量注射器分别吸取试液注入石墨管中,并测出其吸收值. 4.结果处理 (1)以吸光度值为纵坐标,铅含量为横坐标制作标准曲线. (2)从标准曲线中,用水样的吸光度查出相应的铅含量。 (3)计算水样中铅的质量浓度(μg/mL)

原子吸收实验讲义1

实验三:火焰原子吸收光谱法测定饮水中铜的含量 石墨炉原子吸收测水样中痕量铜 一、实验目的 1. 掌握原子吸收光谱法的基本原理;了解原子吸收分光光度计的基本结构、性能和操作方法; 2. 熟悉原子吸收光谱法的基本定量方法。 二、实验原理 原子吸收定量基础,在一定条件下,吸光度和浓度的关系符合比耳定律。常用的定量方法有标准曲线法和标准加入法。 铜是原子吸收光谱分析中经常和最容易测定的元素之一。火焰原子吸收分光光度法是根据待测元素空心阴极灯发射出的一定强度和一定波长的特征谱线的光,通过含有待测元素基态原子蒸气的火焰时,其中部分特征谱线的光被基态原子吸收,而未被吸收的光经单色器照射到光电检测器上被检测,根据该特征谱线光被吸收的程度,即可测得试样中待测元素的含量。 石墨炉原子吸收是指利用大电流通过高阻值的石墨器皿时所产生的高温,使置于其中的试液或固体试样上挥发和原子化。用空心阴极灯发出和铜特征光谱频率相同的锐线光,用这种光通过铜蒸汽,铜原子会吸收一部分这种光,吸收光的程度(吸光度)和铜的浓度成正比,并且直线过原点。测定时以铜标准系列溶液的浓度为横坐标,以对应的吸光度为纵坐标绘制一条过原点的工作曲线,根据在相同条件下测得的试样溶液的吸光度即可求出试液中铜的浓度,进而计算出原样中铜的含量。 直接吸入火焰原子吸收分光光度法测定快速、干扰少,适合分析废水和受污染的水。石墨炉原子吸收分光光度计灵敏度高,但基体干扰比较复杂,适合于分析清洁水。 三、仪器及试剂 1.仪器:AA700型原子吸收分光光度计。铜元素空心阴极灯,乙炔钢瓶,空气压缩机;容量瓶250mL,100mL;吸量管2mL,10mL;洗耳球。 2.铜标准溶液制备:准确称取0.1000g纯铜粉于100mL烧杯中,加入5mL 浓硝酸溶解,移入100mL容量瓶中,加水稀释至刻度,摇匀。此溶液浓度为 1.000mg?mL-1铜标准贮备液。或准确称取0.3930g硫酸铜(CuSO 4?5H 2 O)溶于水后移 入100mL容量瓶中,加水稀至刻度,摇匀。此溶液为浓度是1mg?mL-1铜标准贮备液。 准确移取上述铜标准贮备液5.00mL于100mL容量瓶中,用蒸馏水稀释至刻度,摇匀,此为50μg?mL-1铜标准溶液。 3.盐酸、硝酸,均为分析纯。 4. 去离子水。 四.测定步骤: 1.标准溶液的配制: 分别准确移取50μg?mL-1铜标准溶液0.00,0.50,1.00,2.00,3.00,4.00,

相关文档
相关文档 最新文档