文档库 最新最全的文档下载
当前位置:文档库 › 所谓小尺度

所谓小尺度

所谓小尺度
所谓小尺度

所谓小尺度,是描述短距离(几个波长)或短时间(秒级)内接收信号强度快速变化的。

移动无线信道的主要特征是多径(传播过程中会遇到很多建筑物,树木以及起伏的地形,会引起能量的吸收和穿透以及电波的反射,散射及绕射等,这样,移动信道是充满了反射波的传播环境)。到达移动台天线的信号不是单一路径来的,而是许多路径来的众多反射波的合成。

这些多径使得接收信号的幅度急剧变化(由于电波通过各个路径的距离不同,各路径来的反射波到达时间不同,相位也就不同。不同相位的多个信号在接收端迭加,有时同相迭加而加强,有时反向迭加而减弱。使得接收信号的幅度急剧变化),也就是产生了多径衰落。

移动多径信道的三组色散参数——时间色散参数(时延扩展,相关带宽)、频率色散参数(多普勒扩展,相关时间)、角度色散参数(角度扩展,相关距离)。

移动信道的多径环境所引起的信号多径衰落,可以从时间和空间两个方面来描述和测试。 (1)从空间角度来看(模拟移动系统主要考虑多径效应所引起的接收信号幅度的变化)

沿移动台移动方向,接收信号幅度随着距离变动而衰减。本地反射物所引起的多径效应呈现较快的幅度变化,其局部均值为随距离增加而起伏的下降的曲线,反映了地形起伏所引起的衰落以及空间扩散损耗。

(2)从时域角度来看(数字移动系统主要考虑多径效应所引起的脉冲信号的时延扩展)

各个路径的长度不同,因而信号到达的时间就不同。这样,如从基站发送一个脉冲信号,则接收信号中不仅包含该脉冲,而且还包含它的各个时延信号。这种由于多径效应引起的接收信号中脉冲的宽度扩展的现象,称为时延扩展。扩展的时间可以用第一个到达的信号至最后一个到达的信号之间的时间来测量。

当移动台以恒定速率ν在长度为d ,端点为X 和Y 的路径上运动时收到来自远源S 发出的信号。

d

v

多普勒频移示意图

无线电波从源S 出发,在X 点与Y 点分别被移动台接收时所走的路径差为i i i t v d x θ?θ?cos cos ==。这里t ?是移动台从X 运动到Y 所需时间,i θ是X 和Y 处与入射角的夹角。由于源端距离很远,可假设X 、Y 处的i θ是相同的。所以,由路程差造成的接收信号相位变化值为:

i t

v l

θλ

???cos π2π2=

=

由此可得出频率变化值,即多普勒频移d f 为:

i d v

t f θλ

???cos π21==

上式中,

λv

与入射角无关,是d f 的最大值。λ

v f m =称为最大多普勒频移。 因此,多普勒频移与移动台运动速度、及移动台运动方向与无线电波入射方向之间的夹角有关。若移动台朝向入射波方向运动,则多普勒频移为正(即接收频率上升);若移动台背向入射波方向运动,则多普勒频移为负(即接收频率下降)。信号经不同方向传播,其多径分量造成接收机信号的多普勒扩散,因而增加了信号带宽。

由于移动通信信道的多径、移动台的运动和不同的散射环境,使得移动信道在时间上、频率上和角度上造成了色散。这里,功率延迟分布(PDP ,Power-Delay-Profile )用于描述信道在时间上的色散;多普勒功率谱(DPSD ,Doppler-Power-Spectral-Density )用于描述信道在频率上的色散;角度功率谱(PAS ,Power-Azimuth-Spectrum )用于描述信道在角度上的色散。

因此,信号经过信道后分别形成了频率选择性衰落、时间选择性衰落和空间选择性衰落,也分别产生了时延扩展、多普勒扩展和角度扩展,这三种扩展分别对应三组相关参数——相关带宽、相关时间和相关距离。

(a) PDP (b) DPSD (c) PAS

这三组扩展特性和相关特性同时存在,且互不排斥,都可用包络相关函数来确定。 包络相关函数定义为:

()[

][

]

2

2

2

22

1

2

12121,,r r r r r r r r z t f ---=

???ρ

式中,?表示取集平均。1r 表示在频率1f 、时间1t 、空间位置1z 处的接收信号包络。同理,2r 表示在频率2f 、时间2t 、空间位置2z 处的接收信号包络。21f f f -=?,21t t t -=?,21z z z -=?。一般情况下,时延扩展为0.5-20ms ,多普勒扩展为5-100Hz ,角度扩展为?-3600。下面将分别讨论这三种特性。

时间色散参数(频率选择性)

时间色散和频率选择性都是由于不同时延的多径信号叠加所产生的效果,依赖于发射机、接收机和周围的物理环境之间的几何关系。这两种效应是同时出现的,只是表现的形式不同,时间色散体现在时域,频率选择性体现在频域。

(1)时间色散就是把发送端的一个信号沿时间轴展开,使接收信号的持续时间比这个信号发送时的持续时间增长(时延扩展,见课本26页)。

图2.11路径的功率随时延增加而减小,呈负指数规律。

在数字传输中,由于时延扩展,接收信号中一个码元的波形会扩展到其他码元周期中,引起码间串扰。为了避免码间串扰,应使码元周期大于多径引起的时延扩展(使码元速率低,信号带宽小)。

(2)频率选择性是指对发送的信号进行滤波,对信号中的不同频率的分量衰落幅度不一样;在频率上很接近的分量它们的衰落也很接近,而在频率上相隔很远的分量它们的衰落相差很大。

如果发送信号的带宽足够窄,那么发送信号的所有频率分量几乎经历相同的衰落,信号在传输的过程中将不会产生失真,引起非频率选择性衰落(平坦衰落)。

当发送信号的带宽继续增加的时候,发送信号频谱中的边缘频率分量将会逐渐产生失真。这样信道就对信号产生了滤波作用,也就是对不同频率的分量衰减系数不同,形成频率选择性衰落;当信号的带宽继续增大的时候,则频率选择性衰落将会变得更加严重。发送信号的带宽非常大的时候,接收机会收到明显的发送信号的波形的不同样本。

在这种情况下,接收机会受到时间色散的影响。在数字通信中,这种影响会产生码间干扰(ISI )。

两径模型的分析(书上27~28页)

时延(us )

功率

功率

频率(Hz )角度(度)

功率

相关带宽c B 表示包络相关度为某一特定值时的信号带宽。也就是说,当两个频率分量的频率相隔小于相关带宽B c 时,它们具有很强的幅度相关性;反之,当两个频率分量的频率相隔大于相关带宽B c 时,它们幅度相关性很小。

时延扩展是由反射及散射传播路径引起的现象,而相关带宽B c 是从rms 时延扩展得出的一个确定关系值。

当功率延迟分布服从指数分布时,可以得到两个频率相差f ?,时间相隔t ?,空间间隔0=?z 的信号的包络相关函数为

2

220)

()π2(1)

π2()0,,(t f t f J t f m τσρ?+?=?? 这里)(0?J 代表第一类零阶贝塞尔函数,λ/v f m =是在移动速度为v ,光速为c 的情况下的最大多普勒频移。

τσ是信道的rms 时延扩展。

为了观察到两个信号之间的频率差增加时的相关性的变化,我们上式的t ?置为0,则频率相关函数为

2

2)2(11

)0,0,(τ

σπρf f ?+=

?

下图描述了信号包络的相关性与两个信号之间的频率间隔之间的关系,从图中我们可以看出频率的间隔越大,则信号包络之间的相关性越小。

)

0,(f ?ρf

1

σ

21

信号包络相关性与频率间隔的关系图

当相关带宽c B 定义为包络相关系数为0.5时,即

5.0)0,0,(=c B ρ

所以可以得到相关带宽c B 的表达式

τ

σπ21

=

c B

(结论见书上29页上面)

频率色散参数(时间选择性)

时延扩展与相关带宽是用于描述本地信道时间扩散特性的两个参数,然而它们并未提供描述信道时变特性的信息。

信道的这种时变特性由运动引起(或是由移动台与基站之间的相对运动,或是由信道路径中物体的运动),多普勒扩展和相关时间就是描述小尺度模型中信道频率色散和时变特性的两个参数。当信道是时变时,则这种信道具有时间选择性衰落。

时间选择性衰落会造成信号失真,这是由于发送信号还在传输的过程中,传输信道的特征已经发生了变化(信号的失真随着信号的持续时间的增长而增加)。

信号尾端时的信道的特性与信号前端时的信道特性已经发生了变化——如果信号持续的时间比较短,在这个比较短的持续时间内,信道的特性还没有比较显著的变化,这是时间选择性衰落并不明显;当信号的持续时间进一步增加,信道的特性在信号的持续时间内发生了比较显著的变化时就会使信号产生失真。

由于移动台的运动,出现多普勒频移现象,也就是频率色散,使得信道是时变的。 发生频率色散时所对应的最小信号持续时间与最大多普勒频率的幅度呈反比的关系。

多普勒扩展D B 是谱展宽的一个测量值,它是移动无线信道的时间变化率一种度量。当发送频率为c f 的正弦信号时,接收的信号谱即多普勒在m c f f -至m c f f +之间变化,其中m f 是最大多普勒频移。多普勒扩展D B 依赖于多普勒频移d f 和多普勒功率谱()f S ,其中d f 与移动台的相对移动速度、移动台运动方向与散射波入射方向之间夹角θ有关。

如果基带信号带宽s B 远大于D B ,则在接收机端可忽略多普勒扩展的影响,即

D s B B <<

(见课本28页上面)

相关时间是信道冲激响应保证一定相关度的时间间隔。在相关时间内,信号经历的衰落具有很大的相关性;也就是说,如果基带信号的带宽倒数大于信道相关时间,那么传输中基带信号受到的衰落就会发生变化,导致接收机解码失真。

与用相关带宽来表征信号发生明显衰落的带宽一样,这里用信道的相关时间来表征信号发生明显衰落的信号持续时间。当(6-2-10)式中0=?f 时,可得

)2()0,,0(20

t f J t m

?=?πρ

将相关时间定义为信号包络相关度为0.5时,即

5.0)0,,0(=c T ρ

可得相关时间c T 为

m

c f T π169

式中,m f 是最大多普勒频移

基于模型的多尺度间歇过程性能监控

2004年1月系统工程理论与实践第1期 文章编号:100026788(2004)0120097206 基于模型的多尺度间歇过程性能监控 郭 明,谢 磊,王树青 (浙江大学工业控制技术国家重点实验室,浙江杭州310027) 摘要: 利用神经网络对间歇过程的非线性和动态特征进行描述,神经网络的预测残差则利用多尺度主 元分析进行建模,将多尺度主元分析扩展用于间歇过程的监控Λ这一方法突破了传统多向主元分析单模 型、线性化的建模方式,是一种多模型非线性建模方法Λ它利用小波将每一残差信号分解为各个尺度上 的近似部分和细节部分,而主元分析则用于分别建立各个尺度上的统计模型Λ通过对实际工业链霉素发 酵过程数据的分析,表明文中所提出的方法与传统的多向主元分析方法相比,能够更早地发现故障,获 得更好的监控性能Λ 关键词: 间歇过程;神经网络;主元分析;小波分析;链霉素发酵 中图分类号: T P277 文献标识码: A M odel Based M u ltiscale Perfo rm ance M on ito ring fo r Batch P rocesses GU O M ing,X IE L ei,W AN G Shu2qing (N ati onal Key L ab of Indu strial Con tro l T echno logy,In stitu te of A dvanced P rocess Con tro l,Zhejiang U n iversity, H angzhou,310027,Ch ina) Abstract: Batch p rocess is one of the mo st i m po rtan t p rocesses in chem ical indu stry,and how to mon i2 to r the perfo rm ance of batch p rocesses has al w ays been one of the mo st active research areas in p rocess con tro l.In th is paper,neu ral netw o rk(NN)is u sed to describe the non linear and dynam ic behavi o r of batch p rocesses,and the p redicted residuals of NN is modeled th rough the ex ten si on of m u ltiscale p rin2 ci pal componen t analysis(M SPCA)to batch p https://www.wendangku.net/doc/8616250809.html,pared to the m u lti w ay p rinci pal componen t analysis(M PCA)w ith a linear model,the p ropo sed m ethod is a m u lti2model,non linear model2bu ilt m ethod.Each of the residuals is decompo sed in to the app rox i m ati on s and details u sing w avelet analysis, and p rinci pal componen t analysis is emp loyed to develop a statistical model at each scale.T he advan tage of p ropo sed m ethod over the traditi onalM PCA is demon strated on the indu strial strep tom ycin ferm en ta2 ti on p rocess,and the s m aller detecti on delay is also ob tained. Key words: batch p rocess;neu ral netw o rk;p rinci pal componen t analysis(PCA);w avelet analysis; strep tom ycin ferm en tati on 1 引言 计算机技术的迅速发展和先进控制理论的大量应用,生产过程中能被测量和处理的变量越来越多,同时对工艺、设备及控制系统运行的可靠性与安全性要求也越来越高Λ如何从生产过程的历史数据库中挖掘出隐藏的有用信息,从而对系统进行监控,已成为越来越迫切的需要Λ多变量统计方法由于可以从大量的数据中提取重要的系统特征,在生产过程中得到广泛研究与成功应用Λ其中,有关主元分析(P rinci p al Com ponen t A nalysis,PCA)的理论研究和应用相对较多[1,2]Λ就基于PCA的过程监控方法而言,大多数的研究是基于Ho telling T2统计量和平方预测误差SPE统计量,通过采用SPE贡献图和主元得分贡献图 收稿日期:2002212216 资助项目:国家高技术发展计划(863计划,(2001AA413110)) 作者简介:郭明(1977-),男,湖北襄樊,博士研究生,主要研究化工过程性能监控与评估,故障诊断等,Em ail:guo_ m ing2000@https://www.wendangku.net/doc/8616250809.html,

小尺度衰落产生的原因分析

小尺度衰落产生原因 可伸缩的移动模型透视和无线Ad-Hoc网络中的路由协议性能(Mobility Model Perspectives for Scalability and Routing Protocol Performances in Wireless Ad-Hoc Network) 关键字: Ad-hoc网络可伸缩性移动路由协议 1、介绍 网络的发展刺激了经济的规模。那是因为根据互联网用户或主机的数目,网络用户的花费随着网络规模的增大而减小。Ad hoc 无线网络的可伸缩性引起了许多改变,如移动ad hoc网络(MANET)包括许多能够自由任意并且涉及到动态的编队拓扑中的移动节点。从而MANET构成了一个自主移动系统。并且MANET的一些其他特征如动态拓扑、宽带约束、资源约束和受限的物理安全。从而以上所需的特性可以实现其独特的可伸缩性。 另一个设计可伸缩的ad hoc 网络的主要问题在于那些流动的可移动节点。事实上那些节点的迅速复位和移动也是其中的一个难点所在。不同的流动模型如随机的航路点等问题已经被提出来。再说流动性模型在路由器发送方案的选择上起着主要的影响,从而影响其性能

表现。同时在一些如在场部署和应急响应操作的应用中,ad hoc网络同样能扩充到成百上千的节点。从而拥要有广泛的流动性同时还缺乏有力的指导,纯ad hoc网络连入大型的伸缩节点是其设计中所面临的一个紧急挑战。 移动自组网在是实际中是多跳的。因此自组网络的可伸缩性底层的路由协议直接相关。比如说一个移动自组网络可以通过减少路由协议的开销来实现更好的伸缩性。 所以在这篇论文里面我们调查一下移动自组网的可伸缩性。自从MANET的路由协议在移动自组网的设计中起着关键作用,我们看到了那些在可伸缩条件下的协议表现的问题。也是因为流动性模型对可伸缩性有着巨大影响,我们扩展了MANET在不同的流动模型中的路由协议的表现分析。 全文的组织如下:在第二部分,我们分析了各种不同的MANET路由协议和他们的对应的性能指标。在第三部分,我们描述了不同的流动性模型。在第四部分,纳秒环境下的仿真和结果讨论。第五部分描述了相关工作的一些细节。第六部分,提交论文。 2、MANET路由协议 移动自组网路由协议被分为主动的和反应式的路由协议。主动路由协议尝试着维持最新的彼此节点间的拓扑信息。反之,在反应式路由协议中,路由只有在需要的时候才被源节点创建。我们这部分所讨论的协议是DSDV--一种主动式的协议和DSR、AODV--反应式的路由协议。

多尺度耦合理论

多尺度耦合理论

何国威、白以龙 中国科学院力学研究所,非线性力学国家重点实验室 多尺度力学是当代科学技术发展的需求和前沿。在生物科学,材料科学,化学科学和流体力学中,许多重要问题的本质都表现为多尺度,它们涉及从分子尺度到连续介质尺度上不同物理机制的耦合和关联。例如,在生物和化学科学里,在分子尺度上的不同性态产生了生物体尺度上的复杂现象;在固体破坏中,不同尺度的微损伤相互作用产生更大尺度上的裂纹导致材料破坏;在流体力学中,不同时空尺度的涡相互作用构成复杂的流动图案。这些问题的共同特点是不同尺度上物理机制的耦合和关联。只考虑单个尺度上某个物理机制,不可能描述整个系统的复杂现象。因此,多尺度力学的核心问题是多过程耦合和跨尺度关联。 多尺度力学是传统的针对多尺度问题研究的发展,但有着本质的不同。它们都研究不 能通过解耦进行求解的多尺度耦合问题。但是,传统的多尺度问题具有相似性或弱耦合,即:不同尺度上的物理过程具有相似性,因此我们可以求相似解;或者,不同尺度上的物理过程具有弱耦合,因此我们可以采用平均法求解。然而,多尺度力学的研究对象具有多样性和强耦合,即:不同尺度上的物理过程既不具有相似性,耦合也不再是弱的了。因此,传统的相 似解和平均法对多尺度力学的问题都不适用。 动力系统理论和统计力学为多尺度现象的研究提供了基本方法。在一个给定尺度上的物理过程可以用动力学方程描述,而动力学方程的建立主要依赖于经典力学和量子力学。问题的关键在于不同尺度上物理过程的相互耦合。如果可以忽略耦合,单个尺度上的物理过程完全可以由经典力学或量子力学描述,剩下的就是类似于解方程那样的认识过程,原则上并不是什么困难的事情。在平衡态统计物理里,不同尺度之间物理过程耦合的基本假设是基于等概率原理的统计平均。但是,大多数多尺度问题涉及统计力学中非平衡态的非线性演化过程,不同的尺度之间存在强耦合或敏感耦合,不能简单地采用绝热近似、统计平均以及微扰等方法处理,而必须将不同尺度耦合求解。特别是存在敏感耦合的情形,小尺度上的某些无序性细节在非线性演化过程中可能被强烈地放大,变成大尺度上的显著效应。统计力学为处理这类问题提供了一个基本出发点。一个直接的方法是从第一原理出发,利用分子动力学,计算分子尺度上的所有细节,然后求得连续介质尺度上的物理性质。但是,由于现有计算机的限制,从第一原理出发的直接法并不现实。一个比较现实的方法是寻找中间尺度进行过渡,它包括基于区域分解的准连续方法和基于粗粒化的粒子动力学法。这些构造模型的方法在不同的问题上都取得了一定程度的成功,但是,它们都不具有普适性。最新的发展是建立在齐次化方法上的非均匀齐次法,它试图给出解决跨尺度关联问题的一般框架。 现代力学中两个典型的多尺度问题是流体湍流和固体破坏,它们既有共同点,但又有 所区别:流体湍流表现为不同尺度上多个物理过程的耦合,它没有尺度分离;固体破坏表现为不同尺度上物理机制的跨尺度关联,它具有尺度分离。现详细讨论如下: (1)流体湍流: 在流体湍流里,不同尺度上的涡相互作用构成了复杂的流动图案,它们具有不同的物理机制而又相互耦合。在上个世纪,针对不同尺度上物理过程相似的问题,流体力学家发展了求相似解的方法;针对不同尺度上物理过程耦合较弱的问题,流体力学家发展了小参数摄动法。正是相似解和摄动法解决了航空航天中诸如湍流边界层这样的重大问题,形成了力学史上的一个黄金时代。但是,现在对湍流问题的研究与过去有了根本的不同,它表现为要认识不同尺度上不同的物理过程的强耦合。对于这类问题,经典的相似解和摄动法并不适用。 因此,必须发展能解决多尺度现象里多样性和强耦合问题的理论和数值方法。 湍流具有从耗散尺度到积分尺度的连续谱,它没有尺度分离,因此平均法并不适用。 统计物理为湍流的多尺度模型提供了工具。一般而言,湍流的统计特性可以用矩和概率密度函数描述。但是,矩方程含有非线性引起的高阶矩耦合,概率密度函数方程含有耗散引起的

小尺度衰落产生的原因

小尺度衰落产生原因 作者:白舸 摘要:本文先对小尺度衰落的有关概念进行了解释和梳理,然后就小尺度衰落的产生原因提出了作者自己的看法,并试图通过实验论证自己的观点。 关键词:小尺度衰落,多径时延扩展,多普勒扩展 1、引言 从上世纪60至70年代,贝尔实验室的研究人员提出了蜂窝的概念起,人们开始研究移动通信的信道,移动通信要克服的一大困难就是小尺度衰落,因此,小尺度衰落历来是无线电波传播研究的重要环节。小尺度衰落指的是信号在小尺度区间(距离或时间的微小变化)的传播过程中,信号的幅度、相位和场强瞬时值的快速变化。前人对小尺度衰落进行了很多研究,建立了多种模型,如Ricean 衰落、Reyleigh衰落和Nakagami衰落。 说到小尺度衰落的产生原因,很多人都会想到两个词:多径和多普勒。但是与之相关的一些概念由于表述方式相近,导致人们对这些概念产生了误解,进而也影响到大家对小尺度衰落产生原因的理解。 本文将根据作者的体会,对小尺度衰落的生成原因进行阐述。接下来的一节会说明与多径和多普勒有关的概念,第三节解释小尺度衰落与多径以及多普勒的关系,文章的最后一节将通过实验论证作者的观点。 2、多径和多普勒 多径(multipath),是指在无线信道中,由于反射或者折射,在发射机和接收机之间不会只有单一视距传输路径,会形成的多种不同的传输路径。不难理解,若信号从发射机到接收机有多条传输路径,通过每条路的传播时间以及传播距离就会不同,这可导致各多径分量上,信号到达接收机的时间也不一样。这些路径

中肯定存在一条最短路径,则信号通过其它路径到达接收机的时间,肯定会比通过最短路径到达接收机的时间延长,这种时间的延长称为多径时延(multipath time delay )。在各径的时延中,有一部分时延并不大,使得接收机不能把它们跟最早到达的信号解析出来,这些时延信号相加,造成接收信号在时间上宽度扩展,这种现象叫多径时延扩展(delay spread)。 多普勒效应(Doppler effect )是指,当电波传输收发双方有相对运动时,其传输频率随瞬时相对距离的缩短和增长而相应增高和降低的现象。多普勒频移(Doppler shift )说的也就是上述现象,是同一种现象更具体地定义,因为它把多普勒效应的本质——频率偏移直接描述了出来。把多普勒频移应用到实际的移动通信中,通常,基站相对地面静止,而移动台相对地面运动。通过推导[1],多普勒频移d f 为: cos d v f θλ=? (1) 其中,v 是移动台相对地面的运动速度,λ是无线电波(信号)波长,θ是移动台运动方向和信号入射方向之间的夹角。由公式(1),我们可以看出,多普勒频移d f 与收发双方相对运动速度、信号波长和信号入射方向与相对运动方向之间 的夹角有关。当具有相对运动的收发双方之间的信号传输是通过多条路径时,每个分量到达接收机的角度θ会各不相同,进而导致每个分量产生的多普勒频移d f 也不一样,这些信号相加,从频域角度来看,跟发送信号相比,接受信号的频谱展宽了,这个频域上扩展的宽度就叫多普勒扩展。 3、小尺度衰落的产生原因 有了对上述概念的梳理,现在回到问题“小尺度衰落是否由多径和多普勒联合引起?”上来。首先,这个表述是不准确的,因为正如上文所提到的,与多径和多普勒有关的概念十分繁多,我们不能确定问题所涉及的是哪两个,我也就不在此片面的回答“是”或“否”。下面将讨论我对小尺度产生原因的一些看法。 3.1 基于多径时延扩展的小尺度衰落 信号经过多径传播后,入射电波从不同的方向传播到达,具有不同的传播时

矿井宽带无线信道小尺度衰落特性分析

矿井宽带无线信道小尺度衰落特性分析 【摘要】现有的矿山通信系统分为有线与无线系统,前者是以线缆为媒介的通信形式,因其抗干扰力强、信号传输稳定的特点,长期以来一直是为矿山通信的重要形式,同时利用光纤等成熟技术很容易实现宽带化升级改造。但是,根据矿山生产实际情况,特别是井下生产特点,有线通信系统存在着许多局限性,如架线繁杂,缺乏灵活性,易受损,影响着系统有效运行。所以,大力发展矿井无线通信技术,是矿井通信的现实需求和未来发展方向。 【关键词】矿井通信;信号传输;技术先进;经济合理;大尺度衰落;小尺度衰落 0 引言 近些年,随着“数字矿山”建设的稳步推进,对承载传输信息的矿山通信系统提出更高的要求。也就是说,现有的矿山通信系统,即单纯的话音和简单监测监控数据传输的矿山窄带通信系统已无法满足这种发展要求,矿山通信系统的宽带化(也就是高传输速率、大传输容量、低误码率、高实时性)已是发展的趋势。 1 矿井无线信道传播特性 1.1 大尺度衰落 当移动接收端在大的距离范围(一般的距离为大于几十个波长的范围)内移动时,由于机车、风门、立柱、综采机等障碍物对电波的遮挡所造成的电磁波传播阴影而引起的衰落,通常称为阴影衰落。这种衰落现象表现为,平均接收信号场强中值的变化,因此也称之为长期衰落或大尺度衰落。大尺度衰落主要受发射机和接收机之间的距离和周围的地物环境的影响。 1.2 小尺度衰落 电磁波信号在巷道环境中传播,大量的反射分量和散射分量造成了电磁波多路径传播,是矿井无线信道信号传输的主要形式,当移动台在一个小的范围内(一般小于几十个波长距离)运动时,引起接收信号的幅度、相位和到达角度的快速起伏变化,这种衰落通常称之为小尺度衰落。它是信号多径传播衰落现象最为直接的表现结果。 2 矿井宽带无线信道小尺度衰落特性 2.1 描述小尺度衰落的参数 描述矿井无线信道三组参数为:时延扩展(相关带宽),多普勒扩展(相关时间)和角度扩展(相关距离)。它们可以用包络相关函数来确定。包络的相关

VANET网络中小尺度衰落信道仿真

2010年第12期,第43卷 通 信 技 术 Vol.43,No.12,2010 总第228期 Communications Technology No.228,Totally VANET网络中小尺度衰落信道仿真 熊 飚, 张小桥 (南昌大学 计算机技术研究所,江西 南昌 330029) 【摘 要】车载网络(VANET)是智能交通系统的核心部分,能够提高道路交通的安全性与高效性。分析电波在VANET网络中的传播特点,着重分析该网络中双移动节点间的小尺度衰落信道,包括多普勒功率谱模型和用成型滤波器法仿真VANET 网络中小尺度衰落信道特性,给出经历该信道后接收信号的包络。仿真结果表明,随着移动车辆速度比增大,接收信号衰落更深。该结果对于VANET网络下无线多媒体业务性能评估有着重要的作用。 【关键词】车载网络;无线电波;小尺度衰落信道 【中图分类号】TN929.25 【文献标识码】A【文章编号】1002-0802(2010)12-0056-02 Simulation on Short-term Fading Channel for Radio Link between Dual Mobile Nodes in VANET XIONG Biao, ZHANG Xiao-qiao (School of Computer Institute, Nanchang University, Nanchang Jiangxi 330029, China) 【Abstract】Vehicle Ad Hoc Network(VANET) is the key part of intelligent transportation system (ITS), which can improve the safety and effectiveness of road traffic. The paper analyzes the propagation performance of radio signal in VANET, with focus on the short-term fading channel for radio link between dual mobile nodes, including the Doppler spectrum model and the received-signal envelop under the short-term fading channel for radio link based on IFFT method. The simulation results show that, with the increasing speed of moving vehicle, the wireless channel becomes worse. The results could serve as a valuable reference for performance evaluation of wireless multi-media traffic in VANET. 【key words】VANET; radio wave; short-term fading channel 0 引言 创造性的将移动自组网及无线传感器网络技术应用于车辆,使得传统的用于交通角色的车辆变成“智能终端”,即形成车载自组网。V ANET网络是智能交通系统 (ITS )的核心部分,旨在提高道路交通的安全性与高效性,同时提高旅客出行的舒适性[1],具有巨大的潜在商业价值。在2003年ITU-T的汽车通信标准化会议上,各国专家提出车载自组网技术有望在2010年将交通事故引起的损失降低50%[2] 。 相比较于传统的无线蜂窝网络,V ANET网络具有无中心性、双高速移动节点和节点的移动模型可预见性等独特特点,使得V ANET网络的拓扑结构具有快速的动态变化性,这些导致V ANET网络运行环境更复杂,应用于V ANET网络的关键技术存在很大的难点,特别是在实现服务质量(QoS)和安全性方面。关于V ANET网络技术的研究已经成为近十年的最热门的研究课题之一,然而对于研究V ANET网络首先需要解决的问题——无线电波在V ANET网络环境中的传播特点,并没有得到很好的研究。 首先,V ANET由于其自身独特特点(节点高速移动、拓扑结构快速动态变化和运行环境的更复杂性等)使得V ANET中的无线电波传播特性与传统无线蜂窝网络中的无线电波传播特性有所不同。其次,通信过程是信号与噪声通过通信系统(无线传播环境)的过程,对通信过程的研究就离不开对无线传播环境中的无线电波传播特点的研究。另一方面,文献[3]综合研究MANET物理层因素对其他各层的影响。文献[4]具体研究了MANET物理层特性对MAC层的重要作用。故对V ANET网络中电波传播特性的研究是很有必要的。 收稿日期:2010-04-22。 作者简介:熊 飚(1978-),男,学士,主要研究方向为计算机网络及短距无线通信;张小桥(1989-),学士,主要研究方向为无 线电波传播及其工程应用。 56

15 多尺度材料建模

22.54 中子与物质的相互作用及应用(2004年春季) 第十五讲(2004年4月15日) 多尺度材料建模 参考文献 S. Yip, "Synergistic Science", Nature Materials 2, 3 (2003). This commentary is attached as Chap15(S).pdf. 材料发现与创新 我们社会中各种科技企业对新材料的需求日益增长,这就要求成功的材料设计是基于整体分析的,在合成与处理方法中,对材料基本性能和特性的了解是与创新结合在一起的,并进一步与性能分析、使用寿命预计、环境评估和经济学研究联系起来。实际中材料的发现与创新是一个多学科高度综合的过程,依赖于多种科学和工程团体的贡献,因此也就需要在不同学科之间的有效交流,跨越传统的界限来进行合作。 在材料研究所涉及到的所有领域中,计算都显著地推进了研究工作的进展,通过第一原理全能量计算对半导体材料电子学性能的定量理解就是一例;另外,通过对聚合体流变行为的建模,实现了对热塑过程设计的改进。随着科学计算和可视化在功能上的日益强大与使用便捷,建模变得越来越普遍,不仅是仿真、分析和预测,还包括数据库生成和虚拟测试。 材料研究是一个异常活跃和多学科交织的领域[1]。大学、工业界和政府研究实验室中的科学家和工程师们在其中扮演了重要的角色。爆炸性增长的材料研究协会会议与期刊如MRS Bulletin和Nature Materials见证了这一点。也有一些杂志是针对材料建模与模拟的,如the Journal of Computer-Aided Design[2]和Modeling and Simulation in Materials Science and Engineering[3],还有其它一些越来越多的会议论文集。 还有另外一个因素增加了材料建模的重要性,即政府部门注意到了模拟和建模是可靠的,能够作为实验验证的补充(并将最终取代之)。一些国防部、能源部资助的项目是针对高性能计算的开发与实现的,而这些高性能计算的目的是以更高的效率和更低的成本(有时候人员安全也是要考虑的)来实现目标任务。例如High Performance Computing Modernization Program[5]和the Accelerated Strategic Computing Initiative,后者是与the Science-Based Stockpile Stewardship紧密相关的,而这本身又是一个规模空前、责任重大的国家项目[6]。 由于材料建模的能力在深度和广度都在增加,因此材料的分子工程也变得更加切实。这是每个材料科学家和工程师长久以来的梦想,创造出来的新材料不仅性能优越、使用寿命延长、对环境影响小,而且不必考虑成本问题。尽管计算机辅助的材料设计落在计算机辅助的分子(药品)设计之后,它还是取得了重要的进展,尤其是在微电子、光学和磁应用方面的功能材料领域[7]。与之形成对比的是,对于结构材料来说,机械、热学和化学(合金,腐蚀等)等现象对可靠和具有预测性的建模提出了严峻的挑战。因此,对于理解和控制这些现象最有希望的方法是有效地将几种建模技术结合起来,每种技术只适合一种特定的长度和时间尺度。这个概念被称作多尺度材料建模。 在材料建模中的长度/时间尺度 在许多科学问题中,一个简单的物理现象可以通过几种层次或长度(时间)尺度来进行检验。例如,海浪冲上沙滩的复杂运动可以通过看电影的方式来观察,也可以观察构成波浪

小尺度衰落信道解读

156 第六章小尺度衰落信道 前面已经介绍无线信道的传播模型可分为大尺度(Large-Scale)传播模型和小尺度(Small-Scale)衰落两种[2],三、四、五章已经介绍了大尺度传播。所谓小尺度是描述短距离(几个波长)或短时间(秒级)内接收信号强度快速变化的;而移动无线信道的主要特征是多径,由于这些多径使得接收信号的幅度急剧变化,产生了衰落,因此,本章将介绍小尺度衰落信道,这对我们移动通信研究中传输技术的选择和数字接收机的设计尤为重要。 本章将先介绍小尺度的衰落和多径的物理模型和数学模型,使读者从概念上清楚地认识移动无线信道的主要特点,并建立一个统一的数学模型,为以后讨论各种模型奠定基础;接着将介绍移动多径信道的三组色散参数——时间色散参数(时延扩展,相关带宽)、频率色散参数(多普勒扩展,相关时间)、角度色散参数(角度扩展,相关距离),为之后的信道分类奠定了基础;接下来介绍衰落信道的一阶包络统计特性、二阶统计特性,大量的实测数据表明,在没有直达路径的情况下(如市区),信道的包络服从瑞利分布,在有直达路径的情况下(如郊区),信号包络服从莱斯分布,因此,一阶包络统计特性主要介绍瑞利衰落分布和莱斯衰落分布,二阶统计特性主要介绍一组对偶参数——时间电平交叉率和平均衰落持续时间,简要介绍其他两组对偶参数——频域电平交叉率和平均衰落持续带宽,空间电平交叉率和平均衰落持续距离;在已经介绍了多径信道的三组色散参数之后,将介绍小尺度衰落信道相对应的不同分类。 6.1 衰落和多径 6.1.1 衰落和多径的物理模型 陆地移动信道的主要特征是多径传播。传播过程中会遇到很多建筑物,树木以及起伏的地形,会引起能量的吸收和穿透以及电波的反射,散射及绕射等,这样,移动信道是充满了反射波的传播环境。到达移动台天线的信号不是单一路径来的,而是许多路径来的众多反射波的合成。由于电波通过各个路径的距离不同,因而各路径来的反射波到达时间不同,相位也就不同。不同相位的多个信号在接收端迭加,有时同相迭加而加强,有时反向迭加而减弱。这样,接收信号的幅度将急剧变化,即产生了衰落。这种衰落是由多径引起的,所以称为多径衰落。 移动信道的多径环境所引起的信号多径衰落,可以从时间和空间两个方面来描述和测试。从空间角度来看,沿移动台移动方向,接收信号的幅度随着距离变动而衰减。其中,本地反射物所引起的多径效应呈现较快的幅度变化,其局部均值为随距离增加而起伏的下降的曲线,反映了地形起伏所引起的衰落以及空间扩散损耗。 从时域角度来看,各个路径的长度不同,因而信号到达的时间就不同。这样,如从基站发送一个脉冲信号,则接收信号中不仅包含该脉冲,而且还包含它的各个时延信号。这种由于多径效应引起的接收信号中脉冲的宽度扩展的现象,称为时延扩展。扩展的时间可以用第

多尺度耦合理论

何国威、白以龙 中国科学院力学研究所,非线性力学国家重点实验室 多尺度力学是当代科学技术发展的需求和前沿。在生物科学,材料科学,化学科学和流体力学中,许多重要问题的本质都表现为多尺度,它们涉及从分子尺度到连续介质尺度上不同物理机制的耦合和关联。例如,在生物和化学科学里,在分子尺度上的不同性态产生了生物体尺度上的复杂现象;在固体破坏中,不同尺度的微损伤相互作用产生更大尺度上的裂纹导致材料破坏;在流体力学中,不同时空尺度的涡相互作用构成复杂的流动图案。这些问题的共同特点是不同尺度上物理机制的耦合和关联。只考虑单个尺度上某个物理机制,不可能描述整个系统的复杂现象。因此,多尺度力学的核心问题是多过程耦合和跨尺度关联。 多尺度力学是传统的针对多尺度问题研究的发展,但有着本质的不同。它们都研究不 能通过解耦进行求解的多尺度耦合问题。但是,传统的多尺度问题具有相似性或弱耦合,即:不同尺度上的物理过程具有相似性,因此我们可以求相似解;或者,不同尺度上的物理过程具有弱耦合,因此我们可以采用平均法求解。然而,多尺度力学的研究对象具有多样性和强耦合,即:不同尺度上的物理过程既不具有相似性,耦合也不再是弱的了。因此,传统的相 似解和平均法对多尺度力学的问题都不适用。 动力系统理论和统计力学为多尺度现象的研究提供了基本方法。在一个给定尺度上的物理过程可以用动力学方程描述,而动力学方程的建立主要依赖于经典力学和量子力学。问题的关键在于不同尺度上物理过程的相互耦合。如果可以忽略耦合,单个尺度上的物理过程完全可以由经典力学或量子力学描述,剩下的就是类似于解方程那样的认识过程,原则上并不是什么困难的事情。在平衡态统计物理里,不同尺度之间物理过程耦合的基本假设是基于等概率原理的统计平均。但是,大多数多尺度问题涉及统计力学中非平衡态的非线性演化过程,不同的尺度之间存在强耦合或敏感耦合,不能简单地采用绝热近似、统计平均以及微扰等方法处理,而必须将不同尺度耦合求解。特别是存在敏感耦合的情形,小尺度上的某些无序性细节在非线性演化过程中可能被强烈地放大,变成大尺度上的显著效应。统计力学为处理这类问题提供了一个基本出发点。一个直接的方法是从第一原理出发,利用分子动力学,计算分子尺度上的所有细节,然后求得连续介质尺度上的物理性质。但是,由于现有计算机的限制,从第一原理出发的直接法并不现实。一个比较现实的方法是寻找中间尺度进行过渡,它包括基于区域分解的准连续方法和基于粗粒化的粒子动力学法。这些构造模型的方法在不同的问题上都取得了一定程度的成功,但是,它们都不具有普适性。最新的发展是建立在齐次化方法上的非均匀齐次法,它试图给出解决跨尺度关联问题的一般框架。 现代力学中两个典型的多尺度问题是流体湍流和固体破坏,它们既有共同点,但又有 所区别:流体湍流表现为不同尺度上多个物理过程的耦合,它没有尺度分离;固体破坏表现为不同尺度上物理机制的跨尺度关联,它具有尺度分离。现详细讨论如下: (1)流体湍流: 在流体湍流里,不同尺度上的涡相互作用构成了复杂的流动图案,它们具有不同的物理机制而又相互耦合。在上个世纪,针对不同尺度上物理过程相似的问题,流体力学家发展了求相似解的方法;针对不同尺度上物理过程耦合较弱的问题,流体力学家发展了小参数摄动法。正是相似解和摄动法解决了航空航天中诸如湍流边界层这样的重大问题,形成了力学史上的一个黄金时代。但是,现在对湍流问题的研究与过去有了根本的不同,它表现为要认识不同尺度上不同的物理过程的强耦合。对于这类问题,经典的相似解和摄动法并不适用。 因此,必须发展能解决多尺度现象里多样性和强耦合问题的理论和数值方法。 湍流具有从耗散尺度到积分尺度的连续谱,它没有尺度分离,因此平均法并不适用。 统计物理为湍流的多尺度模型提供了工具。一般而言,湍流的统计特性可以用矩和概率密度函数描述。但是,矩方程含有非线性引起的高阶矩耦合,概率密度函数方程含有耗散引起的

移动衰落信道现状与发展

1.2研究现状分析 近年来,常用的信道建模方法可以分为两类:第一类是统计模型,它总结了建筑地形的统计特性(包括建筑物本身),这种无线传播的统计描述包括地形和多次反射、散射、衍射的次数等;第二类是确定性射线跟踪模型,它利用了从地形 中各个障碍点到达接收机的多条射线进行直接计算,在接收点统计多条射线,以得到接收信号的统计特性,包括幅度、相位等,这样得到的结果十分精确。第二 种方法在未对环境进行功率测量的情况下就可以进行建模,因此比较省时方便。 使用统计模型来对无线信道建模的研究分析比较早。最早出现的是瑞利模 型、莱斯模型和对数正态模型,其中前面两个模型都是针对小尺度衰落而建立的,而对数正态模型则是针对大尺度衰落而建立的。后来随着人们对无线信道建模精确性要求的提高,越来越多的统计混合模型出现了,但都是以这三个模型为基础。 1960年Nakagami.M提出了以其名字命名的模型,这种衰落信道模型适用性十分广泛,比瑞利、莱斯和对数正态模型更适应复杂的环境,Suzuki提出瑞利对数正态模型,该模型同时反映了大尺度衰落和小尺度衰落的特性,描述了这样一种传播场景,在发射端发射的信号主波经过几次反射和衍射后,达到了一个建筑物密集的地方,主波由于当地物体的散射、衍射等的结果将会分为许多子路径。 模型令发射端到小区的路径服从对数正态分布,因为路径经历了乘法效应;而当地路径由于是加性散射效应导致的,服从瑞利分布;这时接收信号的包括服从瑞利一对数正态模型。 第一个移动信道多径统计模型是由Ossana在1964年提出,它基于入射波和建筑物表面随机分布的反射波相互干涉的原理。但该模型假设在收发之间存在一条直射路径,且反射的角度局限于一个严格的范围之内,所以该模型对于市区传播环境来说,既不方便也不准确。后来Clarke建立了移动台接收信号场强的统计特性是基于散射的统计模型,他认为接收端的电磁波由N个平面波组成,这些平面波具有任意载频相位、入射方位角及相等的平均幅度,Clarke模型已经被广泛使用。 以上都是针对小尺度衰落的统计模型,在大尺度衰落的统计建模方面的研究

多尺度模拟与计算研究进展

多尺度模拟与计算研究进展 张廼龙1郭小明 东南大学土木工程学院工程力学系,南京 210018 摘 要:简要介绍了多尺度模拟与计算方法及其实施策略。重点论述了模拟计算两类常见多尺度问题的方法与研究进展。求解含有孤立缺陷问题有非局部准连续体法,MAAD法,CGMD法,粗粒化蒙特卡罗法,直接蒙特卡罗法,连续体-分子动力学模型法等;基于微观模型本构模拟问题有局部连续体法,人工压缩法,气体动力学法,HMM等方法。最后对多尺度模拟与计算的前景进行展望。 关键词多尺度方法,模拟与计算,实施策略 1 引言 在自然科学和实际工程中所遇到的几乎所有问题在本质上都是多尺度的。尽管物质都是由原子和电子组成,然而,在不同尺度上其结构和性能又各有特点。混凝土材料中几个微米裂纹与整个宏观结构层面上的裂缝力学特性可能完全不同。大气中的漩涡结构大小可能是几米,也可能绵延数千公里,其运行模式差异很大。蛋白质、核酸等的运动可以从若干飞秒跨越到若干秒的时长,明显的特征是不同尺度间结构和行为特点差异巨大。 在对材料性能要求不高,或者系统的设计不是很复杂时,这种多尺度特性并没有得到足够的关注。因为单一尺度量级的模型即使忽略较高或者较低尺度的影响也能够获得满意的结果。但是随着人类对材料的使用和要求不断提高,设计的结构系统不断复杂化,单一尺度量级的等效模型显示出其固有的局限性。其中一个主要的局限性就是它的精度无法满足实际应用的要求。这种情况在复杂材料或系统中尤为突出,例如,复杂流体。它的局限性还表现为忽略微观尺度上的力学性能,通常这些性能对模型的合理性有着至关重要的影响。例如,混凝土的微观结构对其宏观性能(强度、尺寸稳定性以及耐久性等)有着重要的影响,而当前居于主导地位的混凝土模型不能够有效的反应出微观结构对其宏观性能的影响。有些单一尺度量级的模型是半经验的。因此,为了获得能够应用于实际的结果,人们选择精度更好,基础更加扎实的微观尺度模型。然而,在整个系统上使用微观尺度量级的模型,增加了建模的复杂性和庞大的计算量,甚至无法实现。而结果可能包含许多不需要的信息,甚至掩盖了有用信息, 基金项目:江苏省基础研究计划项目(BK2009259)资助 1作者简介:张廼龙,(1981-),男,博士 Email:xmguo@https://www.wendangku.net/doc/8616250809.html, 加大了提取有用信息的难度,显然,这不是最佳选择。应该考虑采用既能够反映不同尺度上结构和性能的模型,避免在整体上使用微观模型产生的模型太复杂以至于无法计算的问题。 多尺度科学[l]是一门研究不同空间尺度或时间尺度相互耦合现象的跨学科科学,是复杂系统的重要分支之一,具有丰富的科学内涵和研究价值。多尺度模拟考虑空间和时间的跨尺度与跨层次特征,并将相关尺度耦合起来,提高模拟和计算效率,是求解各种复杂的材料和工程问题的重要方法和技术。 综上所述,多尺度现象存在于生活的各个方面,涵盖多个领域,如微观、细观和宏观等多个物理、力学及其耦合领域[2]。对材料性能的要求不断提高,系统设计的不断复杂化是促使多尺度模拟与计算的出现和发展的原动力。多尺度模拟的目标是要抓住不同时空条件下材料或者系统的物理响应特征,预测其性能或者使用寿命,掌握较小尺度的结构与性能对材料或者系统宏观行为的影响。多尺度模拟和计算是一个正在迅速发展的热点与前沿研究领域[3],特别是在多物理的(mufti-physical)现象非常显著材料科学、化学、流体力学和生物学等领域。 本文介绍了宏观模型含有分散的孤立缺陷和基于微观模型推测宏观性能的模拟与计算的一些方法:非局部准连续体法,MAAD法,CGMD法,粗粒化蒙特卡罗法,直接蒙特卡罗法,连续体-分子动力学模型法,人工压缩法,气体动力学法,HMM等方法及其研究进展。最后对多尺度方法的前景进行展望。 2 多尺度模拟与计算 2.1 多尺度问题与方法 多尺度问题表现为:已知一个模型的宏观描述,但是它在某些局部的空间或者时间尺度上不

多尺度方法应用

多尺度方法 1.多尺度方法的意义 很多自然科学和工程的问题都具有多尺度的特征。例如,高雷诺湍流的涡有大小不同的尺度,材料的微损伤有大小不同的尺度,多孔介质的孔径大小存在着不同的尺度等。然而,在实际应用中却常常忽略多尺度特征而采用经验模型。这些模型在应用中取得很大的成功,但经验模型也存在本身的局限性,主要体现在:(1)由于模型的误差大,导致很多问题求解的精度不高; (2)完全忽略细观结构的影响,不能完全反映问题本身的自然特征; (3)缺乏可靠的理论基础。 因此,对于很多问题,需要建立能反映自然属性、精度更高且具有理论基础的多尺度模型。在建立多尺度模型的同时,首先必须考虑问题自身的特征。按照问题的特征可以把多尺度问题分为以下几类: 第一类:这类多尺度问题包含了孤立的瑕点或奇异点,比如裂痕、断层、突变以及接触线。对于这类问题,只需要在孤立的瑕点火奇异点附近建立细观尺度的模型,其它区域满足某个宏观模型即可。这样细观尺度的模型只需在很小的计算区域里求解。 第二类:这类多尺度问题存在相关的宏观模型,但宏观模型不清晰,不能直接用于求解。典型的一个例子是均匀化问题,这时系数aε(x)=a(x,xε?),其中ε表示细观尺度,虽然与宏观变量x相关的宏观模型确实存在,但宏观模型不明确。 第三类:这类问题是包含第一类和第二类特征的多尺度问题。 第四类:这类多尺度问题的习惯结构具有强烈的不规则性,难以找到相关的宏观模型。 随着多尺度模型的发展,还会出现更多类型的多尺度问题,对各类多尺度问题的求解引起了人们广泛的关注,也推动了多尺度计算方法的发展。很多科学和工程问题都存在多尺度问题,多尺度模拟是一个典型的跨学科问题,它涉及到数学、化学、物理、工程、计算机科学、环境科学等学科,越来越受到科学家的重视。目前为止,已经有一些经典的多尺度计算方法,如多重网格方法、均匀化方

数字通信复习(基本概念)

《数字通信》复习-基本概念 一、系统方面 1、数字通信系统可靠性和有效性的评价指标是什么? 2、在AWGN信道条件下最佳接收准则。 3、二进制数字调制系统最佳接收机的类型及其结构。 4、MLSE接收机的原理结构框图。 5、分析最佳接收机有哪两种基本的方法?给予简要说明。 6、什么是奈奎斯特准则?满足奈奎斯特准则的最常用的传输特性是什么? 7、在AWGN信道条件下最佳基带传输系统的发送和接收滤波器是什么样的滤波器? 8、部分响应信号设计的基本思想是什么?部分响应系统中预编码器的作用是什么? 9、二进制数字传输系统的误比特率性能分析方法及性能公式。 10、什么是等效低通的分析方法。 二、信号与噪声 1、带通信号的三种表达式。 2、窄带高斯噪声的三种表达式及统计特性。 3、如何在信号空间中表示数字调制信号? 4、信号波形相关系数的计算。 5、调制方式:线性与非线性调制,无记忆与有记忆调制,正交调制。 6、线性数字调制信号功率谱与什么因素有关? 7、QAM数字调制系统的发送机和接收机的结构。 8、MSK信号的特点是什么? 三、滤波器(匹配滤波器、升余弦滤波器、线性滤波器信道、均衡器) 1、匹配滤波器:依据的准则、最佳传输函数、输出信噪比和常用的基本性质。 2、升余弦滤波器:奈氏带宽,截止频率,滚降因子,符号速率等参数。 3、描述线性滤波器信道的主要特性是什么? 4、在数字调制系统中线性滤波器信道的等效低通数学模型。 5、在QAM系统中分析线性滤波器信道符号间干扰的特点。 6、线性均衡器的两个基本准则是什么?各有什么特点? 7、自适应均衡器在结构上有哪几种基本类型?非线性均衡器是什么概念? 8、LMS算法的表达式。基于LMS算法的线性均衡器的结构。

思考题:小尺度衰落的功率分布函数

思考题:小尺度衰落的功率分布函数 因为实部和虚部相互独立都服从于复高斯分布,所以信号的幅值服从瑞利分布,而瞬时功率为幅值的平方关系,即实部与虚部的平方和。根据概率论所学的知识,我们知道若n个相互独立的随机变量ξ1,ξ2,…,ξn ,均服从标准正态分布,则这n个服从标准正态分布的随机变量的平方和∑ξi∧2构成一新的随机变量,其分布规律称为χ2(n)分布。所以功率谱的分布应该服从于卡方分布。 Matlab仿真: N=1e6; x=randn(1,N); y=randn(1,N); r=sqrt(0.5*(x.^2+y.^2)); step=0.1; t=0:step:3; h=hist(r,t); fr_approx=h/(step*sum(h)); fr=(t/0.5).*exp(-t.^2); plot(t,fr_approx,'ko',t,fr); grid;

或者用matlab自带瑞利分布函数 x = [0:0.01:3]; p = raylpdf(x,0.5); plot(x,p); grid; 后面的卡方分布我也不知道自己写的对不对,百度了一下卡方分布的matlab函数,chi2cdf 和chi2pdf前者是累计分布函数,后者是概率密度函数。 N=1e6; x=randn(1,N); y=randn(1,N); r=sqrt(0.5*(x.^2+y.^2)); step=0.1; t=0:step:3; h=hist(r,t); fr_approx=h/(step*sum(h)); fr=(t/0.5).*exp(-t.^2); plot(t,fr_approx,'ko',t,fr); hold on; plot(t,fr_approx,'ko',t,chi2cdf(t,2)); grid;

相关文档
相关文档 最新文档