文档库 最新最全的文档下载
当前位置:文档库 › 硬泡聚氨酯保温防水工程技术规程国标修编

硬泡聚氨酯保温防水工程技术规程国标修编

聚氨酯发泡资料白料

多元醇和异氰酸酯是整个聚氨酯反应的最主要两种原料。而聚酯多元醇就是一种常用的多元醇之一。需要测定聚酯多元醇的酸值和羟值,对控制聚氨酯反应的重要性是不言而喻的。羟值反应的聚酯多元醇的分子量,酸值大小影响与异氰酸酯的反应性。 一:聚酯多元醇酸值 一般,聚酯多元醇呈弱酸性,酸值的含义是:每克样品中酸性成分所消耗的KOH的摩尔质量(mg)。单位是:mgKOH/g。 1)测试聚酯多元醇酸值操作步骤: 精确称取聚酯多元醇样品2-4g,加入混合试剂50ml溶液,充分摇均匀,加2-4 d PP指示剂,以0.1N 标准KOH溶液进行滴定,直至出现粉红色15 s 不变为滴定终点,记录滴定值。同时做空白实验。 2)计算公式: AV(酸值KOHmg/g)=56.1×f ×(V样-V空)÷M样重 f:0.1N 标准KOH溶液的修正值。 56.1:KOH的摩尔质量。 3)分析试剂的配制: 0.1N 标准KOH溶液的配制:精确称取分析级KOH 3.3±0.0001g,加蒸馏水至500ml,摇匀备用。 0.1N 标准KOH溶液的标定(修正值f): 精确称取氨基磺酸1.5±0.0001g于三角瓶内,加适量蒸馏水(约90ml)进行溶解,滴入2-4 d PP指示剂,一所配制的0.1N 标准KOH溶液进行滴定,记录滴定值,则 F值=W/ V ×103 其中W:氨基磺酸称取量V:滴定值 混合试剂的配制:a无水乙醇与醋酸乙酯体积比1:1混合均匀即可;b 甲苯与醋酸乙酯体积比1:1混合均匀亦可。 二:聚酯多元醇的羟值 在聚氨酯合成中,聚酯多元醇羟值是一个重要指标。只有明确了解聚酯多

元醇的羟值,才能确定聚酯多元醇的分子量。羟值含义是:每克样品所消耗的K OH摩尔质量数。单位是mgKOH/g。 1)测试聚酯多元醇羟值的操作步骤(苯酐-吡啶法)。 精确称取聚酯多元醇样品2-5g于磨口锥形三角瓶内,用移液管精确加入苯酐-吡啶酰化剂20ml。摇匀后于烘箱(120℃)加热一小时,取出冷却后,加入蒸馏水90ml震荡,使之充分溶解。再以5 ml酰化剂对瓶壁进行清洗。加2-4 d PP指示剂,以0.5N 标准KOH溶液进行滴定,直至出现粉红色15 s不变为滴定终点,记录滴定值,同一样品分别做两次。并做空白实验。 2)计算公式: OH(羟值KOHmg/g)=(V空-V样)×f ×56.1/ m样量 f:0.5N 标准KOH溶液的修正值。 56.1:KOH的摩尔质量。 3)分析试剂的配制: 0.5N 标准KOH溶液的配制:精确称取分析级KOH 16.5±0.0001g,加蒸馏水至500ml,摇匀备用。 0.5N 标准KOH溶液的标定(修正值f):精确称取氨基磺酸1.5±0.0001g 于三角瓶内,加适量蒸馏水(约90ml)进行溶解,滴入2-4 d PP指示剂,一所配制的0.5N 标准KOH溶液进行滴定,记录滴定值,则 F值=W/ V ×20.6 其中W:氨基磺酸称取量V:滴定值 苯酐-吡啶酰化剂配制:称取42g邻苯二甲酸酐和6g咪唑溶于300ml吡啶中,混合均匀后贮存于棕色瓶内备用。 注:本法可用于聚醚之酸值和羟值分析检测。所得数据比其他方法相对要可靠。 三:聚酯多元醇其它分析 1)分子量 M分子量=56.1×n ×1000/ 聚酯多元醇校正羟值 聚酯多元醇校正羟值=羟值+酸值 2)水分用水份分析仪检测之。

喷涂聚氨酯保温施工方案

喷涂聚氨酯保温施工方案 一、总则 喷涂聚氨酯硬泡保温系统是适应65%节能标准和低能耗节能建筑的保温技术。具有优异的保温、隔热、防水、抗震、难候、抗风压、抗裂、憎水、透气性能且施工简便的特点,是一种高效率的,适合我国的建筑国情和气候特点,性价比优异的保温系统。 二、工程特点 1、现场喷涂发泡,与基层粘结性能好,形成连续的无空腔构造,无需锚栓、 没有拼缝,无冷热桥影响。 2、聚氨酯的闭孔率高(达到95%以上),保温防水性能优异。 3、使用寿命长达25年以上。 4、原材料体积小,运输方便,施工周期短。 三、工程概述 1、工程名称: 2、工程地点: 3、建筑面积: 4、保温基层: 5、保温工程内容: 6、工程做法:保温做法:喷涂聚氨酯硬泡保温层、饰面层。

四、编制依据: 《硬泡聚氨酯保温防水工程技术规范》GB50404—2007 五、施工准备 1、喷涂聚氨酯硬泡保温材料做法常用材料的主要性能应满足下列各表 指标要求,并在材料进场后施工展开前将由国家法定检测部门出具的检测报告报监理备案,应报验材料的品种和性能指标及材料如下: 聚氨酯喷涂现场发泡材料主要性能指标 (2)根据工程量,开工时间,工期要求安排适当的储存场地。组织好材料进场时间,控制好材料进场数量做好进场记录,做好材料发放记录,收集好每批材料的出厂合格证报监理方验证。 (3)配合监理做好进场材料复验工作确认材料的合格证、检测报告是否齐全,是否与所送材料配套完整。抽检材料单位的重量和体积是否在合理误差范围内。检查包装有无破损。检查材料是否在有效期内。 2、机械准备 (1)空气压缩机:型号W—1.0/7公称排气量1.0m3/min,额定排气压力0.7Mpa

聚氨酯发泡工艺简介

聚氨酯发泡工艺简介 聚氨酯硬泡生产工艺硬泡成型工艺聚氨酯硬泡的基本生产方法聚氨酯硬泡一般为室温发泡,成型工艺比较简单。按施工机械化程度可分为手工发泡和机械发泡。根据发泡时的压力,可分为高压发泡和低压发泡。按成型方式可分为浇注发泡和喷涂发泡。浇注发泡按具体应用领域、制品形状又可分为块状发泡、模塑发泡、保温壳体浇注等。根据发泡体系可发为HCFC 发泡体系、戊烷发泡体系和水发泡体系等,不同的发泡体系对设备的要求不一样。按是否连续化生产可分为间歇法和连续法。间歇法适合于小批量生产。连续法适合于大规模生产,采用流水线生产方法,效率高。按操作步骤中是否需预聚可分为一步法和预聚法(或半预聚法)。1.手工发泡及机械发泡在不具备发泡机、模具数量少和泡沫制品的需要量不大时可采用手工浇注的方法成型。手工发泡劳动生产率低,原料利用率低,有不少原料粘附在容器壁上。成品率也较低。开发新配方,以及生产之前对原料体系进行例行检测和配方调试,一般需先在实验室进行小试,即进行手工发泡试验。在生产中,这种方法只适用于小规模现场临时施工、生产少量不定型产品或制作一些泡沫塑料样品。手工发泡大致分几步:(1) 确定配方,计算制品的体积,根据密度计算用料量,根据制品总用料量一般要求过量5%~15%。(2) 清理模具、涂脱模剂、模

具预热。(3) 称料,搅拌混合,浇注,熟化,脱模。手工浇注的混合步骤为:将各种原料精确称量后,将多元醇及助剂预混合,多元醇预混物及多异氰酸酯分别置于不同的容器中,然后将这些原料混合均匀,立即注入模具或需要充填泡沫塑料的空间中去,经化学反应并发泡后即得到泡沫塑料。在我国,一些中小型工厂中手工发泡仍占有重要的地位。手工浇注也是机械浇注的基础。但在批量大、模具多的情况下手工浇注是不合适的。批量生产、规模化施工,一般采用发泡机机械化操作,效率高。2.一步法及预聚法目前,硬质聚氨酯泡沫塑料都是用一步法生产的,也就是各种原料进行混合后发泡成型。为了生产的方便,目前不少厂家把聚醚多元醇或(及)其它多元醇、催化剂、泡沫稳定剂、发泡剂等原料预混在一起,称之为“ 白料”,使用时与粗MDI(俗称“ 黑料” )以双组分形式混合发泡,仍属于“ 一步法”,因为在混合发泡之前没有发生化学反应。早期的聚氨酯硬泡采用预聚法生产。这是因为当时所用的多异氰酸酯原料为TDI-80。由于TDI 粘度小,与多元醇的粘度不匹配;TDI 在高温下挥发性大;且与多元醇、水等反应放热量大,若用一步法生产操作困难,故当时多用预聚法。若把全部TDI 和多元醇反应,制得的端异氰酸酯基预聚体粘度很高,使用不便。硬泡生产中所指的预聚法实际上是“ 半预聚法”。即首先TDI与部分多元醇反应,制成的预聚体中

基于聚氨酯硬泡外墙保温技术在建筑节能中应用

基于聚氨酯硬泡外墙保温技术在建筑节能中的应用摘要:发泡聚氨酯在国内建筑屋面的十多年应用中,主要在冷库、大中型化工设施、粮库及各种管道的保温防水工程,在外墙保温工程的应用是近几年才起步。至今,单组份、双组份聚氨酯在节能建筑的应用逐步展开,随着公共建筑节能强制实施和既有建筑节能改造、节能65%标准的推进,发泡聚氨酯的应用将会越来越大。本文对免拆现浇聚氨酯硬泡外墙保温技术的构造措施、配套产品性能指标、设备性能及浇注工艺等,进行探讨。 关键词:免拆模;聚氨酯泡沫;保温材料 abstract: urethane foaming application in domestic construction roofs field for more than ten years, it apply mainly in the refrigerator, large and medium-sized chemical facilities, grain depot and various kinds of pipe heat preservation of waterproofing, in the external wall thermal insulation engineering application in recent years that it has started. so far, a two-component polyurethane in the application of energy-saving building is gradually spread, with public building energy efficiency enforcement and both the energy saving renovation, energy saving 65% standard propulsion, urethane foaming application will grow larger. this paper will be discussed from the site rigid polyurethane foam exterior wall insulation technology of structural

改性PIR聚氨酯保温板

聚氨酯板简介 阻燃、无氟、环保、节能保温材料----聚氨酯(PIR)节能保温板及聚氨酯复合板,广泛应用于建筑节能领域和管道、储罐、墙体保温节能领域、LNG船体、高速列车等工业和军事保温领域。 技术优势 ?高效保温 复合板是有机保温材料中导热系数最低(≤0.022),5cm厚的复合板相当于1m厚混凝土的隔热效果。复合板是实现我国建筑节能75%目标的理想保温产品 ?超强阻燃 复合板经1000℃火焰30分钟烧不穿。 ?耐候性持久 复合板经过6个月以上的耐候性检验,各项性能稳定,可与建筑同寿命。

?尺寸稳定性好 复合板抗压强度达到200kp以上,板材耐温变性能好,不变形。 ?低碳环保 复合板采用生物基原料,无氟发泡,不采用国家禁止或限制使用的有害物质,绿色环保。 保温性能 复合板具有卓越的保温性能 5cm厚的复合板相当于1m厚的混凝土保温效果,具有卓越的保温性能。 聚氨酯硬泡是一种新型的高分子材料,具有容重小、导热系数低,闭孔率高和耐腐蚀的优良性能。?不同材料导热系数对比 ?具有相同保温效果的墙体厚度对比

?国家政策一鼓励聚氨酯用于外墙保温 2011年12月30日,国务院颁布《关于加强和改进消防工作的意见》即46号文,其中“新建、改建、扩建工程的外保温材料一律不得使用易燃材料(B3级),严格限制使用可燃材料”,(即有条件使用B2级保温材料,鼓励使用B1级保温材料)。 2012年2月10日,住建部下发《关于贯彻落实国务院关于加强和改进消防工作的意见的通知》,通知要求严格执行现行有关标准规范和公安部、住房城乡建设部联合印发的《民用建筑外墙保温系统及外墙装饰防火暂行规定》(公通字【2009】46号 ?市场前景 欧美等发达国家在建筑节能领域70%以上采用聚氨酯硬泡。在我国尚不足10%,上升空间巨大,随着节能减排的进一步推进,建筑节能行业的聚氨酯硬泡消耗近年来快速增长,并呈现逐年加快的态势。

聚氨酯硬泡使用说明

聚氨酯硬泡使用说明 ―――手工浇注料 聚氨酯保温材料一大优异之处在于其现场施工的方便性。除了采用发泡设备注射、喷涂外,手工浇注也是常采用的发泡成型方式。 手工浇注,即采用简易容器和设备,用手工方式或机械搅拌把一定比例、一定数量的发泡原料混合均匀并转移到待发泡的腔体中。 1.设备(工具): 容器:计量、混合用,共计三个,常用塑料质或铁/钢质,大小与其工作负荷相称。 搅拌器:一般采用通用手电钻,转速在1200r/min以上,搅拌头为环形或风翅形叶轮,其大小及手电钻功率可据工作负荷(混料量)而定。 清理器具:一般为铁质条、片状物或刀具,清理搅拌头、混合器具残留的泡沫。2.基本工艺:按原料厂家所提供的材料配比计量所需量的黑白料,转移到混合容器中,然后开启搅拌器对其进行搅拌混合;经充分混合将物料及时转移到待发泡腔体中,闭合模具(注意在发泡过程中适当的排气)。待泡沫固化完成后,打开模具取出已完成的工件。 在泡沫不再软、粘时将混合容器中及搅拌头上的泡沫清理干净以预备进入下一生产周期。 3.需要注意的几个工艺参数 (1)温度。一般来说手工浇注型工艺对料温缺乏相应的控制手段,多为自然温度。但由于聚氨酯成形过程易受温度影响,故常常需控制一定的料温以期得到较好的发泡效果。一般的,料温低时泡沫易酥脆且发方率较低,固化缓慢,延长生产周期和多耗材料的同时还得不到较好的发泡效果,故冬季一般采用外加热方式保证材料温度不要低于15℃;另一方面,料温过高时会导致白料中的发泡剂成分较多挥发而降低发方率,同时料温高使得反应过快不易操作、控制,在夏季可采用外辅助冷水强制降温方式来控制黑白料温度使其最好不要超过30℃(注意:小心不要使水进入黑白料中)。 (2)可操作时间。聚氨酯泡沫成型过程是化学反应过程。一般认为化学反应开始后(乳白时间)不宜再过多的对其进行操作,故而计量后混合、搅拌、转移工序应在乳白时间到来前完成。只有这样才能保证泡沫体在腔体中填充的均匀性。对配料厂家来说乳白时间具有可调性,可根据使用时混合总量、搅拌时间、转移效率等情况来确定。 温度对可操作时间有较大的影响,温度高时同一物料的可操作时间将变短。 (3)脱模时间。泡沫发起后须经一定熟化后方能稳定,即达到固化。该时间受材料本身因素的制约同时又受工艺性的影响。一般来说同一材料料温高、环境温度高、工件温度高时固化较快,反之则慢。 过早的脱模会因泡沫固化效果不好而影响工件的质量,须根据材料本性适时脱模(需要高速时可通过白料厂家来调整完成)。 4.用料量计算。 在高于自由泡密度的条件填充下,设计填充密度和待填充腔体的空间大小是决定用料量的两个主要因素,又因表皮比重大、物料损耗、气体挥发等因素势必要求有一定的过量填充。由此用料量可由下式计算: 用料量=待填充体积×设计填充密度×(1+过量填充系数) 一般过量填充系数为10-15%,温度低时表皮层较厚使该系数大一些。 低于自由泡芯密度的设计填充密度是不可能的,故最低用量是自由泡的填充。为

聚氨酯保温材料在建筑节能中的应用分析

聚氨酯保温材料在建筑节能中的应用分析 发表时间:2018-12-19T10:56:50.517Z 来源:《防护工程》2018年第26期作者:朱益池 [导读] 基于此,本文分析了建筑节能墙体聚氨酯保温材料的性能及应用。 江苏永勤工程管理有限公司江苏淮安 223001 摘要:随着社会的不断进步以及建筑行业的飞速发展,国家对于建筑节能的要求越来越高。新材料可以在建筑的各个环节得到体现,对降低建筑的能耗有积极作用。所以对于建筑材料来说,要求也越来越高。多种建筑节能及保温材料应运而生,基于此,本文分析了建筑节能墙体聚氨酯保温材料的性能及应用。 关键词:建筑节能;节能;聚氨酯;保温 前言:减少建筑过程中的能源消耗对提升建筑效益有极大的帮助,为了响应国家节能减排的号召,保温材料在当前建筑墙体中已得到了广泛应用。聚氨酯化学稳定性较高,耐酸、耐碱、耐热、不含氟里昂,对环境不造成危害,是一种新型的良好的保温绝热材料。随着建筑节能标准的提高和社会节能意识的提高,硬泡聚氨酯外墙及屋面保温在各类建筑中得到越来越广泛的应用。 1、建筑节能技术中保温材料应用 建筑的节约能源是一个配套的体系,不是单一的,从建筑材料的选择到建筑的设计规划,到建筑的技术水平、建筑的管理、建筑使用的设备和型号,到建筑物在建筑过程中利用的自然环境资源,到装修的各种设施的能源消耗,这些步骤都是相互协调紧密相连的。保温材料的应用能够促使人们的生活与工作环境得到很好的改善,促使室内舒适度增高,各类能源得到很好的借阅。外保温墙体因蓄热性能过大,在室内受到不稳定热作用的情况下,室内空气的温度会出现明显的下降或者上升,墙体结构层可吸收或释放一定的热量,所以可保持室内温度处于一个稳定性的状态。目前我国国内在建筑节能技术中对保温材料的使用上主要是聚苯乙烯泡沫塑料板以及岩物棉板和发泡水泥等,但是因为我国幅员辽阔,不同地区其气候因素以及地理位置等都会给保温材料提出不同的需求,这样就导致不同地区的建筑设计师需要根据当地具体情况来进行量身设计。所以在不同地区对不同保温材料的使用都提出了不同的要求。目前建筑工程上用的比较多的是以下几种保温系统(1)EPS(XPS)板薄抹面外保温系统,(2)胶粉EPS颗粒保温浆料外保温系统,(3)EPS钢丝网架板现浇混凝土外保温系统、(4)聚氨酯硬泡外保温系统。在建筑中除了要做好建筑的保温、隔热、能源的低利用,更应该重视节约能源技术在建筑整体性和系统化的应用。应该把居住范围的划分和建筑的设计以及选择的材料和日常的养护等环节相结合,整体系统的考虑节约能源技术的应用。 2、聚氨酯硬泡体保温材料 硬泡聚氨酯(PUR)材料是一种将保温和防水功能结合于一体的新型合成高分子材料,它具有导热系数低,与基面粘结性好等优点。它主要由多元醇与异氰酸酯两种组份液体原料组成,采用无氟发泡技术,在一定状态下发生热反应,产生闭孔率不低于95%的硬泡体化合物———聚氨酯硬泡体。聚氨酯硬泡体保温材料是一种有保温隔热和一定防水功能的新型合成高分子材料。是由硬质聚醚、助剂与多异氰酸酯进行交联反应发泡而制备的。具有较低的水蒸气渗透系数和很好的不透水性。主要性能包括:(1)粘结力好;(2)保温节能性好;(3)防水性能好;(4)尺寸稳定性能好;(5)各项物理强度极好;(6)阻燃性好;(7)耐撞击性能好;(8)对主体结构变形适应能力强,抗裂性能好;(9)耐久性能好,抗冻融,吸引性好;(10)操作方便,一次成型,施工周期短;材料固化速度快,不受外部环境影响;(11)环保性能好;(12)无毒性,无刺激性及无生物寄生性;(13)有很好的流动性。 聚氨酯硬泡是目前所有保温材料中导热系数最低的材料,具有良好的保温隔热性能。聚氨酯硬泡材料可以在施工现场发泡喷涂,形成无缝保温兼防水层,无冷桥现象,且会与墙体表面粘结牢固,适用于多高层建筑和风较大地区。同时聚氨酯硬泡材料还具有荷重轻、耐久性好等优势。聚氨酯建筑外保温材料最高防火安全性能等级为B1级,也就是难燃级。 3、喷涂硬泡聚氨酯施工技术应用 PUR 材料非常适用于屋面保温工程,它既能起到防水作用,也能起到保温效果,而且强度高、重量轻、能防止屋顶结露、防水保温效果优异。各种复杂形状的屋面均可以使用 PUR材料,并且不会对原有屋面保护层造成破坏,因此应用前景十分广泛。 喷涂硬泡聚氨酯是由一定比例的黑料(异氰酸酯)和白料(多元醇及发泡剂、催化剂、阻燃剂等)通过喷枪混合后,直接喷涂于基层表面、迅速发泡成型后形成的具有防水和保温隔热功能的泡沫塑料。施工时先将两组份原料注入不同料筒,调试比例泵至施工要求比例,同时对计量泵的流量进行校准,然后两种组份通过移动式高压喷射设备的作用经过泵沿加热的高压管道进入到喷枪中,在枪头内进行充分的混合,最后即可以对任何形状的表面进行喷涂,生成PUR,产生一层防水性能好、没有接缝的硬泡聚氨酯壳体。 喷涂硬泡聚氨酯是在现场用专用的喷涂设备直接喷涂到基层上发泡成型的。由于聚氨酯本身与基层具有极强的粘结能力,因此不需要额外固定,从而加快了施工速度。据测算,1 台机器 1 天的理论喷涂面积在屋面上可以达到 800m2~1000m2,在墙面上也能达到 400m2~600m2,这是依靠粘结剂和固定件固定的板材类保温材料无法实现的。因此,应用喷涂硬泡聚氨酯的节能改造方案施工周期短,可以大大减少对居民生活的影响基于喷涂硬泡聚氨酯的既有建筑节能改造方案针对既有建筑节能改造的特点,我们提出了基于喷涂硬泡聚氨酯的屋面节能改造方案和墙体节能改造方案。这两种方案都充分利用了喷涂硬泡聚氨酯的优点,成为既有建筑节能改造的首选方案之一。 4、聚氨酯保温板外墙外保温系统构造及施工 聚氨酯保温板外墙外保温系统,主要由粘结层、保温层、护面层和饰面层构成。1)基层墙体;2)粘结砂浆;3)聚氨酯保温板4)抹面胶浆;5)增强网;6)抹面胶浆;7)饰面层聚氨酯保温板外墙外保温系统采用粘贴和锚固相结合的固定方式,分为涂料饰面(缩写为C 型)面砖饰面(缩写为T型)两种类型,此保温系统集合了高保温性、防水性、易施工性、安全性于一体,是一种新型建筑外墙外保温系统。聚氨酯保温板产品结构为两面覆有柔性耐碱防水衬布的易粘贴,中间为聚氨酯硬泡的保温板,3层复合体系可以不需要外加胶粘剂,在自动化连续生产线上生产。由于具有易粘贴的界面,保温板通过粘结砂浆与基层牢固结合,也可以与抹面胶浆牢固结合。聚氨酯保温板具有导热系数低、机械强度好、在发泡过程中自粘结强度高等特点,是一种新型建筑外墙外保温材料。 聚氨酯保温板外保温系统的外饰面层为涂料时,聚氨酯硬泡保温板由粘结砂浆(必要时增设锚栓)固定在基层墙面上(粘结面积应大

聚氨酯硬泡配方设计说明书

组合料配比之设计、计算、试验、试料 1 关于计算 硬泡组合料里最需要计算的东西是黑白料比例(重量比)是不是合理,另一个正规的说法好像叫“异氰酸指数”合理,翻译成土话就是:“按比例混合的白料和黑料要完全反应完”。因此,白料里所有参与跟-NCO反应的东西都应该考虑在。 理论各组分消耗的-NCO摩尔量计算如下 1.1 主料 聚醚、聚酯、硅油(普通硬泡硅油都有羟值,据说是因为加了二甘醇之类的)配方数乘以各自的羟值,然后相加得数Q S1 = Q÷56100 1.2 水 水的配方量w S2 = W÷9 1.3与消耗-NCO的小分子物: 配方量为K,其分子量为M,官能度为N K ×N S3 = ————————(用了两种以上小分子的需要各自计算再相加) M

S = S1+S2+S3 基础配方所需粗MDI份量[(S×42)÷0.30 ] ×1.05 (所谓异氰酸指数1.0) 其实以上计算只是一个最基本的消耗量,由于黑白料反应过程复杂,实际-NCO消耗量肯定不止这个数,比如有三聚催化剂的情况下到底额外消耗了多少-NCO,这个没人说得清楚。另外,聚醚里有水分,偏高0.1%就好严重的;聚醚羟值也是看人家宣传单的,我见过有聚醚羟值围跨度90mgKOH/g,那个计算数出来后只能参考,不能认真! 2 试验设计之“冰箱、冷柜”类 2.1 本组合料体系重要要求及说明 2.1.1 流动性要好,密度分布“尽量”均匀 首先要考虑粘度,只有体系粘度小了,初期流动性才会好(主份平均粘度6000mPa.S以下,组合料350mPa.S以下),其次体系中的钾、钠杂离子要控制在一个低限(20ppm以),从而可控制避免三聚反应提前,即:体系粘度过早变大。如果流动性欠佳,发泡料行进至注料口远端就会出现拉丝痕致使泡孔结构橄榄球化,这个位置一定抗不住低温收缩。 2.1.2 泡孔细密,导热系数要低 不难理解泡孔细密是导热系数低的第一前提,此时首先考虑加有403或某些芳香胺醚进入体系(它们所起的作用是首先与-NCO反应,其生成物与其它组份互溶、乳化稳定性提升,并保证发泡体系初期成核稳定,也就是避免迸泡,从而

聚氨酯硬泡外墙外保温体系

聚氨酯硬泡外墙外保温体系《硬质聚氨酯泡沫塑料》在建筑外墙外保温系统的优势随着国内建筑市场的蓬勃发展,建筑外墙保温正在全国范围内全面展开,在国家节能政策引导下,各地相继出台了建筑节能的地方法规,促进了外墙保温技术在全国的推广应用。在我国目前外墙外保温系统大体有以下几种较为成熟的形式: 1.聚苯板薄抹灰(EPS)保温体系 2.胶粉聚苯颗粒保温体系 3.挤塑聚苯板(XPS)保温体系 4.聚氨酯(PUF)保温体系。 一.硬质聚氨酯泡沫塑料外墙保温系统及特性(PUF-1) 聚氨酯是一种性能优良的高分子热固型保温耐热合成材料,为目前市场保温效果最好的保温材料,导热系数低,保温效果好,施工便捷,其在建筑节能应用方面具有以下主要特征: (一)聚氨酯外墙外保温体系的特征 1、较低的导热系数(0.019~0.027),在所有有机保温材料中是最低的(20mm厚的聚氨酯硬泡相当于50mm苯板),由于采用现场

喷涂施工,能形成连续保温层,即使节点等复杂部位也不会有冷桥产生。 2、独特的施工方法,液体喷涂于基体,可进入基层孔隙中发泡,堵塞缝隙,起到封闭孔隙的作用,形成连续无接缝保温层,从而很好的避免冷热桥现象。 3、聚氨酯本身是一种胶粘剂,故其具有很好的粘接性,它可以实现与墙体等建筑结构材料形成很好的粘结效果,整体性很强。即使在最不利的温度和湿度下,承受风力、自重以及正常碰撞等各种内外力相结合的负载,保温层仍不与基层分离、脱落。 4、聚氨酯硬泡具有良好的防火耐温性能,是一种比较安全的保温材料,通过调整方,可以满足国内及国际上对建筑保温材料较高的防火要求,并且能用于较高的温度环境下做保温材料,因为pu材料可以长期经受从40℃~90℃的考验,改性异氰脲酸酯泡沫材料能在120℃~150℃的高温条件下长期使用。虽然聚氨酯硬泡是聚合物,但它是热固性材料,在燃烧中呈惰性,不会产生熔融的燃烧性火焰滴落物,而只形成一个焦化的保护层,它阻止氧气进入体保温层内部,有效抑制了熔融导致火焰蔓延的危险,因而不会引起芯材的直接燃烧,能够保证建筑的完整性。同EPS、XPS泡沫保温系统相比,由于EPS/XPS泡沫是热塑材料,着火时先软化变型,然后伴随燃烧发生熔化收缩,并会有非常灼热的液体滴落或流下,使火势进一步蔓延,加重火灾的灾情,燃烧到一定程度,整个保温结构系统坍塌。

硬泡聚氨酯保温板施工工艺

一、材料具体性能说明: 参见表1:BTW热固型绝热保温板外保温系统相关性能指标 表2:BTW热固型绝热保温板相关性能指标 表3:BTW热固型绝热保温板(燃烧A级)相关性能指标 序号检验项目标准要求检验结果单项结论 1 耐候性表面无裂纹、粉化、剥落现象表面无裂纹、粉化、剥落现象符合 2 抗风压值 不小于工程项目的风荷载设计 值 6.0kpa未破坏—— 3 耐冻融性能 (30次冻融循环)保护层无空鼓、脱落、无渗水裂 缝;保护层与保温层的拉伸粘结 强度不小于0.1kPa,破坏部位 应位于保温层 保护层无空鼓、脱落、无渗水 裂缝;保护层与保温层的拉伸 粘结强度为0.13Mpa,保温层 破坏 合格 4 抗冲击性 普通型≥3.0J 3.0J冲击未破坏合格 加强型≥10.0J 10.0J冲击未破坏合格 5 吸水量 (1h)有饰面层≤1000g/m2 182g/m2 合格无饰面层≤1000g/m2 384g/m2 合格 6 热阻(保温层60mm厚)符合设计要求 2.54m2·K/W ____ 7 抹面层不透水性2h不透水2h不透水符合 8 水蒸气湿流密度≥0.85g/(m2·h) 2.87g/(m2·h) 合格 备注:热阻中不含基础墙体热阻、外表面换热阻、内表面换热组。 表2:BTW热固型绝热保温板相关性能指标 序号检验项目标准要求检验结果单项结论 1 密度≥35kg/m335.8 kg/m3合格 2 导热系数≤0.024W/(m·K)0.023W/(m·K)合格 3 压缩强度(形变10%)≥0.15Mpa 0.17 Mpa 合格 4 尺寸稳定率(70℃,48h)≤1.5% 1.2% 合格 5 拉伸粘接强度(与水泥砂浆,常 温)≥0.10Mpa并且破坏部位不得位 于粘接界面 0.15Mpa聚氨酯破坏合格 6 吸水率≤3% 2% 合格

聚氨酯计算公式中有关术语及计算方法

PU 资料 聚氨酯计算公式中有关术语及计算方法 1. 官能度 官能度是指有机化合物结构中反映出特殊性质(即反应活性)的原子团数目。对聚醚或聚酯多元醇来说,官能度为起始剂含活泼氢的原子数。 2. 羟值 在聚酯或聚醚多元醇的产品规格中,通常会提供产品的羟值数据。 从分析角度来说,羟值的定义为:一克样品中的羟值所相当的氢氧化钾的毫克数。 在我们进行化学计算时,一定要注意,计算公式中的羟值系指校正羟值,即 羟值校正 = 羟值分析测得数据 + 酸值 羟值校正 = 羟值分析测得数据 - 碱值 对聚醚来说,因酸值通常很小,故羟值是否校正对化学计算没有什么影响。 但对聚酯多元醇则影响较大,因聚酯多元醇一般酸值较高,在计算时,务必采用校正羟值。 严格来说,计算聚酯羟值时,连聚酯中的水份也应考虑在内。 例,聚酯多元醇测得羟值为,水份含量%,酸值12,求聚酯羟值 羟值校正 = + + = 3. 羟基含量的重量百分率 在配方计算时,有时不提供羟值,只给定羟基含量的重量百分率,以OH%表示。 羟值 = 羟基含量的重量百分率×33 例,聚酯多元醇的OH%为5,求羟值 羟值 = OH% × 33 = 5 × 33 = 165 4. 分子量 分子量是指单质或化合物分子的相对重量,它等于分子中各原子的原子量总和。 (为氢氧化钾的分子量) 羟值 官能度分子量1000 1.56??=

例,聚氧化丙烯甘油醚羟值为50,求其分子量。 对简单化合物来说,分子量为分子中各原子量总和。 如二乙醇胺,其结构式如下: CH 2CH 2OH HN < CH 2CH 2OH 分子式中,N 原子量为14,C 原子量为12,O 原子量为16,H 原子量为1,则二乙醇胺分子量为:14+4×12+2×16+11×1=105 5. 异氰酸基百分含量 异氰酸基百分含量通常以NCO%表示,对纯TDI 、MDI 来说,可通过分子式算出。 式中42为NCO 的分子量 对预聚体及各种改性TDI 、MDI ,则是通过化学分析方法测得。 有时异氰酸基含量也用胺当量表示,胺当量的定义为:在生成相应的脲时,1克分子胺消耗的异氰酸酯的克数。 胺当量和异氰酸酯百分含量的关系是: 6. 当量值和当量数 当量值是指每一个化合物分子中单位官能度所相应的分子量。 如聚氧化丙烯甘油醚的数均分子量为3000,则其当量值 在聚醚或聚酯产品规格中,羟值是厂方提供的指标,因此,以羟值的数据直接计算当量值比较方便。 7. 异氰酸酯指数 3366 50 1000 31.56=??= 分子量%48174 2 42%=?=NCO TDI 的%6.33250 2 42%=?= NCO MDI 的官能度 数均分子量当量值=

聚氨酯硬泡与建筑节能

聚氨酯硬泡与建筑节能聚氨酯硬质 泡沫是目前所有的墙体保温材料中保温性能最好的隔热产品,也是世界上最具前瞻性的保温材料。建设部科技司已成立了聚氨酯建筑节约应用推广工作组,并于2006年10月10日在北京召开了“聚氨酯墙体节能应用技术国际交流会”。会议一致认为聚氨酯材料是目前国际上性能最好的保温材料,具有质量轻、保温、防潮、隔音、耐热、防震、耐腐蚀、容易与其他材料粘结、燃烧不产生熔滴等优异性能。目前,聚氨酯硬泡在我国主要应用在供热、制冷、造船、石油、化工、汽车、交通运输等行业,用在建筑墙体保温的份额还不足10%,欧美等发达国家在建筑保温材料中约49%为聚氨酯材料。随着国内建筑节能标准的进一步完善,围绕保温节能领域而开展一系列研究的机构和企业也逐步增加,硬质聚氨酯类产品将在建筑领域“大展宏图”。 聚氨酯轮胎聚氨酯弹性体一种既具有塑料的高硬度,又具有橡胶高弹性的高分子合成材料。基于优异的力学性能,从20 世纪60 年代开始就进行了聚氨酯弹性体在轮胎中的应用研究。特别是浇注型聚氨酯弹性体是目前最耐磨的弹性体,具有可着色、高耐切割性、吸振、减震、负重容量非常大以及优良的耐油及耐化学品等优点,而且对人体无毒害作用,又能完全生物降解,还不必添加炭黑和芳烃油,是制造轮胎胎面的理想材料。聚氨酯轮胎采用浇注工艺制造,其结构和目前生产的轮胎有很大区别。全聚氨酯充气轮胎是由胎体、带束层和胎面3 部分构成。部分聚氨酯充气轮胎有两种形式:一种是胎体为浇注的聚氨酯,而胎面则为制造普通轮胎用的橡胶;另一种是胎体为子午线胎体,而胎面则是聚氨酯。聚氨酯充气轮胎与普通钢丝子午线轮胎相比具有下列优点: (1) 耗油量平均低10%; (2)胎面磨耗低51%; (3) 重量轻30%; (4) 滚动阻力低35%以上;(5)均匀性更好,且不会出现胎面剥离现象。 PU轮胎有全PU轮(PP型)及橡胶外胎PU内胎(RP型)两种,适用各种电动助行车、轮椅、儿童手推车等等。产品优点︰吸震力佳、耐摩擦、不怕铁钉、不会泄气、不用补胎安全、省钱。但目前聚氨酯轮胎研究中仍然存在一些要解决的问题,即提高聚氨酯轮胎的牵引制动性能、提高耐水解性能、载重汽车轮胎的多次注射成型工艺等。在开发聚氨酯轮胎过程中,耐高温性能是影响聚氨酯轮胎实用化的主要因素。 废旧聚氨酯回收环境保护是崛起中的聚氨酯工业面临的又一重大问题。随着聚氨酯材料在国民经济中的用途越来越广,用量越来越大,其废弃物的回收再利用也日益受到人们的重视。废旧聚氨酯主要包括生产厂的边角废料、模具溢出料,报废汽车、冰箱中的聚氨酯泡沫及弹性体,废旧鞋底和废旧PU革、氨纶旧衣物等。当前聚氨酯的回收利用主要有三种方法:物理法、化学法、能源法。 对废旧聚氨酯制品的回收利用,欧盟率先出台了电器产品废旧塑料回收的法律法规,原则是谁生产谁回收;我国也应该加快聚氨酯制品尤其是泡沫制品的回收利用。聚氨酯的回收利用无疑对环境保护和资源利用是有利的,但是主要问题还在于回收废聚氨酯是否有经济效益。由于聚氨酯的用量较大,而近期原料价格居高不下,其废弃物回收市场前景看好,但以前使用的回收方法经济性普遍不强,未能广泛推广,因此,开发一种经济可行的回收方法已经成为业界研究的热点。(文章来源环球聚氨酯网) 聚氨酯仿木聚氨酯仿木材料是通过注塑机向模具注射聚氨酯组合料,待凝固定形后取出进行后期涂装工艺等加工。聚氨酯产品具有密度小、质量轻、尺寸稳定性好、不易变形等特性,可配合内埋木棒及铁条来做家具的结构性支撑部件。聚氨酯仿木材料利用模型的方法模制出各种复杂的结构及雕刻图案,可刨、可钉、可锯,有“合成木材”的美称。当然,除了良好的模塑性能外,聚氨酯仿木家具相对于传统木质家具来说,其价格更具优势,并且随着天然木材的紧缺,环保意识的增加,聚氨酯仿木家具在欧美等发达地区越来越受到欢迎。目前,在国内生产PU仿木家具的企业比较少,其中稍具规模的就更少,大部分都集中在华东华南沿海地区,并且他们生产的产品全部用于出口,所以聚氨酯仿木家具在国内市场具有巨大的发展空间。 03~04年国内从事聚氨酯仿木家具生产的厂家他们产品的出口量并不多,但随着05年以后,原料价格的逐步走低,这些厂家的海外订单也逐渐增加,每个厂家都满负荷开工,有些甚至开始扩产。据粗算,05年仿木硬泡的使用量达到了2万吨。按照目前的国际形势来看,PU仿木家具未来几年在国内的发展速度将会逐步加快。 喷涂聚脲弹性体喷涂聚脲弹性体(Spray Polyurea Elastomer,简称SPUA)技术是国外近十年来,继高固

聚氨酯保温板防火性能简介

聚氨酯泡沫塑料(PU)的防火等级认定 1.按《建筑材料燃烧性能分级方法》(GB8624-1997)标准,聚氨酯达到B2级要求,添加特殊阻燃剂后可以到达B1级。某些指标达到A级 2 GB8624-1997指标 不燃类材料(A级) 1 A级匀质材料 按GB/T5464进行测试,其燃烧性能应达到 a)炉内平均温升不超过50℃; b)试样平均持续燃烧时间不超过20s; c)试样平均质量损失率不超过50%。 2 A级复合(夹芯)材料 达到下述各项要求的材料,其燃烧性能定为A。 a)按GB/T 8625进行测试,每组试件的平均剩余长度≥35 cm(其中任一试件的剩余长度>20cm),且每次测试的平均烟气温度峰值≤125℃,试件背面无任何燃烧现象, b)按GB/T 8627进行测试,其烟密度等级(SDR)≤15, c)按GB/T 14402和GB/T 14403进行测试.其材料热值≤4.2 MJ/kg,且试件单位面积的热释放量≤16.8MJ/m^2; d)材料燃烧烟气毒性的全不致死浓度LCo≥25mg/L. 可燃类材料(B级) 1 Bl级材料 达到下述各项要求的材料,其燃烧性能定为B1级. a)按GB/T 8626进行测试,其燃烧性能应达到GB/T 8626所规定的指标且不允许有燃烧滴落物引燃滤纸的现象; b)按GB/T 8625进行测试,每组试件的平均剩余长度≥15cm(其中任一试件的剩余长度>0cm),且每次测试的平均烟气温度峰值≤200℃。 c)按GB/T 8627进行测试,其烟密度等级(SDR)≤75. 2 B2级材料 按GB/T 8626进行测试燃滤纸的现象。其燃烧性能应达到GB/T 8626所规定的指标,且不允许有燃烧滴落物引燃滤纸的现象。 3其他标准 1)1997年颁布的国家标准《建筑材料燃烧性能分级方法》GB8624-1997,其 B1等级PU材料指标,氧指数必须大于32; 2)2006年颁布的国家标准《建筑设计防火规范》GB50016-2006,提出PU复合 风管材料指标是烟密度SDR≤25。 硬泡聚氨酯材料燃烧性能的改善 聚氨酯泡沫无论软硬,都具有很大的着火危险性,且一旦着火就会迅速蔓延、火热浓烈,产生大量有毒烟雾,且极易形成立体燃烧,严重影响人员的疏散和消防队员的灭火救人行动。最初,考虑以自熄性和氧指数作为评价材料燃烧难易程

聚氨酯硬泡沫配方及计算

聚氨酯硬泡配方及计算方法 一、硬泡组合料里最需要计算的东西是黑白料比例(重量比)是不是合理,另一个正规的说法好像叫“异氰酸指数”是否合理,翻译成土话就是“按重量比例混合的白料和黑料要完全反应完”。因此,白料里所有参与跟-NCO反应的东西都应该考虑在内。理论各组分消耗的-NCO 摩尔量计算如下 ㈠主料:聚醚、聚酯、硅油(普通硬泡硅油都有羟值,因为加了二甘醇之类的稀释,部分泡沫稳定剂型硅油还含有氨基)配方数乘以各自的羟值,然后相加得数Q,S1 = Q÷56100 ㈡水:水的配方量W S2 = W÷9 ㈢参与消耗-NCO的小分子物:配方量为K,其分子量为M,官能度为N S3 =K× N/M(用了两种以上小分子的需要各自计算再相加) S = S1+S2+S3 基础配方所需粗MDI份量[(S×42)÷0.30 ] ×1.05 (所谓异氰酸指数1.05) 其实以上计算只是一个最基本的消耗量,由于黑白料反应过程复杂,实际-NCO消耗量肯定不止这个数,比如有三聚催化剂的情况,到底额外消耗了多少-NCO,这个没人说得清楚。另外,聚醚里有水分,偏高0.1%就很严重;聚醚羟值也是看人家宣传单的,我见过有聚醚羟值范围跨度90mgKOH/g,那个计算数出来后只能参考,不能认真! [试验设计]之“冰箱、冷柜”类 本组合料体系重要要求及说明 1、流动性要好,密度分布“尽量”均匀。首先要考虑粘度,只有体系粘度小了,初期流动性才会好(主份平均粘度6000mPa.S以下,组合料350mPa.S以下),其次体系中的钾、钠杂离子要控制在一个低限(20ppm以内),从而可控制避免三聚反应提前,即:体系粘度过早变大。如果流动性欠佳,发泡料行进至注料口远端就会出现拉丝痕致使泡孔结构橄榄球化,这个位置一定抗不住低温收缩。 2、泡孔细密,导热系数要低。不难理解泡孔细密是导热系数低的第一前提,此时首先考虑加有403或某些芳香胺醚进入体系(它们所起的作用是首先与-NCO反应,其生成物与其它组份互溶、乳化稳定性提升,并保证发泡体系初期成核稳定,也就是避免迸泡,从而使泡孔细密)其次聚醚本身单独发泡其泡孔结构要好(例如以山梨醇为起始的635SA比蔗糖为起始的1050泡孔要细密均匀得多,还有含有甘油为起始剂的835比1050细密,即便是所谓的4110牌号的聚醚,含丙二醇起始的比二甘醇的好。聚醚生产的聚合催化剂不同,所生产出的聚醚性状也有差异:氢氧化钾催化的聚醚分子量分布比二甲胺催化的要窄。另外:聚醚生产时的工艺控制-----温控、抽真空、PO--也就是环氧丙烷流量控制、PO原料质量、后处理等等-----也都会直接影响聚醚发泡的泡孔结构)第三,可以考虑加入一些可以改善泡孔细密度的聚酯成份。第四,适当加入低粘度物调整总体粘度(如210聚醚) 3、耐低温抗收缩性要好。这个无须赘言。一是官能度,总体平均要4以上。其次是发泡体成型后空间交联点分布均匀(直观解释是:主聚醚反应活性尽量相差不大,连续的近似的空间结构要稳定得多。) 4、粘结性好。所谓粘结性表面上是指泡沫体与冰箱、冷柜外壳和内胆之间的粘合,其实是指泡体柔韧性,以及抗收缩性,(水份用量、降低总体羟值,添加柔性结构成分,如210、330N 之类都可以改进泡沫对壳体的粘附性) 5、成本较低。目前冰箱、冷柜行业竞争白热化,性能极佳价格昂贵的组合料没人用的起,所以我们必须为成本考虑(比如芳香聚酯价位要比聚醚的低,可以加一些。) 6、安全性。这是对环戊烷体系的特别要求(至少环戊烷不象F11那样想加多少就加多少,不难理解加多环戊烷的更具有安全隐患)

浅谈聚氨酯硬泡材料在建筑上的应用

浅谈聚氨酯硬泡材料在建筑上的应用 摘要:聚氨酯硬泡是上世纪开始在欧洲的建筑市场出现,并迅速成为建筑业保温和防水的重要材料,随着我国建筑业的不断发展,节能市场的迅速扩大,聚氨酯硬泡材料的应用正成为建筑企业现代化的一种重要标志。本文在聚氨酯硬泡材料保温和防水施工的实际工作基础上,说明了聚氨酯硬泡材料的性质,提出了建筑业应用聚氨酯硬泡材料的要点,希望为聚氨酯硬泡材料的推广工作,对建筑行业节能工作起到先期探索的作用。 关键词:聚氨酯硬泡材料;性能;建筑施工;要点 Abstract: the rigid polyurethane foam is the last century began to appear in the European construction market, and rapidly become construction insulation and waterproof important materials, along with the continuous development of construction industry, energy saving market expanded rapidly, the rigid polyurethane foams application of materials as a construction enterprise is one of the important marks modernization. Based on the rigid polyurethane foam insulation materials and waterproof construction based on the actual work, and explains the rigid polyurethane foam material properties, and put forward the construction application the rigid polyurethane foam material, the main points of hope for the rigid polyurethane foam material of promotion, the architecture industry energy conservation work first play the role of exploration. Key words: the rigid polyurethane foam materials; Performance; Building construction; points 前言 聚氨酯硬泡是指由硬泡聚醚多元醇与异氰酸酯发生聚合反应制备的一种高分子有机材料,其中硬泡聚醚多元醇俗称白料,异氰酸酯俗称称黑料,聚氨酯硬泡材料的出现打破了传统建材功能单一的问题,成为多功能的新材料。聚氨酯硬泡材料有防水和保温的性能,在工业中应用在制冷、保温、太阳能和防水等领域。随着时代的发展,聚氨酯硬泡材料是目前建筑业保温和防水应用材料的发展趋势,因此,有必要对聚氨酯硬泡材料在建筑施工上的应用采取高度重视的态度,力争通过聚氨酯硬泡材料的应用工作推进建筑企业的科技和管理水平。 1聚氨酯硬泡体的性能 1.1聚氨酯硬泡材料的物理性能。首先,聚氨酯硬泡材料由于中间存在众多细孔、细腔和小空洞,这使得聚氨酯硬泡材料具有保温、防水、隔音和吸震的

相关文档
相关文档 最新文档