文档库 最新最全的文档下载
当前位置:文档库 › 多模式开关电源控制芯片的低功耗设计

多模式开关电源控制芯片的低功耗设计

多模式开关电源控制芯片的低功耗设计
多模式开关电源控制芯片的低功耗设计

基于THX208小功率开关电源设计

天津理工大学 课程设计报告 题目:基于THX208小功率开关电源设计 专业: 班级: 姓名: 学号: 指导教师: 2017年 1月

目录 一、设计要求 (2) 二、设计目的 (2) 三、设计的具体实现 (2) 1. 系统概述 (2) 2. 单元电路设计 (3) 四、结论与展望 (22) 五、心得体会及建议 (23) 六、参考文献 (24) 七、附录 (24) 1、作品照片 (25) 2、原理图 (26) 3、源程序清单 (27) 4、答辩PPT缩印稿 (30)

基于THX208小功率开关电源设计 --电路设计 一﹑设计要求 熟读详细使用手册,搭建电路实现5V/3W的开关电源,根据控制芯片原理,设计合理的辅助电路,通过计算和仿真分析,得到系统优化参数。掌握开关电源设计的核心技术,并对过程做了详细阐述。 1.根据需要选择开关电源的拓扑结构 2.基于THX208设计开关电源的控制核心部分 3.输出电压可调范围: +5V 4.输出5V 0.5A, CC/CV 二、设计目的 (1)利用所学开关电源的理论知识进行硬件整体设计,锻炼学生理论联系实际、提高我们的综合应用能力。 (2)我们这次的课程设计是以THX208为基础,设计并开发小功率开关电源。 (3)掌握各个接口芯片(如THX208等)的功能特性及接口方法,并能用其实现一个简单的应用系统。 三、设计的具体实现 1.系统概述 ①开关电源是利用现代电力电子技术,控制开关开通和关断的就、时间比率,维持稳定输出电压的一种电源,开关电源是一般又脉冲宽度调制(PWM)控制IC 和MOSFET构成。 开关电源主要是进行交流/直流、直流/直流、直流/交流功率转换的装置,通过对主变换回路以及控制回路的控制完成一系列的变换。主变换回路将输入的交流电转换后传递给了负载,所以它决定了开关电源电路的结构形式、转换要求以及负载能力等一系列的技术指标;而控制回路是按照输入,输出技术指标的要求来进行检测,控制主变换回路的工作状态。本设计开关电源控制集成电路主要包括电源电路、滤波整流电路、监测电路以及THX208控制芯片构成的控制电路。 方案一:单端正激式开关电源原理 单端正激式开关电源原理简述:电路原理框图如上所示。这种电路在形式上与单端反激式电路相似,但工作原理不太相同。当开关管VT1导通时,VD2也导通,这时电网向负载传送能量,滤波电感L储存能量;当开关管VT1截止时,电感L通过续流二极管VD3 继续向负载释放能量。在电路中还设有钳位线圈与二极管VD2,它可以将开关管VT1的最高电压限制在两倍电源电压之间。为满足磁芯复位条件,即磁通建立和复位时间应相等,所以电路中脉冲的占空比不能大于50%,由于这种电路在开关管VT1导通时,通过变压器向负载传送能量,可输出50-200 W的功率。电路使用的变压器结构复杂,体积也较大 方案二:单端反激式开关电源原理 反激式变换器开关电源工作原理比较简单,输出电压控制范围比较大,因此,在一般电器设备中应用广泛。所谓反激式变换器开关电源,是指当变换器的初级线圈被直流电压激励时,变换器的次级线圈没有向负载提供功率输出,而仅在变

开关电源设计与制作

《自动化专业综合课程设计2》 课程设计报告 题目:开关电源设计与制作 院(系):机电与自动化学院 专业班级:自动化0803 学生姓名:程杰 学号:20081184111 指导教师:雷丹 2011年11月14日至2011年12月2日 华中科技大学武昌分校制

目录 1.开关电源简介 (2) 1.1开关电源概述 (2) 1.2开关电源的分类 (3) 1.3开关电源特点 (4) 1.4开关电源的条件 (4) 1.5开关电源发展趋势 (4) 2.课程设计目的 (5) 3.课程设计题目描述和要求 (5) 4.课程设计报告内容 (5) 4.1开关电源基本结构 (5) 4.2系统总体电路框架 (6) 4.3变换电路的选择 (6) 4.4控制方案 (7) 4.5控制器的选择 (8) 4.5.1 C8051F020的内核 (8) 4.5.2片内存储器 (8) 4.5.312位模/数转换器 (9) 4.5.4 单片机初始化程序 (9) 4.6 输出采样电路 (10) 4.6.1 信号调节电路 (10) 4.6.2 信号的采样 (11) 4.6.3 ADC 的工作方式 (11) 4.6.4 ADC的程序 (12) 4.7 显示电路 (13) 4.7.1 显示方案 (13) 4.7.2 显示程序 (14) 5.总结 (16) 参考文献 (17)

1.开关电源简介 1.1开关电源概述 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。它运用功率变换器进行电能变换,经过变换电能,可以满足各种对参数的要求。这些变换包括交流到直流(AC-DC,即整流),直流到交流(DC-AC,即逆变),交流到交流(AC-AC,即变压),直流到直流(DC-DC)。广义地说,利用半导体功率器件作为开关,将一种电源形式转变为另一种电源形式的主电路都叫做开关变换器电路;转变时用自动控制闭环稳定输出并有保护环节则称为开关电源(SwitchingPower Supply)。 将一种直流电压变换成另一种固定的或可调的直流电压的过程称为DC-DC交换完成这一变幻的电路称为DC-DC转换器。根据输入电路与输出电路的关系,DC-DC 转换器可分为非隔离式DC-DC转换器和隔离式DC-DC转换器。降压型DC-DC 开关电源属于非隔离式的。降压型DC-DC转换器主电路图如1: 图1 降压型DC-DC转换器主电路 其中,功率IGBT为开关调整元件,它的导通与关断由控制电路决定;L和C为滤波元件。驱动VT导通时,负载电压Uo=Uin,负载电流Io按指数上升;控制VT关断时,二极管VD可保持输出电流连续,所以通常称为续流二极管。负载电流经二极管VD续流,负载电压Uo近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小,通常串联L值较大的电感。至一个周期T结束,在驱动VT导通,重复上一周期过程。当电路工作于稳态时,负载电流在一个周期的初值和终值相等。负载电压的平均值为:

低功耗小功率开关电源设计毕业设计

低功耗小功率开关电源设计毕业设 计 南华大学船山学院毕业设计 1 开关电源简介小功率开关电源以其诸多优良的性能,在测控仪器仪表、通信设备、学习与娱乐等诸多电子产品中得到广泛的应用。随着环境和能源问题日益突出,人们对电子产品的环保要求不断提高,对电子产品的能源效率更加关注。设计无污染、低功耗、高效率的绿色模式电源已成为开关电源技术研究的热点。研究一种中小功率开关电源,应用过渡模式有源功率因数校正、准谐振变频功率隔离变换控制和同步整流等多种先进的电源控制技术,以实现绿色开关电源设计的目的。开关电源的基本结构所有事物都要遵循能量守恒定律,开关电源也不例外,实际上,开关电源也要通过以能量形式传递完成的。从能量上看,开关电

源可以分为直流开关电源模式和交流开关电源模式,直流开关电源模式主要是输出为直流信号电能,而交流开关电源模式主要是输出为交流信号电能。直流开关电源模式为当前的主流模式,该开关电源模式的基本组成结构框图如下图所示:交流输入桥式整流滤波LC 组成滤波器DC/DC变换器转换输出整流滤波占空比控制电路DC直流输出放大电路控制电路图开关电源基本组成结构框图上图中可知:开关电源主要整流滤波、DC/DC变换电路、开关占空比控制电路以及控制电路等模块组成。第1页,共29页南华大学船山学院毕业设计交直流输入电压经LC滤波器,再通过桥式整流与母线电解电容平滑后变为直流电压,再经DC/DC变换器转换,再经二极管整流和电解电容的滤波至输出,为了能使电路成为一个闭环工作,在输出端引出一个控制电路再经放大电路到占空比控制电路至DC/DC变换器转换器形成一

个闭环。占空比控制电路中占空比的表示方法如下图所示:图占空比示意图上图中可知:占空比D=Toff/(TOff+Ton),周期T= Ton+Toff,频率f=1/T。传统开关电源的缺陷传统开关电源基本上采用的都是传统电路,传统电路大部分采用的电路芯片都为PWM控制的KA38系列芯片,这当中也要用到开关MOSFET管,还有就是也要加个启动电阻,根据P=U*U/R可知该电路上的待机功耗至少要大于,而低功耗的要求待机功耗至少要小于,甚至有些要小于。如果功耗大,对人口密集的中国来说,电能的损耗无疑是巨大的。另外传统电源存在着某些有害物质,根据我国CCC标准中的《关于在电气电子设备中限制使用某些有害物质指令》,从而没能达到环保的功能。绿色开关电源的发展方向于传统电源存在着诸多的缺陷,为了能量的有效利用,人们从而提出了绿色开关电源,绿色开关电源产品主要向高频、高效率、低功

2019年反激式开关电源设计大全

2019年反激式开关电源设计大全

前言 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它 的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消 副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负 载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水 泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整 个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电 流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分 量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝 数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很 小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步:第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。

可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压 器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没 有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向 磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁 感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动 势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开 关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下, 首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源 变压器设计的思考二中讨论。 反激式开关电源设计的思考二---气隙的作用 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁 芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢? 由全电流定律可知:

开关电源设计与实现毕业设计(论文)

毕业论文(设计) 题目开关电源设计 英文题目switch source design

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

一个 200W 开关电源的功率级设计总结

一个 200W 开关电源的功率级设计总结 1. 导言 新的功率在200W-500W 的交流电源设计,越来越需要功率因素校正(PFC),以在减少电源线上的能源浪费,并增加最多来自电源插座的功率。这篇文章描述了一个用於液晶电视的200W 电源的设计与构造,所以提到了很多注意事项,以达到高效率,待机功率低於1W,外形小巧尤其是高度为25mm ,无风扇的简单冷却,低成本。这些特徵对於将要应用的场合是不可或缺的。 2. 电路描述和设计 设计指标如下∶ ·交流输入电压∶85-265VRMS ·功率因素∶> 0.95 ·总输出功率∶200W ·三个直流输出∶5V/0.3A 12V/5A 24V/6A 电源分为两个单元。第一电源集成一个功率因素校正电路,内置在 FAN4800 PFC/PWM(脉宽调制)二合一控制器周围,产生一个 24V/6A 和12V/5A 的输出。这个器件包含一个平均电流模式PFC 控制器和一个能够在电压和电流模式下工作的PWM控制器。在描述的这项应用中,PWM工作在电流模式,控制一个双管正激变换器。这种变换器能产生一个稳压的24V 输出。12V输出则由一个采用MC34063A PWM控制器的Buck 变换器产生。这个附加模块改善了12V输出校正,减少交叉调节问题,这对於多重输出正激变换器总是一个问题,当负载大范围变化时。附加变换器成本不是很高,如果与一个双管输出变换器的更复杂、更大的耦合电感相比。

第二电源是一个基於飞兆半导体功率开关(FPS)的Flyback 变换器,它给FAN4800提供电源和5V 输出。这个电源工作在待机模式下,它的无负载功耗低於500mW。因此,即使对於省电模式下小负载情况,也有可能满足1W待机功耗的限制。 为了简洁,设计计算和电路图将在每个模组中单独给出。最终完成的示意图和布局,可在附录中查到。 3. 功率因素校正 本节回顾了功率因素校正电路的电源选择。用来设立乘法器的工作点和差动放大器的增益和频率补偿的低功率部件的设计在[1]中给出。图1为电路示意图 图1∶PFC级示意图,元件编号和FAN4800应用说明[1]相对应 3.1 整流器 由於主电源用来提供一个200W的输出功率,即总输入功率。假设PFC的

开关电源的干扰及其抑制

开关电源的干扰及其抑制 开关电源产生EMI的原因较多,其中由基本整流器产生的电流高次谐波干扰和功率转换电路产生的尖峰电压干扰是主要原因. 基本整流器:基本整流器的整流过程是产生EMI最常见的原因.这是因为工频交流正弦波通过整流后不再是单一频率的电流,而变成一直流分量和一系列频率不同的谐波分量,谐波(特别是高次谐波)会沿着输电线路产生传导干扰和辐射干扰,使前端电流发生畸变,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰. 功率转换电路:功率转换电路是开关稳压电源的核心,它产生的尖峰电压是一种有较大幅度的窄脉冲,其频带较宽且谐波比较丰富. 产生这种脉冲干扰的主要原因是: ①开关管:开关管及其散热器与外壳和电源内部的引线间存在分布电容.当开关管流过大的脉冲电流时,大体上形成了矩形波,该波形含有许多高频成份.由于开关电源使用的元件参数如开关功率管的存储时间,输出级的大电流,开关整流二极管的反向恢复时间,会造成回路瞬间短路,产生很大短路电流.开关管的负载是高频变压器或储能电感,在开关管导通的瞬间,变压器初级出现很大的涌流,造成尖峰噪声. ②高频变压器:开关电源中的变压器,用作隔离和变压.但由于漏感地原因,会产生电磁感应噪声;同时,在高频状况下变压器层间的分布电容会将一次侧高次谐波噪声传递给次级,变压器对外壳的分布电容形成另一条高频通路,而使变压器周围产生的电磁场更容易在其他引线上耦合形成噪声. ③整流二极管:二次侧整流二极管用作高频整流时,要考虑反向恢复时间的因数.往往正向电流蓄积的电荷在加上反向电压时不能立即消除(因载流子的存在,还有电流流过).一旦这个反向电流恢复时的斜率过大,流过线圈的电感就产生了尖峰电压,在变压器漏感和其他分布参数的影响下将产生较强的高频干扰,其频率可达几十兆赫. ④电容、电感器和导线:开关电源由于工作在较高频率,会使低频的元器件特性发生变化,由此产生噪声. 开关电源外部干扰:开关电源外部干扰可以以“共模”或“差模”方式存在.干扰类型可以从持续期很短的尖峰干扰到完全失电之间进行变化.其中也包括电压变化、频率变化、波形失真、持续噪声或杂波以及瞬变等,在电源干扰的几种干扰类型中,能够通过电源进行传输并造成设备的破坏或影响其工作的主要是电快速瞬变脉冲群和浪涌冲击波,而静电放电等干扰只要电源设备本身不产生停振、输出电压跌落等现象,就不会造成因电源引起的对用电设备的影响. 开关电源干扰耦合途径:开关电源干扰耦合途径有两种方式:一种是传导耦合方式,另一种是辐射耦合方式. 1.传导耦合:传导耦合是骚扰源与敏感设备之间的主要耦合途径之一.传导耦合必须在骚扰源与敏感设备之间存在有完整的电路连接,电磁骚扰沿着这一连接电路从骚扰源传输电磁骚扰至敏感设备,产生电磁干扰.按其耦合方式可分为电路性耦合、电容性耦合和电感性耦合.在开关电源中,这三种耦合方式同时存在,互相联系.

反激式开关电源设计的思考(一到五)

反激式开关电源设计的思考一 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步: 第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。 可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下,首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源变压器设计的思考二中讨论。 关键词:开关电源反激式磁芯饱和 反激式开关电源设计的思考二 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢?由全电流定律可知:

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻 图4中的RT为NTC,电阻值随温度升高而降低,抑制开机时产生的浪涌电压形成的浪涌电流。

开关电源试题(有答案)

开关整流器的基本原理 一、填空 1、功率变换器的作用是()。 将高压直流电压转换为频率大于20KHZ的高频脉冲电压 2、整流滤波器电路的作用是()。 将高频的脉冲电压转换为稳定的直流输出电压 3、开关电源控制器的作用是将输出()取样,来控制功率开关器件的驱动脉冲的(),从而调整()以使输出电压可调且稳定。 直流电压、宽度、开通时间。 4、开关整流器的特点有()、()、()、()、()、()及()。 重量轻、体积小、功率因数同、可闻噪声低、效率高、冲击电流小、模块式结构。 5、采用高频技术,去掉了(),与相控整流器相比较,在输出同等功率的情况下,开关整流器的体积只是相控整流器的(),重量已接近()。 工频变压器、1/10、1/10。 6、相控整流器的功率随可控硅()的变化而变化,一般在全导通时,可接近()以上,而小负载时,仅为左右,经过校正的开关电源功率因数一般在(),以上,并且基本不受()变化的影响。 导通角、、。 7、在相控整流设备件,工频变压器及滤波电感工作时产生的可闻噪声较大,一般大于(),而开关电源在无风扇的情况下,可闻噪声仅为()左右。 60db、45db。

8、开关电源采用的功率器件一般(比较)较小,带功率因数补偿的开关电源其整流器效率可达()以上,较好的可做到()以上。 88%、91%。 9、目前开关整流器的分类主要有两种,一类是采用()设计的整流器,一般称之为(),二是采用()设计的整流器,主要指()开关整流器。 硬开关技术、SMR、软开关技术、谐振型 10、谐振型技术主要是使各开关器件实现()或()导通或截止,从而减少开关损耗,提高开关频率。 零电压、零电流。 11、按有源开关的过零开关方式分类,将谐振型开关技术分为()—ZCS、()—ZVS两大类。 12、单端正激变换电路广泛应用于()变换电路中,被认为是目前可靠性较高,制造不复杂的主要电路之一。 13、单端反激变换电路一般用在()输出的场合。 14、全桥式功率变换电路主要应用于()变换电路中。 15、半桥式功率变换电路得到了较广泛的应用,特别是在()和()的场合,其应用越来越普遍。 16、开关电源模块的寿命是由模块内部工作()所决定,温升高低主要是由模块的()高低所决定,现在市场上大量使用的开关电源技术,主要采用的是()技术。 17、功率密度就是功率的(),比值越大说明单位体积的功率越大。 18、计算功率有两种方法,一种是(),另一种是模块允许的,在交流和直流变化的全电压范围内所能提供的()。

LED开关电源设计

《开关电源课程设计》 指导教师:熊春宇 姓名:李丽丽 学号:200701071235 电话:136664664296

LED照明驱动开关电源设计 (李丽丽,大庆师范学院物电学院07级电子信息工程专业)摘要:LED照明驱动设计了恒流输出、空载保护、隔离输出及EMC等功能.系应用于LED 照明驱动的开关电源电路。采用PWM自动调节实现恒流输出,稳压管过压锁定实现空载保护,电磁隔离和光隔离实现隔离输出。经过多次的运行与检测,实践证明该电路恒流输出稳定,发热量低。本设计体积小,微调反馈电路可设置作为为LED驱动常用的350mA或700mA恒流输出。可广泛适用于生活照明,商用照明。 关键词:LED驱动电源;发热低恒流;隔离低成本 Abstract:LED lighting design drive the constant-current output, the output and protection, isolation no-load EMC etc. Function. Is applied to the switch power LED lighting driving circuit. Using PWM automatic adjustment output voltage, the constant-current over-voltage protection tube, electromagnetic no-load realize locking and isolation realize isolation output isolation. After many operation and test, the practice has proved that the constant-current circuits, low heat stable output. This design, small size, fine-tuning feedback circuit can be set as the common 350mA LED drive or 700mA constant-current output. Life can be widely used in commercial lighting, lighting. Key words:Leds driving power;Fever is low;Constant flow;Isolation;Low cost 0概述 0.1选题的目的与意义: 全球能源紧张,提高电器的效率是行之有效的方法。照明用电占据全球21%的总用电量,如果能提高照明用的的效率,可以有效缓解能源紧张。如何提高照明系统的能源利用率,延长照明系统的寿命,并且是绿色无污染的?取代白炽灯,荧光灯,节能灯的第四代照明灯具是什么?业界给出的答案就是LED灯照明。LED照明每W流明数可达到120lm。远高于白炽灯和日光灯,此外LED灯珠寿命可长达十万小时,并且绿色无污染。LED照明具备的这些优点决定了其应用前景是非常广阔的。LED照明应用上的限制在于LED有固定的正向压降,电流也有上限(工作电流是影响LED寿命的主要因素)。大功率白光LED上的正向压降一般为3-4V,不能直接使用市电驱动。因此一个和LED灯珠匹配的高效,环保,长寿命的电源是必须的,这正是这次选题的意义与目的所在。 0.2研究现状 开关电源的技术已经非常成熟,由于LED驱动的降压技术大部分采用开关电源。因此即使是LED驱动电源真正进入研究的时间不算长,却无碍其技术的成熟。LED驱动要求的技术特点是:寿命长,体积小(特别商用照明和家用照明,最好可以内嵌到灯头)。 众所周知,绝大部分开关电源都需要一个输出滤波的电解电容,即使高品质的电解电容,工作在100摄氏度左右,寿命也只有1Wh左右。毫无疑问,电解电容正是LED灯整体寿命的瓶颈。而内嵌式驱动板上的电解电容,由于LED的发热以及驱动板本身的发热,长期在

小功率直流开关电源的设计

小功率直流开关电源的设计 1.电路结构选择 图1.组成框图 输入电路 输入电路包括线性滤波电路、浪涌电流控制电路和整流电路。起作用是把输入电网的交流电转化为符合要求的开关电源直流输入电源。 变换电路 变换电路含开关电路、输出隔离电路等,是电源变换的主通道,完成对带有功率的电源波形进行斩波调制和输出。这一级的开关功率管是其核心器件。 控制电路 控制电路的作用是向驱动电路提供调制后的矩形脉冲,达到调节输出电压的目的。 开关稳压电源与传统的线性稳压电源相比具有体积小、重量轻、效率高等优点,已成为稳压电源的主流产品。为使电源结构简单、紧凑,工作可靠、减少成本,小功率开关稳压电源常采用单端反激型或单端正激型电路。与单端反激型相比,单端正激型开关电流小、输出纹波小、更容易适应高频化。用电流型PWM 控制芯片UC3843构成的单端正激型开关稳压电源的主电路如图2所示。

图2主电路的结构 实用的单端正激型开关稳压电源必须加磁通复位电路,以泄放励磁电路的能量。如图2所示,开关管Q导通时D1导通,副边线圈N2向负载供电,D4截止,自馈电线圈Nf电流为零;Q关断时D1截止,D4导通,Nf经电容C1滤波后向UC3843供电,同时原边线圈N1上产生的感应电动势使D3导通,并加在RC上。由于变压器中的磁场能量可通过Nf泄放,而不像一般的RCD磁通复位电路消耗在电阻上,这可减少发热,提高效率。 2.电源技术规格 输入电压:AC110/220V; 输入电压变动范围:90V~240V; 输入频率:50/60Hz; 输出电压:12V; 输出电流:2.5A; 工作频率的选择:UC3843的典型工作频率为20kHz~500kHz。开关频率的选择决定了变换器的许多特性。开关频率越高,变压器、电感器体积越小,电路的动态响应也越好。但随着频率的提高,诸如开关损耗,门极驱动损耗,输出整流管的损耗会越来越突出,而且频率越高,对磁性材料的选择和参数设计要求会越苛刻,另外,高频下线路的寄生参数对线路的影响程度难以预料,整个电路的稳定性,运行特性以及系统的调试会比较困难。本电路中,选Rt=1.8kΩ,Ct=10nF。由 UC3843A定时电阻,电容与振荡器频率的关系曲线图,可得开关频率为f=85kHz,周期T=11.8μs; 占空比:设计无工频变压器的单端正激型开关电源时,一般占空比D最大不超过0.5,这里选择Dmax=0.5。则Tonmax=T·Dmax=5.9μs。 3.电源设计 3.1变压器和输出电感的设计

开关电源中电磁干扰的产生及其抑制

开关电源中电磁干扰的产生及其抑制 摘要:电磁干扰对开关电源的效率和安全性及使用的影响日益成为人们关注的热点。本文分析了开关电源中电磁干扰产生的原因和传播的路径,并提出了抑制干扰的有效措施。 关键词:开关电源、电磁干扰、耦合通道、电磁屏蔽 1 引言 电磁兼容EMC是英文electro magnetic compatibility 的缩写。它包括两层含义,一是设备在工作中产生的电磁辐射必须限制在一定水平内,二是设备本身要有一定的抗干扰能力,它必须具备三个要素:干扰源、耦合通道、敏感体。给电子线路供电的开关电源对干扰的抑制对保证电子系统的正常稳定运行具有重要意义。本文通过分析开关电源中的干扰源和耦合通道,提出了抑制干扰的有效措施。并提出了开关电源中开关变压器的设计和制作方法。 2 开关电源中的干扰源和耦合通道 开关电源首先将工频交流电整流为直流电,然后经过开关管的控制变为高频,最后经过整流滤波电路输出,得到稳定的直流电压,因此,自身含有大量的谐波干扰。同时,由于变压器的漏感和输出二极管的反向恢复电流造成的尖峰,都会产生不同程度的电磁干扰。开关电源中的干扰源主要集中在电压、电流变化大(即dV/dt或dI/dt很大)的元器件上,尤其是开关管、输出二极管和高频变压器等。同时,杂散电容会将电网的噪声传导到电子系统的电源而对电子线路的工作产生干扰。 这里我们来分析一下几种干扰产生的原因及其耦合的路径。 2.1输入整流滤波电路产生的谐波干扰 开关电源输入端普遍采用桥式整流,电容滤波电路。由于整流二极管的非线性和滤波电容的储能作用,使得输入电流i成为一个时间很短、峰值很高的周期性尖峰电流,如图1所示。这种畸变的输入电流,它除了基波外,还含有丰富的高次谐波分量。

高频开关电源的设计与实现

电力电子技术课程设计报告 题目高频开关稳压电源 专业电气工程及其自动化 班级 学号 学生姓名 指导教师 2016年春季学期 起止时间:2016年6月25日至2016年6月27日

设计任务书11 高频开关稳压电源设计√ 一、设计任务 根据电源参数要求设计一个高频直流开关稳压电源。 二、设计条件与指标 1.电源:电压额定值220±10%,频率:50Hz; 2. 输出:稳压电源功率Po=1000W,电压Uo=50V; 开关频率:100KHz 3.电源输出保持时间td=10ms(电压从280V下降到250V); 三、设计要求 1.分析题目要求,提出2~3种电路结构,比较并确定主电路 结构和控制方案; 2.设计主电路原理图、触发电路的原理框图,并设置必要的 保护电路; 3.参数计算,选择主电路及保护电路元件参数; 4.利用PSPICE、PSIM或MATLAB等进行电路仿真优化; 5.撰写课程设计报告。 四、参考文献 1.王兆安,《电力电子技术》,机械工业出版社; 2.林渭勋等,《电力电子设备设计和应用手册》; 3.张占松、蔡宣三,《开关电源的原理与设计》,电子工业 出版社。

目录 一、总体设计 (1) 1.主电路的选型(方案设计) (1) 2.控制电路设计 (4) 3.总体实现框架 (4) 二、主要参数及电路设计 (5) 1.主电路参数设计 (5) 2.控制电路参数设计 (7) 3.保护电路的设计以及参数整定 (8) 4.过压和欠压保护 (8) 三、仿真验证(设计测试方案、存在的问题及解决方法) (9) 1、主电路测试 (9) 2、驱动电路测试 (10) 3、保护电路测试 (10) 四、小结 (11) 参考文献 (11)

开关电源的抗干扰解决方法

开关电源的抗干扰解决方法 EMI干扰源对开关电源干扰的解决方案一般来说,来自外界辐射,雷击、或电网的抖动、等对电源开关的相关组成器件如整流二极管,高频变压器,功率开关管等外部环境的干扰是开关电源的EMI干扰源的主要体现。首先:介绍辐射干扰的传输通道 (1)在开关电源中,能构成辐射干扰源的元器件和导线均可以被假设为天线,从而利用电偶极子和磁偶极子理论进行分析;二极管、电容、功率开关管可以假设为电偶极子,电感线圈可以假设为磁偶极子; (2)没有屏蔽体时,电偶极子、磁偶极子,产生的电磁波传输通道为空气(可以假设为自由空间); (3)有屏蔽体时,考虑屏蔽体的缝隙和孔洞,按照泄漏场的数学模型进行分析处理。其次:是传导干扰的传输通道 (1)容性耦合 (2)感性耦合 (3)电阻耦合 a.公共电源内阻产生的电阻传导耦合 b.公共地线阻抗产生的电阻传导耦合 c.公共线路阻抗产生的电阻传导耦合 以下是EMI干扰源相关的抑制方案: 1.高频变压器的屏蔽 为防止高频变压器的漏磁对周围电路产生干扰,可采用屏蔽带来屏蔽高频变压器的漏磁场。屏蔽带一般由铜箔制作,绕在变压器外部一周,并进行接地,屏蔽带相对于漏磁场来说是一个短路环,从而抑制漏磁场更大范围的泄漏。 高频变压器,磁心之间和绕组之间会发生相对位移,从而导致高频变压器在工作中产生噪声(啸叫、振动)。涡街流量计为防止该噪声,需要对变压器采取加固措施: (1)用环氧树脂将磁心(例如EE、EI磁心)的三个接触面进行粘接,抑制相对位移的产生; (2)用“玻璃珠”(Glass beads)胶合剂粘结磁心,效果更好。 分开来讲开关电源EMI抑制有9大措施: (1)合理的PCB设计

反激式开关电源设计

基于U C3845的反激式开关电源设计 时间:2011-10-2821:40:13来源:作者: 引言 反激式开关电源以其结构简单、元器件少等优点在自动控制及智能仪表的电源中得到广泛的应用。开关电源的调节部分通常采用脉宽调制(PWM)技术,即在主变换器周期不变的情况下,根据输入电压或负载的变化来调节功率MOSFET管导通的占空比,从而使输出电压稳定。脉宽调制的方法很多,本文中所介绍的是一种高性能的固定频率电流型脉宽集成控制芯片UC3845。该芯片是专为离线的直流至直流变换器应用而设计的。其主要特点是具有内部振荡器、高精度误差比较器、逐周电流取样比较、启动电流小、大电流图腾柱输出等,是驱动MOSFET的理想器件。 1UC3845简介 UC3845芯片为SO8或SO14管脚塑料表贴元件。专为低压应用设计。其欠压锁定门限为8.5v(通),7.6V(断);电流模式工作达500千赫输出开关频率;在反激式应用中最大占空比为0.5;输出静区时间从50%~70%可调;自动前馈补偿;锁存脉宽调制,用于逐周期限流;内部微调的参考源;带欠压锁定;大电流图腾柱输出;输入欠压锁定,带滞后;启动及工作电流低。 芯片管脚图及管脚功能如图1所示。 图1UC3845芯片管脚图 1脚:输出/补偿,内部误差放大器的输出端。通常此脚与脚2之间接有反馈网络,以确定误差放大器的增益和频响。 2脚:电压反馈输入端。此脚与内部误差放大器同向输入端的基准电压(2.5V)进行比较,调整脉宽。 3脚:电流取样输入端。 4脚:RT/CT振荡器的外接电容C和电阻R的公共端。通过一个电阻接Vref通过一个电阻接地。 5脚:接地。 6脚:图腾柱式PWM输出,驱动能力为土1A. 7脚:正电源脚。 8脚:Vref,5V基准电压,输出电流可达50mA. 2设计方法 如图2为基于UC3845反激式开关电源的电路图,虚线框内为UC3845内部简化方框图。 1)启动电压和电容的选择 交流电源115VAC经整流、滤波后为一个纹波非常小的直流高压Udc,该电压根据交流电源范围往往可得到一个最大Udcmax,一和最小电压Udcmin。 当直流输入电压大于144V以上时,UC3845应启动开始工作,启动电阻应由线路直流电压和启动所需电流来确定。 根据UC3845的参数分析可知,当启动电压低于8.5V时,UC3845的整个电路仅消耗lmA的电流,即UC3845的典型启动电压为8.5V,电流为1mA.加上外围电路损耗约0.5mA,即整个电路损耗约1.5mA.在输入直流电压为最小电压Ddcmmn时,启动电阻Rin的计算如下: 图2基于UC3845反激式开关电源的电路图 启动过程完成后,UC3845的消耗电流会随着MOSFET管的开通增至100mA左右。该电流由启动电容在启动时储存的电荷量来提供。此时,启动电容上的电压会发生跌落到7.6V以上,要使UC3845fj~

开关电源设计教学内容

开关电源设计

开关直流稳压电源设计 摘要 直流稳压电源应用广泛,几乎所有电器,电力或者电子设备都毫不例外的需要稳定的直流电压(电流)供电,它是电子电路工作的“能源”和“动力”。不同的电路对电源的要求是不同的。在很多电子设备和电路中需要一种当电网电压波动或负载发生变化时,输出电压仍能基本保持不点的电源。电子设备中的电源一般由交流电网提供,如何将交流电压(电流)变为直流电压(电流)供电?又如何使直流电压(电流)稳定?这是电子技术的一个基本问题。解决这个问题的方案很多,归纳起来大致可分为线性电子稳压电源和开关稳压电源两类,他们又各自可以用集成电路或分立元件构成。开关稳压电源具有效率高,输出功率大,输入电压变化范围宽,节约能耗等优点。 一、引言 1.1基本要求 稳压电源。 1.基本要求 ①输出电压UO可调范围:12V~15V; ②最大输出电流IOmax:2A; ③U2从15V变到21V时,电压调整率SU≤2%(IO=2A); ④IO从0变到2A时,负载调整率SI≤5%(U2=18V); ⑤输出噪声纹波电压峰-峰值UOPP≤1V(U2=18V,UO=36V,IO=2A); ⑥DC-DC变换器的效率≥70%(U2=18V,UO=36V,IO=2A); ⑦具有过流保护功能,动作电流IO(th)=2.5±0.2A; 1.2发挥部分 (1)排除短路故障后,自动恢复为正常状态; (2)过热保护; 二、方案设计与论证 开关式直流稳压电源的控制方式可分为调宽式和调频式两种。实际应用中,调宽式应用较多,在目前开发和使用的开关电源集成电路中,绝大多数为脉宽调制(PWM)型。开关电源的工作原理就是通过改变开关器件的开通时间和工作周期的比值,即占空比来改变输出电压,通常有三种方式:脉冲宽度调制(PWM)、脉冲频率调制(PFM)和混合调制。PWM调制是指开关周期恒定,通过改变脉冲宽度来改变占空比的方式。因为周期恒定,滤波电路的设计比较简单,因此本次设计采用PWM调制方式实现电路设计要求。主要框架如图1所示。由变压器降压得到交流电压,再经过整流滤波电路,将交流电变成直流电,然后再经过DC-DC变换,由PWM的驱动电路去控制开关管的导通和截止,从而产生一个稳定的电压源。

基于TOPSwitch-GX系列TOP247Y芯片的低功率开关电源设计

基于TOPSwitch-GX系列TOP247Y芯片的低功率开关电源设计发布: 2011-9-7 | 作者: —— | 来源:jiasonghu| 查看: 454次| 用户关注:本文介绍了一种基于TOP247Y的多路开关稳压电源,其结构简单、成本低廉、制作调试方便,基本上能达到所要求的条件。TOPSwitch-GX系列芯片工作原理图1给出了TOP247Y芯片内部结构图,共有6个引出端,它们分别是控制端C、线路检测端L、极限电流设定端X、源极S、开关频率选择端F和漏极D。利用线路检测端(L)可实现4种功能:过压(OV)保护;欠压(UV)保护;电压前馈(当电网电压过低时用来降低最大占空比);远程通/断(ON/OFF)和同步。而利用极限 本文介绍了一种基于TOP247Y的多路开关稳压电源,其结构简单、成本低廉、制作调试方便,基本上能达到所要求的条件。 TOPSwitch-GX系列芯片工作原理 图1给出了TOP247Y芯片内部结构图,共有6个引出端,它们分别是控制端C、线路检测端L、极限电流设定端X、源极S、开关频率选择端F和漏极D。利用线路检测端(L)可实现4种功能:过压(OV)保护;欠压(UV)保护;电压前馈(当电网电压过低时用来降低最大占空比);远程通/断(ON/OFF)和同步。而利用极限电流设定端,可从外部设定芯片的极限电流。在每个开关周期内都要检测功率MOSFET漏源极导通电阻Ros(on)上的漏极峰值电流ID(PK),当ID(PK)>ILIMIT时,过电流比较器就输出高电平,依次经过触发器、主控门和驱动级,将MOSFET关断,起到过电流保护作用。 电源启动时,连接在漏极和源极之间的内部高压电流源向控制极充电,在RE两端产生压降,经RC滤波后,输入到PWM比较器的同相端,与振荡器产生的锯齿波电压相比较,产生脉宽调制信号并驱动MOSFET管,因而可通过控制极外接的电容充电过程来实现电路的软启动。当控制极电压Uc达到5.8V时,内部高压电流源关闭,此时由反馈控制电流向Uc供电。在正常工作阶段,由外界电路构成电压负反馈控制环,调节输出级MOSFET的

相关文档
相关文档 最新文档